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Build it and they will come

Markets = equilibrium = complementarity ( ≈ coupling)

PATH solver for large scale mixed complementarity problems

0 ≤ F (x) ⊥ x ≥ 0

Nonsmooth Newton method, efficient linear algebra, available in
modeling systems: GAMS, MPSGE, AMPL, AIMMS, Julia, Pyomo

Used in models such as PIES, MERGE, VEMOD, MARKAL, TIMES,
KAPSARC, ISEEM, MESSAGE, TEA, TIGER, Gemstone

Models of Tobin, Nordhaus, Romer

Frequently used in Computable General Equilibrium (CGE) analyses
(GTAP data available), traffic, structural analysis

Policy analyses such as Uruguay round, NAFTA, USMCA, Brexit
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MIP formulations for Complementarity

Set yi = Fi (x), then (disjunction)

0 ≤ yi , yixi = 0, xi ≥ 0 x

y

If we know upper bounds on xi and yi we can introduce binary variable zi
and model as:

0 ≤ xi ≤ Mzi , 0 ≤ yi ≤ M(1− zi )

or (without bounds)
(xi , yi ) ∈ SOS1

(or use indicator variables to turn on “fixing” constraints).
Works if bounds are good and problem size is not too large. Issues with
bounds on multipliers not being evident. c.f. Optimal topology problems.

Ferris (Wisconsin) EMP and Risk Supported by DOE/ARPA-E 3 / 27



Nonsmooth alternatives and approximations (NLPEC)
Alternative: generate generalized derivatives of nonsmooth reformulations

PATH uses (PC 1) normal map

Min-map min(Fi (x), xi ) = 0

Fischer-Burmeister Φ(x) = 0

φ(a, b) = 0 ⇐⇒ 0 ≤ a ⊥ b ≥ 0

Φi (x) ≡
√
x2i + Fi (x)2 − xi − Fi (x)

Smoothing (drive parameter µ to 0)

0 = φµ(Fi (x), xi ), i = 1, 2, . . . , n

φµ(a, b) :=
√
a2 + b2 + µ− a− b
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Relaxation Fi (x)xi ≤ µ
Penalization +λ

∑n
i=1 Fi (x)xi
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Extended Mathematical Programming (EMP)

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

Give several examples of this: free boundary problems, bilevel
programming, multi-agent competitive models, risk

e.g. combining/modifying optimality conditions from the original
problems
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The PIES Model (Hogan) - Optimal Power Flow (OPF)

min
x

c(x) cost

s.t. Ax ≥ q balance

Bx = b, x ≥ 0 technical constr

q = d(π): issue is that π is the multiplier on the “balance” constraint

Such multipliers (LMP’s) are critical to operation of market

Can try to solve the problem iteratively (shooting method):

πnew ∈ multiplier(OPF (d(π)))
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Alternative: Form KKT of QP, exposing π to modeler

L(x , µ, λ) = c(x) + µT (d(π)− Ax) + λT (b − Bx)

0 ≤ −∇µL = Ax − d(π) ⊥ µ ≥ 0

0 = −∇λL = Bx − b ⊥ λ

0 ≤ ∇xL = ∇c(x)− ATµ− BTλ ⊥ x ≥ 0

EMP: Take original QP model, and add single annotation:

empinfo: dualvar π balance

Fixed point: replaces µ ≡ π
LCP/MCP is then solvable using PATH

Ferris (Wisconsin) EMP and Risk Supported by DOE/ARPA-E 7 / 27



Alternative: Form KKT of QP, exposing π to modeler

L(x , µ, λ) = c(x) + µT (d(π)− Ax) + λT (b − Bx)

0 ≤ Ax − d(π) ⊥ π ≥ 0

0 = Bx − b ⊥ λ

0 ≤ ∇c(x)− ATπ − BTλ ⊥ x ≥ 0

EMP: Take original QP model, and add single annotation:

empinfo: dualvar π balance

Fixed point: replaces µ ≡ π
LCP/MCP is then solvable using PATH

Ferris (Wisconsin) EMP and Risk Supported by DOE/ARPA-E 7 / 27



Supply function equilibria

OPF(α): miny energy dispatch cost (y , α)
s.t. conservation of power flow at nodes

Kirchoff’s voltage law, and simple bound constraints

α are (given) price bids, parametric optimization

Leader(ᾱ−i ): maxαi ,y ,λ firm i ’s profit (αi , y , λ)
s.t. 0 ≤ αi ≤ α̂i

y solves OPF(αi , ᾱ−i )

Note that objective involves multiplier from OPF problem

Leader(ᾱ−i ): maxαi ,y ,λ firm i ’s profit (y , λ, α)
s.t. 0 ≤ αi ≤ α̂i

y , λ solves KKT(OPF(αi , ᾱ−i ))

This is an example of an MPCC since KKT form complementarity
constraints
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This is an example of an MPCC since KKT form complementarity
constraints

Ferris (Wisconsin) EMP and Risk Supported by DOE/ARPA-E 8 / 27



Supply function equilibria

OPF(α): miny energy dispatch cost (y , α)
s.t. conservation of power flow at nodes

Kirchoff’s voltage law, and simple bound constraints

α are (given) price bids, parametric optimization
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Hierarchical models

Bilevel programs:

min
x∗,y∗

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
y∗ solves min

y
v(x∗, y) s.t. h(x∗, y) ≤ 0

model bilev /deff,defg,defv,defh/;
empinfo: bilevel f x deff defg min v y defv defh

EMP tool automatically creates the MPCC

min
x∗,y∗,λ

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
0 ≤ ∇v(x∗, y∗) + λT∇h(x∗, y∗) ⊥ y∗ ≥ 0
0 ≤ −h(x∗, y∗) ⊥ λ ≥ 0
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Multi-player EPEC and security constraints

(ᾱ1, ᾱ2, . . . , ᾱm) is an equilibrium if

ᾱi solves Leader(ᾱ−i ), ∀i

(Nonlinear) Nash Equilibrium where each player solves an MPCC

MPCC is hard (lacks a constraint qualification)

Nash Equilibrium is PPAD-complete (Chen et al, Papadimitriou et al)

In practice, also require contingency (scenario) constraints imposed in
the OPF problem

Solution via “diagonalization”

Model detail, data, forecast and aggregation level critical
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Simplified two-stage stochastic optimization model

Capacity decisions are z at cost K (z)

Operating decisions are: generation y at cost C (y), loadshedding r at
cost Vr .

Random demand is d(ω).

Minimize capital cost plus expected operating cost:

P: min
z,y ,r∈X

K (z) + Eω[C (y(ω)) + Vr(ω)]

s.t. y(ω) ≤ z ,
y(ω) + r(ω) ≥ d(ω),

zN ≤ (1− θ)zN (2017)
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Environmental constraints

Some capacity zk , k ∈ N , is “non renewable”. Some generation yk(ω),
k ∈ E emits βkyk(ω) tonnes of CO2. For a choice of θ ∈ [0, 1] constraint
is either:

Eω[
∑
k∈E

βkyk(ω)] ≤ (1− θ)Eω[
∑
k∈E

βkyk(ω, 2017)],

(reduce CO2 emissions compared with 2017)∑
k∈N

zk ≤ (1− θ)
∑
k∈N

zk(2017),

(reduce non-renewable capacity compared with 2017)

Eω[
∑
k∈N

yk(ω)] ≤ (1− θ)Eω[
∑
k∈N

yk(ω, 2017)],

(reduce non-renewable generation compared with 2017)

Could impose constraints almost surely instead of in expectation or with
risk measure

Ferris (Wisconsin) EMP and Risk Supported by DOE/ARPA-E 12 / 27



Since (renewable) geothermal and CCS emit some CO2 100% renewable
yields modest reductions in CO2 emissions.
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Technology choices as θ increases (NR capacity redn)

Use geothermal, CCS, wind, batteries

Fairly constant capacity
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Technology choices as θ increases (% CO2 redn)

Rich portfolio of renewable technologies used

More capacity needed as more uncertain generation
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Carbon emissions (almost sure)

Average reduction, vs reduction in every scenario

Significant differences only at relatively low levels of CO2 reduction

Single year, 2005, in which the emissions are significantly higher than
all the others in the average case, but is compensated for by reduced
emissions in other years.
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Technologies (chance constraints): cf. increased uptake
Force zero emissions in at least 50% of years (normal hydrology)

Nonzero CO2 emissions in 6 out of the 13 scenarios
Average level of CO2 emissions (0.138 Mt) or approx 95.4% redn
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Risk-averse solutions for 95% NR energy reduction

Risk aversion modelled using (1− λ)E [Z ] + λAVaR0.90(Z ), for
λ = 0, 0.5, 0.8

Replace wind/battery with CCS

In both cases, the amount of wind installed decreases as risk aversion
increases, and since this is replaced by (dispatchable) CCGT plant,
much of which has CCS, the total amount of capacity needed drops.
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Cost of actually reaching zero CO2 emissions (without geothermal or CCS)
increases as we approach the limit.
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Top-down, bottom-up equilibrium (simple Nash case)

∀i : min
xi∈Xi

fi (xi , x−i , π)

(detailed optimizations) coupled with the market definition:

0 ≤ H(x , π) ⊥ π ≥ 0

Optimization problems might be large LP or QP models of particular
sectors

Diagonalization frequently fails

Complication: Optimizations are multi-stage risk-averse stochastic
programs

∀i : min
xi∈Xi

fi (x
1
i , x

1
−i , π

1) + ρ(gi (x , π, ω))

empinfo: OVF cvarup ρ z θ p

EMP/PATH has difficulty with these problems

Ferris (Wisconsin) EMP and Risk Supported by DOE/ARPA-E 20 / 27



MOPEC equilibrium

Agents (e.g): ’fos’, ’ren’, ’trns’, ’dem’:

S(a): min ρa(ψa) s.t. (xa, ya, za, qa, ra) ∈ Xa

ψa(ω) = Ca(xa, za) + Za(ya, qa, ra, ω)
+π(ω) (da(ω)− qa(ω)− ra(ω))
+σ(ω)E(ya, ω)

and the prices, production and purchases satisfy the market clearing
conditions

0 ≤
∑
a

(qa(ω) + ra(ω)− da(ω)) ⊥ π(ω) ≥ 0,

0 ≤ E −
∑
a

E(ya, ω) ⊥ σ(ω) ≥ 0.
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Increasing risk aversion: carbon price and investment

ρ(Z ) = (1− λ)E[Z ] + λAVaR0.90(Z )

Same price risk neutral

Competitive equilibrium: increased price

VertInt: co-ownership of wind/thermal results in more wind closer to
existing thermal

(a) Carbon prices with increasing λ (b) Ownership at λ = 0.3
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Cascading hydro-thermal system: XMGD

Two hydros on same river: ’1’ is above
’2’: spill or release with generation

Thermal generator ’T’ and consumer
(risk neutral)

D1

D2

D3

T

1

2

Competing firms
(collections of
consumers, or generators
in energy market)

Each firm minimizes
objective independently

Look at joint ownership
issues (firms represented
colors: X, M, G)

Label consumer as ’D’
(but can be partitioned
into ’D1’,’D2’,’D3’)

Ferris (Wisconsin) EMP and Risk Supported by DOE/ARPA-E 23 / 27



Average inflow 0.6

Tab encodes the water network, water prices are multipliers on:

xa(n−) +
∑
b

Tabub(n) + ωa(n) ≥ xa(n)

Allows interaction with other water uses (irrigation, tourism,
conservation)

Ownership of both hydros is not beneficial with competitive pricing of
water

XMGD
TotRA = 87351
SysRA = 92763
SysRN = 93109

D1

D2

D3

T

1

2

MMGD
TotRA = 87351
SysRA = 92763
SysRN = 93109

D1

D2

D3

T

1

2
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Average inflow 0.6 vs. low inflow 0.1

Ownership of both hydros is not beneficial with competitive pricing of
water

XMGD
TotRA = 87351
SysRA = 92763
SysRN = 93109

D1

D2

D3

T

1

2

MMGD
TotRA = 87351
SysRA = 92763
SysRN = 93109

D1

D2

D3

T

1

2

Not true: risk averse and low inflows shows advantage to
co-ownership of hydros

XMGD
TotRA = 62382
SysRA = 65269
SysRN = 65375

D1

D2

D3

T

1

2

MMGD
TotRA = 62552
SysRA = 65371
SysRN = 65375

D1

D2

D3

T

1

2
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Vertical integration/asset swaps

SysRN and TotRN in risk neutral case,
followed by SysRA and TotRA for three
cases depicted on left

Vertical integration and risk matters!

Base: XMGD1D2D3

D1

D2

D3

T

1

2

Vertical integration: MMGDMG

D1

D2

D3

T

1

2

VI & Asset Swap: GMGDMG

D1

D2

D3

T

1

2
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Proximal Algorithm (in SELKIE)

∀i : min
xi∈Xi

fi (xi , x−i , π) +
1

2
(xi − x̄i )

TΛ(xi − x̄i )

0 ≤ H(x , π) + Λ−1(π − π̄) ⊥ π ≥ 0

Choice of Λ is critical for efficiency

Best choice for Λ motivated by local models of π(x) and x(π)
(Rutherford)

Individual optimization problems become strongly convex quadratic
programs

Stabilized (trust region) diagonalization scheme

Amenable for parallel computation

Alternative: Dantzig-Wolfe decomposition
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Conclusions

Markets naturally modeled via complementarity

Solvers exist for medium to large scale problems

Frameworks (EMP) exist to streamline model transformations

empinfo: dualvar, bilevel, equilibrium, vi, OVF

Very large scale models (many agents with many instruments acting
strategically) with risk are hard

Decomposition/diagonalization methods (SELKIE) are effective when
sensitivity information is exploited

New algorithms enable solution of more detailed, authentic problems
and address underlying policy questions

Evaluation via simulation computations and out-of-sample testing
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