Optimization and Equilibrium in Energy Economics

Michael C. Ferris

University of Wisconsin, Madison

IPAM Workshop
Los Angeles
January 11, 2016

Ferris (Univ. Wisconsin) IPAM 2016 Supported by DOE/LBNL 1/30



Welcome and thanks

@ What: Physical system + markets + stochastics + modeling +
computation

@ Who: power system engineers, economists, mathematicians,
operations researchers, and computer scientists

@ Why: create more dialogue between researchers in this area with
different expertize

e How?

» IPAM: Christian Ratsch and Roland McFarland

» Organizing committee: Benjamin Hobbs, Antonio Conejo, Andrew
Philpott, Claudia Sagastizabal

» All of you for attending and preparing presentations

@ Outcomes: new ideas and models, white paper summary

@ This tutorial aims to provide some context and vocabulary for the
meeting
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Power generation, transmission and distribution
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@ Determine generators’ output to reliably meet the load

» > Gen MW > >~ Load MW, at all times.
» Power flows cannot exceed lines' transfer capacity.
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Single market, single good: equilibrium

1 @ Spatial extension: Locational
Marginal Prices (LMP) at nodes

(buses) in the network

Price

uilibrium
301 [, /\)Eq

Q* Quantity

Walras: 0 < - @ Supply arises often from a generator
alras: 0 < s(7) — d(m) L= >0 offer curve (lumpy)
@ Technologies and physics affect

Market design and rules to
production and distribution

foster competitive
behavior/efficiency

Ferris (Univ. Wisconsin) IPAM 2016 Supported by DOE/LBNL 4 /30



The PIES Model (Hogan) - Optimal Power Flow (OPF)
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min ¢(x) cost
X
s.t. Ax> g balance
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The PIES Model (Hogan) - Optimal Power Flow (OPF)

min ¢(x) cost
X

s.t. Ax > d(m) balance

Bx=b,x>0 technical constr

g = d(m): issue is that 7 is the multiplier on the “balance” constraint

Such multipliers (LMP’s) are critical to operation of market

Can solve the problem iteratively or by writing down the KKT
conditions of this QP, forming an LCP and exposing 7w to the model

Existence, uniqueness, stability from variational analysis

@ EMP does this automatically from the annotations
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Reformulation details

0 < Ax —d(m) L p=>0
0=Bx—b

LA
0<Ve(x)—ATu—BTX L x>0

@ empinfo: dualvar 7 balance
o replaces p =
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Reformulation details

0 < Ax —d(m) 1L >0

0=Bx—b»b LA

0<Ve(x)—ATn—=B™x 1L x>0

@ empinfo: dualvar w balance
o replaces p =
e LCP/MCP is then solvable using PATH

T
z=|Al, F(z)= B|z+
X —AT BT
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Reformulation details (VI formulation)

0<Ax—gq 1l 7>0

0=Bx—b LA

0<Ve(x)—ATn—=B™x 1L x>0
g=e{z)] 0=—p(q)+7 L

o Inverse demand p(q): m = p(q) <= q = d(n)
Vc(x)}
o s € C, 0 S + NC )
(x.9 ]+ et
e (x,q) solves VI(F, C), F(x,q) = (Vc(x), —p(q)) "
@ New solvers for VI: PATHVI, decomposition, distributed solution

@ Straightforward to extend to more general production functions and
cost functions
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Extensions: maximizing profit and multiple agents

max 7 x — c(x) profit
X

s.t. Ax > d(m) balance

Bx=b,x>0 technical constr

@ Issue is that there are multiple producers i

@ The price is now determined by total production

max p ZXJ x;i — ci(x;) profit

s.t. B,-x,- =b;,x; >0 technical constr
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Special case: perfect competition

max WMTX,' — ci(xi) profit
Xi .
J

s.t. Bix; =b;,x; >0 technical constr

0§ZX;—d(7r)J_7T20
i

When there are many agents, assume none can affect = by themselves
Each agent is a price taker

Two agents, d(7) = d—m,d=24,¢c,=3,c=2

KKT(1) + KKT(2) 4+ Market Clearing gives Complementarity
Problem

X1:0,X2:22,7T:2
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MOPEC

o (Generalized) Nash
@ Reformulate
optimization problem as

p solves VI(h(x,-), C) first order conditions
(complementarity)

min 0i(xi,x i, p) s-t. gi(xi,x i,p) <0,Vi

@ Use nonsmooth Newton

equilibrium
min theta(1l) x(1) g(1) methods to solve
... @ Solve overall problem
min theta(m) x(m) g(m) using “individual
vi h p cons optimizations”?
= ]
= + .- “
. .
= B
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Hydro-Thermal System (Philpott/F./Wets)

HYDRO

THERMAL

e Competing agents (consumers, or generators in energy market)

@ Each agent maximizes objective independently (profit)

@ Market prices are function of all agents activities
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Simple electricity “system optimization” problem

SO: max ~0 Z Wi (di) — Z G(vj) + Z Vi(xi)

st} kek jeT icH
s.t. ZU,‘(U,’)—I-ZVJ'Z de,
i€H JET ke

xi=x2—ui+ht, i€H

u; water release of hydro reservoir i € H

v; thermal generation of plant j € T

x; water level in reservoir i € H

prod fn U; (strictly concave) converts water release to energy
Cj(v;) denote the cost of generation by thermal plant

Vi(x;) future value of terminating with storage x (assumed separable)

Wi (dy) utility of consumption dy
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SO equivalent to CE (price takers)

Consumers k € K solve CP(k): max W (di) — 7" dy

di>0

Thermal plants j € T solve TP(j): max v — G(v))
j =

Hydro plants i € H solve HP(i): max 7 U; (u;) + Vi(x))

uj,x; >0

st. x;=x0 — uj + ht

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dy € argmax CP(k), k ek,
v; € arg max TP(j), JeT,
ui, x; € arg max HP(7), i €H,
0<a LY Ui(u)+> vi= dh
i€H JET kel
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General Equilibrium models (static)

(C) : max Ux(xx) s.t. @7 xx < ix(y, )
PA

(1) sik(y,m) = m T wx + Z " gi(y))

J
(P) : max 7" gj(y;)
J J
(M) :r;rr1>a(>J<7rT Zxk - Zwk - Zgj(yj) s.t. Zm =1
- k k J /

@ This is an example of a MOPEC: strategic, top-down, policy analyses

@ Can extend these models in several ways: more goods (not just
energy), more agents (refineries, farmers), different behavior patterns:
who is driving the bus?
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Bus or Taxi: two agents (duopoly)

sz;\x p(z ><j)Tx,- — ci(xi) profit
J
s.t. Bix; = bj,x; >0 technical constr

Cournot: assume each can affect p by choice of x;
Two agents, same data

KKT(1) + KKT(2) gives Complementarity Problem
x1 =20/3, xp =23/3, 1 =29/3

Exercise of market power (some price takers, some Cournot)
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UBER: Bilevel Program (Stackelberg)

Assumes one leader firm, the rest follow

Leader firm optimizes subject to expected follower behavior
Follower firms act in a competitive Nash manner

Bilevel programs:

min  f(x*, y*)
X*,y*

st. g(x",y") <0,
y* solves minv(x*,y) s.t. h(x*,y) <0
y

e model bilev /deff,defg,defv,defh/;
empinfo: bilevel min v y defv defh
@ EMP tool automatically creates the MPCC

*

mi*n)\ f(x*,y")

st gl',y") <0,

0 < Vv(x*,y*)+ ATVh(x*,y*) Ly* >0
0< —h(x"y") La>0
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Representative decision-making timescales in electric power

Closed-loop
Closed-loop
Control and
d Control and
Relay Setpoint o Relay Action
Selection Day ahead
ﬂ Lgng-ter‘;n market w/ unit
orwar commitment
~_ Power Plant Markets Hour ahead
Siting & Construction Maintenance Load market
Schedulin Forecastin «
Transmission o o five
minute
market

Siting & Construction ﬂ

15 years 10 years 5 years 1 year 1 month 1 week

1 day 5 minute  seconds

Many interacting levels/hierarchies, with different time scaled decisions at

each level - collections of models needed.
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Complications and myriad of acronyms

o Size/integrity:
» AC/DC models, reactive power, new devices
» Day ahead, regulation, FTR's, co-optimization
» Semidefinite programming (global), EPEC's
o Discrete:
» Unit commitment (DAUC, RUC, RT)
» Topology optimization (e.g. Transmission line switching, siting)
> Design of flexible computing systems
» How do we price discrete decisions? (make-good, fix ints, ...)
@ Dynamic:
» Design/operation
» Multi-period, unit commitment, minimum up and down time
» Demand response, load shedding, demand bidding
@ Stochastic:

» Security constraints - failures/reserves (SCED/SCUC)
» Stochastic demand
» Renewables/storage/feed-in prices
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Discrete: Totally Unimodular Congestion Games

N =3, m = 5. Each player chooses a path from s to t. Costs for one, two

or three players using arc are given by triplets.
The goal is to find a pure Nash equilibrium, i.e. a state
x = (x,...,xN) € X such that, for each player i and X' € X'

c'(x XNy <t LR xN).

gy 5

Theorem (DelPia/F./Micini)
There is a strongly polynomial-time algorithm for finding a pure Nash
equilibrium in symmetric TU congestion games.
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Dynamic: PJM buy/sell storage

o Storage transfers energy over time (horizon = T).

e PJM: given price path p;, determine charge g;” and discharge g; :

T ISO-NE HUB Price (DA and RT) on Monday, Junc 18, 2012
— 40 | Day-Ahcad Hourdy —
me B E Pt ( q: — q;’r ) Real Time 5-Minute
he,q¢ .q; t=0 35 ¢

s.t. Ohy = eq — q;
0<h <S8
0<qg <Q
0<gq, <0Q
ho, ht fixed o

0 24 48 72 96 120 144 168 192 216 240 264 288

Time (in 5-minute intervals)

@ Uses: price shaving, load shifting, transmission line deferral

Price ($MWh)

@ What about real-time storage, or different storage technologies?
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Stochastic: Agents have recourse?

@ Agents face uncertainties in reservoir inflows

e Two stage stochastic programming, x' is here-and-now decision,
recourse decisions x? depend on realization of a random variable

@ pis a risk measure (e.g. expectation, CVaR)

SP: min ¢ x* 4 p[g” x?]

st. Axt=b, x'>0,

T(w)x! + W(w)x*(w) = d(w),

x*(w) > 0,VYw € Q. ’
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Risk Measures

@ Modern approach to T
modeling risk
aversion uses concept

>
of risk measures 2 T
(]
(] CVaRa mean Of :‘; | VR Maximum
. s a; loss
upper tail beyond w Probability

a-quantile (e.g. T “‘ mm t
CVa
a=09) | il

Loss

@ mean-risk, mean deviations from quantiles, VaR, CVaR
@ Much more in mathematical economics and finance literature
@ Optimization approaches still valid, different objectives, varying

convex/non-convex difficulty
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Stochastic price paths (day ahead market)

T

p hn;an_cl(x) + Eo Z Pwt(q:;rt — qu¢) + C2(q:;rt +q.t)
b b b t:0

s.t. Ohot = eq, — g,
0 < hyr <8x
0< q(jta Qo < QX
hwo, th fixed

o First stage decision x: amount of storage to deploy.

@ Second stage decision: charging strategy in face of uncertainty
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Contingency: a single line failure

Base Case Contingency 1 Contingency 2 Contingency 3

Line 2
Line3 \( )/Linel \( E:S j

@ A network with N lines can have up to N contingencies
@ Each contingency case:

» Corresponds to a different network topology
» Requires a different set of equations g and h
» E.g., equations g and hy for the k-th contingency.
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Security-constrained Economic Dispatch

@ Base-case network topology gp and line flow xp.

o If the k-th line fails, line flow jumps to xx in new topology g.
@ Ensure that xx is within limit, for all k.

@ SCED model:
min clu > Total cost
U,X0 - Xk
s.t. 0<u<u > GEN capacity const.
go(xo,u) =0 I>Base-case network eqn.
—x <xp <X >>Base-case flow limit
gk(xk,u) =0, k=1,...,K Ctgcy network eqn.
—x<xx <Xk, k=1,...,K p>Ctgcy flow limit
Ferris (Univ. Wisconsin) IPAM 2016
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Model structure

Rows

Figure : Sparsity structure of the
Jacobian matrix of a 6-bus case,

considering 3 contingencies and 3
post-contingency checkpoints.

Ferris (Univ. Wisconsin)

minimizing
direction

Contingency 1

Figure : On the ug plane, the feasible
region of a SCED is the intersection of
K+1 polyhedra.

Decomposition approaches allow
solution of realistic sized models
with many contingencies in minutes
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Contracts in MOPEC (Philpott/F./Wets)

e Can we modify (complete) system to have a social optimum by
trading risk?

@ How do we design these instruments? How many are needed? What
is cost of deficiency?

o Facilitated by allowing contracts bought now, for goods delivered
later (e.g. Arrow-Debreu Securities)

@ Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

@ Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Buy y; contracts in period 1, to deliver D(w)y; in period 2, scenario w
Each agent i:

min C(x!)+ pr (COE()))
st plxt + vy < plel (budget time 1)
pA(w)x? (w) < p?(w)(D(w)y; + 2 (w)) (budget time 2)

0<v.l— Zy,' >0 (contract)
0<pt L 2 (e,-1 - x,-l) >0 (walras 1)
0 < p?(w) L Z w)yi + ef(w) — x7(w)) >0 (walras 2)
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Theory and Observations

agent problems are multistage stochastic optimization models

@ perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows

@ situation complicated when agents are risk averse

> utilize stochastic process over scenario tree

» under mild conditions a social optimum corresponds to a competitive
market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty

@ Otherwise, must solve the stochastic equilibrium problem

@ Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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Conclusions

@ Optimization critical for understanding of power system markets
o Different behaviors are present in practice and modeled here

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

@ Policy implications addressable using MOPEC

@ Stochastic MOPEC enables modeling dynamic decision processes
under uncertainty

@ Modeling, optimization, statistics and computation embedded within
the application domain is critical

@ Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plg functions)

Currently available within GAMS
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