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Figure: Economist: September 1, 2024.



Figure: CAISO battery boom.



Figure: CAISO Duck curves.



▶ Renewable energy (wind and solar) growing in scale.

▶ Grid-connected storage increasing.

▶ Stochastic multiperiod dispatch and pricing being proposed.

▶ Pricing rules for minimizing uplift payments.
▶ Pricing the option value of storage.
▶ Consistency of prices from multiperiod solutions.
▶ Consensus on system operator’s scenarios?

▶ Proposal: return to single-period dispatch but use decision rules
defined by a dynamic programming policy.
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Economic dispatch: notation

xi(t) = dispatch of generator i in period t;

x̄i = dispatch of generator i in period t − 1;

yj(t) = storage in battery j at end of period t;

ȳj = storage in battery j at end of period t − 1;

uj = discharge from battery j in period t;

vj = charge input to battery j in period t;

Xi(x̄) = {x | 0 ≤ x ≤ qi , x − x̄i ≤ ρi , x̄i − x ≤ σi} ,

Yj(ȳ) = {(y , u, v)|0 ≤ y ≤ Ej , 0 ≤ u ≤ rj , 0 ≤ v ≤ sj ,

y = ȳj − u + ηjv}.



Economic dispatch and pricing: period t

EP(t): min ∑
i∈G

ci(t)xi(t) + Lz(t)

s.t. ∑
i∈G

xi(t) + ∑
j∈J

uj(t)− ∑
j∈J

vj(t) + z(t) = d(t) + w(t),

xi(t) ∈ Xi(x(t − 1)), i ∈ G,

(yj(t), uj(t), vj(t)) ∈ Yj(y(t − 1)), j ∈ J ,

w(t) ≥ 0, z(t) ∈ [0, d(t)].



Multiperiod economic dispatch

EP:min
T

∑
t=1

(
∑
i∈G

ci(t)xi(t) + Lz(t)

)

s.t. ∑
i∈G

xi(t) + ∑
j∈J

uj(t)− ∑
j∈J

vj(t) + z(t) = d(t) + w(t),

xi(0) = x0, xi(t) ∈ Xi(x(t − 1)), i ∈ G,

yj(0) = y 0, (yj(t), uj(t), vj(t)) ∈ Yj(y(t − 1)), j ∈ J ,

w(t) ≥ 0, z(t) ∈ [0, d(t)], t = 1, 2, . . . ,T .



Example demand
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Figure: Values of d(t) for t = 1, 2, . . . , 24.



Example solution: The optimal solution to EP has cost 6062, with
optimal dispatch and battery charge shown below:
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Figure: Solution of EP showing generation x , battery charge y and lost load z for
t = 1, 2, . . . , 24.



A scenario tree.
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Figure: Scenario tree. Here n− is the parent of n, and L is the set of leaf nodes.



Stochastic economic dispatch in scenario tree

min ∑
n∈N

P(n)

(
∑
i∈G

ci(n)xi(n) + Lz(n)

)

s.t. ∑
i∈G

xi(n) + ∑
j∈J

uj(n)− ∑
j∈J

vj(n) + z(n) = d(n) + w(n), n ∈ N ,

xi(1) = x0, xi(n) ∈ Xi(x(n−)), ∀i , n ∈ N \ {1},

yj(1) = y0, (yj(n), uj(n), vj(n)) ∈ Yj(y(n−)), ∀j , n ∈ N \ {1},

w(n) ≥ 0, z(n) ∈ [0, d(n)], n ∈ N .



Pricing in scenario tree

▶ Dual variables give prices π that decouple system problem into
agent problems.

GP(i): max ∑
n∈N

P(n)(π(n)− ci(n))xi(n))

s.t. xi(1) = x0, xi(n) ∈ Xi(x(n−)), ∀i , n,

CO: max ∑n∈N P(n)(π(n)− L)z(n)
s.t. 0 ≤ z(n) ≤ d(n), ∀n.

BP(j): max ∑
n∈N

P(n)π(n)(uj(n)− vj(n))

s.t. yj(1) = y0, (yj(n), uj(n), vj(n)) ∈ Yj(y(n−)), ∀j , n.



Plot of prices from SDDP
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Figure: System marginal prices from 100 simulations of optimal stochastic policy.



Why these prices won’t work

▶ The prices (dual variables) derived from a scenario tree are
difficult to optimize with;

▶ For computation, scenario tree problem is formulated as a
look-ahead model solved in rolling horizon mode;

▶ The scenario tree reflects the system operator view of the future
and is not a consensus of market participant views, who prefer
to “put their money where their mouths are”;

▶ The future will (almost surely) not be a scenario in the tree;

▶ Even if the future matches a scenario perfectly the prices
computed from a rolling horizon implementation might be
inconsistent with perfect foresight∗;

* [Hogan,2020],[Cho and Papavasiliou,2023]
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Agent decision rules

▶ In social planning problem, SDDP gives a socially optimal
decision rule defined by cutting planes.

▶ System optimal solution in each stage is solution to a stage
problem with future cost function defined by cuts.

▶ Decompose system optimal solution into agent stage problems
with agent decision rules (ADRs).

▶ An ADR expresses the future benefit to an agent of being in a
given state at the end of each period.

▶ An agent’s ADR for period t is a function of any observable
quantity at the start of period t, and agent’s dispatch in t.



System stage problem and expected future benefit

EP(t): min ∑
i∈G

ci(t)xi(t) + Lz(t)−V̂ t(x , y)

s.t. ∑
i∈G

xi(t) + ∑
j∈J

uj(t)− ∑
j∈J

vj(t) + z(t) = d(t) + w(t),

xi(t) ∈ Xi(x(t − 1)), i ∈ G,

(yj(t), uj(t), vj(t)) ∈ Yj(y(t − 1)), j ∈ J ,

w(t) ≥ 0, z(t) ∈ [0, d(t)].



Separable approximation using ADRs

ADR(t): min ∑
i∈G

ci(t)xi(t) + Lz(t)− ∑
i∈G

V t
i (xi)− ∑

j∈J
W t

j (yj)

s.t. ∑
i∈G

xi(t) + ∑
j∈J

uj(t)− ∑
j∈J

vj(t) + z(t) = d(t) + w(t),

xi(t) ∈ Xi(x(t − 1)), i ∈ G,

(yj(t), uj(t), vj(t)) ∈ Yj(y(t − 1)), j ∈ J ,

w(t) ≥ 0, z(t) ∈ [0, d(t)].



Dispatch process for generators and batteries

▶ Generator agents i ∈ G provide system operator with marginal
costs ci(t).

▶ Generator agents i ∈ G provide system operator with ADR
defined byV t

i .

▶ Battery agents j ∈ J provide system operator with ADR
defined by W t

j .

▶ System operator solves single-stage problem ADR(t) and
computes dispatch and system marginal price π(t).

▶ Generator is paid π(t)xi(t).

▶ Battery is paid π(t)(uj(t)− vj(t)).



How to compute an ADR from system value function

▶ SDDP produces cuts defining V̂ t(x , y) for system optimum.

▶ Given (x(t − 1), y(t − 1)), system optimal dispatch with
V̂ t(x , y) yields (x(t), y(t)).

▶ Suppose agents make a forecast (x̃ t , ỹ t) of (x(t), y(t)).

▶ Agents i ∈ G and j ∈ J then offer

V t
i (xi) = V̂ t(xi , x̃

t
−i , ỹ

t)− (1− 1

2 | G |)V̂
t(x̃ t , ỹ t),

W t
j (yj) = V̂ t(x̃ t , yj , ỹ

t
−j)− (1− 1

2 | J |)V̂
t(x̃ t , ỹ t).



Separable ADRs can be system optimal

Theorem

If all agents make perfect forecasts of (x(t), y(t)) then optimal
dispatch with

∑
i∈G

V t
i (xi) + ∑

j∈J
W t

j (yj)

yields the same outcome as optimal dispatch with V̂ t(x , y).



Example problem with random demand

Figure: Stagewise independent demand realizations for example.

System optimum has (est.) expected cost 6109.51± 10.85.
Deterministic optimum has (est.) expected cost 6226.37± 10.809.
(Crude) ADR optimum has (est.) expected cost 6208.27± 9.17.



Remarks

▶ Assuming perfect competition and complete markets, there
exist ADRs that recover system optimality.

▶ Crude ADRs seem to perform well even when based on poor
forecasts.

▶ ADRs enable agents to put “money where their mouths are”.

▶ ADRs are easy to implement, and can build in some system
operator look-ahead in nonconvex settings.

▶ Questions remain about ADRs if agents exercise market power.
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Extensions

▶ Supply functions offers are simple ADRs.

▶ Transmission system can be included in dispatch.

▶ Pumped storage is same as a battery.

▶ Dispatchable demand is a demand function bid ADR.

▶ Flexible demand can shift a task in time.

▶ Reserve offers as ADRs.

▶ Hydroelectric reservoirs?

▶ Frequency regulation?

▶ Unit commitment?



The End
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