Stochastic Equilibria: Data and Applications

Michael C. Ferris
(Joint work with Olivier Huber, Andy Philpott and Jiajie Shen)

Jacques-Louis Lions Chair, and John P. Morgridge Professor of Computer Science Computer Sciences Department and Wisconsin Institute for Discovery, University of Wisconsin, Madison

INFORMS national meeting, Nov 11, 2020

Olvi Mangasarian

- Scholar
- Leader
- Friend
- Impacted areas and researchers beyond his core interests

Scenario Tree

• Treat uncertainty more robustly

- Decomposition
- Parallel computation
- Forward/backward passes

Risk Measures

Problem type

Objective function

or

Constraint

$$\min_{x \in X} \theta(x) + \rho(F(x))$$

$$\min_{x \in X} \theta(x) \text{ s.t. } \rho(F(x)) \le \alpha$$

• Dual representation (of coherent r.m.) in terms of risk sets

$$ho(Z) = \sup_{\mu \in \mathcal{D}} \mathbb{E}_{\mu}[Z]$$

- If $\mathcal{D} = \{p\}$ then $\rho(Z) = \mathbb{E}[Z]$
- If $\mathcal{D}_{\alpha,p} = \{\lambda \in [0, p/(1-\alpha)] : \langle \mathbb{1}, \lambda \rangle = 1\}$, then $\rho(Z) = \overline{AVaR}_{\alpha}(Z)$

The transformation to complementarity

$$\min_{x \in X} \theta(x) + \rho(F(x))$$

$$\rho(y) = \sup_{u \in U} \left\{ \langle u, y \rangle - \frac{1}{2} \langle u, Mu \rangle \right\}$$

optimal value function:

$$0 \in \partial \theta(x) + \nabla F(x)^{\mathsf{T}} \partial \rho(F(x)) + N_X(x)$$

calculus:

$$0 \in \partial \theta(x) + \nabla F(x)^{T} u + N_{X}(x)$$

$$0 \in -u + \partial \rho(F(x)) \iff 0 \in -F(x) + Mu + N_{U}(u)$$

This is a complementarity problem

What does fully renewable in electricity mean?

- Permanently shutdown all thermal plants?
- Control GHG emissions from electricity generation?

Trading risk

$$\begin{split} \text{CP:} & \min_{\substack{d^1, d_\omega^2 \geq 0, t^C \\ }} & \sigma t^C + p^1 d^1 - W(d^1) + \rho_C \left[p_\omega^2 d_\omega^2 - W(d_\omega^2) - t_\omega^C \right] \\ \text{TP:} & \min_{\substack{v^1, v_\omega^2 \geq 0, t^T \\ u_\omega^2, x_\omega^2 \geq 0, t^H }} & \sigma t^T + C(v^1) - p^1 v^1 + \rho_T \left[C(v_\omega^2) - p_\omega^2 v_\omega^2 - t_\omega^T \right] \\ \text{HP:} & \min_{\substack{u^1, x^1 \geq 0 \\ u_\omega^2, x_\omega^2 \geq 0, t^H }} & \sigma t^H - p^1 U(u^1) + \rho_H \left[-p_\omega^2 U(u_\omega^2) - V(x_\omega^2) - t_\omega^H \right] \\ & \text{s.t.} & x^1 = x^0 - u^1 + h^1, \\ & x_\omega^2 = x^1 - u_\omega^2 + h_\omega^2 \end{split}$$

$$0 \leq \rho^{1} \perp U(u^{1}) + v^{1} \geq d^{1}$$

$$0 \leq \rho_{\omega}^{2} \perp U(u_{\omega}^{2}) + v_{\omega}^{2} \geq d_{\omega}^{2}, \forall \omega$$

$$0 \leq \sigma_{\omega} \perp t_{\omega}^{C} + t_{\omega}^{T} + t_{\omega}^{H} \geq 0, \forall \omega \quad \sigma = (\sigma_{\omega})$$

The EMP framework

- Each agent solves a multi-stage stochastic optimization problem
- Tie them together as a MOPEC

minimize
$$f_i(x_i, x_{-i}, p)$$
,
subject to $g_i(x_i, x_{-i}, p) \leq 0$,
 $h_i(x_i, x_{-i}, p) = 0$,
for $i = 1, ..., N$,
 $p \in SOL(K, F)$.

- The time structure of $x_i = x_i(t_0, t_1, \dots, t_N)$ is not explicit above, neither is the way risk is evaluated
- This complicated things!

The EMP framework

- Each agent solves a multi-stage stochastic optimization problem
- Tie them together as a MOPEC
- Annotate equations and variables in an empinfo file.
- The framework automatically transforms the problem into another computationally more tractable form.

```
minimize f_i(x_i, x_{-i}, p), equilibrium subject to g_i(x_i, x_{-i}, p) \le 0, h_i(x_i, x_{-i}, p) = 0, for i = 1, \dots, N, min f('N') x('N') g('N') h('N') min f('N') x('N') g('N') h('N') min f('N') x('N') g('N') h('N') min f('N') x('N') g('N') h('N')
```

EMP framework

The model representation inside the EMP solver is independent of any model language

Ferris (Wisconsin) Stochastic Equilibria Supported by DOE 10 / 12

Increasing risk aversion: carbon price and investment

- $\rho(Z) = (1 \lambda)\mathbb{E}[Z] + \lambda \mathsf{AVaR}_{0.90}(Z)$
- Same price risk neutral
- Competitive equilibrium: increased price
- VertInt: co-ownership of wind/thermal results in more wind closer to existing thermal

(a) Carbon prices with increasing λ

(b) Ownership at $\lambda = 0.3$

Conclusion

- Using optimization in new and innovative ways to solve problems of critical importance
- Scholar
- Leader
- Friend
- Thank you, Olvi

