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Quote from Wikipedia: modeling

A mathematical model is a description of a system using
mathematical concepts and language.

Mathematical models are used in:
I the natural sciences (such as physics, biology, earth science,

meteorology)
I engineering disciplines (e.g. computer science, artificial intelligence)
I in the social sciences (such as economics, psychology, sociology and

political science)

Physicists, engineers, statisticians, operations research analysts and
economists use mathematical models extensively

Lack of agreement between theoretical mathematical models and
experimental measurements often leads to important advances as
better theories are developed
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Building mathematical models

How to model: pencil and paper, excel, Matlab, R, python, ...

I Linear vs nonlinear

I Deterministic vs probabilistic

I Static vs dynamic (differential or difference equations)

I Discrete vs continuous

Other issues: Large scale, stochasticity, data (rich and sparse)

Abstract/simplify:
I Variables: input/output, state, decision, exogenous, random...
I Exogenous = data/parameters
I Objective/constraints
I Black box/white box
I Subjective information, complexity, training, evaluation

Just solving a single problem isn’t the real value of modeling:
optimization finds “holes” in the model
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Why model?

to understand (descriptive process, validate principles and/or explore
underlying mechanisms)

to predict (and/or discover new system features)

to combine (engaging groups in a decision, make decisions,
operate/control a system of interacting parts)

to design (strategic planning, investigate new designs, can they be
economical given price of raw materials, production process, etc)

To do these, we must be able to capture the problem easily/naturally
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Sudoku
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Understand: Sudoku Model

The aim of this puzzle is to enter a numerical digit from 1 through 9 in
each cell of a 9x9 grid made up of 3x3 subgrids (called “regions”), starting
with various digits given in some cells (the “givens”). Each row, column,
and region must contain only one instance of each numeral.

r , c , v , k (rows, cols, vals, regions) range from 1 to 9

binary variables xr ,c,v

row entries unique:
∑
c

xr ,c,v = 1, ∀r , v

col entries unique:
∑
r

xr ,c,v = 1, ∀c , v

one val per cell:
∑
v

xr ,c,v = 1, ∀r , c

one val per region:
∑

(r ,c)∈Rk

xr ,c,v = 1, ∀k , v

Here Rk runs over all the k “regions”
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Show me on a problem like mine

Repeated solutions of multiple (different) problems enables
“understanding” of the solution space (or sensitivity)

NEOS wiki (www.neos-guide.org) or try out NEOS solvers
(www.neos-solvers.org) for extensive examples

Building a class of case
studies:

Web description of
problem

Solution on NEOS

Ability to modify and
resolve

Comparison of results

e.g. Sudoku, Rogo
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Abstraction: circle cover problem
Given a set of points find the location (x , y) of the center of the circle
with minimum radius that covers all points (coverage problem)

This is an example of a nonlinear program (second order cone
program).

What if the points are only known by distribution?

Notion of robust optimization (all points in enclosing circle) or a
stochastic programming formulation or chance constraints
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Resident rotation scheduling

Supervised on-the-job training (called residency) in teaching hospitals
or academic medical centers

Residents have to undergo a series of clinically-based trainings
(rotations)

Duration of a rotation usually spans a block of consecutive weeks –
depends on the post-graduate year (PGY) of the resident

The rotation schedules are made once a year

A schedule must satisfy various training and staffing requirements and
certain regulatory restrictions

A schedule should preferably contain multiple views and enable
search, sort and filter functions for easy information retrieval

In the UW surgery department, this scheduling task used to be
performed in Microsoft Excel, by hand
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The modeling process

Background	
  

RESIDENT	
  ROTATION	
  SCHEDULING	
  
Aditya	
  Gore	
  and	
  Yanchao	
  Liu	
  

Under	
  the	
  supervision	
  of	
  Prof.	
  Michael	
  Ferris	
  and	
  Robert	
  McDonald,	
  Ph.D.,	
  EducaHon	
  Program	
  Manager,	
  UW	
  Surgery	
  Dept.	
  

•  A-er	
  comple2ng	
  entry-­‐level	
  educa2on	
  in	
  medical	
  schools,	
  newly	
  graduated	
  
students	
  are	
  required	
  to	
  undertake	
  a	
  period	
  (5-­‐years)	
  of	
  supervised	
  on-­‐the-­‐
job	
   training	
   (called	
   residency)	
   	
   in	
   teaching	
   hospitals	
   or	
   academic	
  medical	
  
centers.	
   These	
   students	
   (residents)	
   have	
   to	
   undergo	
   a	
   series	
   of	
   clinically-­‐
based	
   trainings	
   (rota2ons)	
   in	
   various	
   specialty	
   areas.	
   The	
   dura2on	
   of	
   a	
  
rota2on	
  usually	
  spans	
  a	
  block	
  of	
  consecu2ve	
  weeks	
  and	
  it	
  depends	
  on	
  the	
  
post-­‐graduate	
  year	
  (PGY)	
  of	
  the	
  resident.	
  

•  The	
   rota2on	
   schedules	
   are	
   made	
   once	
   a	
   year.	
   A	
   schedule	
   basically	
  
establishes	
   the	
   resident-­‐week-­‐rota2on	
   rela2onships	
   that	
   sa2sfy	
   various	
  
training	
   and	
   staffing	
   requirements	
   and	
   certain	
   regulatory	
   restric2ons.	
   A	
  
schedule	
  should	
  preferably	
  contain	
  mul2ple	
  views	
  and	
  enable	
  search,	
  sort	
  
and	
  filter	
  func2ons	
  for	
  easy	
  informa2on	
  retrieval.	
  

•  In	
  the	
  UW	
  surgery	
  department,	
  this	
  scheduling	
  task	
  used	
  to	
  be	
  performed	
  
in	
  Microso-	
  Excel,	
  by	
  hand.	
  

	
  Problem	
  Scale	
  and	
  Complexity	
  

Basic	
  Formula2on	
  

•  The	
  surgery	
  department's	
  2010-­‐2011	
  Rota2on	
  Schedule	
  involved	
  68	
  
residents	
  spanning	
  all	
  five	
  PGYs.	
  	
  

•  Each	
  resident	
  is	
  to	
  be	
  scheduled	
  among	
  26	
  rota2ons	
  of	
  4	
  to	
  13	
  blocks.	
  	
  
•  Depending	
  on	
  the	
  resident’s	
  PGY	
  and	
  Type	
  (speciality),	
  some	
  rota2ons	
  are	
  
mandatory,	
  some	
  are	
  preferred,	
  some	
  are	
  flexible	
  and	
  others	
  are	
  
impossible	
  (unqualified),	
  whereas	
  certain	
  rota2ons	
  might	
  require	
  mul2ple	
  
blocks	
  of	
  a^endance.	
  	
  

•  Each	
  rota2on	
  has	
  very	
  specific	
  staffing	
  requirement	
  which,	
  on	
  a	
  weekly	
  
basis,	
  specifies	
  how	
  many	
  residents	
  of	
  each	
  PGY	
  they	
  need	
  and	
  prefer.	
  If	
  
the	
  needed	
  residents	
  are	
  not	
  available,	
  surrogates	
  have	
  to	
  be	
  found	
  (hired).	
  

Solu2on	
  Process	
  

Le#:	
  Part	
  of	
  the	
  surgery	
  
department's	
  
2010-­‐2011	
  Rota2on	
  
Schedule	
  

•  Equa2on	
  (1)	
  is	
  the	
  objec2ve	
  which	
  minimizes	
  hiring.	
  Constraints	
  (2)	
  
and	
  (3)	
  specify	
  the	
  training	
  requirements.	
  Constraint	
  (4)	
  says	
  that	
  a	
  
resident	
  cannot	
  show	
  up	
  on	
  different	
  rota2ons	
  at	
  the	
  same	
  2me.	
  
Constraint	
  (5)	
  specifies	
  the	
  service	
  requirements.	
  

•  For	
  illustra2on,	
  only	
  the	
  basic	
  set	
  of	
  equa2ons	
  are	
  listed	
  above.	
  Some	
  
special	
  treatments	
  were	
  omi^ed.	
  

	
  

•  The	
  model	
  is	
  implemented	
  in	
  GAMS	
  and	
  the	
  procedure	
  is	
  fully	
  automated.	
  
•  User	
  specifies	
  input	
  data	
  and	
  parameters	
  in	
  Excel	
  spreadsheets.	
  Data	
  file	
  is	
  
then	
  read	
  in	
  to	
  instan2ate	
  the	
  GAMS	
  model.	
  A-erwards,	
  the	
  instance	
  is	
  
solved	
  by	
  a	
  MIP	
  solver	
  linked	
  to	
  GAMS	
  and	
  the	
  resul2ng	
  schedule	
  is	
  wri^en	
  
back	
  to	
  a	
  spreadsheet	
  with	
  accessible	
  format,	
  where	
  both	
  a	
  “table”	
  view	
  
and	
  a	
  “list”	
  view	
  are	
  provided.	
  	
  

	
  

Deployment	
  

Upper	
  le#:	
  Process	
  Flow	
  
	
  
Up:	
  List	
  view	
  of	
  the	
  
resul2ng	
  schedule	
  
	
  
Le#:	
  Table	
  view	
  of	
  the	
  
resul2ng	
  schedule	
  

•  The	
  model	
  was	
  tested	
  against	
  the	
  surgery	
  department’s	
  2010-­‐2011	
  
rota2on	
  schedule.	
  Result	
  matches	
  very	
  closely	
  with	
  the	
  real	
  schedule.	
  

•  Model	
  running	
  2me	
  is	
  comfortably	
  short,	
  within	
  10	
  minutes.	
  
•  Moreover,	
  our	
  model	
  finds	
  the	
  “best”	
  schedule,	
  whereas	
  the	
  manual	
  
procedure	
  only	
  iden2fies	
  one	
  “sa2sfactory”	
  schedule.	
  

•  Hope	
  to	
  deploy	
  the	
  model	
  in	
  a	
  wider	
  user	
  community,	
  such	
  as	
  the	
  en2re	
  
UW	
  hospital	
  system.	
  

User specifies input data and
parameters in Excel spreadsheets

Resulting schedule is written back to a
spreadsheet in “user” format

Background	
  

RESIDENT	
  ROTATION	
  SCHEDULING	
  
Aditya	
  Gore	
  and	
  Yanchao	
  Liu	
  

Under	
  the	
  supervision	
  of	
  Prof.	
  Michael	
  Ferris	
  and	
  Robert	
  McDonald,	
  Ph.D.,	
  EducaHon	
  Program	
  Manager,	
  UW	
  Surgery	
  Dept.	
  

•  A-er	
  comple2ng	
  entry-­‐level	
  educa2on	
  in	
  medical	
  schools,	
  newly	
  graduated	
  
students	
  are	
  required	
  to	
  undertake	
  a	
  period	
  (5-­‐years)	
  of	
  supervised	
  on-­‐the-­‐
job	
   training	
   (called	
   residency)	
   	
   in	
   teaching	
   hospitals	
   or	
   academic	
  medical	
  
centers.	
   These	
   students	
   (residents)	
   have	
   to	
   undergo	
   a	
   series	
   of	
   clinically-­‐
based	
   trainings	
   (rota2ons)	
   in	
   various	
   specialty	
   areas.	
   The	
   dura2on	
   of	
   a	
  
rota2on	
  usually	
  spans	
  a	
  block	
  of	
  consecu2ve	
  weeks	
  and	
  it	
  depends	
  on	
  the	
  
post-­‐graduate	
  year	
  (PGY)	
  of	
  the	
  resident.	
  

•  The	
   rota2on	
   schedules	
   are	
   made	
   once	
   a	
   year.	
   A	
   schedule	
   basically	
  
establishes	
   the	
   resident-­‐week-­‐rota2on	
   rela2onships	
   that	
   sa2sfy	
   various	
  
training	
   and	
   staffing	
   requirements	
   and	
   certain	
   regulatory	
   restric2ons.	
   A	
  
schedule	
  should	
  preferably	
  contain	
  mul2ple	
  views	
  and	
  enable	
  search,	
  sort	
  
and	
  filter	
  func2ons	
  for	
  easy	
  informa2on	
  retrieval.	
  

•  In	
  the	
  UW	
  surgery	
  department,	
  this	
  scheduling	
  task	
  used	
  to	
  be	
  performed	
  
in	
  Microso-	
  Excel,	
  by	
  hand.	
  

	
  Problem	
  Scale	
  and	
  Complexity	
  

Basic	
  Formula2on	
  

•  The	
  surgery	
  department's	
  2010-­‐2011	
  Rota2on	
  Schedule	
  involved	
  68	
  
residents	
  spanning	
  all	
  five	
  PGYs.	
  	
  

•  Each	
  resident	
  is	
  to	
  be	
  scheduled	
  among	
  26	
  rota2ons	
  of	
  4	
  to	
  13	
  blocks.	
  	
  
•  Depending	
  on	
  the	
  resident’s	
  PGY	
  and	
  Type	
  (speciality),	
  some	
  rota2ons	
  are	
  
mandatory,	
  some	
  are	
  preferred,	
  some	
  are	
  flexible	
  and	
  others	
  are	
  
impossible	
  (unqualified),	
  whereas	
  certain	
  rota2ons	
  might	
  require	
  mul2ple	
  
blocks	
  of	
  a^endance.	
  	
  

•  Each	
  rota2on	
  has	
  very	
  specific	
  staffing	
  requirement	
  which,	
  on	
  a	
  weekly	
  
basis,	
  specifies	
  how	
  many	
  residents	
  of	
  each	
  PGY	
  they	
  need	
  and	
  prefer.	
  If	
  
the	
  needed	
  residents	
  are	
  not	
  available,	
  surrogates	
  have	
  to	
  be	
  found	
  (hired).	
  

Solu2on	
  Process	
  

Le#:	
  Part	
  of	
  the	
  surgery	
  
department's	
  
2010-­‐2011	
  Rota2on	
  
Schedule	
  

•  Equa2on	
  (1)	
  is	
  the	
  objec2ve	
  which	
  minimizes	
  hiring.	
  Constraints	
  (2)	
  
and	
  (3)	
  specify	
  the	
  training	
  requirements.	
  Constraint	
  (4)	
  says	
  that	
  a	
  
resident	
  cannot	
  show	
  up	
  on	
  different	
  rota2ons	
  at	
  the	
  same	
  2me.	
  
Constraint	
  (5)	
  specifies	
  the	
  service	
  requirements.	
  

•  For	
  illustra2on,	
  only	
  the	
  basic	
  set	
  of	
  equa2ons	
  are	
  listed	
  above.	
  Some	
  
special	
  treatments	
  were	
  omi^ed.	
  

	
  

•  The	
  model	
  is	
  implemented	
  in	
  GAMS	
  and	
  the	
  procedure	
  is	
  fully	
  automated.	
  
•  User	
  specifies	
  input	
  data	
  and	
  parameters	
  in	
  Excel	
  spreadsheets.	
  Data	
  file	
  is	
  
then	
  read	
  in	
  to	
  instan2ate	
  the	
  GAMS	
  model.	
  A-erwards,	
  the	
  instance	
  is	
  
solved	
  by	
  a	
  MIP	
  solver	
  linked	
  to	
  GAMS	
  and	
  the	
  resul2ng	
  schedule	
  is	
  wri^en	
  
back	
  to	
  a	
  spreadsheet	
  with	
  accessible	
  format,	
  where	
  both	
  a	
  “table”	
  view	
  
and	
  a	
  “list”	
  view	
  are	
  provided.	
  	
  

	
  

Deployment	
  

Upper	
  le#:	
  Process	
  Flow	
  
	
  
Up:	
  List	
  view	
  of	
  the	
  
resul2ng	
  schedule	
  
	
  
Le#:	
  Table	
  view	
  of	
  the	
  
resul2ng	
  schedule	
  

•  The	
  model	
  was	
  tested	
  against	
  the	
  surgery	
  department’s	
  2010-­‐2011	
  
rota2on	
  schedule.	
  Result	
  matches	
  very	
  closely	
  with	
  the	
  real	
  schedule.	
  

•  Model	
  running	
  2me	
  is	
  comfortably	
  short,	
  within	
  10	
  minutes.	
  
•  Moreover,	
  our	
  model	
  finds	
  the	
  “best”	
  schedule,	
  whereas	
  the	
  manual	
  
procedure	
  only	
  iden2fies	
  one	
  “sa2sfactory”	
  schedule.	
  

•  Hope	
  to	
  deploy	
  the	
  model	
  in	
  a	
  wider	
  user	
  community,	
  such	
  as	
  the	
  en2re	
  
UW	
  hospital	
  system.	
  

Ferris (Univ. Wisconsin) Modeling Mayo 2012 10 / 36



Formulation

xijk assign resident i to rotation j in block k

min
∑

j∈Ro ,p∈P,w∈W
hjpw∑

k∈B(i)

xijk ≥ TNij ,∀i ∈ Re , j ∈ Ro(i)

∑
k∈B(i)

xijk ≤ TAij , ∀i ∈ Re , j ∈ Ro(i)

∑
j∈Ro(i)

xijk ≤ 1, ∀i ∈ Re , k ∈ B(i)

∑
i∈Re(p)

∑
k∈B(w)∩B(i)

xijk + hjpw ≥ SNjpw , ∀j ∈ Ro , p ∈ P,w ∈W

Extend also for “preferences”
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Deployment and abstraction

Example of an assignment model

Compared to the surgery department’s 2010-2011 rotation schedule:
I Result matches very closely with realized schedule
I Model running time is short, within 10 minutes
I Moreover, model finds the “best” schedule, whereas the manual

procedure only identifies one “satisfactory” schedule

Hope to deploy the model in a wider user community

Challenges:

Abstraction/simplification/key drivers

Size: (spatial/temporal/decision hierarchical)

Nature of data: sparse, rich, uncertain

Opportunities: facilitates prediction, improved operation, strategic
behavior and design
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Predict: tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min
x
‖Ax − y‖2

Additional structure: Compressed sensing: sparse signal to account for y

min
x
‖Ax − y‖2

2 s.t. ‖x‖0 ≤ c

Regularized regression:

min
x
‖Ax − y‖2

2 + α ‖x‖1

Machine learning: SVM for classification

min
w ,ξ,γ

∑
i

ξi +
α

2
‖w‖2 s.t. D(Aw − γ1) ≥ 1− ξ

General model:
min
x∈X

E (x) + αS(x)

X are constraints, E measures “error” and S penalizes bad structure
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Image denoising

Rudin-Osher-Fatemi (ROF) model (`2−TV). Given a domain Ω ⊂ R2 and
an observed image f : Ω→ R, seek a restored image u : Ω→ R that
preserves edges while removing noise. The regularized image u can
typically be stored more economically. Seek to “minimize” both

‖u − f ‖2 and

the total-variation (TV) norm
∫

Ω |∇u| dx
Use constrained formulations, or a weighting of the two objectives:

min
u

P(u) := ‖u − f ‖2
2 + α

∫
Ω
|∇u| dx

The minimizing u tends to have regions in which u is constant (∇u = 0).
More “cartoon-like” when α is large.
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Original, noisy, denoised (tol = 10−2, 10−4)

Figure: CAMERAMAN: original (left) and noisy (right)

Stephen Wright (UW-Madison) TV-Regularized Image Denoising Vienna, July 2009 19 / 34

Figure: Denoised CAMERAMAN: Tol=10−2 (left) and Tol=10−4 (right).

Stephen Wright (UW-Madison) TV-Regularized Image Denoising Vienna, July 2009 20 / 34
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Data driven models: challenges and opportunities

Matrix completion (e.g. Netflix prize, covariance estimation)

Machine learning: supervised, unsupervised, semi-supervised,
reinforcement, and representation learning

Probabilistic graphical modeling

Stochastic processes, statistics, uncertainty quantification

Challenges:

Terminology issues: active learning = optimal experimental design,
reinforcement learning = approximate dynamic programming

Incorporating domain knowledge into models

Size and speed for realistic application settings (data sparse and rich
environments)

Online settings, stochastics

Opportunities: to exploit theory and structure with “big data” via effective
algorithms, generalizability, learning behavior
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Conformal Radiotherapy 
  Fire from multiple 

angles 
  Superposition allows 

high dose in target, low 
elsewhere 

  Beam shaping via 
collimator 

  Gradient across beam 
via wedges 
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Combine: the planning process

first contour tumor

then determine beam angles

avoid critical structures

but do it in 3d using only 2d
image slices

Patient Example 

 Grey – prostate 

 Pink – rectum 

 Red - bladder 
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Treatment Modalities

External beam therapy (photons, electrons or protons)
I Conformal radiation therapy (CRT)
I Intensity modulated radiation therapy (IMRT)
I Intensity modulated arc therapy (IMAT)
I Tomotherapy
I Proton therapy (Bragg peak)

Stereotactic radiosurgery (precise localization)

Brachytherapy (radioactive seeds)

Systemic radioactive isotopes (e.g. iodine)

and alternative treatments of surgery and chemotherapy or some
combination of all three modalities
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The mathematical problem

minF (d) s.t. d = Px , x ∈ X , d ∈ D

P is the fluence map from a given angle in 3dCRT, x are the angle
weights

X represents constraints on the device (typically x ≥ 0, or cardinality
restrictions)

D represents constraints on the dose distribution (bound constraints,
DVH-constraints)

P could be the pencil beam matrix in IMRT, x are then the bixel
weights

P could represent shots of radiation in Gamma Knife radiosurgery

Many forms for F , X and D
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Implementation: a graphical tool

Figure: The user interface presented in our tool, including controls for
constraining the PTV and OAR, limiting the number of iterations, weighting the
volumes, running solves, clearing new solves and saving images.
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The cutting plane approach

(a) The solution generated
after one iteration of the al-
gorithm.

(b) The improvement on
the solution in (e) after one
more iteration.

(c) The improvement on
the solution in (f) after 10
iterations.

Figure: A comparison of the progress made by the tool after various numbers of
iterations using the same constraints. In each figure, the previous iteration’s
solution is displayed as the lighter lines.
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And then there is uncertainty...

Parameteric uncertainty (least squares fit of pencil beam/EUD
parameters)

Input data uncertainty (tumor extent/patient characteristics:
GTV/CTV/PTV)

Multi-period models (fractionation/dynamics: positioning/setups)

Outcome uncertainty (one treatment precludes another follow up
treatment/patient variability)

Uncertainty resolution dependent on action (measurements affect
dosage/interactions between treatments)

Model structural uncertainty (biological response)
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Optimization of a model under uncertainty

Modeler: assumes knowledge of distribution
Often formulated mathematically as

min
x∈X

f (x) = E[F (x , ξ)] =

∫
ξ
F (x , ξ)p(ξ)dξ

(p is probability distribution).

Can think of this as optimization with noisy function evaluations

Traditional Stochastic Optimization approaches: (Robbins/Munro,
Keifer/Wolfowitz)

Often requires estimating gradients: IPA, finite differences

Compare to stochastic neighborhood search
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Sampling methods

Take sample ξ1, . . . , ξN of N realizations of random vector ξ
I viewed as historical data of N observations of ξ, or
I generated via Monte Carlo sampling

for any x ∈ X estimate f (x) by averaging values F (x , ξj)

(SAA): min
x∈X

f̂N(x) :=
1

N

N∑
j=1

F (x , ξj)


Nice theoretical asymptotic properties

Can use standard optimization tools to solve the SAA problem

Implementation uses common random numbers, distributed
computation
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Stochastic recourse

Two stage stochastic programming, x is here-and-now decisi on,
recourse decisions y depend on realization of a random variab le

R is a risk measure (e.g. expectation, CVaR)

SP: min c>x + R[q>y ]

s.t. Ax = b, x ≥ 0,

∀ω ∈ Ω : T (ω)x + W (ω)y(ω) ≤ d(ω),

y(ω) ≥ 0.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ­
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu­
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 
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Modeling extensions for Stochastic Programming

Robust or stochastic programming

Can model random variables via distributions

Have a collection of customizable algorithms available within the
modeling system

Continuous distributions, sampling functions, density estimation

Chance constraints: Prob(Tix +Wiyi ≥ hi ) ≥ 1−α - can reformulate
as MIP and adapt cuts (Luedtke) empinfo: chance E1 E2 0.95

Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Combine: Representative decision-making timescales in
electric power systems

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute seconds

Transmission
Siting & Construction

Power Plant
Siting & Construction Maintenance

Scheduling

Long-term
Forward
Markets

Load
Forecasting

Closed-loop
Control and 
Relay Action

Closed-loop
Control and 

Relay Setpoint
Selection Day ahead

market w/ unit 
commitment

Hour ahead
market

Five
 minute
market

Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow

22
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Combine: Transmission Line Expansion Model

min
x∈X

∑
ω

πω
∑
i∈N

dωi p
ω
i (x)

1

2 4

7

8

14

11

9

6

12 13

10

3

5

Nonlinear system to
describe power flows
over (large) network

Multiple time scales

Dynamics (bidding,
failures, ramping, etc)

Uncertainty (demand,
weather, expansion, etc)

pωi (x): Price (LMP) at i
in scenario ω as a
function of x

Use other models to
construct approximation
of pωi (x)
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Many others ... challenges and opportunities

Model predictive control, PDE constrained optimization,...
Challenges:

Size: monster model unable to exploit underlying structure and
provide solution quality guarantees

Stochasticity: How to deal with noisy, sparse, incomplete or
inconsistent data and models

How to coupling collections of (sub)-models: design of interfaces

Opportunities:

appropriate detail and consistency of sub-model formulation

ability for individual subproblem solution verification and engagement
of decision makers

ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

ability to solve submodels to global optimality
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Design: coaxial antenna for hepatic tumor ablation
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
S11 Tail reflection of antenna Minimize
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Simulation Optimization

Computer simulations are used as substitutes to understand or predict
the behavior of a complex system when exposed to a variety of
realistic, stochastic input scenarios

Widely used in epidemiology, engineering design, manufacturing,
supply chain management, medical treatment and many other fields
(calibration, parameter tuning, inverse optimization)

min
x∈X

f (x) = E[F (x , ξ)],

The sample response function F (x , ξ)
I typically does not have a closed form, thus cannot provide gradient or

Hessian information
I is normally computationally expensive
I is affected by uncertain factors in simulation

Use of derivative free methods
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Issues

Our approach only valid for small scale (≤ 30) design variables (but
the simulation may be very complex -black box)

Evaluations may be noisy:
I Application: Dielectric tissue properties varied within ±10% of average

properties to simulate the individual variation.
I Bayesian VNSP algorithm yields an optimal design that is a 27.3%

improvement over the original design and is more robust in terms of
lesion shape and efficiency.

Computational time: variance reduction, correlated noise.
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Challenges and opportunities

Challenges:

Engaging the designer, collecting appropriate data

Incorporating domain design tools into general (optimization)
framework

Modeling human behavior

Determining appropriate model: Linear vs nonlinear, deterministic vs
probabilistic, static vs dynamic, discrete vs continuous (smooth or
nonsmooth)

Opportunities:

Enormous: medical device design, drug design, radiation therapy
machine and planning, bio-engineering

economic instrument and policy design, smart grid, electric batteries,
environmental remediation, offshore drilling and wind farms

recommender systems, fabrication, election district gerrymandering
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Conclusions

Optimization helps understand what drives a system

Operational (tactical) and strategic models used in decision processes

Understand, predict, combine, design

Uncertainty is present everywhere (the world is not “normal”)

We need not only to quantify it, but we need to
hedge/control/ameliorate it

Modeling, optimization, and computation embedded within the
application domain is critical

Wisconsin Institutes for Discovery is doing this
(http://www.discovery.wisc.edu)
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