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Motivation
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Simulation-based optimization problems

Computer simulations are used as substitutes to evaluate
complex real systems.

Simulations are widely applied in epidemiology, engineering
design, manufacturing, supply chain management, medical
treatment and many other fields.

The goal: Optimization finds the best values of the decision
variables (design parameters or controls) that minimize some
performance measure of the simulation.

Other applications: calibration, SVM parameter tuning,

inverse optimization, two-stage stochastic integer
programming
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Design a coaxial antenna for hepatic tumor ablation

Dipole tip length  Slot size Floating sleeve Outer conductor
il
L »
Sleeve position Inner conductor Teflon catheter

Teflon coating
Inner conductor

Teflon isolation layer
Outer conductor

Floating sleeve
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Simulation of the electromagnetic radiation profile
Finite element models (MultiPhysics v3.2) are used to generate the
electromagnetic (EM) radiation fields in liver given a particular
design

Lesion Size=a
© Axial Ratio (AR) =a/b

4 — 1E
Metric Measure of Goal
Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5

Si1 Tail reflection of antenna Minimize
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A general problem formulation

e We formulate the simulation-based optimization problem as

min F(x) = E,[f(x,w(x))],
x€S
w(x) is a random factor arising in the simulation process.
The sample response function f(x,w)
e typically does not have a closed form, thus cannot provide
gradient or Hessian information
e is normally computationally expensive
e is affected by uncertain factors in simulation

The underlying objective function F(x) has to be estimated.
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A simple discrete optimization case

e For example, test elasticity of a set of balls. Here
S =1{1,2,3,4,5} represents a set of 5 (beach) balls.

@ O
OO0 Y

e Objective: Choose the ball with the largest expected bounce
height F(x;). f(xi,wj) corresponds to a single measurement in
an experiment.
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Bayesian approach

e Denote the mean of the simulation output for each system as
wi = F(x;) = Eu[f(xi, w)].

e In a Bayesian perspective, the means are considered as
Gaussian random variables whose posterior distributions can
be estimated as

/‘i|X ~ N(ﬁia 612/NI)7

where [i; is sample mean and 6,-2 is sample variance. The
above formulation is one type of posterior distribution.
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Posterior distributions facilitate comparison

Easy to compute the probability of correct selection (PCS).
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Basic framework and tools

e Small scale x controls/design variables

e Simulation is refinable (replications, more samples in DES,
finer discretization)

N

F(x) ~ %Zf(x,wj)

Jj=1

e WISOPT: Linked two-phase approach

e Phase I: global issues / exploration: rough
e Phase Il: local issues / exploitation: refined
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WISOPT Phase II: noisy UOBYQA (Powell)

The base derivative free optimization algorithm: The UOBYQA
(Unconstrained Optimization BY Quadratic Approximation)
algorithm is based on a trust region method. It constructs a series
of local quadratic approximation models of the underlying function.

Q(x) -

f(x)
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Quadratic model construction and trust region subproblem
solution

For iteration k =1,2,...,

Construct a quadratic model via interpolation

QUx,) = Flxk,0) +8 (@)(x—x)+ 5 (x—x#) T Galw)(x—x)

The model is unstable since interpolating noisy data

Solve the trust region subproblem

sk(w) = argming  Q(xk + s,w)
s.t. ||S||2 < Ay

The solution is thus unstable
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Why is the quadratic model unstable?
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How to stabilize the quadratic model?

Let {y%,¥2, ..., y"} be the interpolation set.

e Quadratic interpolation model is a linear combination of
Lagrange functions:

L

Qlx,w) =Y f(y,w)i(x).

j=1
e Each piece /j(x) is a quadratic polynomial, satisfying
(y") = d;,i=1,2,---, L.

e The coefficients of /; are uniquely determined, independent of
the random objective function.
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Bayesian estimation of coefficients cg, go, Go

In Bayesian approach, the mean of function output
pu(y?) :=E,f(y’,w) is considered as a random variable:
Normal posterior distributions:

uy?)IX ~ N(a(y’), 82(y))/ Ny)-

Thus the coefficients of the quadratic model are estimated as:

golX = Yi(u(y)X)g,
GolX = Yii(n(y)IX)G;.

e gj, G; are coefficients of Lagrange functions /;.

* gj, G; are deterministic and determined by points Wi
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Constraining the variance of coefficients

e Generate samples of function values from these (estimated)
distributions.

e Trial solutions are generated within a trust region. The
standard deviation of the solutions is constrained.

maxstd([s"(7), " (i), -, s M(7)]) < A
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Noisy UOBYQA for Rosenbrock, n = 2 and o2 =0.01

Iteration (k) FN  F(xx) Ay
1 1 404 2
20 78 3.56 9.8 x 1071
40 140  0.75 1.2x 1071
60 580  0.10 4.5 x 1072
80 786  0.0017 5.2 x 1073
v’ Stops with the new termination criterion
100 1254 0.0019 2.8 x 107%
120 2003 0.0016 1.1 x 1074

v Stops with the termination criterion A, < 10~%
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WISOPT Phase |: Classifier

Global search process
Classifier: surrogate for indicator function of the level set
L
L(c) ={x|F(x) <c}~{x sz(x’wj) <c
j=1
c is a quantile point of the responses

Training set: space filling samples (points) from the whole
domain (e.g. mesh grid; Latin Hypercube Sampling)
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WISOPT Phase I: noisy Direct (Jones)

e At each iteration, trisect a collection of promising boxes (large
box or small F)

e Evaluate F at center of newly generated boxes
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Noisy extension

Bayesian methods determine posterior distribution of “box
center” F values

Monte Carlo methods to generate “sampled” values for F;
then use DIRECT to generate “trial” potential boxes

Compare error rates against ‘boxes generated from sample
means

When error rate large (sets of boxes chosen differ greatly),
increase replications on those boxes that produce errors
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Classifier vs Direct (example FR)
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Compare noisy DIRECT vs fixed accuracy
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Link: Determine xg and TR radius A

The idea is to determine the best ‘window size’ for non-parametric
local regression, and then use the ‘window size' as the initial trust
region radius A.

1. A € argminy, sse(h)

2. sse(h) is the sum of squares error of knock-one out prediction.
Given a window-size h and a point xp, the knock-one out
predicted value is Q(xp), where Q(x) is constructed using the
data points within the ball {x|||x — xo|| < h}.

Q(x)=c+g"(x—x)+ %(X — x0) TH(x — xo)

3. Sort xp by F and ensureh points separated by A
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The non-parametric “linking” idea
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Two-phase approach to optimize antenna design metrics

e Uniform LHS to generate 2,000 design samples to evaluate
with the FE simulation model (range [-0.3705, 3597])

e Histogram of objective values over interval [-0.3705, 0]

e ¢ = —0.2765 the 10% quantile. L(c) has 199 positive samples
(1801 negative)

e Balancing procedure: 398 positive vs. 388 negative samples
e 5 (of 6 tested) classifiers in ensemble

o Refined data: 15,000 designs, 522 predicted by classifiers as
positive, 74% correctly

e The best Phase | design has value -0.3850.
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Coaxial antenna design
2 2
s s
Obijective Value Obijective Value
(a) First stage evaluations (b) Our new antenna design

(training data)

¢ (Modified) UOBYQA started from best point:
(13.6 2.7 19.0 0.3 0.1) mm, value -0.3850.

e UOBYQA returned an optimal solution:
(15.9 2.4 19.0 0.3 0.1) mm, value -0.4117.
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Sample path extension: changing liver properties

e Common random numbers allow variance reduction,
correlated noise.

e Extension of ideas to Variable-Number Sample-Path
Optimization method.

e Application: Dielectric tissue properties varied within +10%
of average properties to simulate the individual variation.

e Bayesian VNSP algorithm yields an optimal design that is a
27.3% improvement over the original design and is more
robust in terms of lesion shape and efficiency.
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Conclusions and future work

Coupling statistical and optimization techniques can
effectively process noisy function optimizations

Significant gains in system performance and robustness are
possible using function value distributions

WISOPT framework allows multiple methods to be “hooked”
up

How to reuse function evaluations from Phase | in Phase |17

Application to more engineering problems, including two stage
stochastic integer programs
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