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The problem
A furniture maker can manufacture and sell four different dressers. Each
dresser requires a certain number t of man-hours for carpentry, and a
certain number tfj of man-hours for finishing, j = 1, . . . , 4. In each period,
there are dc man-hours available for carpentry, and df available for
finishing. There is a (unit) profit c̄j per dresser of type j that’s
manufactured. The owner’s goal is to maximize total profit:

max
x≥0

12x1 + 25x2 + 21x3 + 40x4 (profit)

subject to

4x1 + 9x2 + 7x3 + 10x4 ≤ 6000 (carpentry)

x1 + x2 + 3x3 + 40x4 ≤ 4000 (finishing)

Succinctly:

max
x

cT x s.t. Tx ≤ d , x ≥ 0
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Show me on a problem like mine

Solution is (4000/3, 0, 0, 200/3), value $18, 667

Repeated solutions of multiple (different) problems enables
“understanding” of the solution space (or sensitivity)

NEOS wiki (www.neos-guide.org) or try out NEOS solvers
(www.neos-solvers.org) for extensive examples

Sudoku, etc
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Is your time estimate that good?

The time for carpentry and finishing for each dresser cannot be
known with certainty

Each entry in T takes on four possible values with probability 1/4,
independently

8 entries of T are random variables: s = 65, 536 different T ’s each
with same probability of occurring

But decide “now” how many dressers x of each type to build

Might have to pay for overtime (for carpentry and finishing)

Can make different overtime decision y s for each scenario s - recourse!
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Extended Form Problem

min
x ,y
−cT x +

65,536∑
s=1

πsqT y s

subject to

T sx − y s ≤ d , s = 1, . . . , 65, 536

x ,y s ≥ 0

Immediate costs + expected future costs

Stochastic program with recourse
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Stochastic recourse

Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

R is a risk measure (e.g. expectation, CVaR)

SP: min c>x + R[q>y ]

s.t. Ax = b, x ≥ 0,

∀s ∈ Ω : T (s)x + W (s)y(s) ≤ d(s),

y(s) ≥ 0.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ­
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu­
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 
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Computation methods matter!

Problem becomes large very quickly!

Lindo solver defaults: 825 seconds

Lindo solver barrier method: 382 seconds

CPLEX solver barrier method: 4 seconds (8 threads)

We do this! How to formulate model, how to solve, why it works
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How to generate the model

1 May have multiple sources of uncertainty: e.g. man-hours d also can
take on 4 values in each setting independently: s = 1, 048, 576

2 emp.info: model transformation
randvar T(’c’,’1’) discrete .25 3.60 .25 3.90 .25 4.10 .25 4.40

randvar T(’c’,’2’) discrete .25 8.25 .25 8.75 .25 9.25 .25 9.75

randvar T(’c’,’3’) discrete .25 6.85 .25 6.95 .25 7.05 .25 7.15

randvar T(’c’,’4’) discrete .25 9.25 .25 9.75 .25 10.25 .25 10.75

randvar T(’f’,’1’) discrete .25 0.85 .25 0.95 .25 1.05 .25 1.15

randvar T(’f’,’2’) discrete .25 0.85 .25 0.95 .25 1.05 .25 1.15

randvar T(’f’,’3’) discrete .25 2.60 .25 2.90 .25 3.10 .25 3.40

randvar T(’f’,’4’) discrete .25 37.00 .25 39.00 .25 41.00 .25 43.00

randvar d(’c’) discrete .25 5873. .25 5967. .25 6033. .25 6127.

randvar d(’f’) discrete .25 3936. .25 3984. .25 4016. .25 4064.

stage 2 y t d cost cons obj

3 Generates extensive form problem with over 3 million rows and
columns and 29 million nonzeros

4 Solves on 24 threaded cluster machine in 262 secs
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Sampling methods

But what if the number of scenarios is too big (or the probability
distribution is not discrete)? use sample average approximation (SAA)

Take sample ξ1, . . . , ξN of N realizations of random vector ξ
I viewed as historical data of N observations of ξ, or
I generated via Monte Carlo sampling

for any x ∈ X estimate f (x) by averaging values F (x , ξj)

(SAA): min
x∈X

f̂N(x) :=
1

N

N∑
j=1

F (x , ξj)


Nice theoretical asymptotic properties

Can use standard optimization tools to solve the SAA problem

EMP = SLP =⇒ SAA =⇒ (large scale) LP

Ferris (Univ. Wisconsin) SP MATC 2014 9 / 17



Convergence

N Time(s) Soln Profit

1000 0.6 (265,0,662,34) 18050
2000 1.0 (254,0,668,34) 18057
3000 1.6 (254,0,668,34) 18057
4000 2.3 (255,0,662,34) 18058
5000 3.1 (257,0,666,34) 18054
6000 3.9 (262,0,663,34) 18051
7000 5.0 (257,0,666,34) 18054
8000 6.1 (262,0,663,34) 18048
9000 7.3 (257,0,666,34) 18051

1m 262.0 (257,0,666,34) 18051

SAA can work well, but this is a 4 variable problem and distributions are
discrete
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What do we learn?

Deterministic solution: xd = (1333, 0, 0, 67)

Expected profit using this solution: $16, 942

Expected (averaged) overtime costs: $1, 725

Extensive form solution: xs = (257, 0, 666, 34) with expected profit
$18, 051

Deterministic solution is not optimal for stochastic program, but more
significantly it isn’t getting us on the right track!

Stochastic solution suggests large number of “type 3” dressers, while
deterministic solution has none!
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Continuous distributions: News vendor problems

N
Derand SAA

Mean Stdev Mean Stdev

2 16.85 2.185 16.94 3.615
5 14.84 1.369 14.92 2.791
10 14.23 1.127 14.57 2.248
20 14.03 0.797 14.18 1.635
100 14.01 0.100 14.48 0.745

1 As the sample size N increases, the optimal solutions obtained by
both methods converge to the true solution, i.e. 14

2 For a given sample size N, new sampling method (derand) is always
(slightly) closer to the true solution

3 But standard deviation of the optimal solutions obtained by derand is
significantly smaller than the SAA method
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Models with explicit random variables

Model transformation:
I Write a core model as if the random variables are constants
I Identify the random variables and decision variables and their staging
I Specify the distributions of the random variables

Solver configuration:
I Specify the manner of sampling from the distributions
I Determine which algorithm (and parameter settings) to use

Output handling:
I Optionally, list the variables for which we want a scenario-by-scenario

report
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Risk Measures

Classical: utility/disutility u(·):

min
x∈X

f (x) = E[u(F (x , ξ))]

Modern approach to modeling
risk aversion uses concept of risk
measures

CVaRα: mean of upper tail beyond
α-quantile (e.g. α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

mean-risk, semi-deviations, mean deviations from quantiles, VaR,
CVaR

Römisch, Schultz, Rockafellar, Urasyev (in Math Prog literature)

Much more in mathematical economics and finance literature

Optimization approaches still valid, different objectives
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Example: Portfolio Model (core model)

Determine portfolio weights wj for each of a collection of assets

Asset returns v are random, but jointly distributed

Portfolio return r(w , v)

Minimize a “risk” measure

max 0.2 ∗ E(r) + 0.8 ∗ CVaRα(r)
s.t. r =

∑
j vj∗wj∑

j wj = 1, w ≥ 0

Jointly distributed random variables v , realized at stage 2

Variables: portfolio weights w in stage 1, returns r in stage 2

Coherent risk measures E and CVaR
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Additional techniques requiring extensive computation

Continuous distributions, sampling functions, density estimation

Chance constraints: Prob(Tix + Wiyi ≥ hi ) ≥ 1−α - can reformulate
as MIP and adapt cuts (Luedtke) empinfo: chance E1 E2 0.95

Use of discrete variables (in submodels) to capture logical or discrete
choices (logmip - Grossmann et al)

Robust or stochastic programming

Decomposition approaches to exploit underlying structure identified
by EMP

Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods (ENLP)

Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Conclusions

Optimization helps understand what drives a system

Multiple state of the art approaches available for modeling and
solution

NEOS guide and solver provide additional information resources

Uncertainty is present everywhere

We need not only to quantify it, but we need to
hedge/control/ameliorate it

Modeling, optimization, and computation embedded within the
application domain is critical
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