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Extended Mathematical Programs

@ Optimization models improve understanding of underlying systems
and facilitate operational /strategic improvements under resource
constraints

@ Problem format is old/traditional

mXin f(x) s.t. g(x) <0,h(x)=0

@ Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

@ This talk will give several examples of how to use this modeling
framework
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But who cares?

@ Why aren't you using my ¥¥¥¥¥*¥x¥%% 5lo0rithm?
(Michael Ferris, Boulder, CO, 1994)
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But who cares?

Why aren’t you using my ¥¥¥¥*x¥*x%% 5|oorithm?
(Michael Ferris, Boulder, CO, 1994)

Show me on a problem like mine

Must run on defaults

Must deal graciously with poorly specified cases

Must be usable from my environment (Matlab, R, GAMS, ...)

Must be able to model my problem easily

EMP provides annotations to an existing optimization model that convey
new model structures to a solver

NEQS is soliciting case studies that show how to do the above, and will
provide some tools to help
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The PIES Model (Hogan)

min, c¢c’x

st.  Ax=q(p)
Bx=b
x>0

@ lIssue is that p is the multiplier on the dembal constraint of LP

@ Can solve the problem by writing down the KKT conditions of this
LP, forming an LCP and exposing p to the model

o EMP: dualvar p dembal
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Example: Bimatrix Games

@ Nash game: two players have | and J pure strategies.

@ p and g (strategy probabilities) belong to unit simplex A; and A
respectively.

o Payoff matrices A € R*! and B € R/*/, where A; i is the profit
received by the first player if strategy i is selected by the first player
and j by the second, etc.

@ The expected profit for the first and the second players are g7 Ap and
p' Bq respectively.

@ A Nash equilibrium is reached by the pair of strategies (p*, g*) if and
only if

* € arg min{Aqg", and ¢* € arg min (BT p*,
p g pEA,< q, p) q g quJ< p*.q)
o EMP: facilitates modeling of Nash Equilibria
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Complementarity Problems in Economics (MCP)

@ p represents prices, x represents activity levels

e System model: given prices, (agent) i determines activities x;
Gi(xi,x—j,p) =0

x_; are the decisions of other agents.

o Walras Law: market clearing

0<S(x,p) —D(x,p) L p>0

o Key difference: optimization assumes you control the complete system

@ Complementarity determines what activities run, and who produces
what
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Nash Equilibria
@ Nash Games: x* is a Nash Equilibrium if

x; € arg min (i(x;,x*;,q),Vi €T
X €X;

x_; are the decisions of other players.

@ Quantities g given exogenously, or via complementarity:

0<H(x,q) L g>0

@ empinfo: equilibrium
min loss(i) x(i) cons(i)
vifunc H g

@ Applications: Discrete-Time Finite-State Stochastic Games.
Specifically, the Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry.
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General Equilibrium models

(C) : max Ux(xx) s.t. p"xk < ik(y,p)

X EXk

(1) iy p) = pTwk+ D aiip” gi(y;)
j

P): Tgily;
(P) max p gi(yj)

Yj

(M):rp>a\3<pT Zxk—Zwk—Zgj(yj) s.t. Zp,zl
= k k j /
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General Equilibrium models

(C) : max Ux(xx) s.t. p"xk < ik(y,p)

X EXk

(1) :ik(y, ) = PTwr + > aip” ()
J
(P): meaépT@(yj)

Yj

— — t. =1
g (S-S S st T
Can reformulate as embedded problem (Ermollev et al):

xeX er Z — Iog Uk (xx)
s.t. Zxk <Y wt Y gy)
k k J

tx = ix(y, p) where p is multiplier on NLP constraint
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Sequential Joint Maximization

max Z Iog Uk (xx)

xeX,yeY
s.t. Zxk < ZWk + Zgj(yj)
k k J

tx = ix(y, p) where p is multiplier on NLP constraint

@ Embedded model often solves faster as an MCP than the original
MCP from Nash game
@ Can exploit structure to improve computational performance further
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Sequential Joint Maximization

max Z Iog Uk (xx)

xeX,yeY
s.t. Zxk < Zwk + Zgj(yj)
k k J

tx = ix(y, p) where p is multiplier on NLP constraint

@ Embedded model often solves faster as an MCP than the original
MCP from Nash game

@ Can exploit structure to improve computational performance further

e Can iterate (on m) t = ik(y’",p’") and solve sequence of NLP's

max Z Iog Uk(xk)

xeX,yeY
s.t. Zxk <Y wet+ > gily)
k k J
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Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)
Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)
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The model details: c.f. Brown, Demarzo, Eaves
Each agent maximizes:

Qp |
Up = — Z Ts (“ - H Ch,s,/>
s /
Z Po,iCh,0,1 + Z qrZpk < Z Po,1€h,0,1
/ K /

Time O:

Time 1:

§ Ps,iChs,| < § Ps,i E Ds 1k * znk + § Ps,i€h,s,I
/ / K /

Additional constraints (complementarity) outside of control of agents:

0< =) zpuLlag>0
h

0<—> dnssLpss>0

h
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Stochastic programming and risk measures

SP: min c¢'x+R[dy]
st. Ax=0b
T(w)x + W(w)y(w) > h(w), for all w € Q,

x>0, y(w)>0, for all w € Q.

Annotations are slightly more involved but straightforward:
@ Need to describe probability distribution

o Define (multi-stage) structure (what variables and constraints belong
to each stage)

@ Define random parameters and process to generate scenarios
@ Can also define risk measures on variables

Automatic reformulation (deterministic equivalent), solvers such as
DECIS, etc.
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Transmisson Line Capacity Expansion

OLD_GAS OLD_GAS OLD_GAS
1000 MW 1000 ~ 1500 1500
NEW_GAS ,b(;() $0p OLD_NUKE NEW_GAS %QQ OLD_NUKE NEW_GAS %QQ OLD_NUKE
700 MW 700MW 700 ~ 1200 500 ~ 900 1000 700
NEW_COAL, NEW_COAL NEW_CO_A&
900 wp .1 900 wp .1
900 Mw 000 mwy 200 ~ 1100 1100 wp .3 1100 1100 wp .3
1200 wp .2 11300 wp .6 1200 wp .2
1500 wp .6 1100 wp 1500wp 6 | 1100wp
D3 o2 1700wp 2| B5 1400 wp 5 1700wp 2
2000 wp 4

1300 wp 6
LD1
1400 wp 5
32000 wp .4 Lb2
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Transmission Line Planning (1)

lTxél}l E(un’”Ei‘ENdi pi (x)
st. Ax<b

x=0

(budget constraints)

Generator Expansion (2)
V/EF: min, 3 m,¥ . C(y,:4;)
(budget constraints) st EjEGf Vi & hf
y=0
Day Ahead Market Clearing (3)
Vo: min(:ﬂ.q) E/ EJEG/ C./ (y./ ’q;l))
(balance flow) ~ S.t. ¢} —d} = 2"5](])2’/ VieEN (Lp])

(line data) 5, =Q,%0,-6,) Vi, j)E4
(line capacity) ~b,(x)= 2, < b,(x) (i, )E A
(gen capacity) u,<q;<u
0.z, free
Ferris (Univ. Wisconsin) EMP

Sets:

N:
X:
F:
Gy

Set of all buses

Set of line expansions

Set of firms

Set of generators belonging
to firm f

Variables:

x:
y:
z;:
q;
0;:

pi

Investment in line x
Investment in generator j
Real power flowing along
line i-j

Real power generated at
bus j

Voltage phase angle at bus i
LMP at node i in w

Parameters:

w:

Pnad

crle O

Demand scenarios

: Probability of scenario w

: Demand at node i in w

: Cost function of generator j
. Susceptance of line i-j

: Line capacity

Min generation at j

: Max generation at j
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Solution method

@ Use deriviative free method for the upper level problem (1)
e Constraints (2) and (3) form an MCP (via EMP)

@ Can show (due to specific problem structure that there is a (convex)
NLP whose KKT conditions are that MCP

@ Useful for theoretical analysis
@ Resulting problem is too large for NLP solvers

@ Can show that “Gauss-Seidel/Jacobi” method on problems in (2) and
(3) converges in this case - decoupling makes problem tractable for
large scale instances
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Conclusions

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

o EMP model type is clear and extensible, additional structure available
to solver

o Extended Mathematical Programming available within the GAMS
modeling system

@ Able to pass additional (structure) information to solvers

@ Embedded optimization models automatically reformulated for
appropriate solution engine

@ Exploit structure in solvers

@ Extend application usage further

Ferris (Univ. Wisconsin) EMP ICS, January 2011 16 / 16



	Motivation
	Nash Equilibria
	Stochastic Programming

	Conclusions

