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Water rights pricing (Britz/F./Kuhn)
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The model AO

max
qi ,xi ,woi≥0

∑
i

qi · p −
∑

f ∈{int,lab}

xi ,f · wf


s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi

0 ≤
∑

i qi − d(p) ⊥ p ≥ 0

0 ≤
∑
i

ei ,lab −
∑
i

xi ,lab ⊥ wlab ≥ 0
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(M)OPEC

max
x
θ(x , p) s.t. g(x , p) ≤ 0,

and
0 ≤ h(x , p) ⊥ p ≥ 0

equilibrium

max theta x g

vi h p

is solved concurrently (in a Nash manner)
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MOPEC

min
xi
θi (xi , x−i , p) s.t. gi (xi , x−i , p) ≤ 0,∀i

and
p solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h p cons

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve
complementarity problem

Precondition using
“individual optimization”
with fixed externalities

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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The model IO

max
qi ,xi ,woi≥0

(
qi · p −

∑
f

xi ,f · wf

)
s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi

wri + wrbi ≥ xi ,wat + wr si

0 ≤
∑

i qi − d(p) ⊥ p ≥ 0

0 ≤
∑
i

ei ,lab −
∑
i

xi ,lab ⊥ wlab ≥ 0

0 ≤
∑
i

wr si −
∑
i

wrbi ⊥ wwr ≥ 0
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The model IO

max
qi ,xi ,woi ,wr

b
i ,wr

s
i ≥0

(
qi · p −

∑
f

xi ,f · wf − wrbi · (wwr + τ) + wr si · wwr

)
s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi
wri + wrbi ≥ xi ,wat + wr si

0 ≤
∑
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∑
i
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∑
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∑
i
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∑
i
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Different Management Strategies
Figure 4
Click here to download high resolution image
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Hydro-Thermal System (Philpott/F./Wets)

Let us assume that �1 > 0 and p(!)�2(!) > 0 for every ! 2 
. This corresponds to
a solution of SP meeting the demand constraints exactly, and being able to save money
by reducing demand in each time period and in each state of the world. Under this as-
sumption TP(i) and HP(i) also have unique solutions. Since they are convex optimization
problems their solution will be determined by their Karush-Kuhn-Tucker (KKT) condi-
tions. We de�ne the competitive equilibrium to be a solution to the following variational
problem:

CE: (u1(i); u2(i; !)) 2 argmaxHP(i), i 2 H
(v1(j); v2(j; !)) 2 argmaxTP(j), j 2 T
0 �

P
i2H Ui (u1(i)) +

P
j2T v1(j)� d1 ? �1 � 0;

0 � +
P

i2H Ui (u2(i; !)) +
P

j2T v2(j; !)� d2(!) ? �2(!) � 0; ! 2 
:

This gives the following result.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution for in�ows. Then the solution
to SP is the same as the solution to CE.

3.1 Example

Throughout this paper we will illustrate the concepts using the hydro-thermal system
with one reservoir and one thermal plant, as shown in Figure 1. We let thermal cost be

Figure 1: Example hydro-thermal system.

C (v) = v2, and de�ne

U(u) = 1:5u� 0:015u2

V (x) = 30� 3x+ 0:025x2

We assume in�ow 4 in period 1, and in�ows of 1; 2; : : : ; 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1. The central plan that maximizes expected welfare (by
minimizing expected generation and future cost) is shown in Table 2. One can observe
that the two solutions are identical, as predicted by Proposition 2.

6
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Simple electricity system optimization problem

SSP: min
∑

j∈T Cj(v(j))−
∑

i∈H Vi (x(i))

s.t.
∑

i∈H Ui (u(i)) +
∑

j∈T v(j) ≥ d ,

x(i) = x0(i)− u(i), i ∈ H
u(i), v(j), x(i) ≥ 0.

u(i) water release of hydro reservoir i ∈ H
v(j) thermal generation of plant j ∈ T
production function Ui (strictly concave) converts water release to
energy

water level reservoir i ∈ H is denoted x(i)

Cj(v(j)) denote the cost of generation by thermal plant

Vi (x(i)) to be the future value of terminating the period with storage
x (assumed separable)
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SSP equivalent to CE
Thermal plants solve

TP(j): max pT v(j)− Cj(v(j))

s.t. v(j) ≥ 0.

The hydro plants i ∈ H solve

HP(i): max pTUi (u(i)) + Vi (x(i))

s.t. x(i) = x0(i)− u(i)
u(i), x(i) ≥ 0.

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: u(i), x(i) ∈ arg max HP(i), i ∈ H,
v(j) ∈ arg max TP(j), j ∈ T ,
0 ≤ (

∑
i∈H Ui (u(i)) +

∑
j∈T v(j))− d ⊥ p ≥ 0.
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Agents have stochastic recourse?

Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

R is a risk measure (e.g. expectation, CVaR)

SP: min c>x + R[q>y ]

s.t. Ax = b, x ≥ 0,

∀ω ∈ Ω : T (ω)x + W (ω)y(ω) ≤ d(ω),

y(ω) ≥ 0.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ­
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu­
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

EMP/SP extensions to facilitate these models
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Two stage problems

TP(j): max p1v1(j)− Cj(v1(j))+
Rω[p2(ω)v2(j , ω)− Cj (v2(j , ω))]

s.t. v1(j) ≥ 0, v2(j , ω) ≥ 0, for all ω ∈ Ω.

HP(i): max p1Ui (u1(i))+
Rω[p2(ω)Ui (u2(i , ω)) + Vi (x2(i , ω))]

s.t. x1(i) = x0(i)− u1(i) + h1(i),
x2(i , ω) = x1(i)− u2(i , ω) + h2(i , ω), for all ω ∈ Ω,
u1(i), x1(i) ≥ 0, u2(i , ω), x2(i , ω) ≥ 0, for all ω ∈ Ω.
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Results

Suppose every agent is risk neutral and has knowledge of all
deterministic data, as well as sharing the same probability distribution
for inflows. SP solution is same as CE solution

Using coherent risk measure (weighted sum of expected value and
conditional variance at risk), 10 scenarios for rain

1 High initial storage: risk-averse central plan (RSP) and the risk-averse
competitive equilibrium (RCE) have same solution (but different to risk
neutral case)

2 Low initial storage: RSP and RCE are very different. Since the hydro
generator and the system do not agree on a worst-case outcome, the
probability distributions that correspond to an equivalent risk neutral
decision will not be common.

3 Extension: Construct MOPEC models for trading risk
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Stochastic competing agent models (F./Wets)

Competing agents (consumers, or generators in energy market)

Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Each agent minimizes:

ua = (κ− f (qa,0))2 +
∑
s

πs (κ− f (qa,s))2

Budget time 0: pT0 qa,0 + vT ya ≤ pT0 ea,0

Budget time 1: pTs qa,s ≤ pTs (Dsya + ea,s)

Additional constraints (complementarity) outside of control of agents:

(contract) 0 ≤ −
∑
a

ya ⊥ v ≥ 0

(walras) 0 ≤
∑
a

(Dsya + ea,s − qa,s) ⊥ ps ≥ 0

Ferris (Univ. Wisconsin) StoMOPEC ICSP 2013 15 / 21



Observations

Examples from literature solved using homotopy continuation seem
incorrect - need transaction costs to guarantee solution

Solution possible via disaggregation only seems possible in special
cases

I When problem is block diagonally dominant
I When overall (complementarity) problem is monotone
I (Pang): when problem is a potential game

Progressive hedging possible to decompose in these settings by agent
and scenario
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PJM buy/sell model (2009)

Storage transfers energy over time (horizon = T ).

PJM: given price path pt , determine charge q+t and discharge q−t :

max
ht ,q

+
t ,q

−
t

T∑
t=0

pt(q
−
t − q+t )

s.t. ∂ht = eq+t − q−t

0 ≤ ht ≤ S
0 ≤ q+t ≤ Q
0 ≤ q−t ≤ Q
h0, hT fixed

Uses: price shaving, load shifting, transmission line deferral

what about different storage technologies?
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Stochastic price paths (day ahead market)

min
x ,s,q+,q−

c0(x) + Eω

[
T∑
t=0

pωt(q
+
ωt − q−ωt) + c1(q+ωt + q−ωt)

]
s.t. ∂hωt = eq+ωt − q−ωt

0 ≤ hωt ≤ Sx
0 ≤ q+ωt , q

−
ωt ≤ Qx

hω0, hωT fixed

First stage decision x : amount of storage to deploy.

Second stage decision: charging strategy in face of uncertainty
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Distribution of (multiple) storage types
Determine storage facilities xk to build, given distribution of price paths:
no entry barriers into market, etc. MOPEC: for all k solve a two stage
stochastic program

∀k : min
xk ,hk ,q

+
k ,q

−
k

c0k (xk) + Eω

[
T∑
t=0

pωt(q
+
ωkt − q−ωkt) + c1k (q+ωkt + q−ωkt)

]
s.t. ∂hωkt = eq+ωkt − q−ωkt

0 ≤ hωkt ≤ Sxk
0 ≤ q+ωkt , q

−
ωkt ≤ Qxk

hωk0, hωkT fixed

and

pωt = f

(
θ,Dωt +

∑
k

(q+ωkt − q−ωkt)

)

Parametric function (θ) determined by regression. Storage operators react
to shift in demand.
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS
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Conclusions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Stochastic MOPEC models capture behavioral effects (as an EMP)

Policy implications addressable using Stochastic MOPEC

Extended Mathematical Programming available within the GAMS
modeling system
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