Why use optimization?

Michael C. Ferris

Computer Sciences and Wisconsin Institutes for Discovery University of Wisconsin, Madison

August 25, 2015

Why and how to model?

- to understand (descriptive process, validate principles and/or explore underlying mechanisms)
- to predict (and/or discover new system features)
- to decide (engaging groups in a decision, make decisions, operate/control a system of interacting parts)
- to design (strategic planning, investigate new designs, can they be economical given price of raw materials, production process, etc)

Simulation Optimization

- Computer simulations are used as substitutes to understand or predict the behavior of a complex system when exposed to a variety of realistic, stochastic input scenarios
- Widely used in epidemiology, engineering design, manufacturing, supply chain management, medical treatment and many other fields (calibration, parameter tuning, inverse optimization)

$$\min_{p \in P} f(p) = \mathbb{E}[S(p,\xi)],$$

- The sample response function $S(p,\xi)$
 - typically does not have a closed form, thus cannot provide gradient or Hessian information
 - is normally computationally expensive
 - ▶ is affected by uncertain factors in simulation

Design a coaxial antenna for hepatic tumor ablation

Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics) are used to generate the electromagnetic (EM) radiation fields in liver given a particular design

Metric	Measure of	Goal
Lesion radius	Size of lesion in radial direction	Maximize
Axial ratio	Proximity of lesion shape to a sphere	Fit to 0.5
S_{11}	Tail reflection of antenna	Minimize

Network inference

- Given prior knowledge, select paths, color nodes and sign arcs to explain as many hits as possible
- e.g. sign of a relevant edge is consistent with the phenotypes of nodes it connects
- Can model (propositional) logic constraints in a mixed integer program
- Key issue is to determine objective

- **◆ロト ◆御 ▶ ◆** き ▶ ◆ き → りへで

Biological Hierarchical Models

- I: Opt knock (a bilevel program)
 - max bioengineering objective (through gene knockouts)
 - s.t. max cellular objective (over fluxes)
 - s.t. fixed substrate uptake
 network stoichiometry
 blocked reactions (from outer problem)
 number of knockouts < limit

II: Bio-reactor dynamics:

Different mathematical programming techniques are used to transform the problem to a nonlinear program. The differential equations are transformed into nonlinear constraints using collocation methods.

Parameter estimation

Example (Crombach):

$$\min_{p} J(x(p) - \bar{x}) \text{ s.t. } \frac{\partial x}{\partial t} = D\Delta x + f(x, p), p \in P$$

Key points:

- Constraints on parameter choice $p \in P$
- Can solve using PDE constrained optimization. Huge literature in applied mathematics. Key computational idea for optimization is that of the adjoint operator
- Can discretize/optimize, and then add L_1 penalization to get "sparse" (parameter) solution via nonlinear optimization
- \bullet Extension to nonsmooth f DVI, and MPEC, allows for switching

4 D > 4 A > 4 B > 4 B > B 9 9 0

Conclusions

- Optimization helps understand what drives a system
- Constraints are a crucial design/modeling tool
- Uncertainty is present everywhere: we need to hedge/control/ameliorate it
- Collections of, and interactions between, models are critical
- Modern computational optimization tools can be very fast, deal with large amounts of data and variables, address non-convex and discrete issues, interact with dynamics