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I: Find a solution to the MOPEC:

minimize
qi

θi (q
i , q−i ) subject to qi ∈ D(q−i )

where

q = (q0, q1, . . . , qNa), for i = 1, . . . ,Na,

q−i = (q0, q1, . . . , qi−1, qi+1, . . . , qNa),

D(q−i ) = [0,U i ] ∩ {qi |
Na∑
j=0

qj = d},

θ0(q0, q−0) = Pq0 +
Na∑
i=1

c i (qi )− p

(
Na∑
i=1

qi

)(
Na∑
i=1

qi

)
,

θi (q
i , q−i ) = c i (qi )− p

(
Na∑
i=1

qi

)(
qi
)
, for i = 1, . . . ,Na
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Equivalent (polyhedrally constrained) Variational Inequality

Solvable as VI(K ,F ), where

K =
Na∏
i=0

[0,U i ] ∩ {q |
Na∑
j=0

qj = 0}

F (q) =
(
∇q0θ0(q),∇q1θ1(q), . . . ,∇qNa θNa(q)

)T
Key observation: for q ∈ K we have

d − q0 =
Na∑
i=1

qi

Use this to substitute out expression in F . This defines F̃ (q).

Theorem

q∗ is a solution to VI(K ,F ) if and only if it is a solution to VI(K , F̃ ).
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Nonzero patterns of the Jacobian matrix depending on its
VI formulation when n = 100
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Elapsed time of PATH according to formulations

Size (n)
Elapsed time (secs)

Original formulation Reformulation

2,500 48.431 0.696
5,000 570.214 1.408

10,000 2.780
50,000 17.856

100,000 41.440
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Summary and issues

Can solve much larger instances without need for specialized
algorithms

But, now can extend to stochastic setting (each VI involves
Stochastic Program)

I Model becomes much larger (and sparser)
I Pivotal method within PATH becomes bottleneck as scenarios increase

Need for smoothing and/or decomposition - enhanced interface
between modeler and solver
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II: Security-constrained Economic Dispatch

Base-case network topology g0 and line flow x0.

If the k-th line fails, line flow jumps to xk in new topology gk .

Ensure that xk is within limit, for all k .

SCED model:

min
u,x0,...,xk

cTu + ρ(u) B Total cost

s.t. 0 ≤ u ≤ ū B GEN capacity const.

g0(x0, u) = 0 BBase-case network eqn.

−x̄ ≤ x0 ≤ x̄ BBase-case flow limit

gk(xk , u) = 0, k = 1, . . . ,K BCtgcy network eqn.

−x̄ ≤ xk ≤ x̄ , k = 1, . . . ,K BCtgcy flow limit
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Reality offers a sweeter deal...

Normal

LTE

STE

DAL

≤ 5 min

≤ 15 min

≤ 30 min

Time

Line flow

Contingency 
occurs

Operating procedure (ISO-NE) requires post-contingency line loadings be:

≤ STE (short time emergency) rating in 5 minutes;

≤ LTE (long time emergency) rating in 15 minutes;

≤ Normal rating in 30 minutes.
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What we will contribute

Research issues:

Corrective actions are not modeled in ISO’s dispatch software.

Because it was “insolvable” due to its large size (≥ 10GB LP).
I “We looked into SCED with corrective actions before, and were

hindered by the computational challenge.” – Feng Zhao, senior analyst
at ISO-NE, via private correspondence.

Our contributions:

We model the multi-period corrective rescheduling in SCED;
solutions much better quality

Enhance the Benders’ algorithm to solve the problem faster

Achieve about 50× speedup compared to traditional approaches
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Our model (K contingencies, T periods)

min
x0,...,xk ,u0,...,uk

cTu0

s.t. g0(x0, u0) = 0

h0(x0, u0) ≤ 0

gk(x tk , u
t
k) = 0 k = 1, . . . ,K , t = 0, . . . ,T

hk(x tk , u
t
k) ≤ 0 k = 1, . . . ,K , t = 0, . . . ,T

|utk − ut−1k | ≤ ∆t k = 1, . . . ,K , t = 1, . . . ,T

u0k − u0 = 0 k = 1, . . . ,K

Subscript 0 indicates a quantity in the base-case network topology.

This is a large-scale linear program.

What special structure does it have?
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Model structure
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Figure : Sparsity structure of the
Jacobian matrix of a 6-bus case,
considering 3 contingencies and 3
post-contingency checkpoints.

Base Case

Contingency 1

Contingency 2

SCED Feasible 
Region

Cost-
minimizing 

direction

SCED optimal point

ED optimal point

Figure : On the u0 plane, the feasible
region of a SCED is the intersection of
K+1 polyhedra.
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How we enhanced the Benders’ algorithm ...

1 Reduce the number of LPs

2 Solve subproblem LPs faster

3 Parallel computing

4 Add difficult contingencies to master model

Case Ctgcy
Big LP (time) Enhanced Benders

Simplex Barrier Iter LPs Time
118-bus 183 207.8 13.8 12 755 13.5

2383-bus 20 175.0 205.5 11 60 41.5
2383-bus 50 1403 123.1 11 135 46.5
2383-bus 100 3621 240.6 12 245 79.4
2383-bus 400 - 2354.5 13 879 197.8
2383 wp 2349 21 9529 515.7
2736 sp 2749 4 5500 220.9

2737 sop 2753 1 2753 100.5
2746 wop 2794 1 2794 118.5
2746 wp 2719 14 5558 333.5
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Dealing with Infeasibility

Base Case

Contingency 1

Contingency 2Cut

Cut

(a) Contingency 2 is intrinsically in-
feasible. Either the corresponding
subproblem is infeasible or its Ben-
ders’ cuts will render the master prob-
lem infeasible.

Base Case

Contingency 1

Contingency 2

Cut

Cut

(b) Each individual contingency is
feasible, but they are not simultane-
ously feasible. Their Benders’ cuts
will render the master problem infea-
sible.

Figure : Two cases of infeasibility.
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Identifying infeasible contingencies in Benders’ algorithm

If a subproblem is infeasible (in the first iteration), the corresponding
contingency is intrinsically infeasible. Remove (tabu) it.

I Typically line failure results in an islanded load node or sub-network.

Master problem infeasible: solve a modified master model to find the
“minimal” set of problematic contingencies using sparse optimization.

min
x0,u0

f0(x0, u0) +
∑
k∈K

Mvk

s.t. g0(x0, u0) = 0, h0(x0, u0) ≤ 0

w̄ i
k + λ̄ik(u0 − ūi0)− vk ≤ 0, vk ≥ 0 ∀(k , i) ∈ CUT

I Solution of this model indicates the violated cuts.
I Tabu the contingency that has contributed one or more violated cuts.

Start a pre-screening daemon in parallel when the Active List size is
smaller than Lfc.

I Tabu infeasible ones, and add feasible ones to the master problem.
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Computational Results

Table : Solution for big cases on opt-a006, 80 threads, Lfc = 5

Case Ctgcy Iter LPs Time To Master Tabu
2383 wp 2896 15 7694 522.1 6 547
2736 sp 3269 4 6020 252.9 1 520

2737 sop 3269 4 6023 242.2 0 516
2746 wop 3307 4 6102 280.2 0 513
2746 wp 3279 8 6053 334.3 4 560
2383 wp 2353 16 7156 460.6 6 4
2736 sp 2749 4 5498 245.9 1 0

2737 sop 2753 1 2753 110.8 0 0
2746 wop 2794 1 2794 131.7 0 0
2746 wp 2719 14 5558 354.4 4 0

Upper: all lines are in the Contingency List (N-1 security).

Lower: all pre-screened lines are in the Contingency List.
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SCED with SDP subproblems

Economic dispatch is a short-term planning problem, so a “DC”
model is OK.

Contingency response is an operational problem, and should be
studied on full AC network representation.

But AC power flow gives a nonconvex problem, which cannot
generate valid cuts from a Benders’ subproblem.

Idea

Relaxing the AC feasibility problem using semi-definite programming
(SDP) to obtain a convex subproblem.

Goal

Producing a base-case dispatch solution such that contingencies are
“really” controllable in the AC context.
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SDP relaxation of AC feasibility problem

Model ACF-SDP:

min
W�0

A0 •W

s.t.
∑
g∈Gi

G real
g − D real

i ≤ A1i •W ≤
∑
g∈Gi

Ḡ real
g − D real

i ∀i ∈ BUS

∑
g∈Gi

G imag
g − D imag

i ≤ A2i •W ≤
∑
g∈Gi

Ḡ imag
g − D imag

i ∀i ∈ BUS

− F̄i,j ≤ A3ij •W ≤ F̄i,j ∀(i , j) ∈ LINE

(V i )
2 ≤ A4i •W ≤ (V̄i )

2 ∀i ∈ BUS∑
g∈Gi

(G 0
g −∆g ) ≤ A5i •W ≤

∑
g∈Gi

(G 0
g + ∆g ) ∀i ∈ BUS

It is a convex optimization problem and weak (strong) duality holds.

It is a relaxation because the requirement that W has rank 1 is
dropped.
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Experiments

Case Cont
Solution Performance

Model Tabu Cost Time IF FS FT

14 20
LP 0 13253.3 4.2 12 12 0
SDP 6 16065.8 18.4 6 0 0
SDP0 6 16003.4 11.9 6 0 0

30 40
LP 0 582.0 4.0 1 1 0
SDP 1 585.0 20.1 1 0 0
SDP0 1 600.5 22.1 1 0 0

57 20
LP 0 12508.0 1.9 1 1 0
SDP 1 12508.0 13.2 1 0 0
SDP0 1 12560.0 50.9 1 0 0

118 15
LP 0 139716.8 54.0 16 16 0
SDP 0 141372.2 2414.3 1 1 0
SDP0 0 144220.1 11951.1 0 0 0

SDP subproblem is “exact” in contingency response, no False Secure,
no False Tabu.

It takes longer time to solve (with room for improvement).

Ferris (Univ. Wisconsin) IPAM 2016 Supported by DOE/LBNL 18 / 37



Summary

1 SCED is a million-dollar problem for system operators.

2 SCED with corrective actions can save money, but is hard to solve.

3 Our algorithmic enhancements yield significant speedup.

4 Potential for practical deployment.

5 SDP extension allows for more accurate operational modeling.

Extension

1. Algorithm is deployed at ISO-NE (using DC with loss adjustment).
2. Need enhancements to SDP solvers to make ACOPF version practical.

Ferris (Univ. Wisconsin) IPAM 2016 Supported by DOE/LBNL 19 / 37



III: Forward Capacity Expansion

Capacity shortage

Few incentives to invest in new facilities or expand/maintain capacity

Cannot force generators to invest

There is a high initial investment cost

Trivia: cannot produce more power than the available capacity

Main issues

High electricity prices

Volatility of prices

Loss of reliability (increased risk of blackout)

Inability to meet the (future) demand
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ISONE’s response: Forward capacity 6

Forward Capacity Market (FCM)
- “Ensures that the New England power system will have sufficient
resources to meet the future demand for electricity”

- provides an incentive for companies to make investments
- the cost is supported by the consumers

Forward Capacity Auction (FCA)
- held annually 3 years in advance
- supply capacity in exchange for market-priced capacity payment
- formulated as an optimization problem
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Benefits from an increase in capacity? 7

ISO’s perspective: ICR
- (N)ICR: (Net) Installed Capacity Requirement
- ≈ lower bound on the required capacity to meet reliability standards
- criterion for ISONE: “interrupting non-interruptible load, on average,
no more than once every 10 years”

Consumer’s perspective: EENS minimization
- EENS: Expected Energy Not Served (MWh/year)
- estimate of the demand not met
- depends on the total capacity installed
- computed via Monte-Carlo simulation of scenarios of line and generator
failures
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FCA optimization problem 8

Objective function has 2 terms:

cT q︸︷︷︸
Cost of capacity

+ PF ·EENS(QICZ , QSY S)︸ ︷︷ ︸
Cost of lost load

- PF penalty factor ($/MWh), c cost vector, q capacities, qi = 0 or q̄i
- QSY S =

∑

i∈I
qi, QICZ =

∑

i∈J
qi,J ⊂ I

- solution of the optimization problem minimizes this total cost:
- cost supported by the consumers (cT q)
- reliability cost

- The penalty factor PF is chosen by ISONE so that the generators
have a clear incentive to invest if the capacity is smaller than NICR

- There is a import zone constraint (ICZ)
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Price formation 9

Economic motivation: benefit associated with increased reliability

price offered for a fixed QSY S : − PF · ∂EENS
∂QICZ

Economic motivation: Investment
promotion
- ISONE wants generators to invest
in their infrastructure

- Cost is supported by the consumers
- No need to invest when there is
already enough capacity

NICR

Capacity

Pr
ice
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Working hypothesis 10

Assumptions on the EENS function
- EENS(QSY S , QICZ) is a smooth convex function
- Cannot be represented as a quadratic function

- ∂EENS(QSY S , QICZ)
∂QICZ

is a concave function.

Desired properties of the approximate function
- amenable to efficient computation
- preserve the shape of the unknown function
- inherit smoothness property

High-level constraint
- Market participants have to agree on the process beforehand
- Optimization problem has to be solved in a few hours
- Computed price must decrease as the capacity QSY S increases
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Stylised problem 11

Main optimization problem: MIQP

min
x,y

f(x) + g(y) s.t. (x, y) ∈ P, xi ∈ {0, 1}, i ∈ I (1)

- f is convex
- P is convex polyhedral
- g is unknown: g(y) is computed by running a long simulation
- y is in a low dimensional space

This problem has to be solved to optimality and in a few hours

Outputs from MIQP (1)
- minimizer pair (x∗, y∗)
- continuous gradient ∇g(y∗)
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Proposed procedure 12

Construct the approximate function ĝ (offline part)
- Convex function ĝ(y) := max

i
ĝi(y) with ĝi(y) := aTi y + bi

- Easy to work with (computationally) but no smoothness
- Find ĝ via its epigraph by computing an inner approximation of epi g

Solve optimization problem (FCA) (online part)
Compute (x∗, y∗) solution to the MIQP

min
x,y

f(x) + ĝ(y) s.t. (x, y) ∈ P, xi ∈ {0, 1}, i ∈ I (2)

Moreau-Yosida regularisation (online part)
- The subdifferential ∇ĝ is multivalued
- Compute a regularised gradient of ĝ at the solution y∗ of (2)
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Piecewise-Linear (PL) ĝ : Procedure

Function construction: ĝ := maxi ĝi
1 Compute g(yi ) for some yi ∈ Y

2 Check the convexity assumption (via LP) on vi := (yi , g(yi ))

3 Get the H-representation (Hx ≤ b) from the V -representation (convvi )

4 Extract epiĝ by removing the hyperplanes forming the “lid” of convvi
5 Recover the linear functions ĝi from H and b.

Hyperplane separation LP

max
h∈Rm+1, h0∈R

hT vk − h0

s.t. hT vi − h0 ≤ 0 ∀i 6= k

hT vk − h0 ≤ 1 (boundedness of the objective value)

hT ṽk − h0 ≤ 0 ṽk := (yk , 2gmax) and gmax := max
i

g(yi )
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PL ĝ construction: Vertices 14
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PL ĝ construction: conv vi 15
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PL ĝ construction: epi ĝ 16
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Moreau-Yosida approximation: Basics 17

Function “level”
With ĝ a convex function, its Moreau-Yosida approximation is defined as

g̃(y) := min
z
ĝ(z) + 1

2λ‖z − y‖
2
2 (3)

- z∗ unique solution to (3) is the proximal point
- g̃ is at least C1

- g̃ is also convex
- Proximal point algorithm: xk+1 is the proximal point

Operator (subgradient) “level”
The subdifferential ∂ĝ : Rn ⇒ Rn is maximal monotone (ĝ is convex)

- The regularised gradient ∇g̃ is single-valued maximal monotone
- ∇g̃ := (λI + (∂ĝ)−1)−1

- ∇g̃(y) = 1
λ(y − z∗)
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Moreau-Yosida approximation: Illustration 18

PL function ĝ
ĝλ with λ = 0.1
ĝλ with λ = 0.5
ĝλ with λ = 1

Gradients evolution

λ controls the
“smoothness”
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Normalised price evolution for different λ 20
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Moreau-Yosida approximation: proximal average 22

Proximal average: Homotopy between epigraphs
- Proximal average P(f0, f1, µ) is a continuous transformation between
2 convex functions f0 and f1

- P(f0, f1, µ)(x) := −minz −µf̃0(z)− (1− µ)f̃1(z) + 1
2λ‖z − x‖

2
2

- With f̃0(z) and f̃1(z) the Moreau envelopes with parameter λ

Averages of f0(x) = x+ 2 and the quadratic function f1(x) = x2:
Arithmetic (left) and proximal (right). [Bauschke, Lucet, Trienis, 2007]
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Moreau-Yosida approximation: proximal average

Motivations

If we have an under estimator ĝ and over estimator ḡ , the function g
is “in between”.

Also use this information in the regularisation

Procedure

ĝ computed as before as a subset of epig

Compute ḡ via an outer approximation of epig : supporting
hyperplanes at vertices

Compute proximal average instead of the Moreau-Yosida
approximation
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Conclusions and remarks

Use of simulations

Build appropriate approximating models (understand how and where
they are to be used)

Can use adaptive (derivative free) codes for similar problems but
limited to small scale problems in design space

Future needs

Move from black-box approaches to structure exploiting approaches
with “subproblems” linked by good theory

Enhance “subsolvers” to facilitate large scale, global, robust solutions

Facilitate domain specific expertise to enhance solution efficiency:
starting point generation, homotopy

Build tools to allow algorithmic development in higher level modeling
systems
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