Computation in Markets with Risk

Michael C. Ferris

Stephen Kleene Professor of Computer Science Computer Sciences Department and Wisconsin Institute for Discovery, University of Wisconsin, Madison

ISYE, Georgia Tech, Atlanta, May 26, 2019

Build it and they will come

- Markets = equilibrium = complementarity (\approx coupling)
- PATH solver for large scale mixed complementarity problems

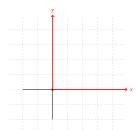
$$0 \le F(x) \perp x \ge 0$$

- Nonsmooth Newton method, efficient linear algebra, available in modeling systems: GAMS, MPSGE, AMPL, AIMMS, Julia, Pyomo
- Used in models such as PIES, MERGE, VEMOD, MARKAL, TIMES, KAPSARC, ISEEM, MESSAGE, TEA, TIGER, Gemstone
- Models of Tobin, Nordhaus, Romer
- Frequently used in Computable General Equilibrium (CGE) analyses (GTAP data available), traffic, structural analysis
- Policy analyses such as Uruguay round, NAFTA, USMCA, Brexit

MIP formulations for Complementarity

Set
$$y_i = F_i(x)$$
, then (disjunction)

$$0 \leq y_i, \quad y_i x_i = 0, \quad x_i \geq 0$$



If we know upper bounds on x_i and y_i we can introduce binary variable z_i and model as:

$$0 \leq x_i \leq Mz_i, \quad 0 \leq y_i \leq M(1-z_i)$$

or (without bounds)

$$(x_i,y_i) \in SOS1$$

(or use indicator variables to turn on "fixing" constraints).

Works if bounds are good and problem size is not too large. Issues with bounds on multipliers not being evident. c.f. Optimal topology problems.

Nonsmooth alternatives and approximations (NLPEC)

Alternative: generate generalized derivatives of nonsmooth reformulations

- PATH uses (PC¹) normal map
- Min-map $min(F_i(x), x_i) = 0$
- Fischer-Burmeister $\Phi(x) = 0$

$$\phi(a,b)=0\iff 0\leq a\perp b\geq 0$$

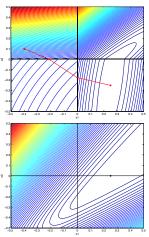
$$\Phi_i(x) \equiv \sqrt{x_i^2 + F_i(x)^2} - x_i - F_i(x)$$

• Smoothing (drive parameter μ to 0)

$$0 = \phi_{\mu}(F_i(x), x_i), \quad i = 1, 2, \dots, n$$

$$\phi_{\mu}(a,b) := \sqrt{a^2 + b^2 + \mu} - a - b$$

- Relaxation $F_i(x)x_i \leq \mu$
- Penalization $+\lambda \sum_{i=1}^{n} F_i(x)x_i$



Extended Mathematical Programming (EMP)

- Optimization models improve understanding of underlying systems and facilitate operational/strategic improvements under resource constraints
- Problem format is old/traditional

$$\min_{x} f(x) \text{ s.t. } g(x) \le 0, h(x) = 0$$

- Extended Mathematical Programs allow annotations of constraint functions to augment this format.
- Give several examples of this: free boundary problems, bilevel programming, multi-agent competitive models, risk
- e.g. combining/modifying optimality conditions from the original problems

The PIES Model (Hogan) - Optimal Power Flow (OPF)

$$\min_{x} c(x)$$
 cost
s.t. $Ax \ge q$ balance
 $Bx = b, x \ge 0$ technical constr

- $ullet q=d(\pi)$: issue is that π is the multiplier on the "balance" constraint
- Such multipliers (LMP's) are critical to operation of market
- Can try to solve the problem iteratively (shooting method):

$$\pi^{new} \in \mathsf{multiplier}(\mathit{OPF}(d(\pi)))$$

Alternative: Form KKT of QP, exposing π to modeler

$$L(x, \mu, \lambda) = c(x) + \mu^{T}(d(\pi) - Ax) + \lambda^{T}(b - Bx)$$

$$0 \le -\nabla_{\mu}L = Ax - d(\pi) \qquad \qquad \bot \quad \mu \ge 0$$

$$0 = -\nabla_{\lambda}L = Bx - b \qquad \qquad \bot \quad \lambda$$

$$0 \le \nabla_{x}L = \nabla c(x) - A^{T}\mu - B^{T}\lambda \quad \bot \quad x \ge 0$$

- EMP: Take original QP model, and add single annotation:
- ullet empinfo: dualvar π balance
- Fixed point: replaces $\mu \equiv \pi$
- LCP/MCP is then solvable using PATH

Alternative: Form KKT of QP, exposing π to modeler

$$L(x, \mu, \lambda) = c(x) + \mu^{T}(d(\pi) - Ax) + \lambda^{T}(b - Bx)$$

$$0 \le Ax - d(\pi) \qquad \qquad \bot \quad \pi \ge 0$$

$$0 = Bx - b \qquad \qquad \bot \quad \lambda$$

$$0 \le \nabla c(x) - A^{T} \pi - B^{T} \lambda \qquad \bot \quad x \ge 0$$

- EMP: Take original QP model, and add single annotation:
- ullet empinfo: dualvar π balance
- Fixed point: replaces $\mu \equiv \pi$
- LCP/MCP is then solvable using PATH

Supply function equilibria

 α are (given) price bids, parametric optimization

Supply function equilibria

```
\begin{array}{lll} \mathsf{OPF}(\alpha) \colon & \mathsf{min}_y & \mathsf{energy} \ \mathsf{dispatch} \ \mathsf{cost} \ (y,\alpha) \\ & \mathsf{s.t.} & \mathsf{conservation} \ \mathsf{of} \ \mathsf{power} \ \mathsf{flow} \ \mathsf{at} \ \mathsf{nodes} \\ & \mathsf{Kirchoff's} \ \mathsf{voltage} \ \mathsf{law}, \ \mathsf{and} \ \mathsf{simple} \ \mathsf{bound} \ \mathsf{constraints} \end{array}
```

 α are (given) price bids, parametric optimization

```
 \begin{array}{ll} \mathsf{Leader}(\bar{\alpha}_{-i}) \colon & \max_{\alpha_i,y,\lambda} & \mathsf{firm} \ i\text{'s profit} \ (\alpha_i,y,\lambda) \\ & \mathsf{s.t.} & 0 \leq \alpha_i \leq \hat{\alpha}_i \\ & y \ \mathsf{solves} \ \mathsf{OPF}(\alpha_i,\bar{\alpha}_{-i}) \\ \end{array}
```

Note that objective involves multiplier from OPF problem

Supply function equilibria

 α are (given) price bids, parametric optimization

$$\begin{array}{ll} \mathsf{Leader}(\bar{\alpha}_{-i}) \colon & \max_{\alpha_i,y,\lambda} & \mathsf{firm} \ i\text{'s profit} \ (\alpha_i,y,\lambda) \\ & \mathsf{s.t.} & 0 \leq \alpha_i \leq \hat{\alpha}_i \\ & y \ \mathsf{solves} \ \mathsf{OPF}(\alpha_i,\bar{\alpha}_{-i}) \\ \end{array}$$

Note that objective involves multiplier from OPF problem

$$\begin{array}{ll} \mathsf{Leader}(\bar{\alpha}_{-i}) \colon & \mathsf{max}_{\alpha_i,y,\lambda} & \mathsf{firm} \ i\text{'s profit} \ (y,\lambda,\alpha) \\ & \mathsf{s.t.} & \mathsf{0} \leq \alpha_i \leq \hat{\alpha}_i \\ & y,\lambda \ \mathsf{solves} \ \mathsf{KKT}(\mathsf{OPF}(\alpha_i,\bar{\alpha}_{-i})) \end{array}$$

This is an example of an MPCC since KKT form complementarity constraints

Hierarchical models

• Bilevel programs:

$$\begin{aligned} & \min_{x^*,y^*} & f(x^*,y^*) \\ & \text{s.t.} & g(x^*,y^*) \leq 0, \\ & y^* \text{ solves } \min_{y} v(x^*,y) \text{ s.t. } h(x^*,y) \leq 0 \end{aligned}$$

- model bilev /deff,defg,defv,defh/;
 empinfo: bilevel f x deff defg min v y defv defh
- EMP tool automatically creates the MPCC

$$\begin{aligned} & \underset{x^*, y^*, \lambda}{\min} & & f(x^*, y^*) \\ & \text{s.t.} & & g(x^*, y^*) \leq 0, \\ & & & 0 \leq \nabla v(x^*, y^*) + \lambda^T \nabla h(x^*, y^*) & \perp y^* \geq 0 \\ & & & & 0 \leq -h(x^*, y^*) & \perp \lambda \geq 0 \end{aligned}$$

Multi-player EPEC and security constraints

• $(\bar{\alpha}_1, \bar{\alpha}_2, \dots, \bar{\alpha}_m)$ is an equilibrium if

$$\bar{\alpha}_i$$
 solves Leader $(\bar{\alpha}_{-i}), \forall i$

- (Nonlinear) Nash Equilibrium where each player solves an MPCC
- MPCC is hard (lacks a constraint qualification)
- Nash Equilibrium is PPAD-complete (Chen et al, Papadimitriou et al)
- In practice, also require contingency (scenario) constraints imposed in the OPF problem
- Solution via "diagonalization"
- Model detail, data, forecast and aggregation level critical

Simplified two-stage stochastic optimization model

- Capacity decisions are z at cost K(z)
- Operating decisions are: generation y at cost C(y), loadshedding r at cost Vr.
- Random demand is $d(\omega)$.
- Minimize capital cost plus expected operating cost:

P:
$$\min_{z,y,r\in X}$$
 $K(z) + \mathbb{E}_{\omega}[C(y(\omega)) + Vr(\omega)]$
s.t. $y(\omega) \leq z$,
 $y(\omega) + r(\omega) \geq d(\omega)$,
 $z_{\mathcal{N}} \leq (1 - \theta)z_{\mathcal{N}}(2017)$

Environmental constraints

Some capacity z_k , $k \in \mathcal{N}$, is "non renewable". Some generation $y_k(\omega)$, $k \in \mathcal{E}$ emits $\beta_k y_k(\omega)$ tonnes of CO2. For a choice of $\theta \in [0,1]$ constraint is either:

$$\mathbb{E}_{\omega}\left[\sum_{k\in\mathcal{E}}\beta_k y_k(\omega)\right] \leq (1-\theta)\mathbb{E}_{\omega}\left[\sum_{k\in\mathcal{E}}\beta_k y_k(\omega, 2017)\right],$$

(reduce CO2 emissions compared with 2017)

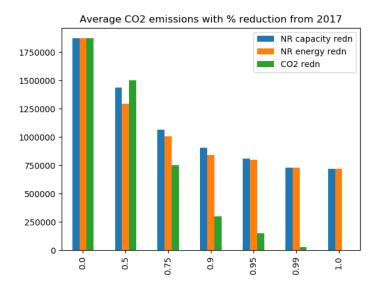
$$\sum_{k\in\mathcal{N}} z_k \le (1-\theta) \sum_{k\in\mathcal{N}} z_k(2017),$$

(reduce non-renewable capacity compared with 2017)

$$\mathbb{E}_{\omega}[\sum_{k\in\mathcal{N}}y_k(\omega)]\leq (1-\theta)\mathbb{E}_{\omega}[\sum_{k\in\mathcal{N}}y_k(\omega,2017)],$$

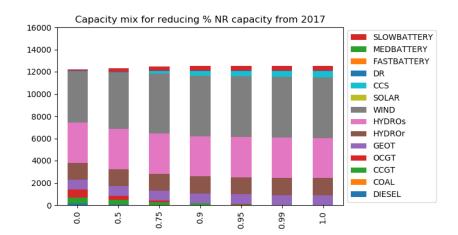
(reduce non-renewable generation compared with 2017)

Could impose constraints almost surely instead of in expectation or with risk measure



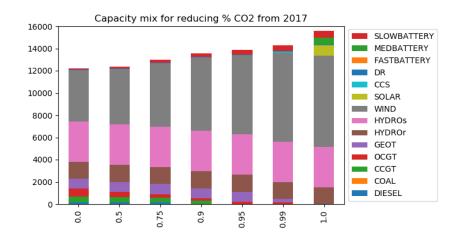
Since (renewable) geothermal and CCS emit some CO2 100% renewable yields modest reductions in CO2 emissions.

Technology choices as θ increases (NR capacity redn)



- Use geothermal, CCS, wind, batteries
- Fairly constant capacity

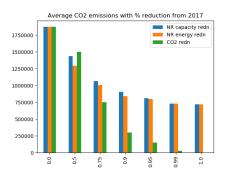
Technology choices as θ increases (% CO2 redn)

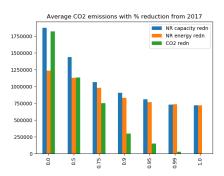


- Rich portfolio of renewable technologies used
- More capacity needed as more uncertain generation

15 / 27

Carbon emissions (almost sure)

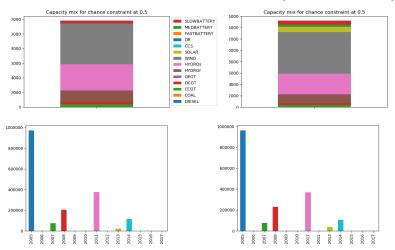




- Average reduction, vs reduction in every scenario
- Significant differences only at relatively low levels of CO₂ reduction
- Single year, 2005, in which the emissions are significantly higher than all the others in the average case, but is compensated for by reduced emissions in other years.

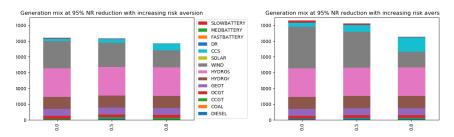
Technologies (chance constraints): cf. increased uptake

Force zero emissions in at least 50% of years (normal hydrology)

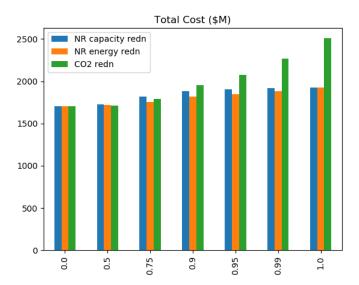


Nonzero CO_2 emissions in 6 out of the 13 scenarios Average level of CO_2 emissions (0.138 Mt) or approx 95.4% redn

Risk-averse solutions for 95% NR energy reduction



- Risk aversion modelled using $(1 \lambda)E[Z] + \lambda AVaR_{0.90}(Z)$, for $\lambda = 0, 0.5, 0.8$
- Replace wind/battery with CCS
- In both cases, the amount of wind installed decreases as risk aversion increases, and since this is replaced by (dispatchable) CCGT plant, much of which has CCS, the total amount of capacity needed drops.



Cost of actually reaching zero CO2 emissions (without geothermal or CCS) increases as we approach the limit.

Top-down, bottom-up equilibrium (simple Nash case)

$$\forall i: \min_{x_i \in X_i} f_i(x_i, x_{-i}, \pi)$$

(detailed optimizations) coupled with the market definition:

$$0 \leq H(x,\pi) \perp \pi \geq 0$$

- Optimization problems might be large LP or QP models of particular sectors
- Diagonalization frequently fails
- Complication: Optimizations are multi-stage risk-averse stochastic programs

$$\forall i : \min_{x_i \in X_i} f_i(x_i^1, x_{-i}^1, \pi^1) + \rho(g_i(x, \pi, \omega))$$

- empinfo: OVF cvarup ρ z θ p
- EMP/PATH has difficulty with these problems

MOPEC equilibrium

Agents (e.g): 'fos', 'ren', 'trns', 'dem':

$$\begin{array}{lll} \mathsf{S}(\mathsf{a}) \colon & \min & \rho_{\mathsf{a}}(\psi_{\mathsf{a}}) & \text{s.t.} & (x_{\mathsf{a}}, y_{\mathsf{a}}, z_{\mathsf{a}}, q_{\mathsf{a}}, r_{\mathsf{a}}) \in \mathcal{X}_{\mathsf{a}} \\ & \psi_{\mathsf{a}}(\omega) & = & \mathcal{C}_{\mathsf{a}}(x_{\mathsf{a}}, z_{\mathsf{a}}) + \mathcal{Z}_{\mathsf{a}}(y_{\mathsf{a}}, q_{\mathsf{a}}, r_{\mathsf{a}}, \omega) \\ & & + \pi(\omega) \left(d_{\mathsf{a}}(\omega) - q_{\mathsf{a}}(\omega) - r_{\mathsf{a}}(\omega) \right) \\ & & + \sigma(\omega) \mathcal{E}(y_{\mathsf{a}}, \omega) \end{array}$$

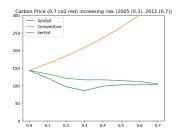
and the prices, production and purchases satisfy the market clearing conditions

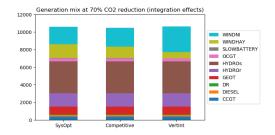
$$0 \leq \sum_{a} (q_{a}(\omega) + r_{a}(\omega) - d_{a}(\omega)) \perp \pi(\omega) \geq 0,$$

$$0 \leq E - \sum_{a} \mathcal{E}(y_{a}, \omega) \perp \sigma(\omega) \geq 0.$$

Increasing risk aversion: carbon price and investment

- $\rho(Z) = (1 \lambda)\mathbb{E}[Z] + \lambda \mathsf{AVaR}_{0.90}(Z)$
- Same price risk neutral
- Competitive equilibrium: increased price
- VertInt: co-ownership of wind/thermal results in more wind closer to existing thermal



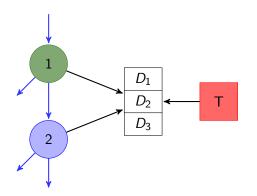


(a) Carbon prices with increasing λ

(b) Ownership at $\lambda = 0.3$

Cascading hydro-thermal system: XMGD

- Two hydros on same river: '1' is above
 '2': spill or release with generation
- Thermal generator 'T' and consumer (risk neutral)



- Competing firms
 (collections of
 consumers, or generators
 in energy market)
- Each firm minimizes objective independently
- Look at joint ownership issues (firms represented colors: X, M, G)
- Label consumer as 'D' (but can be partitioned into 'D₁','D₂','D₃')

Average inflow 0.6

 \bullet T_{ab} encodes the water network, water prices are multipliers on:

$$x_a(n_-) + \sum_b T_{ab}u_b(n) + \omega_a(n) \ge x_a(n)$$

- Allows interaction with other water uses (irrigation, tourism, conservation)
- Ownership of both hydros is not beneficial with competitive pricing of water

XMGD

TotRA = 87351 SysRA = 92763 SvsRN = 93109

MMGD

TotRA = 87351

SysRA = 92763

SvsRN = 93109

Average inflow 0.6 vs. low inflow 0.1

 Ownership of both hydros is not beneficial with competitive pricing of water

XMGD

TotRA = 87351SysRA = 92763

SysRN = 93109

MMGD

TotRA = 87351

SysRA = 92763

SysRN = 93109

 Not true: risk averse and low inflows shows advantage to co-ownership of hydros

XMGD

TotRA = 62382

SvsRA = 65269

SysRN = 65375

MMGD

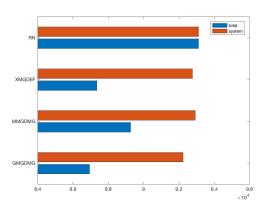
TotRA = 62552

SvsRA = 65371

SysRN = 65375

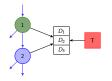
Vertical integration/asset swaps

 SysRN and TotRN in risk neutral case, followed by SysRA and TotRA for three cases depicted on left

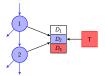


• Vertical integration and risk matters!

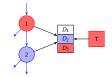
Base: $XMGD_1D_2D_3$



Vertical integration: MMGDMG



VI & Asset Swap: GMGDMG



Proximal Algorithm (in SELKIE)

$$\forall i: \min_{x_i \in X_i} f_i(x_i, x_{-i}, \pi) + \frac{1}{2} (x_i - \bar{x}_i)^T \Lambda(x_i - \bar{x}_i)$$
$$0 \le H(x, \pi) + \Lambda^{-1} (\pi - \bar{\pi}) \perp \pi \ge 0$$

- Choice of Λ is critical for efficiency
- Best choice for Λ motivated by local models of $\pi(x)$ and $x(\pi)$ (Rutherford)
- Individual optimization problems become strongly convex quadratic programs
- Stabilized (trust region) diagonalization scheme
- Amenable for parallel computation
- Alternative: Dantzig-Wolfe decomposition

Conclusions

- Markets naturally modeled via complementarity
- Solvers exist for medium to large scale problems
- Frameworks (EMP) exist to streamline model transformations
- empinfo: dualvar, bilevel, equilibrium, vi, OVF
- Very large scale models (many agents with many instruments acting strategically) with risk are hard
- Decomposition/diagonalization methods (SELKIE) are effective when sensitivity information is exploited
- New algorithms enable solution of more detailed, authentic problems and address underlying policy questions
- Evaluation via simulation computations and out-of-sample testing