Optimization of Noisy Functions: Application to Simulations

Geng Deng Michael C. Ferris

University of Wisconsin-Madison

8th US-Mexico Workshop on Optimization and its Applications Huatulco, Mexico January 8, 2007

Simulation-based optimization problems

- Computer simulations are used as substitutes to evaluate complex real systems.
- Simulations are widely applied in epidemiology, engineering design, manufacturing, supply chain management, medical treatment and many other fields.
- The goal: Optimization finds the best values of the decision variables (design parameters or controls) that minimize some performance measure of the simulation.
- Other applications: calibration, SVM parameter tuning, inverse optimization, two-stage stochastic integer programming

Design a coaxial antenna for hepatic tumor ablation

Simulation of the electromagnetic radiation profile

Finite element models (MultiPhysics v3.2) are used to generate the electromagnetic (EM) radiation fields in liver given a particular design

Metric	Measure of	Goal
Lesion radius	Size of lesion in radial direction	Maximize
Axial ratio	Proximity of lesion shape to a sphere	Fit to 0.5
S_{11}	Tail reflection of antenna	Minimize

A general problem formulation

We formulate the simulation-based optimization problem as

$$\min_{x \in \mathcal{S}} F(x) = \mathbb{E}_{\omega}[f(x, \omega(x))],$$

 $\omega(x)$ is a random factor arising in the simulation process. The sample response function $f(x,\omega)$

- typically does not have a closed form, thus cannot provide gradient or Hessian information
- is normally computationally expensive
- is affected by uncertain factors in simulation

The underlying objective function F(x) has to be estimated.

A simple discrete optimization case

• For example, test elasticity of a set of balls. Here $S = \{1, 2, 3, 4, 5\}$ represents a set of 5 (beach) balls.

• Objective: Choose the ball with the largest expected bounce height $F(x_i)$. $f(x_i, \omega_j)$ corresponds to a single measurement in an experiment.

Bayesian approach

- Denote the mean of the simulation output for each system as $\mu_i = F(x_i) = \mathbb{E}_{\omega}[f(x_i, \omega)].$
- In a Bayesian perspective, the means are considered as Gaussian random variables whose posterior distributions can be estimated as

$$\mu_i|X \sim N(\bar{\mu}_i, \hat{\sigma}_i^2/N_i),$$

where $\bar{\mu}_i$ is sample mean and $\hat{\sigma}_i^2$ is sample variance. The above formulation is one type of posterior distribution.

Posterior distributions facilitate comparison

Easy to compute the probability of correct selection (PCS).

Basic framework and tools

- Small scale x controls/design variables
- Simulation is refinable (replications, more samples in DES, finer discretization)

$$F(x) \simeq \frac{1}{N} \sum_{j=1}^{N} f(x, \omega_j)$$

- WISOPT: Linked two-phase approach
 - Phase I: global issues / exploration: rough
 - Phase II: local issues / exploitation: refined

WISOPT Phase II: noisy UOBYQA (Powell)

The base derivative free optimization algorithm: The UOBYQA (Unconstrained Optimization BY Quadratic Approximation) algorithm is based on a trust region method. It constructs a series of local quadratic approximation models of the underlying function.

Quadratic model construction and trust region subproblem solution

For iteration $k = 1, 2, \ldots$,

- . . .
- Construct a quadratic model via interpolation

$$Q(x,\omega) = f(x_k,\omega) + g_Q^T(\omega)(x-x_k) + \frac{1}{2}(x-x_k)^T G_Q(\omega)(x-x_k)$$

The model is unstable since interpolating noisy data

Solve the trust region subproblem

$$s_k(\omega) = \arg \min_s \quad Q(x_k + s, \omega)$$

 $s.t. \quad ||s||_2 \le \Delta_k$

The solution is thus unstable

• . . .

Why is the quadratic model unstable?

How to stabilize the quadratic model?

Let $\{y^1, y^2, \dots, y^L\}$ be the interpolation set.

 Quadratic interpolation model is a linear combination of Lagrange functions:

$$Q(x,\omega) = \sum_{j=1}^{L} f(y^{j},\omega) I_{j}(x).$$

• Each piece $l_i(x)$ is a quadratic polynomial, satisfying

$$l_j(y^i) = \delta_{ij}, i = 1, 2, \cdots, L.$$

• The coefficients of l_j are uniquely determined, independent of the random objective function.

Bayesian estimation of coefficients c_Q , g_Q , G_Q

In Bayesian approach, the mean of function output $\mu(y^j) := \mathbb{E}_{\omega} f(y^j, \omega)$ is considered as a random variable: Normal posterior distributions:

$$\mu(y^j)|X \sim N(\bar{\mu}(y^j), \hat{\sigma}^2(y^j)/N_j).$$

Thus the coefficients of the quadratic model are estimated as:

$$g_{Q}|X = \sum_{j=1}^{L} (\mu(y^{j})|X)g_{j},$$

 $G_{Q}|X = \sum_{j=1}^{L} (\mu(y^{j})|X)G_{j}.$

- g_i , G_i are coefficients of Lagrange functions I_i .
- g_i , G_i are deterministic and determined by points y^j .

Constraining the variance of coefficients

- Generate samples of function values from these (estimated) distributions.
- Trial solutions are generated within a trust region. The standard deviation of the solutions is constrained.

$$\max_{i=1}^{m} std([s^{*(1)}(i), s^{*(2)}(i), \cdots, s^{*(M)}(i)]) \leq \beta \Delta_k.$$

Noisy UOBYQA for Rosenbrock, n = 2 and $\sigma^2 = 0.01$

Iteration (k)	FN	$F(x_k)$	Δ_k		
1	1	404	2		
20	78	3.56	$9.8 imes 10^{-1}$		
40	140	0.75	$1.2 imes 10^{-1}$		
60	580	0.10	4.5×10^{-2}		
80	786	0.0017	5.2×10^{-3}		
✓ Stops with the new termination criterion					
100	1254	0.0019	2.8×10^{-4}		
120	2003	0.0016	$1.1 imes 10^{-4}$		
\checkmark Stops with the termination criterion $\Delta_k \leq 10^{-4}$					

WISOPT Phase I: Classifier

- Global search process
- Classifier: surrogate for indicator function of the level set

$$L(c) = \{x \mid F(x) \leq c\} \simeq \left\{x \mid \frac{1}{N} \sum_{j=1}^{N} f(x, \omega_j) \leq c\right\}$$

- c is a quantile point of the responses
- Training set: space filling samples (points) from the whole domain (e.g. mesh grid; Latin Hypercube Sampling)

Banana example

WISOPT Phase I: noisy Direct (Jones)

- At each iteration, trisect a collection of promising boxes (large box or small F)
- Evaluate F at center of newly generated boxes

Noisy extension

- Bayesian methods determine posterior distribution of "box center" F values
- Monte Carlo methods to generate "sampled" values for F;
 then use DIRECT to generate "trial" potential boxes
- Compare error rates against 'boxes generated from sample means
- When error rate large (sets of boxes chosen differ greatly), increase replications on those boxes that produce errors

Classifier vs Direct (example FR)

Compare noisy DIRECT vs fixed accuracy

Link: Determine x_0 and TR radius Δ

The idea is to determine the best 'window size' for non-parametric local regression, and then use the 'window size' as the initial trust region radius Δ .

- 1. $\Delta \in \operatorname{arg\,min}_h \operatorname{sse}(h)$
- 2. sse(h) is the sum of squares error of knock-one out prediction. Given a window-size h and a point x_0 , the knock-one out predicted value is $Q(x_0)$, where Q(x) is constructed using the data points within the ball $\{x | \|x x_0\| \le h\}$.

$$Q(x) = c + g^{T}(x - x_0) + \frac{1}{2}(x - x_0)^{T}H(x - x_0)$$

3. Sort x_0 by F and ensureh points separated by Δ

The non-parametric "linking" idea

Classifier vs Direct (example Griewank)

Two-phase approach to optimize antenna design metrics

- Uniform LHS to generate 2,000 design samples to evaluate with the FE simulation model (range [-0.3705, 3597])
- Histogram of objective values over interval [-0.3705, 0]
- c = -0.2765 the 10% quantile. L(c) has 199 positive samples (1801 negative)
- Balancing procedure: 398 positive vs. 388 negative samples
- 5 (of 6 tested) classifiers in ensemble
- Refined data: 15,000 designs, 522 predicted by classifiers as positive, 74% correctly
- The best Phase I design has value -0.3850.

Coaxial antenna design

(a) First stage evaluations (training data)

(b) Our new antenna design

- (Modified) UOBYQA started from best point: (13.6 2.7 19.0 0.3 0.1) mm, value -0.3850.
- UOBYQA returned an optimal solution: (15.9 2.4 19.0 0.3 0.1) mm, value -0.4117.

Sample path extension: changing liver properties

- Common random numbers allow variance reduction, correlated noise.
- Extension of ideas to Variable-Number Sample-Path Optimization method.
- Application: Dielectric tissue properties varied within $\pm 10\%$ of average properties to simulate the individual variation.
- Bayesian VNSP algorithm yields an optimal design that is a 27.3% improvement over the original design and is more robust in terms of lesion shape and efficiency.

Conclusions and future work

- Coupling statistical and optimization techniques can effectively process noisy function optimizations
- Significant gains in system performance and robustness are possible using function value distributions
- WISOPT framework allows multiple methods to be "hooked" up
- How to reuse function evaluations from Phase I in Phase II?
- Application to more engineering problems, including two stage stochastic integer programs