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Water rights pricing (Britz/F./Kuhn)
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Rare resources (Outrata/F./Cervinka/Outrata)

@ Rare good needed for y;'s

yr;r]eig,- ci(vi) + m(qi(yi) — &) — p(T)yi production: g;(y;)
@ Inverse demand function p(T)
m e Under (reasonable) assumptions
0<wLl (- Z qgi(vi)) > 0. (conve>.<i'ty,. difFere?ntiabiIity, etc)
-1 an equilibrium exists

@ Solvable by equivalent complementarity problem, MPEC or bundle
trust method

Theorem

Let (7,¥) be a solution of above and assume that 7 > 0 and y; € intA; for
at least one j € {1,2,..., m}. Then W (MOPEC) is strongly metrically
regular at (7, ¥, Ogmi1), i.e., (W)™1 has a Lipschitz single-valued
localization around (Ogm+1, 7, ¥).
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(M)OPEC

min (x, p) s.t. g(x,p) <0

0<pLh(x,p)=0

equilibrium
min theta x g
vi h p

@ Solved concurrently
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(M)OPEC

minf(x, p) s.t. g(x,p) <0 x LV, 0(x,p) + N V.g(x,p)
) 0< ALl —g(x,p)>0
0<pLh(x,p)=>0 0<pLh(xp)>0
equilibrium
min theta x g
vi h p

@ Solved concurrently

@ Requires global solutions of agents problems (or theory to guarantee
KKT are equivalent)

@ Theory of existence, uniqueness and stability based in variational
analysis
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MOPEC

o (Generalized) Nash
@ Reformulate
optimization problem as

p solves VI(h(x,-), C) first order conditions
(complementarity)

min 0i(xi,x i, p) s-t. gi(xi,x i,p) <0,Vi

@ Use nonsmooth Newton

equilibrium
min theta(1l) x(1) g(1) methods to solve
... @ Solve overall problem
min theta(m) x(m) g(m) using “individual
vi h p cons optimizations”?
= ]
= + .- “
. .
= B
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IAMs and Economic Theory

Integrated assessment models a stylized story of how markets work and the
nature of agent interactions:

@ Theory of the consumer (demand), including inter-temporal choice.

@ Production and cost theory (supply), possibly based on (bottom-up)
activity analysis engineering estimates of cost functions.

@ The neoclassical paradigm: individual elements of the economy
(consumers, firms, workers) are rational agents with objectives which
can be expressed as quantitative functions to be optimized subject to
constraints.

IAMs are typically used to provide logical implications of specific
assumptions. Model results may provide the basis for normative
conclusions.
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Example of MOPEC models in policy analysis: data

@ The latest GTAP database represents global production and trade for
113 country/regions, 57 commodities and 5 primary factors.

@ Data characterizes intermediate demand and bilateral trade in 2007,
including tax rates on imports/exports and other indirect taxes.

@ The core GTAP model is a static, multi-regional model which tracks
the production and distribution of goods in the global economy.

@ In GTAP the world is divided into regions (typically representing
individual countries), and each region’s final demand structure is
composed of public and private expenditure across goods.
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The Model

The GTAP model (MOPEC) may be posed as a system of nonsmooth
equations:

Fi(w,z;t)=0
in which:
@ w, is a vector of regional welfare levels
o z € RN represents a vector of endogenous economic variables, e.g.

. . P
prices and quantities, z = Q)
o t represents matrices of trade tax instruments — import tariffs (tM)

Irs
and export taxes (tX) for each commodity i and region r
p rs y g
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Optimal Sanctions: scenario runs

Nash equilibrium (over trade tax instruments) between coalition states and
Russia.
@ NoRegrets: choose taxes so coalition members welfare is maximized

@ MaxDamage: change objective so coalition members minimize
Russian welfare

o SidePayments: allow compensatory payments within coalition while
minimizing Russian welfare

Also consider only working with small number of tax instruments
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Optimal Coalition Operation

Coalition member states strategically choose trade taxes which minimize
Russian welfare:

i t
tTrlenC Wrus + 7 || r||1

s.t.
Fi(w,z;t)=0
t,r=1t Vré¢CcC
M ™
ti,rus,r < ti,r,rus VrecC

X X
ti,r,rus < ti,rus,r Vrec

w, >098*xw, VreClC
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Optimal Retaliation

Russia choose trade taxes which maximize Russian welfare in response to
the coalition actions:

max Wyys

tr us

s.t.

Fi(w,z;t)=0

. t, recC
"1t réc

where , represents trade taxes for coalition countries (r € C) from the
optimal sanction calculation.
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Optimal Sanctions (Boehringer/F./Rutherford)

o GTAP global
production /trade
database: 113
countries, 57 goods,
5 factors

o Coalition members
strategically choose
trade taxes to
minimize Russian
welfare

@ Russia chooses trade
taxes to maximize
Russian welfare in
response

@ Nash equilibrium

Ferris (Univ. Wisconsin)

= minip2

= minipa

= minlps

=nip

PP 8 P e e o v A B s g P PR P P e B g

NoRegrets MaxDamage Sidepayments

Resulting equilibrium with no regrets (coalition),
maximize damage, side payments
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In Defense of a Neoclassical Approach

© Versatility. The basic model can be extended to take into account
many aspects which are often assumed to be ignored: risk and
uncertainty, technological details, expectations.

@ Can be either calibrated or estimated. Hence, it is possible to
formulate a model which matches both current economic statistics
(supply and demand) and historical evidence about the responsiveness
of quantity to price.

© Approach can be consistent with the principal of Occam’s Razor: “A
scientific theory should be as simple as possible, but no simpler.”

@ Theoretical coherence provides a means of formulating models which
perform better “out of sample”.
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Hydro-Thermal System (Philpott/F./Wets)

HYDRO

THERMAL

e Competing agents (consumers, or generators in energy market)

@ Each agent minimizes objective independently (cost)

@ Market prices are function of all agents activities
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Simple electricity “system optimization” problem

SO: max ~0 Z Wi (di) — Z G(vj) + Z Vi(xi)

i Vi i kek jeT icH
st Y Ui(u)+ > vi= D dy,
i€H JET ke

xi=x2—ui+ht, i€H

u; water release of hydro reservoir i € H

v; thermal generation of plant j € T

x; water level in reservoir i € H

prod fn U; (strictly concave) converts water release to energy
Cj(v;) denote the cost of generation by thermal plant

Vi(x;) future value of terminating with storage x (assumed separable)

Wi (dy) utility of consumption dy
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SO equivalent to CE (price takers)

Consumers k € K solve CP(k): max W (di) — p" di

di>0

Thermal plants j € T solve TP(j): max pTvi — G(v)
=

Hydro plants i € #H solve HP(i): max_ p’ U; (u;) + Vi(x))

UjyXj 2>

st. x;=x0 — uj + ht

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dy € argmax CP(k), k ek,
v; € arg max TP(j), JeT,
ui, x; € arg max HP(7), i €H,
0<pLY Ui(u)+d v > de.
i€H JET kel
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Agents have stochastic recourse?

@ Agents face uncertainties in reservoir inflows

e Two stage stochastic programming, x' is here-and-now decision,
recourse decisions x? depend on realization of a random variable

@ pis a risk measure (e.g. expectation, CVaR)

SP: min ¢ x* 4 p[g” x?]

st. Axt=b, x'>0,

T(w)x! + W(w)x*(w) = d(w),

x*(w) > 0,VYw € Q. ’
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Risk Measures

@ Modern approach to T
modeling risk
aversion uses concept
of risk measures

e CVaR,: mean of Maximum
. loss
upper tail beyond —

o unm:L:cvaR” N

Loss

Frequency

@ mean-risk, mean deviations from quantiles, VaR, CVaR

@ Much more in mathematical economics and finance literature

@ Optimization approaches still valid, different objectives, varying
convex/non-convex difficulty

@ Dual representation (of coherent r.m.) in terms of risk sets
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Two stage stochastic MOPEC

CP(k):  min  ptdy — Wi (dy)

d} >0
A\ . 1 1.1
TP(): y min 0 G(vi)—pv
HP(i): min — prU;i(u})
ul.l,X}ZO

st xt=xP—ul +ht
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Two stage stochastic MOPEC

CP(K): , min pldi — Wi (di) + plp?(w)d} (w) — Wi (df(w))]

TPG): Vr_g}igpo G(v) = p'v} + oG (v (w)) — PP (w)v] (w)]

HP():  min = — pHUi(ui) + pl=p* (@) Ui(u7 (w)) = Vi(xP ()]
() ()20
st xt=xP—ul +ht

X (W) = x = uf(w) + hF(w)

0<p LY Ui(u)+> v} => di

i€H JET ke
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Two stage stochastic MOPEC

CP(K): , min pldi — Wi (di) + plp?(w)d} (w) — Wi (df(w))]
TPG): |, min - Gv) = PM +0lG () = () ()]
HP (i) ulﬂ;lgo = pUi(uf) + pl=p* (@) Ui(uf (w)) = Vi(xF (@))]
() 32 (2)20
st xt=xP—ul +ht
X (w) = x = uf(w) + b} ()
nglJ_ZU;(ul)—i—Zvjl > Zd,}
i€H JET ke
0<p(w) LY Ui (F(w) + Y viw) > Y di(w),Yw
ieH JET ke
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Equilibrium or optimization?

@ Each agent has its own risk measure
@ Is there a system risk measure?
@ Is there a system optimization problem?

mmZC )+ pi (C(xP(w))) 2277
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Equilibrium or optimization?

@ Each agent has its own risk measure
@ Is there a system risk measure?
@ Is there a system optimization problem?
mmZC )+ pi (C(xP(w))) 2277
@ Single hydro, thermal and representative consumer
e Random inflow scenarios (with 0.8EV + 0.2CVaR)
@ High initial storage level
» Worst case scenario is 1: lowest total cost, smallest profit for hydro
» SO equivalent to CE (risk averse set for social planner same as a
modified risk neutral set for social planner)
@ Low initial storage level

» Different worst case scenarios
» SO different to CE (for large range of demand elasticities)
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Contracts in MOPEC (F./Wets)

e Can we modify (complete) system to have a social optimum by
trading risk?

@ How do we design these instruments? How many are needed? What
is cost of deficiency?

o Facilitated by allowing contracts bought now, for goods delivered
later (e.g. Arrow-Debreu Securities)

@ Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

@ Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Buy y; contracts in period 1, to deliver D(w)y; in period 2, scenario w
Each agent i:

min C(x!)+ pr (COE()))
st plxt + vy < plel (budget time 1)
pA(w)x? (w) < p?(w)(D(w)y; + 2 (w)) (budget time 2)

0<v.l— Zy,' >0 (contract)
0<pt L 2 (e,-1 - x,-l) >0 (walras 1)
0 < p?(w) L Z w)yi + ef(w) — x7(w)) >0 (walras 2)
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Example

@ Low storage setting

@ If thermal now uses EV/, SO equivalent to CE

o If thermal is risk averse, then there is a CE, but different to original
SO

@ Trade risk to give minimum risk solutions for the sum of their
positions

@ Can compute an equivalent risk neutral set for which SO equivalent
to this CE
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Theory and Observations

@ agent problems are multistage stochastic optimization models

o perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows

@ situation complicated when agents are risk averse

> utilize stochastic process over scenario tree

» under mild conditions a social optimum corresponds to a competitive
market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty

@ Otherwise, must solve the stochastic equilibrium problem

@ Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC

@ Our contribution: apply in multistage setting over scenario tree
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plg functions)

Currently available within GAMS
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Conclusions

@ MOPEC problems capture complex interactions between optimizing
agents

@ Policy implications addressable using MOPEC
@ MOPEC available to use within the GAMS modeling system

@ Stochastic MOPEC enables modeling dynamic decision processes
under uncertainty

@ Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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