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EMP: shameless advertisement

Allows (GAMS) models to be manipulated to form other problems of
interest via a simple EMP info file:

VI(f ,C ):
0 ∈ f (x) + NC (x)

vi f x cons

generates a variational inequality where C defined by ’cons’

Either generates the equivalent complementarity (KKT) problem, or
provides problem structure for algorithmic exploitation

QVI can be specified in the same manner
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MOPEC

min
xi
θi (xi , x−i , y) s.t. gi (xi , x−i , y) ≤ 0,∀i

and
y solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h y cons

is solved in a Nash manner

Allows multipliers from one problem to be used in another problems

dualvar p g(1)

where for example the definition of h involves the additional variable p

Also has extensions for stochastic programming
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PJM buy/sell model (2009)

Storage transfers energy over time (horizon = T ).

PJM: given price path pt , determine charge q+t and discharge q−t :

max
ht ,q

+
t ,q

−
t

T∑
t=0

pt(q
−
t − q+t )

s.t. ∂ht = eq+t − q−t

0 ≤ ht ≤ S
0 ≤ q+t ≤ Q
0 ≤ q−t ≤ Q
h0, hT fixed

Uses: price shaving, load shifting, transmission line deferral

what about different storage technologies?
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Characterization of storage

Q power (discharge) capacity MW
S energy capacity (size) MWh
cycles measure of duration
c0 fixed cost $/h
c1 variable cost $/MWh
e efficiency/energy loss in charging

Costs approximate the unit construction and depreciation due to
charge and discharge cycles

T∑
t=0

pt(q
+
t − q−t ) + c1(q+t + q−t ) + c0

c1(q+t + q−t ) approximates cost of cycles
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Stochastic price paths (day ahead market)

min
x ,s,q+,q−

c0(x) + Eω

[
T∑
t=0

pωt(q
+
ωt − q−ωt) + c1(q+ωt + q−ωt)

]
s.t. ∂hωt = eq+ωt − q−ωt

0 ≤ hωt ≤ Sx
0 ≤ q+ωt , q

−
ωt ≤ Qx

hω0, hωT fixed

First stage decision x : amount of storage to deploy.

Second stage decision: charging strategy in face of uncertainty
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Four technology example

k1 k2 k3 k4
S 5 20 5 4
Q 2 1 0.2 1
e 0.8 0.75 0.85 0.84
c0 0.9 0.7 0.4 0.75
c1 0.55 0.6 0.45 1.1

k1 and k4 have only a daily cycle of operation

k2 and k3 display a significant weekly cycle in addition to their daily
cycle

Could enforce q+ωkt = q+kt , q
−
ωkt = q−kt , deterministic operating plan

Note ratio of c1/Q is relevant
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Distribution of (multiple) storage types
Determine storage facilities xk to build, given distribution of price paths:
no entry barriers into market, etc. MOPEC: for all k solve a two stage
stochastic program

∀k : min
xk ,hk ,q

+
k ,q

−
k

c0k (xk) + Eω

[
T∑
t=0

pωt(q
+
ωkt − q−ωkt) + c1k (q+ωkt + q−ωkt)

]
s.t. ∂hωkt = eq+ωkt − q−ωkt

0 ≤ hωkt ≤ Sxk
0 ≤ q+ωkt , q

−
ωkt ≤ Qxk

hωk0, hωkT fixed

and

pωt = f

(
θ,Dωt +

∑
k

(q+ωkt − q−ωkt)

)

Parametric function (θ) determined by regression. Storage operators react
to shift in demand.
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Comparison to expected value solution

Interestingly enough, the resulting equilibria in the two models are quite
different. Investment variables in the equilibria:

k xk , EV soln xk , Stochastic soln

k1 102.063 143.631
k2 51.606 621.195
k3 479.859 0.118
k4 246.806 85.582

Stochastic programming is not kind to k3 and k4. A possible explanation
for this is that both these technologies have quite high variable costs
relative to their charging capacities, meaning that their recourse actions
are expensive.
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Central Zonal Model (nodes i , time t)

Operationally, dispatch model involves nodes i and transmission:

min
z,θ,g ,q+,q−,s

∑
i ,t

Ci (gi ,t)

s.t. z = BAθ, z ∈ [−z̄ , z̄ ]

g + q− − q+ −AT z ≥ D
g
i
≤ gi ,t ≤ ḡi ,

∂hi ,t = eq+i ,t − q−i ,t ,

0 ≤ q+i ,t , q
−
i ,t ≤ Qi ,

0 ≤ hi ,t ≤ Si

A is the node-arc incidence matrix
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Distributed Model

At a bus i , given the hourly clearing prices pi ,t , the generator solves:

max
gi

∑
t

pi ,tgi ,t − Ci (gi ,t)

s.t. g
i
≤ gi ,t ≤ ḡi , ∀i , t

and the storage owner solves:

max
q+i ,q

−
i ,hi

∑
t

pi ,t(q
−
i ,t − q+i ,t)

s.t. ∂hi ,t = eq+i ,t − q−i ,t ,

0 ≤ q+i ,t , q
−
i ,t ≤ Qi ,

0 ≤ hi ,t ≤ Si
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Locational pricing of storage

Given the distributed decisions g , q+, q−, s, the ISO maintains the
transmission constraints and supply-demand balance, and produces the
clearing prices, by enforcing the complementarity constraints:

z − BAθ = 0 ⊥ λ,
D ≤ g + q− − q+ −AT z ⊥ p ≥ 0,

− λ+Ap ⊥ z ∈ [−z̄ , z̄ ],

−ATBTλ = 0 ⊥ θ

Together these optimization problems form a MOPEC and can be solved
directly within GAMS.
These models are equivalent to the central model, but exhibit the
behaviors of each player in the market.
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Approximating transmission

Generator maximization (given p)

Storage operation optimization (given p)

Transmission and market clearing complementarity (given g , q and s)

Last piece of model (transmission and market clearing) can be
replaced by stochastic price process on p (given g , q and s)

pit = f
(
θ, git + q−it − q+it −Dit

)
The stochastic process educated by data will model failures and
outages but not detailed transmission: complex tradeoff

Need to add in investment problem as additional optimization
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Conclusions

Stochastic MOPEC models capture behavioral effects (extended
mathematical programming)

Separate stochastic approximation from optimization

Tools exist to facilitate easy modeling and solution within GAMS

Collections of models needed for specific decisions

Policy implications addressable using Stochastic MOPEC

Can show certain technologies dominate others, some are not viable
at all
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