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I: Find a solution to the MOPEC:

minimize 6;(¢’,q~") subject to ¢' € D(¢7")
q'
where
qg= (qo,ql,...,qNa), fori=1,...,N,,
q—i — (qO ql qi—l qi+1 qNa)
. . . Na .
D) =10, U1 n {g'] > ¢ =),

=0
Na . . Na . Na .

60(a°, a7 %) =Pa®+> c'(d)—p (Z q’) (Z q’) :
i=1 i=1 i=1

N,
0:(q',q7 Y =c'(q") —p <Z q’) (q'), fori=1,...,N,
i=1
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Equivalent (polyhedrally constrained) Variational Inequality
Solvable as VI(K, F), where

N, . N, ]
K=][0.07n{ql > ¢ =0}
i=0

Jj=0
F(q) = (queo(q), Vqlel(q), ey VqNaGNa(q)) 4

Key observation: for g € K we have

N,
d—q° = Zqi
i=1

Use this to substitute out expression in F. This defines F(q).
Theorem
q* is a solution to VI(K, F) if and only if it is a solution to VI(K, F). J
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Nonzero patterns of the Jacobian matrix depending on its

V1 formulation when n = 100
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Elapsed time of PATH according to formulations

_ Elapsed time (secs
Size (n) Original formulation (Ref0|)'mu|ati0n
2500 48.431 0.696
5,000 570.214 1.408
10.000 2.780
50,000 17.856
100,000 41.440
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Summary and issues

@ Can solve much larger instances without need for specialized
algorithms

@ But, now can extend to stochastic setting (each VI involves
Stochastic Program)

» Model becomes much larger (and sparser)
» Pivotal method within PATH becomes bottleneck as scenarios increase

@ Need for smoothing and/or decomposition - enhanced interface
between modeler and solver
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|I: Security-constrained Economic Dispatch

@ Base-case network topology gp and line flow xp.
o If the k-th line fails, line flow jumps to xx in new topology g.

@ Ensure that xx is within limit, for all k.

e SCED model:
min ¢’ u+ p(u) o> Total cost
U,XQ5e e Xk
s.t. 0<u<u > GEN capacity const.
go(xo,u) =0 I>Base-case network eqn.

—x <xp <X >>Base-case flow limit
gk(xk,u) =0, k=1,...,K Ctgcy network eqn.

—x<xx <Xk, k=1,...,K p>Ctgcy flow limit
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Reality offers a sweeter deal...

LTE

Normal

4 Lineflow

Time

<5min !

Contingency {
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[

|

<15min

<30min

Operating procedure (ISO-NE) requires post-contingency line loadings be:

e < STE (short time emergency) rating in 5 minutes;

e < LTE (long time emergency) rating in 15 minutes;

o < Normal rating in 30 minutes.
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What we will contribute

Research issues:

@ Corrective actions are not modeled in ISO’s dispatch software.
@ Because it was “insolvable” due to its large size (> 10GB LP).

» “We looked into SCED with corrective actions before, and were
hindered by the computational challenge.” — Feng Zhao, senior analyst
at ISO-NE, via private correspondence.

Our contributions:

o We model the multi-period corrective rescheduling in SCED;
solutions much better quality

@ Enhance the Benders' algorithm to solve the problem faster

@ Achieve about 50x speedup compared to traditional approaches
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Our model (K contingencies, T periods)

min
X0ye+ 3 Xk, UQ 5, Uk

s.t.

@ Subscript 0 indicates a quantity in the base-case network topology.

0

0
)=0 k=1,...
Xp, ug) <0 k=1,...
F-ul <A k=1,...

@ This is a large-scale linear program.

@ What special structure does it have?
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Model structure
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Figure :
Jacobian matrix of a 6-bus case,
considering 3 contingencies and 3
post-contingency checkpoints.

Sparsity structure of the
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How we enhanced the Benders' algorithm ...

© Reduce the number of LPs

@ Solve subproblem LPs faster

© Parallel computing

@ Add difficult contingencies to master model

Big LP (time) Enhanced Benders
Simplex Barrier | Iter LPs  Time
118-bus 183 207.8 138 | 12 755 13.5
2383-bus 20 175.0 2055 | 11 60 41.5
2383-bus 50 1403 1231 | 11 135 46.5
2383-bus 100 3621 2406 | 12 245 79.4

Case Ctgey

2383-bus 400 - 23545 | 13 879 197.8
2383 wp 2349 21 9529 5157
2736 sp 2749 4 5500 220.9
2737 sop 2753 1 2753 100.5
2746 wop 2794 1 2794 1185
2746 wp 2719 14 5558 3335
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Dealing with Infeasibility

Cut & Contingency 2

!

(a) Contingency 2 is intrinsically in-  (b) Each individual contingency is
feasible.  Either the corresponding  feasible, but they are not simultane-

subproblem is infeasible or its Ben-  ously feasible. Their Benders' cuts
ders’ cuts will render the master prob-  will render the master problem infea-
lem infeasible. sible.

Figure : Two cases of infeasibility.
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|dentifying infeasible contingencies in Benders' algorithm

o If a subproblem is infeasible (in the first iteration), the corresponding
contingency is intrinsically infeasible. Remove (tabu) it.
» Typically line failure results in an islanded load node or sub-network.
@ Master problem infeasible: solve a modified master model to find the
“minimal” set of problematic contingencies using sparse optimization.

min fo(Xo, UO) + Z My

0.t keK
s.t. go(Xo, U()) = 07 ho(Xo, Uo) <0
Wi+ Ni(uo —Th) — vk <0,ve >0 V(k,i) e CUT

» Solution of this model indicates the violated cuts.
» Tabu the contingency that has contributed one or more violated cuts.

@ Start a pre-screening daemon in parallel when the Active List size is
smaller than Lfc.

» Tabu infeasible ones, and add feasible ones to the master problem.
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Computational Results

Table : Solution for big cases on opt-a006, 80 threads, L =5

Case Ctgcy | Iter LPs Time | To Master Tabu
2383 wp 2896 | 15 7694 522.1 6 547
2736 sp 3269 4 6020 252.9 1 520
2737 sop 3269 4 6023 2422 0 516
2746 wop 3307 4 6102 280.2 0 513
2746 wp 3279 8 6053 3343 4 560
2383 wp 2353 | 16 7156 460.6 6 4
2736 sp 2749 4 5498 2459 1 0
2737 sop 2753 1 2753 110.8 0 0
2746 wop 2794 1 2794 1317 0 0
2746 wp 2719 | 14 5558 354.4 4 0

@ Upper: all lines are in the Contingency List (N-1 security).

@ Lower: all pre-screened lines are in the Contingency List.

Ferris (Univ. Wisconsin)

IPAM 2016

Supported by DOE/LBNL

15 / 37



SCED with SDP subproblems

@ Economic dispatch is a short-term planning problem, so a “DC”
model is OK.

@ Contingency response is an operational problem, and should be
studied on full AC network representation.

@ But AC power flow gives a nonconvex problem, which cannot
generate valid cuts from a Benders' subproblem.

Idea

Relaxing the AC feasibility problem using semi-definite programming
(SDP) to obtain a convex subproblem.

Goal
Producing a base-case dispatch solution such that contingencies are
“really” controllable in the AC context.
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SDP relaxation of AC feasibility problem

Model ACF-SDP:

min Age W

W>0

s.t. SN GE D < Ao W< Y G - D Vi € BUS
geg; g€g;
> G- DI™E< Ao W< Y G- D™ Vi€ BUS
geg; g€G;
—Fj<Asje W<F v(i,j) € LINE
(V) < Ao W < (V) Vi € BUS
D (G- D) < Asie W< > (Gl +Ay) Vi € BUS
gegi geyg;

@ It is a convex optimization problem and weak (strong) duality holds.

o It is a relaxation because the requirement that W has rank 1 is
dropped.
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Experiments

Case  Cont Solution . Performance
Model  Tabu Cost Time IF FS FT
LP 0 13253.3 42 | 12 12 0
14 20 | SDP 6 16065.8 18.4 6 0 0
SDPO 6 16003.4 11.9 6 0 0
LP 0 582.0 4.0 1 1 0
30 40 | SDP 1 585.0 20.1 1 0 0
SDPO 1 600.5 22.1 1 0 0
LP 0 12508.0 1.9 1 1 0
b7 20 SDP 1 12508.0 13.2 1 0 0
SDPO 1 12560.0 50.9 1 0 0
LP 0 139716.8 540 | 16 16 0
118 15 SDP 0 141372.2 2414.3 1 1 0
SDPO 0 144220.1 11951.1 0 0 0

@ SDP subproblem is “exact” in contingency response, no False Secure,

no False Tabu.

@ It takes longer time to solve (with room for improvement).
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Summary

@ SCED is a million-dollar problem for system operators.

@ SCED with corrective actions can save money, but is hard to solve.
© Our algorithmic enhancements yield significant speedup.

@ Potential for practical deployment.

© SDP extension allows for more accurate operational modeling.

Extension

1. Algorithm is deployed at ISO-NE (using DC with loss adjustment).
2. Need enhancements to SDP solvers to make ACOPF version practical.
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I1l: Forward Capacity Expansion

Capacity shortage
@ Few incentives to invest in new facilities or expand/maintain capacity
@ Cannot force generators to invest
@ There is a high initial investment cost

@ Trivia: cannot produce more power than the available capacity

Main issues
@ High electricity prices
@ Volatility of prices

@ Loss of reliability (increased risk of blackout)

@ Inability to meet the (future) demand
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ISONE’s response: Forward capacity

Forward Capacity Market (FCM)

- “Ensures that the New England power system will have sufficient
resources to meet the future demand for electricity”

- provides an incentive for companies to make investments

- the cost is supported by the consumers

Forward Capacity Auction (FCA)
- held annually 3 years in advance
- supply capacity in exchange for market-priced capacity payment

- formulated as an optimization problem
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Benefits from an increase in capacity? 7

ISO’s perspective: ICR
- (N)ICR: (Net) Installed Capacity Requirement
- = lower bound on the required capacity to meet reliability standards

- criterion for ISONE: “interrupting non-interruptible load, on average,
no more than once every 10 years”

Consumer’s perspective: EENS minimization
- EENS: Expected Energy Not Served (MWh /year)
- estimate of the demand not met
- depends on the total capacity installed

- computed via Monte-Carlo simulation of scenarios of line and generator
failures J
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FCA optimization problem

Objective function has 2 terms:

ch =F

~—
Cost of capacity

- PF penalty factor (3/MWh), ¢ cost vector, q capacities, ¢; = 0 or ¢;
- Qsys =Y 4 Qrez= 4:J CT

€T ieJ

PF-EENS(Qrcz,Qsys)

Cost of lost load

solution of the optimization problem minimizes this total cost:

- cost supported by the consumers (ch)

- reliability cost

The penalty factor PF is chosen by ISONE so that the generators
have a clear incentive to invest if the capacity is smaller than NICR

- There is a import zone constraint (ICZ)

v
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Price formation 9

Economic motivation: benefit associated with increased reliability
OEENS

price offered for a fixed Qgyg: — PF-———
IQrcz

Economic motivation: Investment
promotion

- ISONE wants generators to invest
in their infrastructure

Price

- Cost is supported by the consumers

- No need to invest when there is
already enough capacity

Capacity
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Working hypothesis

Assumptions on the EENS function
- EENS(Qsys,Qrcz) is a smooth convex function

- Cannot be represented as a quadratic function
_ OFENS(Qsys, Qicz)
0Qrcz

is a concave function.

10

Desired properties of the approximate function
- amenable to efficient computation
- preserve the shape of the unknown function

- inherit smoothness property

High-level constraint
- Market participants have to agree on the process beforehand
- Optimization problem has to be solved in a few hours

- Computed price must decrease as the capacity ()gy g increases
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Stylised problem

Main optimization problem: MIQP

min  f(z) +9(y) st (z,y) € Pz €{0,1}i€l

)

- f is convex

- P is convex polyhedral

g is unknown: g(y) is computed by running a long simulation
- yis in a low dimensional space

This problem has to be solved to optimality and in a few hours

11

(1)

Outputs from MIQP (1)
- minimizer pair (z*,y")

- continuous gradient Vg(y™)
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Proposed procedure 12

Construct the approximate function § (offline part)
- Convex function §(y) := max g;(y) with §;(y) == aiTy +b;
(2
- Easy to work with (computationally) but no smoothness

- Find g via its epigraph by computing an inner approximation of epi g

Solve optimization problem (FCA) (online part)
Compute (x*,y") solution to the MIQP

z,

min  f(z) +9(y) st (z,y) € Pz €{0,1}i€l (2)

v

Moreau-Yosida regularisation (online part)
- The subdifferential V§ is multivalued

- Compute a regularised gradient of § at the solution y* of (2)

w
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Piecewise-Linear (PL) g: Procedure

Function construction: g := max; &;

@ Compute g(y;) for some y; € Y

@ Check the convexity assumption (via LP) on v; := (yi, g(vi))

© Get the H-representation (Hx < b) from the V-representation (convv;)
© Extract epig by removing the hyperplanes forming the “lid" of convy;
© Recover the linear functions g; from H and b.

Hyperplane separation LP

max h T Vi — ho
heRm™+1 hoeR

st. hTvi—hy<0 Vi#k
hTvie —hg <1 (boundedness of the objective value)

AT —ho <0 Uk := (Vk, 28max) and Gmax = max g(yi)
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PL g construction: convv; 15
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PL § construction: epig 16
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Moreau-Yosida approximation: Basics 17

Function “level”
With g a convex function, its Moreau-Yosida approximation is defined as

§(y) = min §(z) + 311z — yl3 3)

- 2" unique solution to (3) is the proximal point

g is at least ok

g is also convex

k+

Proximal point algorithm: = Uis the proximal point

Operator (subgradient) “level”

The subdifferential 9g: R™ = R" is maximal monotone (g is convex)
- The regularised gradient Vg is single-valued maximal monotone
- Vg=+ 097!
- Vily) = 50y - 27

4
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Moreau-Yosida approximation: lllustration

Ferris (Univ. Wisconsin)

IPAM 2016

— PL function §
-—- gy with A =0.1
— g, with A=0.5
e gy With A =1

Gradients evolution

18

“smoothness”

{ A controls the
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Normalised price evolution for different \ 20

Price (normalised)

-0.2 1 1 1 1 1 1 1 1

Ferris (Univ. Wisconsin) IPAM 2016 Supported by DOE/LBNL 34 /37



Moreau-Yosida approximation: proximal average 22

Proximal average: Homotopy between epigraphs

- Proximal average P(fy, f1, 1) is a continuous transformation between
2 convex functions f, and f;

- P(fo, f1, 1) (@) = —min, —ufo(z) — (1 = p) fi(2) + g5ll= — =3
- With fy(2) and f;(z) the Moreau envelopes with parameter A

g
8
7
6
5
4
3
2
1
o]

e e -

.
I K
|
s e o o =
n w ~
w w

@
o
=3
&
w

i T T T 3

Averages of fy(z) = x + 2 and the quadratic function f,(z) = 2*:
Arithmetic (left) and proximal (right). [Bauschke, Lucet, Trienis, 2007]
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Moreau-Yosida approximation: proximal average

Motivations

o If we have an under estimator g and over estimator g, the function g
is “in between".

@ Also use this information in the regularisation

Procedure
@ g computed as before as a subset of epig

@ Compute g via an outer approximation of epig: supporting
hyperplanes at vertices

@ Compute proximal average instead of the Moreau-Yosida
approximation
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Conclusions and remarks

Use of simulations
@ Build appropriate approximating models (understand how and where
they are to be used)

@ Can use adaptive (derivative free) codes for similar problems but
limited to small scale problems in design space

Future needs
@ Move from black-box approaches to structure exploiting approaches
with “subproblems” linked by good theory

@ Enhance “subsolvers” to facilitate large scale, global, robust solutions

o Facilitate domain specific expertise to enhance solution efficiency:
starting point generation, homotopy

@ Build tools to allow algorithmic development in higher level modeling
systems

v
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