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The PIES Model (Hogan)

mine c’x

st.  Ax=d(p)
Bx=b
x>0

@ Issue is that p is the multiplier on the “balance” constraint of LP

@ Extended Mathematical Programming (EMP) facilitates annotations
of models to describe additional structure

@ empinfo: dualvar p balance

@ Can solve the problem by writing down the KKT conditions of this
LP, forming an LCP and exposing p to the model

@ EMP does this automatically from the annotations
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Model building with EMP

@ Take one system of (nonlinear) equations and annotate them to:

» form a simple nonlinear program (no annotations)

» form a complementarity problem from an embedded optimization
problem (nlp with side constraints outside of optimizers control)

» form an equilibrium model consisting of optimality conditions of several
nlp’s along with equilibrium constraints (MOPEC)

» form a bilevel program (an optimization problem with optimization
problems as constraints)

» Can assign multipliers (prices) from one sub-model as variables in
another model

» Can reformulate nonsmooth models using duality

» Can introduce random variables into a model

@ The annotations essentially detail who controls which equations and
variables
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Spatial Price Equilibrium
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Spatial Price Equilibrium
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Production cost: W(5,) = ..
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Spatial Price Equilibrium

ne{1,2,3,4,5,6}
Le{1,2,3}

R Supply quantity: S;
Production cost: W(5,) = ..
Demand: D;
Unit demand price: 6(Dy) = ..
Transport: Tj;

@\/’ ‘\/@ Unit transport cost: c;i( Tjj) = ..

One large system of equations and inequalities to describe this (GAMS).
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Nonlinear Program Model (Monopolist)

@ One producer controlling all regions
o Full knowledge of demand system

o Full knowledge of transportation system

LI > 0(D)D = W(S) - ZCU i) T

leL leL
st. Si+Y Ty=Dj+> Ty Vel

]

EMP = NLP
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2 agents: NLP + VI Model (Monopolist)

@ One producer controlling all regions
o Full knowledge of demand system

@ Price-taker in transportation system

Pi

0Fer 2, MOND 2 ) = st ET ()

leL leL

st. S+ Ta=Di+> T Vel
il 1,j
pii = cii( T) (2)

empinfo: vi tcDef tc
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2 agents: NLP + VI Model (Monopolist)

@ One producer controlling all regions
o Full knowledge of demand system

@ Price-taker in transportation system

Pij
max > (DD =Y Wi(S) - Y HFAT; (1)
(b5, T)er leL leL iJ
st. S+ Ta=Di+> T Vel
il 1j
pij = cij(Tjj) (2)

EMP = MOPEC = MCP
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Classic SPE Model (NLP + VI agents)

@ One producer controlling all regions
@ Price-taker in demand system

@ Price-taker in transportation system

] Pij
pmax > BHBAD; — Y Wi(S) ~ Y e FT
(b.s,ner i leL i
st. S+ Ty=D+> T; Vel
il 1,j
pij = cij(Tjj)
™ = 0/(D/)

empinfo: vi tcDef tc
vi pricedef price
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Classic SPE Model (NLP + VI agents)

@ One producer controlling all regions
@ Price-taker in demand system

@ Price-taker in transportation system

] Pij
pmax > BB - > W(S) = Y HFAT (1)
(DS Ter leL i
s.t. SI_’_ZT’.’:DI—'_ZTU’ Viel
i 1J
pij = ¢ij(Tj) (2)
m = 0,(Dy) (3)

EMP = MOPEC = MCP
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Cournot-Nash equilibrium (multiple agents)

Assumes that each agent (producer):
@ Treats other agent decisions as fixed

@ Is a price-taker in transport and demand

EMP info file

equilibrium

max obj('one’) vars(‘one’) eqns(‘one’)
max obj('two") vars('two’) egns('two’)
max obj('three’) vars('three’) eqns('three’)
vi tcDef tc

vi pricedef price

EMP = MOPEC = MCP
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Bilevel Program (Stackelberg)

Assumes one leader firm, the rest follow
Leader firm optimizes subject to expected follower behavior

Follower firms act in a Nash manner

All firms are price-takers in transport and demand

EMP info file

bilevel obj('one’) vars('one’) egns('one’)
max obj('two’) vars('two’) eqns('two’)
max obj('three") vars('three’) eqns('three’)
vi tcDef tc

vi pricedef price

EMP = bilevel = MPEC = (via NLPEC) NLP(y)

Ferris (Univ. Wisconsin) EMP ICE, Chicago 9 / 40



What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plg functions)

Currently available within GAMS
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Power Systems: Economic Dispatch

@ Independent System
min Z Clak) s-t. g — Z Z(k,1,c) = dk Operator (ISO)

(g,z,0)eF )
(1) determines who
generates what
o @ pi: Locational marginal

0 price (LMP) at k
@ Volatile in “stressed”
system
@ Can we shed load from
e consumers to smooth
prices?

o e FERC (regulator) writes
the rules - how to

e implement?
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Understand: demand response and FERC Order No. 745

min Z Pr Ry
k

q,z,0,R,p

s.t.Cy > Zpkdk/de
k k
G > pula+ Re)/ Y _(dk — Ri)
k k

OSngukv

and (q, z,0) solves  min C
(9,2,6) N Ek: (qx)

st gk — Z Z(k,1,c) = dk — Rk (1)
(1,¢)
where  py is the multiplier on constraint (1)
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Sol

ution Process (F./Liu)

Bilevel program (hierarchical model)

@ Upper level objective involves multipliers on lower level constraints
e Extended Mathematical Programming (EMP) annotates model to

facilitate communicating structure to solver

» dualvar p balance
» bilevel R min cost q z 6§ balance . ..

Automatic reformulation as an MPEC (single optimization problem
with equilibrium constraints)

Model solved using NLPEC and Conopt
bilevel = MPEC = NLP
Potential for solution of “consumer level” demand response

Challenge: devise robust algorithms to exploit this structure for fast
solution
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Stability and feasibility
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Operational view: LMP, Demand, Response
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Alternative models: ED, avg, max, weighted avg
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Extension: The smart grid

@ The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

@ Decision processes (in this environment) are predominantly
hierarchical.

@ Models to support such decision processes must also be layered or
hierarchical.

@ Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

@ Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide FLEXIBILITY,
overall solution speed, understanding of localized effects, and value
for the coupling of the system.
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Representative decision-making timescales in electric power
systems

Closed-loop
Control and gf:ﬁg E:g
Relay Setpoint _— Relay Action
Selection Day ahead
ﬂ Lgng-terén market w/ unit
orwar i
commitment
» Power Plant . Markets Hour ahead
Siting & Construction Maintenance Load market
i Forecastin «
Transmission Schedulng o Five

Siting & Construction minute
ﬂ ﬂ market

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute  seconds

A monster model is difficult to validate, inflexible, prone to errors.
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Combine: Transmission Line Expansion Model (F./Tang)

xeX

/e
PN

Ferris (Univ. Wisconsin)

ieN

min Wde;Up:-d(X)

&

Nonlinear system to
describe power flows
over (large) network

Multiple time scales
Dynamics (bidding,
failures, ramping, etc)
Uncertainty (demand,
weather, expansion, etc)
p¥(x): Price (LMP) at i
in scenario w as a
function of x

Use other models to
construct approximation
of p’(x)
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Generator Expansion (2): Vf € F: Gr:  Generators of firm f € F

yj: Investment in generator j
m|n Zﬂ'w Z Gi(yj,q7) — r(hs — Z i) q;:  Power generated at bus j
JEGr JE€Gr in scenario w
st Z i < he,ye >0 G Cost _functlon for gener-
! ator J
JEGr
r: Interest rate
Market Clearing Model (3): Vw : zj: Real power flowing along
line ij
ngl(r; Z Z Gi( yJ,qJ st. g Real'p?ower ger?erated at
f jEGr bus j in scenario w
Z zj = d Vje N(L P,w) 0;: Volte_age phase angle at
10 bus i
. Qy: Susceptance of line ij
zj = ;(0; — 6;) v(ij) €A bjj(x): Line capacity as a func-
= bjj(x) < zj < by(x) V(i,j) €A tion of x

(y), Generator j limits

ui(yj) < qf < i(y)) _
(y): as a function of y
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Solution approach

Use derivative free method for the upper level problem (1)

Requires p¥(x)
Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

@ But transmission line capacity expansion typically leads to generator
expansion, which interacts directly with market clearing

@ Interface blue and black models using Nash Equilibria (as EMP):
empinfo: equilibrium

forall f: min expcost(f) y(f) budget(f)
forall w: min scencost(w) q(w) ..
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Feasibility

KKT of w ) Gy h feF (2
oyr;neanW Z (v, af) — r(he — ny Vf € (2)
JEGr JEGr

KKT of min Z Z Gi(yj, a7) Yw (3)

707WGZ 9. .
(2,0,g)eZ(xy) jcar

@ Models (2) and (3) form a complementarity problem (CP via EMP)

@ Solve (3) as NLP using global solver (actual C;(y;, wa) are not
convex), per scenario (SNLP) this provides starting point for CP

e Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

o Identifies CP solution whose components solve the scenario NLP's (3)
to global optimality
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Scenario w1 | wo
Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (1):

Scenario | g1 | ¢ | g3 | G | Gs
w1 3.05 | 425|393 |4.34 | 3.39
w2 441 | 4.07 | 4.55
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (1):

Scenario | q1 | G | g3 | G | Gs

w1 3.05| 425|393 | 4.34 ]| 3.39

w2 441 | 4.07 | 4.55

EMP (1):

Scenario | q1 | G | g3 | G | Gs

w1 2.86 | 4.60 | 4.00 | 4.12 | 3.38

Wy 470 | 4.09 | 4.24

Firm |y y2 ¥3 Y6 8
fi 167.83 | 565.31 266.86
f 292.11 | 207.89
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Scenario w1 | wo
Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (2):

Scenario | g1 | ¢ | g3 | G | Gs
w1 0.00 | 5.35 | 4.66 | 5.04 | 3.91
wy 470 | 4.09 | 4.24
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5
SNLP (2):

Scenario | q1 | G | g3 | G | Gs

w1 0.00 | 5.35 | 4.66 | 5.04 | 3.91
Wy 470 | 4.09 | 4.24
EMP (2):

Scenario | q1 | G | g3 | G | Gs

w1 0.00 | 5.34 | 462 | 5.01 | 3.99
wo 471 | 4.07 | 4.25

Firm |y y2 ¥3 Y6 8
fi 0.00 | 622.02 377.98
f 283.22 | 216.79
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Observations

But this is simply one function
evaluation for the outer
“transmission capacity
expansion” problem

Number of critical arcs typically
very small

But in this case, p;’ are very
volatile

Outer problem is small scale,
objectives are open to debate,
possibly ill conditioned

Comparing the different types of objective functions

195

— LMP

= = = LMP and Generator Cost

' LMP with interest rate

v
0.74

o
0.76

Economic dispatch should use AC power flow model

Structure of market open to debate

L
0.78 0.8 0.82

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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Water rights pricing (Britz/F./Kuhn)

3 1

'\
Output
wo;
=
wu, : i |
wo,

market
=3 = e
- : | '

-

Models firms behavior with market to determine water rights

-

Labor
i market

wu#
Ferris (Univ. Wisconsin)

EMP

DA



Agents have stochastic recourse?

@ Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

@ R is a risk measure (e.g. expectation, CVaR)

SP: min
s.t.

Yw e Q:

c'x+Rlg"y]
Ax=b, x>0,
T(w)x + W(w)y(w) < d(w),

y(w) > 0.
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Design: Stochastic competing agent models (F./Wets)

Competing agents (consumers, or generators in energy market)
Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

o Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program
Each agent minimizes:
us = (K — f( qa 0, «) + Zﬂ's - f-(qa,s,*))2

Budget time 0: 3, po,iGa0,i + > ; ViVaj < >_; Po,i€a0,i
Budget time 1: > . psiQasi < > Ps.i Zj Ds ijyaj+ 2 i Ps,i€as,i

Additional constraints (complementarity) outside of control of agents:

(contract) 0 < —ZyaJ Lvi>0
a

(walras) 0 < — Z dasi L psi>0
a
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Model and solve

@ Can model financial instruments such as “financial transmission
rights”, “spot markets”, “reactive power markets”

@ Reduce effects of uncertainty, not simply quantify

@ Use structure in preconditioners

» Use nonsmooth Newton methods to formulate complementarity
problem

> Solve each “Newton” system using GMRES

» Precondition using “individual optimization” with fixed externalities

il N
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The problem

A furniture maker can manufacture and sell four different dressers. Each
dresser requires a certain number t of man-hours for carpentry, and a
certain number tg of man-hours for finishing, j = 1,...,4. In each period,
there are d:. man-hours available for carpentry, and df available for
finishing. There is a (unit) profit ¢; per dresser of type j that's
manufactured. The owner's goal is to maximize total profit:

rpg())( 12x1 + 25x0 + 21x3 + 40x4 (profit)
subject to

4x1 + 9% + Tx3 + 10x4 < 6000 (carpentry)

X1 + xo + 3x3 + 40x4 < 4000 (finishing)
Succinctly:

max ¢’ x st. Tx <d,x>0
X
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Is your time estimate that good?

@ The time for carpentry and finishing for each dresser cannot be
known with certainty

@ Each entry in T takes on four possible values with probability 1/4,
independently

@ 8 entries of T are random variables: s = 65,536 different T's each
with same probability of occurring

@ But decide “now” how many dressers x of each type to build
@ Might have to pay for overtime (for carpentry and finishing)

@ Can make different overtime decision y* for each scenario s - recourse!
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Models with explicit random variables

@ Model transformation:

>

>
>
>

Write a core model as if the random variables are constants
Identify the random variables and decision variables and their staging

Specify the distributions of the random variables
emp.info: model transformation

randvar
randvar
randvar
randvar
randvar
randvar
randvar
randvar
randvar
randvar

stage 2

T(’c’,’1’) discrete

d(’c?) discrete .
aC£?) discrete
y t d cost cons obj

@ Solver configuration:

> Specify the manner of sampling from the distributions

.25
T(’c?,’2’) discrete .
T(’c?,’3’) discrete .
T(’c’,’4’) discrete .
T(’£?,’1’) discrete .
T(’f’,’2’) discrete .
T(’f’,’3’) discrete .
T(’f’,’4’) discrete .

3.

o o © o

60

.25 3936.

.25

.25 3984.

.25 4016. .

» Determine which algorithm (and parameter settings) to use
o Output handling:
» Optionally, list the variables for which we want a scenario-by-scenario

report
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What do we learn?

Deterministic solution: x4 = (1333,0,0, 67)

Expected profit using this solution: $16,942

Expected (averaged) overtime costs: $1,725

Extensive form solution: xs = (257, 0,666, 34) with expected profit
$18,051

@ Deterministic solution is not optimal for stochastic program, but more
significantly it isn't getting us on the right track!

@ Stochastic solution suggests large number of “type 3" dressers, while
deterministic solution has none!
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Computation methods matter!

@ Lindo solver defaults: 825 seconds
@ Lindo solver barrier method: 382 seconds
e CPLEX solver barrier method: 4 seconds (8 threads)

© May have multiple sources of uncertainty: e.g. man-hours d also can
take on 4 values in each setting independently: s = 1,048,576

@ Generates extensive form problem with over 3 million rows and
columns and 29 million nonzeros

© Solves on 24 threaded cluster machine in 262 secs
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Sampling methods

But what if the number of scenarios is too big (or the probability
distribution is not discrete)? use sample average approximation (SAA)

o Take sample &1,...,&y of N realizations of random vector &

» viewed as historical data of V observations of &, or
» generated via Monte Carlo sampling

e for any x € X estimate f(x) by averaging values F(x, &)

N
(SAA): mi)rg : Z (x, &)

S

@ Nice theoretical asymptotic properties
@ Can use standard optimization tools to solve the SAA problem
@ EMP = SLP — SAA — (large scale) LP
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Convergence

N Time(s) Soln Profit
1000 0.6 (265,0,662,34) 18050
2000 1.0 (254,0,668,34) 18057
3000 1.6 (254,0,668,34) 18057
4000 2.3 (255,0,662,34) 18058
5000 3.1 (257,0,666,34) 18054
6000 3.9 (262,0,663,34) 18051
7000 5.0 (257,0,666,34) 18054
8000 6.1 (262,0,663,34) 18048
9000 7.3 (257,0,666,34) 18051
Im  262.0 (257,0,666,34) 18051

SAA can work well, but this is a 4 variable problem and distributions are
discrete
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Continuous distributions: News vendor problems (F./Liu)

N Derand SAA
Mean Stdev Mean Stdev
2 16.85 2.185 16.94 3.615
5 1484 1369 1492 2.791
10 14.23 1.127 1457 2.248
20 14.03 0.797 14.18 1.635
100 14.01 0.100 1448 0.745

© As the sample size N increases, the optimal solutions obtained by
both methods converge to the true solution, i.e. 14

@ For a given sample size N, new sampling method (derand) is always
(slightly) closer to the true solution

© But standard deviation of the optimal solutions obtained by derand is
significantly smaller than the SAA method
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Additional techniques requiring extensive computation

@ Continuous distributions, sampling functions, density estimation

e Chance constraints: Prob( Tix + W;y; > h;) > 1 — « - can reformulate
as MIP and adapt cuts (Luedtke) empinfo: chance E1 E2 0.95

@ Use of discrete variables (in submodels) to capture logical or discrete
choices (logmip - Grossmann et al)

@ Robust or stochastic programming

@ Decomposition approaches to exploit underlying structure identified
by EMP

@ Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods (ENLP)

@ Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Conclusions

@ Optimization helps understand what drives a system

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

@ EMP model type is clear and extensible, additional structure available
to solver

@ Extended Mathematical Programming available within the GAMS
modeling system

e Uncertainty is present everywhere (the world is not “normal”)

@ We need not only to quantify it, but we need to
hedge/control /ameliorate it

@ Modeling, optimization, and computation embedded within the
application domain is critical
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