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Modeling languages: state-of-the-art

• Optimization models improve understanding of underlying
systems and facilitate operational/strategic improvements

• Key link to applications, prototyping of optimization capability

• Widely used in:
• engineering - operation/design
• economics - policy/energy modeling
• military - operations/planning
• finance, medical treatment, supply chain management, etc.

• Interface to solutions: facilitates automatic differentiation,
separation of data, model and solver

• Modeling languages no longer novel: typically represent
another tool for use within a solution process.
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Modeling Language Limitations

• Data (collection) remains bottleneck in many applications
• Tools interface to databases, spreadsheets, Matlab

• Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

• Support for integer, sos, semicontinuous variables
• Limited support for logical constructs
• Support for complementarity constraints
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Optimal Yacht Rig Design
• Current mast design 

trends use a large 
primary spar that is 
supported laterally by a 
set of tension and 
compression members, 
generally termed the rig

• Reduction in either the 
weight of the rig or the 
height of the VCG will 
improve performance
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Complementarity Feature

• Stays are tension-
only members (in 
practice) – Hookes
Law

• When tensile load 
becomes zero, the 
stay goes slack (low 
material stiffness)

s: axial load
k: member spring constant
dl: member length extension
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MPEC: complementarity constraints

min
x ,s

f (x , s)

s.t. g(x , s) ≤ 0,
0 ≥ s ⊥ h(x , s) ≤ 0

• Complementarity “⊥” constraints available in AMPL and
GAMS

• NLPEC: use the convert tool to automatically reformulate as
a parameteric sequence of NLP’s

• Solution by repeated use of standard NLP software

• Southern Spars Company (NZ): improved from 5-0 to 5-2 in
America’s Cup!
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Other new types of constraints

• range constraints L ≤ Ax − b ≤ U

• robust programming (probability constraints, stochastics)

f (x , ξ) ≤ 0,∀ξ ∈ U

• conic programming aT
i x − bi ∈ Ki

• soft constraints

• rewards and penalties

Some constraints can be reformulated easily, others not!
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CVaR constraints: mean excess dose (radiotherapy)VaR, CVaR, CVaR+  and CVaR-

Loss 
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Move mean of tail to the left!
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ENLP (Rockafellar): Primal problem

min
x∈X

f0(x)+θ(f1(x), . . . , fm(x))

“Classical” problem:

min
x1,x2,x3

exp(x1)

s.t. log(x1) = 1
x2
2 ≤ 2

x1/x2 = log(x3), 3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

Soft penalization of red constraints:

min
x1,x2,x3

exp(x1)+5 ‖log(x1)− 1‖2 + 2 max(x2
2 − 2, 0)

s.t. x1/x2 = log(x3), 3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0
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ENLP: Primal problem

min
x∈X

f0(x)+θ(f1(x), . . . , fm(x))

X =
{
x ∈ R3 : 3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

}
f1(x) = log(x1)− 1, f2(x) = x2

2 − 2, f3(x) = x1/x2 − log(x3)

θ1(u) = 5 ‖u‖2 , θ2(u) = 2 max(u, 0), θ3(u) = ψ{0}(u)

θ nonsmooth due to the max term; θ separable in example.
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Examples of different θ

but solution reformulations are very different

θ(u) =


γu − 1

2γ
2 if u ≥ γ

1
2u2 if u ∈ [−γ, γ]
−γu − 1

2γ
2 else

Huber function used in robust statistics.
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More general θ functions

In general any piecewise linear penalty function can be used:
(different upside/downside costs). Also cone constraints.
General form:

θ(u) = sup
y∈Y

{y ′u − k(y)}

θ can take on ∞ and may be nonsmooth; it is convex.
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Specific choices of k and Y

θ(u) = sup
y∈Y

{y ′u − k(y)}

• L2: k(y) = 1
4λy2, Y = (−∞,+∞)

• L1: k(y) = 0, Y = [−ρ, ρ]
• L∞: k(y) = 0, Y = ∆, unit simplex

• Huber: k(y) = 1
4λy2, Y = [−ρ, ρ]

• Second order cone constraint: k(y) = 0, Y = C ◦
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Elegant Duality

For these θ (defined by k(·),Y ), duality is derived from the
Lagrangian:

L(x , y) = f0(x) +
∑m

i=1 yi fi (x)− k(y)

x ∈ X , y ∈ Y

• Dual variables in Y not simply ≥ 0 or free.

• Saddle point theory, under convexity.

• Dual Problem and Complete Theory.

• Special case: ELQP - dual problem is also an ELQP.
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Implementation: convert tool

$echo nlp2mcp > convert.opt

e1.. obj =e= exp(x1);
e2.. log(x1)-1 =e= 0;
e3.. sqr(x2)-2 =e= 0;
e4.. x1/x2 =e= log(x3);
e5.. 3*x1 + x2 =l= 5;

$onecho > enlpinfo.scr
e2 sqr 5
e3 plus 2
$offecho

solve mod using nlp min obj;
Library of different θ functions implemented.
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First order conditions

• Solution via reformulation. One way:

0 ∈ ∇xL(x , y) + NX (x)
0 ∈ −∇yL(x , y) + NY (y)

NX (x) is the normal cone to the closed convex set X at x .

• Automatically creates an MCP:
model enlp / gradLx.x,

-gradLy.y /;
solve enlp using mcp;

• Already available!

• To do: extend X and Y beyond simple bound sets.
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Alternative Reformulations

Convert does symbolic/numeric reformulations. Alternative NLP
formulations also possible.

k(y) =
1

2
y ′Qy , X = {x : Rx ≤ r} , Y =

{
y : S ′y ≤ s

}
Defining

Q = DJ−1D ′, F (x) = (f1(x), . . . , fm(x))

min f0(x) + s ′z + 1
2wJw

s.t. Rx ≤ r , z ≥ 0,F (x)− Sz − Dw = 0

Can set up better (solver) specific formulation.
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Embedded models

• Bilevel programs:

min
x ,y

f (x , y)

s.t. g(x , y) ≤ 0,
y solves min

s
v(x , s) s.t. h(x , s) ≤ 0

• A different embedded model that arises frequently is:

min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

H(x , y , λ) = 0 (⊥ y free)
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Example

• Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

• Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

• Convert reformulates automatically for appropriate solvers,
e.g. forms KKT conditions
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Discrete-Time Finite-State Stochastic Games

Central tool in analysis of strategic interactions among
forward-looking players in dynamic environments

Example: The Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry

Exactly in the format described above.
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Applications

• Advertising (Doraszelski & Markovich 2007)

• Capacity accumulation (Besanko & Doraszelski 2004,...)

• Collusion (Fershtman & Pakes 2000, 2005, de Roos 2004)

• Consumer learning (Ching 2002)

• Firm size distribution (Laincz & Rodrigues 2004)

• Learning by doing (Benkard 2004,...)

• Mergers (Berry & Pakes 1993, Gowrisankaran 1999)

• Network externalities (Jenkins et al 2004,...)

• Productivity growth (Laincz 2005)

• R&D (Gowrisankaran & Town 1997,...)

• Technology adoption (Schivardi & Schneider 2005)

• International trade (Erdem & Tybout 2003)

• Finance (Goettler, Parlour & Rajan 2004,...).
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Results

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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Conclusions

• Complementarity constraints within optimization problems

• Practical/usable implementation of Rockafellar’s ENLP
approach within a modeling system

• System can easily formulate and solve second order cone
programs, robust optimization, soft constraints via piecewise
linear penalization (with strong supporting theory)

• Embedded optimization models reformulated for appropriate
solution engine

• Enhance library of (implemented) θ functions

• Exploit structure of θ in solvers

• Extend complementarity solvers to VI solvers
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