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Quote from Wikipedia: modeling

@ A mathematical model is a description of a system using
mathematical concepts and language.
o Mathematical models are used in:
» the natural sciences (such as physics, biology, earth science,
meteorology)
» engineering disciplines (e.g. computer science, artificial intelligence)
» in the social sciences (such as economics, psychology, sociology and
political science)
@ Physicists, engineers, statisticians, operations research analysts and
economists use mathematical models extensively

@ Lack of agreement between theoretical mathematical models and
experimental measurements often leads to important advances as
better theories are developed
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Building mathematical models

@ How to model: pencil and paper, excel, Matlab, R, python, ...

’ ‘ » Linear vs nonlinear

» Deterministic vs probabilistic
» Static vs dynamic (differential or difference equations)
» Discrete vs continuous

@ Other issues: Large scale, stochasticity, data (rich and sparse)

@ Abstract/simplify:

Variables: input/output, state, decision, exogenous, random...

» Exogenous = data/parameters
» Objective/constraints
>
>

v

Black box/white box
Subjective information, complexity, training, evaluation

@ Just solving a single problem isn’t the real value of modeling:
optimization finds “holes” in the model
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Why model?

@ to understand (descriptive process, validate principles and/or explore
underlying mechanisms)

e to predict (and/or discover new system features)

@ to combine (engaging groups in a decision, make decisions,
operate/control a system of interacting parts)

@ to design (strategic planning, investigate new designs, can they be
economical given price of raw materials, production process, etc)

To do these, we must be able to capture the problem easily/naturally
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Sudoku
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Understand: Sudoku Model

The aim of this puzzle is to enter a numerical digit from 1 through 9 in
each cell of a 9x9 grid made up of 3x3 subgrids (called "regions”), starting
with various digits given in some cells (the “givens”). Each row, column,
and region must contain only one instance of each numeral.

e r,c,v, k (rows, cols, vals, regions) range from 1 to 9

@ binary variables x; ¢,

row entries unique: anc’v =1, Yr,v
C

col entries unique: ZX”QV =1, Ve, v
r

one val per cell: Zxryc,v =1, Vr,c
v

one val per region: E Xrenw =1, Vk,v
(f,C)ERk

Here Ry runs over all the k “regions”
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Show me on a problem like mine

@ Repeated solutions of multiple (different) problems enables
“understanding” of the solution space (or sensitivity)

e NEOS wiki (www.neos-guide.org) or try out NEOS solvers
(www.neos-solvers.org) for extensive examples

poge | [ascusson | [ vewsaes | 1 iy
| Rogo the Fun Puzzle

Fogo s cne of
| optimization. I i a transformationof the Travelng Salosman Proiem, whih s
| the mst-stuied mixd integer inear nefwork probem

Building a class of case
studies:

@ Web description of
problem

Contents e

woducton
11 Rogo e Puzze

@ Solution on NEOS
@ Ability to modify and e—
resolve : S
. i | Eptee ot i e Ta
@ Comparison of results | o e T
Tkt ettt S s
@ e.g. Sudoku, Rogo s -

Ferris (Univ. Wisconsin) Modeling Mayo 2012 7 /36



Abstraction: circle cover problem

Given a set of points find the location (x, y) of the center of the circle
with minimum radius that covers all points (coverage problem)

@ This is an example of a nonlinear program (second order cone
program).

@ What if the points are only known by distribution?

o Notion of robust optimization (all points in enclosing circle) or a
stochastic programming formulation or chance constraints
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Resident rotation scheduling

@ Supervised on-the-job training (called residency) in teaching hospitals
or academic medical centers

@ Residents have to undergo a series of clinically-based trainings
(rotations)

@ Duration of a rotation usually spans a block of consecutive weeks —
depends on the post-graduate year (PGY) of the resident

@ The rotation schedules are made once a year

@ A schedule must satisfy various training and staffing requirements and
certain regulatory restrictions

@ A schedule should preferably contain multiple views and enable
search, sort and filter functions for easy information retrieval

o In the UW surgery department, this scheduling task used to be
performed in Microsoft Excel, by hand
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The modeling process

Input Data in
GDX format
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Output Data in
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@ User specifies input data and
parameters in Excel spreadsheets

@ Resulting schedule is written back to a
spreadsheet in “user” format
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Formulation

Xjjk assign resident i to rotation j in block k

min Z hipw

JERo,pEP,WwEW
> ik = TNy, Vi € Re,j € Ro(i)

> xiik < TAj, Vi € Re,j € Ro(i)
> X < 1,Vi € Re, k € B(i)

S > Xjk+ hipw = SNjpw, Vi € Ro,p € Pw € W
i€Re(p) keB(w)NB(i)

Extend also for “preferences”
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Deployment and abstraction

@ Example of an assignment model

@ Compared to the surgery department’'s 2010-2011 rotation schedule:

> Result matches very closely with realized schedule

» Model running time is short, within 10 minutes

» Moreover, model finds the “best” schedule, whereas the manual
procedure only identifies one “satisfactory” schedule

@ Hope to deploy the model in a wider user community

Challenges:
@ Abstraction/simplification/key drivers
e Size: (spatial/temporal/decision hierarchical)
@ Nature of data: sparse, rich, uncertain

Opportunities: facilitates prediction, improved operation, strategic
behavior and design
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Predict: tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min |Ax — v/
X
Additional structure: Compressed sensing: sparse signal to account for y
: 2
min |Ax — y[3 st. [Ixlly < ¢
Regularized regression:

. 2
min [|A4x — yI[3 + o x]
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Predict: tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min |Ax — v/
X

Additional structure: Compressed sensing: sparse signal to account for y

; 2

min |Ax — y[|5 s.t. [[x][p < ¢
Regularized regression:
; 2

min [|Ax — y 3 + aJx|

Machine learning: SVM for classification

. [0 2
min i+ = |lw]||® s.t. D(Aw —~1) > 1 —
min D76+ 5 1wl 55 D(Aw =71 21-¢

General model:
min E(x) + aS(x)

xeX

X are constraints, E measures “error’ and S penalizes.bad structure
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Image denoising

Rudin-Osher-Fatemi (ROF) model (¢,—TV). Given a domain Q C R? and
an observed image f : Q — R, seek a restored image v : Q — R that
preserves edges while removing noise. The regularized image v can
typically be stored more economically. Seek to “minimize” both

o |[u—f|, and
e the total-variation (TV) norm o |Vu| dx

Use constrained formulations, or a weighting of the two objectives:
min P(u) := |lu — f||3 + oz/ |Vul dx
u Q

The minimizing u tends to have regions in which u is constant (Vu = 0).
More “cartoon-like” when « is large.
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Original, noisy, denoised (tol = 1072, 107*)
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Data driven models: challenges and opportunities

@ Matrix completion (e.g. Netflix prize, covariance estimation)

@ Machine learning: supervised, unsupervised, semi-supervised,
reinforcement, and representation learning

@ Probabilistic graphical modeling

@ Stochastic processes, statistics, uncertainty quantification

Challenges:

@ Terminology issues: active learning = optimal experimental design,
reinforcement learning = approximate dynamic programming

@ Incorporating domain knowledge into models

@ Size and speed for realistic application settings (data sparse and rich
environments)

@ Online settings, stochastics

Opportunities: to exploit theory and structure with “big data” via effective
algorithms, generalizability, learning behavior
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Conformal Radiotherapy

St S— Fire from multiple

angles

Superposition allows
high dose in target, low
elsewhere

= Beam shaping via
collimator

= Gradient across beam
via wedges
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Combine: the planning process

first contour tumor

°
@ then determine beam angles
@ avoid critical structures

°

but do it in 3d using only 2d
image slices

Patient Example
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Treatment Modalities

e External beam therapy (photons, electrons or protons)

» Conformal radiation therapy (CRT)

> Intensity modulated radiation therapy (IMRT)
» Intensity modulated arc therapy (IMAT)

» Tomotherapy

» Proton therapy (Bragg peak)

@ Stereotactic radiosurgery (precise localization)
@ Brachytherapy (radioactive seeds)
e Systemic radioactive isotopes (e.g. iodine)

and alternative treatments of surgery and chemotherapy or some
combination of all three modalities
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The mathematical problem

min F(d) s.t. d = Px,xe X,d € D

@ P is the fluence map from a given angle in 3dCRT, x are the angle
weights

e X represents constraints on the device (typically x > 0, or cardinality
restrictions)

@ D represents constraints on the dose distribution (bound constraints,
DVH-constraints)

@ P could be the pencil beam matrix in IMRT, x are then the bixel
weights

@ P could represent shots of radiation in Gamma Knife radiosurgery

Many forms for F, X and D
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Implementation: a graphical tool

+#iters:

PTV weight: Update Graph
OAR weight: Clear Graph..

1

PTV:
Clear Points | Show Line |
ses[  Prvwess|  UpteteGrn
s il e
"'V’E oo e Add Point Save
0AR:
Clear Points | Show Line | Exit |

Figure: The user interface presented in our tool, including controls for

constraining the PTV and OAR, limiting the number of iterations, weighting the
volumes, running solves, clearing new solves and saving images.
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The cutting plane approach

(a) The solution generated (b) The improvement on (c) The improvement on
after one iteration of the al- the solution in (e) after one the solution in (f) after 10
gorithm. more iteration. iterations.

Figure: A comparison of the progress made by the tool after various numbers of
iterations using the same constraints. In each figure, the previous iteration’s
solution is displayed as the lighter lines.
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And then there is uncertainty...

@ Parameteric uncertainty (least squares fit of pencil beam/EUD
parameters)

@ Input data uncertainty (tumor extent/patient characteristics:
GTV/CTV/PTV)

@ Multi-period models (fractionation/dynamics: positioning/setups)

@ Outcome uncertainty (one treatment precludes another follow up
treatment/patient variability)

@ Uncertainty resolution dependent on action (measurements affect
dosage/interactions between treatments)

@ Model structural uncertainty (biological response)
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Optimization of a model under uncertainty

Modeler: assumes knowledge of distribution
Often formulated mathematically as

min f(x) = E[F(x,€)] = /ﬁ F(x,&)p(§)d¢

(p is probability distribution).
@ Can think of this as optimization with noisy function evaluations

e Traditional Stochastic Optimization approaches: (Robbins/Munro,
Keifer /Wolfowitz)

o Often requires estimating gradients: IPA, finite differences

@ Compare to stochastic neighborhood search
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Sampling methods

Take sample &1, ...,&y of N realizations of random vector &

» viewed as historical data of N observations of &, or
» generated via Monte Carlo sampling

e for any x € X estimate f(x) by averaging values F(x, )

N
(SAA): )r(nel)rg Fu(x) == Z (x,&)

Nice theoretical asymptotic properties

Can use standard optimization tools to solve the SAA problem

Implementation uses common random numbers, distributed
computation

Ferris (Univ. Wisconsin) Modeling Mayo 2012 25 / 36



Stochastic recourse

@ Two stage stochastic programming, x is here-and-now decisi on,
recourse decisions y depend on realization of a random variab le

@ R is a risk measure (e.g. expectation, CVaR)

SP: min c¢'x+R[g'y]

st. Ax=0b, x>0,

YweQ: T(w)x+ Ww)y(w) < dw),

y(w) > 0. r
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Modeling extensions for Stochastic Programming

@ Robust or stochastic programming
@ Can model random variables via distributions

@ Have a collection of customizable algorithms available within the
modeling system

o Continuous distributions, sampling functions, density estimation

e Chance constraints: Prob(Tix + W;y; > h;) > 1 — « - can reformulate
as MIP and adapt cuts (Luedtke) empinfo: chance E1 E2 0.95

@ Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Combine: Representative decision-making timescales in
electric power systems

Closed-loop
Closed-loop
Control and
d Control and
Relay Setpoint Relay Action
Selection Day ahead
@ L:;g-'erén market w/ unit
rwar commitment
~ Power Plant Markets Hour ahead
Siting & Construction Maintenance Load market
i Forecastin i
Transmission Schedulng ° Five

Siting & Construction minute

ﬂ market

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute  seconds
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Combine: Transmission Line Expansion Model

mi)rg Z T Z di’ p?(x) @ Nonlinear system to
XA ieN describe power flows
over (large) network

o @ Multiple time scales

@ Dynamics (bidding,
failures, ramping, etc)
@ Uncertainty (demand,
weather, expansion, etc)
’ e p¥(x): Price (LMP) at i
‘ in scenario w as a

function of x

@ Use other models to
o construct approximation
of p’(x)
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Many others ... challenges and opportunities

Model predictive control, PDE constrained optimization,...
Challenges:

@ Size: monster model unable to exploit underlying structure and
provide solution quality guarantees

@ Stochasticity: How to deal with noisy, sparse, incomplete or
inconsistent data and models

@ How to coupling collections of (sub)-models: design of interfaces
Opportunities:
@ appropriate detail and consistency of sub-model formulation

@ ability for individual subproblem solution verification and engagement
of decision makers

@ ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

@ ability to solve submodels to global optimality
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Design: coaxial antenna for hepatic tumor ablation

Dipole tip length  Slot size Floating sleeve Outer conductor
#
Sleeve position Inner conductor Teflon catheter

Teflon coating
Inner conductor

Teflon isolation layer
Outer conductor

Floating sleeve
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Lesion Size=a
© Axial Ratio (AR) =a/b
b 14 13
4 — ¢
Metric Measure of Goal
Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
Si1 Tail reflection of antenna Minimize
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Simulation Optimization

@ Computer simulations are used as substitutes to understand or predict
the behavior of a complex system when exposed to a variety of
realistic, stochastic input scenarios

@ Widely used in epidemiology, engineering design, manufacturing,
supply chain management, medical treatment and many other fields
(calibration, parameter tuning, inverse optimization)

min f(x) = E[F(x, ]

@ The sample response function F(x,¢)

» typically does not have a closed form, thus cannot provide gradient or
Hessian information

» is normally computationally expensive

> is affected by uncertain factors in simulation

@ Use of derivative free methods
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Issues

@ Our approach only valid for small scale (< 30) design variables (but
the simulation may be very complex -black box)
@ Evaluations may be noisy:

» Application: Dielectric tissue properties varied within 2=10% of average
properties to simulate the individual variation.

» Bayesian VNSP algorithm yields an optimal design that is a 27.3%
improvement over the original design and is more robust in terms of
lesion shape and efficiency.

@ Computational time: variance reduction, correlated noise.
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Challenges and opportunities

Challenges:
@ Engaging the designer, collecting appropriate data

@ Incorporating domain design tools into general (optimization)
framework

@ Modeling human behavior
@ Determining appropriate model: Linear vs nonlinear, deterministic vs
probabilistic, static vs dynamic, discrete vs continuous (smooth or
nonsmooth)
Opportunities:
@ Enormous: medical device design, drug design, radiation therapy
machine and planning, bio-engineering

@ economic instrument and policy design, smart grid, electric batteries,
environmental remediation, offshore drilling and wind farms

@ recommender systems, fabrication, election district gerrymandering
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Conclusions

Optimization helps understand what drives a system
Operational (tactical) and strategic models used in decision processes
Understand, predict, combine, design

Uncertainty is present everywhere (the world is not “normal”)

We need not only to quantify it, but we need to
hedge/control /ameliorate it

@ Modeling, optimization, and computation embedded within the
application domain is critical

@ Wisconsin Institutes for Discovery is doing this
(http://www.discovery.wisc.edu)
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