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What we can do?

Equilibrium ≡ complementarity ( ≈ coupling)

PATH solver for large scale mixed complementarity problems

0 ≤ F (x) ⊥ x ≥ 0

Nonsmooth Newton method, efficient linear algebra, available in
modeling systems: GAMS, MPSGE, AMPL, AIMMS, Julia, Pyomo

Used in models such as PIES, MERGE, VEMOD, MARKAL, TIMES,
KAPSARC, ISEEM, MESSAGE, TEA, TIGER, Gemstone

Models of Tobin, Nordhaus, Romer

Frequently used in Computable General Equilibrium (CGE) analyses
(GTAP data available), traffic, structural analysis

Policy analyses such as Uruguay round, NAFTA, USMCA, Brexit
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Equilibrium = the first-order optimality conditions (KKTs)

An equilibrium of a single optimization (a single agent) under CQs

minimize
x

f (x), ∇f (x)−∇g(x)Tλ−∇h(x)Tµ = 0,

subject to g(x) ≤ 0, (⇒) 0 ≥ g(x) ⊥ λ ≤ 0,

h(x) = 0, 0 = h(x) ⊥ µ,

Mixed complementarity problem MCP([l , u],F ) : l ≤ z ≤ u ⊥ F (z)

Geometric first-order optimality conditions for a closed convex set K

minimize
x∈K

f (x), (⇒) 0 ∈ ∇f (x) + NK (x)

i.e. VI(K ,∇f (x))

Variational inequality VI(K ,F ) : 〈F (x), y − x〉 ≥ 0,∀y ∈ K
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Generalizing to N agents: NEP

Nash equilibrium problem: x = [xi ]
N
i=1

minimize
xi

fi (xi , x−i ), ∇xi fi (xi , x−i )−∇gi (xi )λi −∇hi (xi )µi = 0,

subject to gi (xi ) ≤ 0, (⇒) 0 ≥ gi (xi ) ⊥ λi ≤ 0,

hi (xi ) = 0, 0 = hi (xi ) ⊥ µi .

x−i := (x1, . . . , xi−1, xi+1, . . . , xN)T .

Equilibrium: satisfy the KKT conditions of all agents simultaneously.

Interactions occur only in objective functions.

Example of an interaction: fi (xi , x−i ) = ci (xi )− xip
(∑N

j=1 xj

)
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NEP + non-disjoint feasible regions: GNEP

Generalized Nash equilibrium problem: x = [xi ]
N
i=1

minimize
xi

fi (xi , x−i ), ∇xi fi (x)−∇xigi (x)λi −∇xihi (x)µi = 0,

subject to gi (xi , x−i ) ≤ 0, (⇒) 0 ≥ gi (x) ⊥ λi ≤ 0,

hi (xi , x−i ) = 0, 0 = hi (x) ⊥ µi .

Interactions occur in both objective functions and constraints.

Non-disjoint feasible region:
Ki (x−i ) = {xi ∈ Rni | gi (xi , x−i ) ≤ 0, hi (xi , x−i ) = 0}.

I Ki : Rn−ni ⇒ Rni a set-valued mapping
I e.g., shared resources among agents:

∑N
i=1 xi ≤ b, or strategic

interactions
I Quasi-variational inequality
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(G)NEP + VI agent: MOPEC

Multiple optimization problems with equilibrium constraints:
x = [xi ]

N
i=1, π

minimize
xi

fi (xi , x−i , π), ∇xi fi (x , π)−∇xi gi (x , π)λi −∇xi hi (x , π)µi = 0,

subject to gi (xi , x−i , π) ≤ 0, 0 ≥ gi (x , π) ⊥ λi ≤ 0,

hi (xi , x−i , π) = 0, 0 = hi (x , π) ⊥ µi ,

π ∈ SOL(K ,F ), π ∈ K(x), 〈F (π, x), y − π〉 ≥ 0, ∀y ∈ K(x).

No hierarchy between agents, c.f., MPECs and EPECs

An example of a VI agent: market clearing conditions

0 ≤ supply− demand ⊥ price ≥ 0
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Specifying (G)NEPs and MOPECs in modeling languages

Existing method
1 Compute an MCP function F using the KKT conditions.

minimize
xi

fi (xi , x−i ), =⇒ Fi (x , λi ) =

[
∇xi fi −∇xigiλi

gi

]
,

subject to gi (xi , x−i ) ≤ 0,

for i = 1, . . . ,N, for i = 1, . . . ,N.

2 Specify the complementarity relationship.

F complements (x , λ) in AMPL,

F ⊥ (x , λ) in GAMS.

3 Solve the resultant MCP((x , λ),F ) using the Path solver.

I Cons
F Prone to errors as we require users to compute derivatives by hand
F Not easy to modify the problem: a lot of derivative recomputations
F Agent information is lost in the MCP function F .
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The EMP framework

Automates all the previous steps: no need to derive MCP by hand.

Annotate equations and variables in an empinfo file.

The framework automatically transforms the problem into another
computationally more tractable form.

minimize
xi

fi (xi , x−i , π),

subject to gi (xi , x−i , π) ≤ 0,

hi (xi , x−i , π) = 0,

for i = 1, . . . ,N,

π ∈ SOL(K ,F ).

equilibrium

min f(’1’) x(’1’) g(’1’) h(’1’)

· · ·
min f(’N’) x(’N’) g(’N’) h(’N’)

vi F pi K
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An example of using the EMP framework

An oligopolistic market equilibrium problem formulated as a NEP:

q∗i ∈ argmaxqi≥0 qip

 5∑
j=1,j 6=i

q∗j + qi

− ci (qi ), for i = 1, . . . , 5.

variables obj(i); positive variables q(i);

equations defobj(i);

defobj(i).. obj(i) =E= ...;

model m / defobj /;

file info / ’%emp.info%’ /;

put info ’equilibrium’ /;

loop(i, put ’max’, obj(i), q(i), defobj(i) /;);

putclose;

solve m using emp;
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Special features I: supporting shared constraints

Shared constraints: agents have shared resources.

g is a shared constraint:

minimize
xi

fi (xi , x−i ),

subject to g(xi , x−i ) ≤ 0.

Examples:
I Network capacity:

∑N
i=1 xi ≤ b

Agents send packets through the same network channel.
I Total pollutants:

∑N
i=1 aixi ≤ c

Agents throw pollutants in the river. The maximum pollutants that
can be thrown are set by a policy.
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Different types of solutions for shared constraints

A GNEP equilibrium: replicate g and assign a separate multiplier

minimize
xi

fi (xi , x−i ),

subject to g(xi , x−i ) ≤ 0, (⊥ µi ≤ 0).

A variational equilibrium: force use of a single g and a single µ

minimize
xi

fi (xi , x−i )− µTg ,

0 ≥ g(x) ⊥ µ ≤ 0.

Syntactic enhancement

equilibrium

visol g

min f(’1’) x(’1’) g

· · ·
min f(’N’) x(’N’) g
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Special features II: supporting shared variables

Shared variables: agents have shared states.

y is a shared variable:

minimize
y ,xi

fi (y , xi , x−i ),

subject to h(y , xi , x−i ) = 0.

I For each x , the value of y is implicitly determined by h.

Syntactic enhancement

equilibrium

implicit y h

min f(’1’) x(’1’) y

· · ·
min f(’N’) x(’N’) y
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MCP formulation strategies for shared variables

Replication

Fi (x , y , µ) =

∇xi fi −∇xihµi
∇yi fi −∇yihµi

h

 ⊥

xiyi
µi


Switching

Fi (x , y , µ) =

[
∇xi fi −∇xihµi
∇y fi −∇yhµi

]
⊥

[
xi
µi

]
Fh(x , y , µ) =

[
h
]

⊥
[
y
]

Substitution: eliminate µi ← [∇yh]−1∇y fi

Strategy Size of the MCP

replication (n + 2mN)
switching (n + mN + m)

substitution (implicit) (n + nm + m)
substitution (explicit) (n + m)
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Experimental results: improving sparsity

Replace p
(∑N

i=1 xi

)
with p(y) in oligopolistic market problem.

I 1 ISO agent and 5 energy-producing agents
I Each energy-producing agent has a fixed number of plants: n/5.

n
Original Switching

Size Density (%) Size Density (%)

2,500 2,502 99.92 2,508 0.20
5,000 5,002 99.96 5,008 0.10

10,000 10,002 99.98 10,008 0.05
25,000 - - 25,008 0.02
50,000 - - 50,008 0.01

n
Original Switching

(Major,Minor) Time (secs) (Major,Minor) Time (secs)

2,500 (2,2639) 57.78 (1,2630) 1.30
5,000 (2,5368) 420.92 (1,5353) 5.83

10,000 - - (1,10517) 22.01
25,000 - - (1,26408) 148.08
50,000 - - (1,52946) 651.14
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Experimental results: modeling mixed behavior

Revisiting the oligopolistic market equilibrium problem:

maximize
qi≥0

qip

 5∑
j=1,j 6=i

qj + qi

− ci (qi ), for i = 1, . . . , 5.

Introduce a shared variable y = p(q).
I If an agent declares y as its decision variable, it is a price-maker.
I Otherwise, it is a price-taker.

Profit Compet. Oligo1 Oligo12 Oligo123 Oligo1234 Oligo12345

Firm 1 123.83 125.51 145.59 167.02 185.958 199.93
Firm 2 195.31 216.45 219.63 243.59 264.469 279.72
Firm 3 257.81 278.98 306.17 309.99 331.189 346.59
Firm 4 302.86 322.51 347.48 373.46 376.697 391.28
Firm 5 327.59 344.82 366.54 388.97 408.308 410.36

Total 1207.41 1288.27 1385.42 1483.02 1566.62 1627.875
Soc./wf. 39063.82 39050.19 39034.58 39022.47 39016.37 39015.125
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Optimal Value Functions

Problem type

Objective function

min
x∈X

θ(x) + ρ(F (x))

or Constraint

min
x∈X

θ(x) s.t. ρ(F (x)) ≤ α

Special case is a Quadratic Support Function

ρ(y) = sup
u∈U
〈u,By + b〉 − 1

2
〈u,Mu〉

Dual representation (of coherent r.m.) in terms of risk sets

ρ(Z ) = sup
µ∈D

Eµ[Z ]

If D = {p} then ρ(Z ) = E[Z ]

If Dα,p = {λ ∈ [0, p/(1− α)] : 〈1, λ〉 = 1}, then ρ(Z ) = CVaRα(Z )
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The transformation to MOPEC

Emp allows any Quadratic Support Function to be defined and
facilitates model transformations to tractable forms for solution

empinfo file: OVF cvarup F(x) rho .9

min
x∈X

θ(x) + ρ(F (x))

ρ(y) = sup
u∈U

{
〈u, y〉 − 1

2
〈u,Mu〉

}
0 ∈ ∂θ(x) +∇F (x)T∂ρ(F (x)) + NX (x)

0 ∈ ∂θ(x) +∇F (x)Tu + NX (x)

0 ∈−u + ∂ρ(F (x)) ⇐⇒ 0 ∈ −F (x) + Mu + NU(u)

This is a MOPEC, and we have a copy of this construct for each agent
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Emp framework

Model m
EMPinfo

Model m′

EMPinfo′
Julia

GAMS

AMPL

Equilibrium
Solver

GAMS

Julia

AMPL

Model transformations

Value propagations

The model representation inside the Emp solver is independent of any
model language

Ferris (Wisconsin) EMP and equilibria Supported by DOE/ARPA-E 18 / 25



Selkie

Selkie
I Generates submodels for sub-solvers and decomposition.
I Supports various decomposition methods.
I Can compute a solution in an adaptable and flexible way.
I ex) Selkie on equilibrium problems:

Sub−solver

(PATH)
(agent 22, ...)

group M

group 1

(agent 1, agent 2)

...

Sub−solver

(CONOPT)

customizable

Run diagonalization (best−response scheme) over groups

model sM

...

model s1model m

agent 2

agent 1

agent N

...

customizable
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An example of using Selkie for group diagonalization

An oligopolistic market equilibrium problem:

maximize
qi≥0

qip

 5∑
j=1,j 6=i

qj + qi

− ci (qi ), for i = 1, . . . , 5.

Group
Iterations

Jacobi GS GSW GS(RS)
{{1},{2},{3},{4},{5}} 155 45 28 50

{{1,2},{3,4},{5}} 57 21 22 30
{{1..3},{4,5}} 28 14 14 18
{{1..4},{5}} 22 12 12 16
{{1..5}} 1

I GS: Gauss-Seidel
I GSW: Gauss-Southwell
I GS(RS): Gauss-Seidel with random sweep

An automatic detection of independent groups is supported.
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Multistage MOPEC with risk averse agents
Deterministic equivalent under dual risk measure representation:

min
xi·,θi·

fi0(xi0)− pT0 gi0(xi0) + θi0

s.t. θim ≥
∑
n∈m+

πkin · {fin(xin)− pTn gin(xin) + θin}, ∀m /∈ L, k ∈ Kim

xin = Hinxim + ωin, ∀m /∈ L, n ∈ m+

xin ∈ [lin, uin], ∀n

with equilibrium constraint

0 ≤
∑
a

gin(xin) ⊥ pn ≥ 0, ∀n

Here n represents the node of the scenario tree, L is the set of the
nodes that are the leaves of the scenario tree, n+ represents the set
of children nodes of the node n, Kim is the set of extreme points of
risk set of agent i at node m.
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Alternative method: Primal - dual method for solving the
multistage MOPEC with risk averse agents

Previous distributed methods (Gauss-Seidel and Jacobi) fail to solve
the MOPEC

I No implicit function π = h(x) from the constraint 0 ≤ H(x , π) ⊥ π ≥ 0
I The subproblem is not solvable or unbounded without H(x , π) ≥ 0

In the risk-averse case, the corresponding reformulated mixed
complementarity problem will lose monotonicity even when the
risk-neutral case is monotone

PATH fails to solve, even with informed choices of starting point

Use Penalty (Augmented Lagrangian) of the constraint H(x , π) ≥ 0 in
each primal agents’ problem and dual update in each major iterations.

Performance depends on the choice of γ.
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Algorithm 1 Primal-dual for multistage MOPEC with risk-averse agents

1: set k = 0, choose a starting point (x0, p0), parameter γ > 0, 0 < µ ≤ 1
2: while stopping criterion not met do
3: for each agent a do
4:

xk+1
i · , θk+1

i · , yk+1
i · = arg min

xi·,θi·,yi·
fi0(xi0)− (pk0 )Tgi0(xi0) + (pk0 )T yi0 + θi0

+
γ

2

∑
n

‖gin(xin) +
N∑
j<i

(
gjn(xk+1

jn )− yk+1
j

)
+

N∑
j>i

(
gjn(xkjn)− ykj

)
− bn‖2

s.t. θim ≥
∑
n∈m+

πkin · {fin(xan)− pTn gin(xin) + pTn yin + θin}, m /∈ L, k ∈ Kim

xin = Hinxim + ωan, m /∈ L, n ∈ m+

xin ∈ [lin, uin], yin ≥ 0

5: end for
6: pk+1

n = pkn − µγ ·
(∑N

j=1 gjn(xk+1
jn )− bn −

∑N
j=1 y

k+1
jn

)
7: k = k + 1
8: end while
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Comparison between PATH and Primal-Dual method

A 4-agent example with 5 stochastic stages, where n represents the
dimension of the corresponding MCP

Risk measure: ρ(X ) = (1− λ) · E(X ) + λ · CVaR0.95(X )

Risk averse

Size: n × n λ
PATH Primal-Dual

Final merit # Iter Final merit Time(secs)

2680 × 2680 0.1 1.15e+03 6887 9.06e-07 7107
2680 × 2680 0.2 1.83e+02 7156 9.35e-05 7200
2680 × 2680 0.3 1.66e+02 7073 3.32e-03 7200
2680 × 2680 0.4 2.71e+02 7083 2.62e-02 7200

Risk averse: use previous solution as initial point

Size: n × n λ
Primal-Dual

# Iter Final merit Time(secs)

2680 × 2680 0.1 5179 9.51e-07 4401
2680 × 2680 0.2 5706 9.95e-07 7000
2680 × 2680 0.3 7049 2.52e-06 7200
2680 × 2680 0.4 6967 6.43e-05 7200
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Conclusions

Competition naturally modeled via complementarity

Solvers exist for medium to large scale problems

Frameworks (EMP) exist to streamline model transformations

empinfo: dualvar, bilevel, equilibrium, vi, OVF

Very large scale models (many agents with many instruments acting
strategically) with risk are hard

Decomposition/diagonalization methods (SELKIE) are effective when
sensitivity information is exploited

New algorithms enable solution of more detailed, authentic problems
that address underlying policy questions

Evaluation via simulation computations and out-of-sample testing
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