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California’s battery boom is a case
study for the energy transition

By Josoph Webstor

California is the country’s largest and most mature solar market, but it's also changing in important ways. On April
25, California marked a major milestone, as it became the first state to deploy 10 gigawatts (GW) of battery storage
capacity. This large-scale deployment of lithium-ion storage batteries is leading to lower solar “curtailment,” or
when electricity generation is suppressed due to price signals or physical oversupply. Curtailment is a problem
because it means solar power stations, for example, are producing less electricity than they could, contributing less
to the overall energy mix than they otherwise might.

Figure: CAISO battery boom.
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As solar capacity grows, duck curves are getting deeper in California

California's duck curve is getting deeper PR
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Data source: California Independent System Operator’ (CAISO)

Figure: CAISO Duck curves.



» Renewable energy (wind and solar) growing in scale.
» Grid-connected storage increasing.
» Stochastic multiperiod dispatch and pricing being proposed.
» Pricing rules for minimizing uplift payments.
» Pricing the option value of storage.
» Consistency of prices from multiperiod solutions.
» Consensus on system operator’s scenarios?

» Proposal: return to single-period dispatch but use decision rules
defined by a dynamic programming policy.
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Stochastic dispatch and pricing



Economic dispatch: notation

x;(t) = dispatch of generator / in period t;

X; = dispatch of generator i in period t — 1;
y;j(t) = storage in battery j at end of period t;
yj = storage in battery j at end of period t — 1;
uj = discharge from battery j in period t;

v; = charge input to battery j in period t;

X,‘()_() = {X‘OSXSqi,X—)?,'Sp,',)_(/—XSO','},

Viy) = {(y,u,v)[0<y<E,0<u<r,0<v<s,
y=y—u+mv}.



Economic dispatch and pricing: period t

EP(t): min Zc t) + Lz(t)

st Y xi(t)+ Y u(t) = Y vi(t) 4+ z(t) = d(t) + w(t),

i€g jeJ jeJ

x(t) € Xi(x(t—1)), i€g,

(yi(8), (1), vi(t)) € Vi(y(t=1)), j€JT,
w(t) 20, 2(t) € [0,d(t)].



Multiperiod economic dispatch

EP: min Z (Zc t) + Lz(t ))

t=1 \ieg

st Yo xi(6)+ Y ui(t) = Y vit) +z(t) = d(t) + w(t),

i€g jeJ jeJ
xi(0) =x° xi(t) e Xi(x(t—1)), ie€g,
yi(0) =% (1), ui(t), vi(1)) € Vily(t =1)), je T,

w(t) >0,z(t) € [0,d(t)], t=12,...,T.



Example demand
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Figure: Values of d(t) for t =1,2,...,24.



Example solution: The optimal solution to EP has cost 6062, with
optimal dispatch and battery charge shown below:
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Figure: Solution of EP showing generation x, battery charge y and lost load z for
t=12,...,24



A scenario tree.
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Figure: Scenario tree. Here n_ is the parent of n, and L is the set of leaf nodes.



Stochastic economic dispatch in scenario tree

min Y P(n) (Zc n)+ Lz(n ))

neN i€eg

st. Y _x(n)+ Y ui(n) =) vi(n)+z(n) =d(n)+w(n),neN,

= je7 je7
xi(1) = x., xi(n) € Xi(x(n_)), VineN\{1},

yi(1) =y ((n), ui(n),vi(n)) € Vi(y(n-)), Vj,n € N\ {1},
w(n) >0,z(n) €[0,d(n)], neN.



Pricing in scenario tree

» Dual variables give prices 71 that decouple system problem into
agent problems.

GP(/):

CO:

BP(/):

max ;\:/P(n)(ﬂ(n) —¢ci(n))x;(n))
s.t. X,'(].) = Xp, x,-(n) < X,'(X(I’L)),Vi, n,

max  Y,en P(n)(7t(n) — L)z(n)
st. 0<z(n) <d(n),Vn.

max ) P(n)7t(n)(u;(n) — vi(n))

neN
st (1) =y ((n), u(n). y(n) € V(y(n ), Yo n.



Plot of prices from SDDP
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Figure: System marginal prices from 100 simulations of optimal stochastic policy.




Why these prices won't work
» The prices (dual variables) derived from a scenario tree are
difficult to optimize with;

» For computation, scenario tree problem is formulated as a
look-ahead model solved in rolling horizon mode;

» The scenario tree reflects the system operator view of the future
and is not a consensus of market participant views, who prefer
to “put their money where their mouths are”;

» The future will (almost surely) not be a scenario in the tree;

» Even if the future matches a scenario perfectly the prices

computed from a rolling horizon implementation might be
inconsistent with perfect foresight™;

* [Hogan,2020], [Cho and Papavasiliou,2023]
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Agent decision rules



Agent decision rules

» In social planning problem, SDDP gives a socially optimal
decision rule defined by cutting planes.

» System optimal solution in each stage is solution to a stage
problem with future cost function defined by cuts.

» Decompose system optimal solution into agent stage problems
with agent decision rules (ADRs).

» An ADR expresses the future benefit to an agent of being in a
given state at the end of each period.

» An agent's ADR for period t is a function of any observable
quantity at the start of period t, and agent'’s dispatch in t.



System stage problem and expected future benefit

EP(t): min ch, t) + Lz(t)—V'(x, y)
st Y _xi(6)+ Y u(t) = Y vit) +z(t) = d(t) + w(t),
i€g jeJ jeJ

xi(t) € Xj(x(t—1)), i€qg,
(v (2), ui(t), vi(1)) € Vi(y(t =1)), jeJT,
w(t) > 0,z(t) € [0,d(t)].



Separable approximation using ADRs

ADR(t): min Zc, )+ Lz(t Z VE( Z th(yj)
i€g i€g jeJ
st Y xi(t)+ Y u(e) = Y vi(e) +z(t) = d(t) + w(t),
i€g jeJ jeJ

xi(t) € Xi(x(t—1)), i€gqg,
(v (2), ui(t), vi(t)) € Vi(y(t = 1)), jeJT,
w(t) >0,z(t) € [0,d(t)].



Dispatch process for generators and batteries

» Generator agents / € G provide system operator with marginal
costs ¢;(t).

» Generator agents / € G provide system operator with ADR
defined by V.

» Battery agents j € J provide system operator with ADR
defined by th.

» System operator solves single-stage problem ADR(t) and
computes dispatch and system marginal price 7t(t).

» Generator is paid 7t(t)x;(t).

» Battery is paid 77(t)(u;(t) — vi(t)).



How to compute an ADR from system value function

» SDDP produces cuts defining V*(x, y) for system optimum.

» Given (x(t —1),y(t —1)), system optimal dispatch with
Vi(x,y) yields (x(t),y(t)).

> Suppose agents make a forecast (X, y*) of (x(t),y(t)).

» Agents i € G and j € J then offer




Separable ADRs can be system optimal
Theorem

If all agents make perfect forecasts of (x(t), y(t)) then optimal
dispatch with

Y Vita) + ) Wiy)

i€g jeJ

yields the same outcome as optimal dispatch with V*(x, y).



Example problem with random demand

Figure: Stagewise independent demand realizations for example.

System optimum has (est.) expected cost 6109.51 + 10.85.
Deterministic optimum has (est.) expected cost 6226.37 & 10.8009.
(Crude) ADR optimum has (est.) expected cost 6208.27 - 9.17.



Remarks
» Assuming perfect competition and complete markets, there
exist ADRs that recover system optimality.

» Crude ADRs seem to perform well even when based on poor
forecasts.

» ADRs enable agents to put “money where their mouths are”.

» ADRs are easy to implement, and can build in some system
operator look-ahead in nonconvex settings.

» Questions remain about ADRs if agents exercise market power.
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Extensions



Extensions

» Supply functions offers are simple ADRs.

» Transmission system can be included in dispatch.
Pumped storage is same as a battery.

Dispatchable demand is a demand function bid ADR.
Flexible demand can shift a task in time.

Reserve offers as ADRs.

Hydroelectric reservoirs?

Frequency regulation?

vVvyVvyvVvyYVvYyyvyy

Unit commitment?



The End

ferris@cs.wisc.edu

For the paper go to
https://www.epoc.org.nz/papers/ADRv2.pdf
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