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Quote from Wikipedia: modeling

@ A mathematical model is a description of a system using
mathematical concepts and language.
o Mathematical models are used in:
» the natural sciences (such as physics, biology, earth science,
meteorology)
» engineering disciplines (e.g. computer science, artificial intelligence)
» in the social sciences (such as economics, psychology, sociology and
political science)
@ Physicists, engineers, statisticians, operations research analysts and
economists use mathematical models extensively

@ Lack of agreement between theoretical mathematical models and
experimental measurements often leads to important advances as
better theories are developed
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Building mathematical models
@ How to model: pencil and paper, excel, Matlab, R, python, ...

» Linear vs nonlinear

» Deterministic vs probabilistic

v

Static vs dynamic (differential or difference equations)

» Discrete vs continuous
@ Other issues: Large scale, stochasticity, data (rich and sparse)
@ Must be able to model my problem easily/naturally
@ Abstract/simplify:
Variables: input/output, state, decision, exogenous, random...
Exogenous = data/parameters
Objective/constraints
Black box/white box
Subjective information, complexity, training, evaluation

v

>
>
>
>

@ Just solving a single problem isn't the real value of modeling:
optimization finds “holes” in the model
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Why model?

@ to understand (descriptive process, validate principles and/or explore
underlying mechanisms)

e to predict (and/or discover new system features)

@ to combine (engaging groups in a decision, make decisions,
operate/control a system of interacting parts)

@ to design (strategic planning, investigate new designs, can they be
economical given price of raw materials, production process, etc)
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Understand: Sudoku Model

The aim of this puzzle is to enter a numerical digit from 1 through 9 in
each cell of a 9x9 grid made up of 3x3 subgrids (called "regions”), starting
with various digits given in some cells (the “givens”). Each row, column,
and region must contain only one instance of each numeral.

e r,c,v, k (rows, cols, vals, regions) range from 1 to 9

@ binary variables x; ¢,

row entries unique: anc’v =1, Yr,v
C

col entries unique: ZX”QV =1, Ve, v
r

one val per cell: Zxryc,v =1, Vr,c
v

one val per region: E Xrenw =1, Vk,v
(f,C)ERk

Here Ry runs over all the k “regions”
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Understand: Northern Wisconsin - Conservation

Golden-winged Warbler. Species maps are 14,309 columns by 11437 rows.
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Northern Wisconsin: There's More
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Some species require complementary habitats
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Understand: abstraction

GIS data (77 million pixels with indicator that land type in 30 by 30
meter square can support species)

Incompatibility matrix (cannot have certain species co-habiting)

Threshold values (how much land required)

Compact regions, limit total land conserved!

. 1 if (i,/) conserved for species s
S0 else

e Example of an assignment model (e.g. Sudoku, etc)

Xs,ij+ Xe,ij < 1, if (S, t) el
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Many others...challenges and opportunities

@ (Stochastic) differential equations
@ Multiscale modeling and simulation

@ Nonlinear optimization, including parameter estimation and inverse
problems

Challenges:
@ Abstraction/simplification/key drivers

@ Size: (spatial/temporal/decision hierarchical) traditional approaches
have proven inadequate, even with the largest supercomputers, due to
range of scales and prohibitively large number of variables

@ Nature of data: sparse, rich, uncertain

Opportunities: facilitates prediction, improved operation, strategic
behavior and design
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|: Show me on a problem like mine

@ Repeated solutions of multiple (different) problems enables
“understanding” of the solution space (or sensitivity)

e NEOS wiki (www.neos-guide.org) or try out NEOS solvers
(www.neos-solvers.org) for extensive examples

Building a class of case
studies:

e JAVA api to NEOS

@ Web description of
problem

@ Solution on NEOS

@ Ability to modify and
resolve

o Comparison of results
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Predict: tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min |Ax — v/
X
Additional structure: Compressed sensing: sparse signal to account for y
: 2
min |Ax — y[3 st. [Ixlly < ¢
Regularized regression:

. 2
min [|A4x — yI[3 + o x]
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Predict: tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min |Ax — v/
X

Additional structure: Compressed sensing: sparse signal to account for y

; 2

min |Ax — y[|5 s.t. [[x][p < ¢
Regularized regression:
; 2

min [|Ax — y 3 + aJx|

Machine learning: SVM for classification

. [0 2
min i+ = |lw]||® s.t. D(Aw —~1) > 1 —
min D76+ 5 1wl 55 D(Aw =71 21-¢

General model:
min E(x) + aS(x)

xeX
X are constraints, E measures “error’ and S penalizes.bad structure
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Image denoising (Wright)

Rudin-Osher-Fatemi (ROF) model (¢,—TV). Given a domain Q C R? and
an observed image f : 2 — R, seek a restored image v : Q — R that
preserves edges while removing noise. The regularized image v can
typically be stored more economically. Seek to “minimize” both

o |[u—f|, and
e the total-variation (TV) norm o |Vu| dx

Use constrained formulations, or a weighting of the two objectives:

min P(u) := ||u — f||§ + a/ |V ul| dx
u Q

The minimizing u tends to have regions in which u is constant (Vu = 0).
More “cartoon-like” when « is large.
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Original, noisy, denoised (tol = 1072, 107*)
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Many others...challenges and opportunities

Matrix completion (e.g. Netflix prize, covariance estimation)

Machine learning: supervised, unsupervised, semi-supervised,
reinforcement, and representation learning

Probabilistic graphical modeling

Stochastic processes, statistics, uncertainty quantification

Challenges:

@ Terminology issues: active learning = optimal experimental design,
reinforcement learning = approximate dynamic programming

@ Incorporating domain knowledge into models

@ Size and speed for realistic application settings (data sparse and rich
environments)

@ Online settings, stochastics

Opportunities: to exploit theory and structure to generate much more
effective algorithms, generalizability, learning behavior
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Combine: Representative decision-making timescales in
electric power systems

Closed-loop
Closed-loop
Control and
d Control and
Relay Setpoint Relay Action
Selection Day ahead
@ L:;g-'erén market w/ unit
rwar commitment
~ Power Plant Markets Hour ahead
Siting & Construction Maintenance Load market
i Forecastin i
Transmission Schedulng ° Five

Siting & Construction minute

ﬂ market

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute  seconds
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Combine: Transmission Line Expansion Model

mi)rg Z T Z di’ p?(x) @ Nonlinear system to
XA ieN describe power flows
over (large) network

o @ Multiple time scales

@ Dynamics (bidding,
failures, ramping, etc)
@ Uncertainty (demand,
weather, expansion, etc)
’ e p¥(x): Price (LMP) at i
‘ in scenario w as a

function of x

@ Use other models to
o construct approximation
of p’(x)
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Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)
Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

@ Can investigate new instruments to move to system optimal solutions
from equilibrium (or market) solutions
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Many others ... challenges and opportunities

Model predictive control, PDE constrained optimization,...
Challenges:

@ Size: monster model unable to exploit underlying structure and
provide solution quality guarantees

@ Stochasticity: How to deal with noisy, sparse, incomplete or
inconsistent data and models

@ How to coupling collections of (sub)-models: design of interfaces
Opportunities:
@ appropriate detail and consistency of sub-model formulation

@ ability for individual subproblem solution verification and engagement
of decision makers

@ ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

@ ability to solve submodels to global optimality
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Design a coaxial antenna for hepatic tumor ablation

Dipole tip length  Slot size Floating sleeve Outer conductor
#
Sleeve position Inner conductor Teflon catheter

Teflon coating
Inner conductor

Teflon isolation layer
Outer conductor

Floating sleeve
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Lesion Size=a
© Axial Ratio (AR) =a/b
b 14 13
4 — ¢
Metric Measure of Goal
Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
Si1 Tail reflection of antenna Minimize
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Biological Hierarchical Models

I: Opt knock (a bilevel program)
max bioengineering objective (through gene knockouts)
s.t.  max cellular objective (over fluxes)
s.t. fixed substrate uptake
network stoichiometry
blocked reactions (from outer problem)
number of knockouts < limit

Il: Bio-reactor dynamics:

Different mathematical
programming techniques are
used to transform the
problem to a nonlinear
program. The differential
equations are transformed
into nonlinear constraints

using collocation methods.
[m] [l = = =

stoichiometric constraints

flux constraints
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Challenges and opportunities

Challenges:
@ Engaging the designer, collecting appropriate data
@ Incorporating domain design tools into general (optimization)
framework
@ Modeling human behavior
@ Determining appropriate model: Linear vs nonlinear, deterministic vs
probabilistic, static vs dynamic, discrete vs continuous (smooth or
nonsmooth)
Opportunities:
@ Enormous: medical device design, drug design, radiation therapy
machine and planning, bio-engineering
@ economic instrument and policy design, smart grid, electric batteries,
environmental remediation, offshore drilling and wind farms

@ recommender systems, fabrication, election district gerrymandering
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