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Welcome and thanks

What: Physical system + markets + stochastics + modeling +
computation

Who: power system engineers, economists, mathematicians,
operations researchers, and computer scientists

Why: create more dialogue between researchers in this area with
different expertize

How?
I IPAM: Christian Ratsch and Roland McFarland
I Organizing committee: Benjamin Hobbs, Antonio Conejo, Andrew

Philpott, Claudia Sagastizabal
I All of you for attending and preparing presentations

Outcomes: new ideas and models, white paper summary

This tutorial aims to provide some context and vocabulary for the
meeting
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Power generation, transmission and distribution

Determine generators’ output to reliably meet the load
I
∑

Gen MW ≥
∑

Load MW, at all times.
I Power flows cannot exceed lines’ transfer capacity.
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Single market, single good: equilibrium

Walras: 0 ≤ s(π)− d(π) ⊥ π ≥ 0

Market design and rules to
foster competitive
behavior/efficiency

Spatial extension: Locational
Marginal Prices (LMP) at nodes
(buses) in the network

Supply arises often from a generator
offer curve (lumpy)

Technologies and physics affect
production and distribution
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The PIES Model (Hogan) - Optimal Power Flow (OPF)

min
x

c(x) cost

s.t. Ax ≥ q balance

Bx = b, x ≥ 0 technical constr

q = d(π): issue is that π is the multiplier on the “balance” constraint

Such multipliers (LMP’s) are critical to operation of market

Can solve the problem iteratively or by writing down the KKT
conditions of this QP, forming an LCP and exposing π to the model

Existence, uniqueness, stability from variational analysis

EMP does this automatically from the annotations
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Reformulation details

0 ≤ Ax − d(π) ⊥ µ ≥ 0

0 = Bx − b ⊥ λ

0 ≤ ∇c(x)− ATµ− BTλ ⊥ x ≥ 0

empinfo: dualvar π balance

replaces µ ≡ π
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Reformulation details

0 ≤ Ax − d(π) ⊥ π ≥ 0

0 = Bx − b ⊥ λ

0 ≤ ∇c(x)− ATπ − BTλ ⊥ x ≥ 0

empinfo: dualvar π balance

replaces µ ≡ π
LCP/MCP is then solvable using PATH

z =

πλ
x

 , F (z) =

 A
B

−AT −BT

 z +

−d(π)
−b
∇c(x)
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Reformulation details (VI formulation)

0 ≤ Ax − q ⊥ π ≥ 0

0 = Bx − b ⊥ λ

0 ≤ ∇c(x)− ATπ − BTλ ⊥ x ≥ 0

���
��XXXXXq = d(π) 0 =− p(q) + π ⊥ q

Inverse demand p(q): π = p(q) ⇐⇒ q = d(π)

(x , q) ∈ C , 0 ∈
[
∇c(x)
−p(q)

]
+ Nc(x , q)

(x , q) solves VI (F ,C ), F (x , q) = (∇c(x),−p(q))T

New solvers for VI: PATHVI, decomposition, distributed solution

Straightforward to extend to more general production functions and
cost functions
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Extensions: maximizing profit and multiple agents

max
x

πT x − c(x) profit

s.t. Ax ≥ d(π) balance

Bx = b, x ≥ 0 technical constr

Issue is that there are multiple producers i

The price is now determined by total production

max
xi

p(
∑
j

xj)
T xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr
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Special case: perfect competition

max
xi

π

�
�
�
��Z

Z
Z
ZZ

p(
∑
j

xj)
T xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

0 ≤
∑
i

xi − d(π) ⊥ π ≥ 0

When there are many agents, assume none can affect π by themselves

Each agent is a price taker

Two agents, d(π) = d̄ − π, d̄ = 24, c1 = 3, c2 = 2

KKT(1) + KKT(2) + Market Clearing gives Complementarity
Problem

x1 = 0, x2 = 22, π = 2
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MOPEC

min
xi
θi (xi , x−i , p) s.t. gi (xi , x−i , p) ≤ 0,∀i

p solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h p cons

(Generalized) Nash

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve

Solve overall problem
using “individual
optimizations”?

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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Hydro-Thermal System (Philpott/F./Wets)

Let us assume that �1 > 0 and p(!)�2(!) > 0 for every ! 2 
. This corresponds to
a solution of SP meeting the demand constraints exactly, and being able to save money
by reducing demand in each time period and in each state of the world. Under this as-
sumption TP(i) and HP(i) also have unique solutions. Since they are convex optimization
problems their solution will be determined by their Karush-Kuhn-Tucker (KKT) condi-
tions. We de�ne the competitive equilibrium to be a solution to the following variational
problem:

CE: (u1(i); u2(i; !)) 2 argmaxHP(i), i 2 H
(v1(j); v2(j; !)) 2 argmaxTP(j), j 2 T
0 �

P
i2H Ui (u1(i)) +

P
j2T v1(j)� d1 ? �1 � 0;

0 � +
P

i2H Ui (u2(i; !)) +
P

j2T v2(j; !)� d2(!) ? �2(!) � 0; ! 2 
:

This gives the following result.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution for in�ows. Then the solution
to SP is the same as the solution to CE.

3.1 Example

Throughout this paper we will illustrate the concepts using the hydro-thermal system
with one reservoir and one thermal plant, as shown in Figure 1. We let thermal cost be

Figure 1: Example hydro-thermal system.

C (v) = v2, and de�ne

U(u) = 1:5u� 0:015u2

V (x) = 30� 3x+ 0:025x2

We assume in�ow 4 in period 1, and in�ows of 1; 2; : : : ; 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1. The central plan that maximizes expected welfare (by
minimizing expected generation and future cost) is shown in Table 2. One can observe
that the two solutions are identical, as predicted by Proposition 2.

6

Competing agents (consumers, or generators in energy market)

Each agent maximizes objective independently (profit)

Market prices are function of all agents activities
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Simple electricity “system optimization” problem

SO: max
dk ,ui ,vj ,xi≥0

∑
k∈K

Wk(dk)−
∑
j∈T

Cj(vj) +
∑
i∈H

Vi (xi )

s.t.
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk ,

xi = x0
i − ui + h1

i , i ∈ H

ui water release of hydro reservoir i ∈ H
vj thermal generation of plant j ∈ T
xi water level in reservoir i ∈ H
prod fn Ui (strictly concave) converts water release to energy

Cj(vj) denote the cost of generation by thermal plant

Vi (xi ) future value of terminating with storage x (assumed separable)

Wk(dk) utility of consumption dk
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SO equivalent to CE (price takers)

Consumers k ∈ K solve CP(k): max
dk≥0

Wk (dk)− πTdk

Thermal plants j ∈ T solve TP(j): max
vj≥0

πT vj − Cj(vj)

Hydro plants i ∈ H solve HP(i): max
ui ,xi≥0

πTUi (ui ) + Vi (xi )

s.t. xi = x0
i − ui + h1

i

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dk ∈ arg max CP(k), k ∈ K,
vj ∈ arg max TP(j), j ∈ T ,

ui , xi ∈ arg max HP(i), i ∈ H,

0 ≤ π ⊥
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk .
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General Equilibrium models (static)

(C ) : max
xk∈Xk

Uk(xk) s.t. πT xk ≤ ik(y , π)

(I ) :ik(y , π) = πTωk +
∑
j

αkjπ
Tgj(yj)

(P) : max
yj∈Yj

πTgj(yj)

(M) : max
π≥0

πT

∑
k

xk −
∑
k

ωk −
∑
j

gj(yj)

 s.t.
∑
l

πl = 1

This is an example of a MOPEC: strategic, top-down, policy analyses

Can extend these models in several ways: more goods (not just
energy), more agents (refineries, farmers), different behavior patterns:
who is driving the bus?
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Bus or Taxi: two agents (duopoly)

max
xi

p(
∑
j

xj)
T xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

Cournot: assume each can affect p by choice of xi

Two agents, same data

KKT(1) + KKT(2) gives Complementarity Problem

x1 = 20/3, x2 = 23/3, π = 29/3

Exercise of market power (some price takers, some Cournot)
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UBER: Bilevel Program (Stackelberg)
Assumes one leader firm, the rest follow
Leader firm optimizes subject to expected follower behavior
Follower firms act in a competitive Nash manner
Bilevel programs:

min
x∗,y∗

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
y∗ solves min

y
v(x∗, y) s.t. h(x∗, y) ≤ 0

model bilev /deff,defg,defv,defh/;
empinfo: bilevel min v y defv defh
EMP tool automatically creates the MPCC

min
x∗,y∗,λ

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
0 ≤ ∇v(x∗, y∗) + λT∇h(x∗, y∗) ⊥ y∗ ≥ 0
0 ≤ −h(x∗, y∗) ⊥ λ ≥ 0
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Representative decision-making timescales in electric power
systems

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute seconds

Transmission
Siting & Construction

Power Plant
Siting & Construction Maintenance

Scheduling

Long-term
Forward
Markets

Load
Forecasting

Closed-loop
Control and 
Relay Action

Closed-loop
Control and 

Relay Setpoint
Selection Day ahead

market w/ unit 
commitment

Hour ahead
market

Five
 minute
market

Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow

22

Many interacting levels/hierarchies, with different time scaled decisions at
each level - collections of models needed.
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Complications and myriad of acronyms

Size/integrity:
I AC/DC models, reactive power, new devices
I Day ahead, regulation, FTR’s, co-optimization
I Semidefinite programming (global), EPEC’s

Discrete:
I Unit commitment (DAUC, RUC, RT)
I Topology optimization (e.g. Transmission line switching, siting)
I Design of flexible computing systems
I How do we price discrete decisions? (make-good, fix ints, ...)

Dynamic:
I Design/operation
I Multi-period, unit commitment, minimum up and down time
I Demand response, load shedding, demand bidding

Stochastic:
I Security constraints - failures/reserves (SCED/SCUC)
I Stochastic demand
I Renewables/storage/feed-in prices
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Discrete: Totally Unimodular Congestion Games

ts

1,5,64,6,7

1,2,8

2,3,5 2,3,6

N = 3, m = 5. Each player chooses a path from s to t. Costs for one, two
or three players using arc are given by triplets.
The goal is to find a pure Nash equilibrium, i.e. a state
x = (x1, . . . , xN) ∈ X such that, for each player i and x̄ i ∈ X i :

c i (x1, . . . , x i , . . . , xN) ≤ c i (x1, . . . , x̄ i , . . . , xN).

Theorem (DelPia/F./Micini)

There is a strongly polynomial-time algorithm for finding a pure Nash
equilibrium in symmetric TU congestion games.
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Dynamic: PJM buy/sell storage

Storage transfers energy over time (horizon = T ).

PJM: given price path pt , determine charge q+
t and discharge q−t :

max
ht ,q

+
t ,q

−
t

T∑
t=0

pt(q−t − q+
t )

s.t. ∂ht = eq+
t − q−t

0 ≤ ht ≤ S
0 ≤ q+

t ≤ Q
0 ≤ q−t ≤ Q
h0, hT fixed

Uses: price shaving, load shifting, transmission line deferral

What about real-time storage, or different storage technologies?
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Stochastic: Agents have recourse?

Agents face uncertainties in reservoir inflows

Two stage stochastic programming, x1 is here-and-now decision,
recourse decisions x2 depend on realization of a random variable

ρ is a risk measure (e.g. expectation, CVaR)

SP: min cT x1 + ρ[qT x2]

s.t. Ax1 = b, x1 ≥ 0,

T (ω)x1 + W (ω)x2(ω) ≥ d(ω),

x2(ω) ≥ 0,∀ω ∈ Ω.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 
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Risk Measures

Modern approach to
modeling risk
aversion uses concept
of risk measures

CVaRα: mean of
upper tail beyond
α-quantile (e.g.
α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

mean-risk, mean deviations from quantiles, VaR, CVaR

Much more in mathematical economics and finance literature

Optimization approaches still valid, different objectives, varying
convex/non-convex difficulty
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Stochastic price paths (day ahead market)

min
x ,h,q+,q−

c1(x) + Eω

[
T∑
t=0

pωt(q+
ωt − q−ωt) + c2(q+

ωt + q−ωt)

]
s.t. ∂hωt = eq+

ωt − q−ωt

0 ≤ hωt ≤ Sx

0 ≤ q+
ωt , q

−
ωt ≤ Qx

hω0, hωT fixed

First stage decision x : amount of storage to deploy.

Second stage decision: charging strategy in face of uncertainty
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Contingency: a single line failure
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A network with N lines can have up to N contingencies

Each contingency case:
I Corresponds to a different network topology
I Requires a different set of equations g and h
I E.g., equations gk and hk for the k-th contingency.
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Security-constrained Economic Dispatch

Base-case network topology g0 and line flow x0.

If the k-th line fails, line flow jumps to xk in new topology gk .

Ensure that xk is within limit, for all k .

SCED model:

min
u,x0,...,xk

cTu B Total cost

s.t. 0 ≤ u ≤ ū B GEN capacity const.

g0(x0, u) = 0 BBase-case network eqn.

−x̄ ≤ x0 ≤ x̄ BBase-case flow limit

gk(xk , u) = 0, k = 1, . . . ,K BCtgcy network eqn.

−x̄ ≤ xk ≤ x̄ , k = 1, . . . ,K BCtgcy flow limit
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Model structure

0 20 40 60 80 100 120 140 160 180

0
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Columns

R
ow

s

Base Case

Contingency 1, time 0

Contingency 1, time 1

Contingency 1, time 2

Figure : Sparsity structure of the
Jacobian matrix of a 6-bus case,
considering 3 contingencies and 3
post-contingency checkpoints.

Base Case

Contingency 1

Contingency 2

SCED Feasible 
Region

Cost-
minimizing 

direction

SCED optimal point

ED optimal point

Figure : On the u0 plane, the feasible
region of a SCED is the intersection of
K+1 polyhedra.

Decomposition approaches allow
solution of realistic sized models
with many contingencies in minutes
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Contracts in MOPEC (Philpott/F./Wets)

Can we modify (complete) system to have a social optimum by
trading risk?

How do we design these instruments? How many are needed? What
is cost of deficiency?

Facilitated by allowing contracts bought now, for goods delivered
later (e.g. Arrow-Debreu Securities)

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Buy yi contracts in period 1, to deliver D(ω)yi in period 2, scenario ω
Each agent i :

min C (x1
i ) + ρi

(
C (x2

i (ω))
)

s.t. p1x1
i + vyi ≤ p1e1i (budget time 1)

p2(ω)x2
i (ω) ≤ p2(ω)(D(ω)yi + e2i (ω)) (budget time 2)

0 ≤ v ⊥ −
∑
i

yi ≥ 0 (contract)

0 ≤ p1 ⊥
∑
i

(
e1i − x1

i

)
≥ 0 (walras 1)

0 ≤ p2(ω) ⊥
∑
i

(
D(ω)yi + e2i (ω)− x2

i (ω)
)
≥ 0 (walras 2)
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Theory and Observations

agent problems are multistage stochastic optimization models

perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows

situation complicated when agents are risk averse
I utilize stochastic process over scenario tree
I under mild conditions a social optimum corresponds to a competitive

market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty

Otherwise, must solve the stochastic equilibrium problem

Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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Conclusions

Optimization critical for understanding of power system markets

Different behaviors are present in practice and modeled here

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

Policy implications addressable using MOPEC

Stochastic MOPEC enables modeling dynamic decision processes
under uncertainty

Modeling, optimization, statistics and computation embedded within
the application domain is critical

Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS
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