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Data science: motivation (slides adapted from Steve Wright)

Optimization: basic components and tradeo↵s

Modeling: using constraints to add domain knowledge

Uncertainty: how to deal with randomness
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Data Science

Extract meaning from data: learning

Use this knowledge to make predictions: inference

Optimization provides tools for modeling / formulation / algorithms

Modeling and domain-specific knowledge is vital in practice: “80% of
data analysis is spent on the process of cleaning and preparing the
data.”
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Typical Setup

After cleaning and formatting, obtain a data set of m objects:

Vectors of features: aj , j = 1, 2, . . . ,m

Outcome / observation / label yj for each feature vector

The outcomes yj could be:

a real number: regression

a label indicating the aj lies in one of M classes (for M � 2):
classification. (M can be very large)

no labels (yj is null):
I subspace identification: locate low-dimensional subspaces that

approximately contain the (high-dimensions) vectors aj
I clustering: partition the aj into clusters; each cluster groups objects

with similar features.
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Optimization

There is an objective (function) which we are seeking to maximize or
minimize described by:

f : S ✓ Rn ! R [ {+1/�1} =: R̄

Objective function of variables (or unknowns) f (x) where x 2 Rn.

Variables could be subject to constraints such as h(x) = 0.

The feasible set is described by

⌦ = {x |h(x) = 0, g(x)  0}

This generates a program of the form

min
x

f (x) s.t. x 2 ⌦

Unconstrained problems have ⌦ = Rn which is the whole space

What about ⌦ 6= Rn?

Constrained problems can be treated in various ways, including
nonlinear, nonconvex problems and convex cones for example.
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Four components to optimization

1 Calculus (analysis, probability)

2 Geometry or structure (convexity, polyhedral, discrete)

3 Computation (using linear algebra and sparse tools)

4 Data

Iterative algorithms generate a series of points which hopefully
converge to the solution: issues about well defined (computable), how
fast, what they converge to, and how to check properties of the end
point.

Will need all four components; understanding how they link together
is important for full command of optimization
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Continuous Vs. Discrete

In a discrete problem, only the points would be feasible. In a
continuous problem, the whole shaded region is feasible.

Use case: discrete entities, logic
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Linear vs. Nonlinear / Stochastic vs Deterministic

If f , gi , hi are a�ne then we have a linear program.

min f (x)

s.t. gi (x)  0

hi (x) = 0

Linear problems tend to come from the decision sciences whereas
nonlinear problems often arise from physical systems.

A problem is stochastic if data is not known beforehand. It may arise
from some known distribution or assumed via statistical
measurements.

Note the di↵erence between stochastic data and stochastic programs
and stochastic algorithms.
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Global vs Local

We use the notion of local and global minimizers

The local minimum is clearly a minimum only within its neighborhood.

Convex functions are ones for which local minimizers are global minimizers.
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Fundamental Data Analysis

Seek a function � that:

approximately maps aj , to yj for each j ; �(aj) ⇡ yj , j = 1, 2, . . . ,m

satisfies additional properties to make it “plausible” for the
application, robust to perturbations in the data, generalizable to other
data samples from the same distribution.

Can usually define � in terms of some parameter vector x - thus
identification of � becomes a data-fitting problem:

Find a nice x such that �(aj ; x) ⇡ yj for j = 1, 2, . . . ,m

Objective function in this problem often built up of m terms that
capture mismatch between predictions and observations for data item
(aj , yj)

The process of finding � is called learning or training.
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What’s the use of the mapping �?

Prediction: Given new data vector ak , predict outputs yk  �(ak ; x).

Analysis: � (more particularly the parameter x) reveals structure in
the data

Many possible complications:

Noise or errors in aj and yj

Missing data:

Overfitting: � exactly fits the set of training data (aj , yj) but predicts
poorly on “out-of-sample” data (ak , yk)
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ML models in practice

Regression: �(aj ; x) = aTj x .

min
x

f (x) :=
1

2

mX

j=1

(aTj x � yj)
2

Add `2 = kxk2 reduces sensitivity to noise in y

Add `1 = kxk1 yields solutions x with few non-zeros (Feature
selection)

loss function +� ⇤ R(x)
Sparse PCA.

Linear Support Vector Machines (kernel SVM)

Logistic Regression

Deep learning

All of these modelscan be augmented by domain specific knowledge,
leading to nonlinear and/or constrained optimization
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What is meant by a model?

Many of us build (computer/mathematical) models that capture
physics, dynamics, stochastics, discrete choices, and to some extent
behavior: collaboration, competition

Model of system mx(s, d)

Actions or designs d a↵ect state s, parameters x
energy example: state s = electricity flow, actions d =
investment/operations, parameters x = loss rate/fuel cost

Optimization determines model parameters x (based on data -
machine learning) (training)

Can use mx(s, d) to predict state evolution or specfic outcomes

Validation ensures predictions are good (testing)
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What does optimization add?

Value of outcome v(s, d) (e.g s electricity flows in network, d
capacity expansion, v is operation profit)

How to use model to suggest good actions/designs?

Constrained optimization chooses (feasible) actions to maximize value

max
s,d

v(s, d) s.t. mx(s, d), (s, d) 2 F

Optimization can be hard to solve (non-convex)

Models can be complex and di�cult to explain, often ignored by
decision makers, yet their solution can lead to fundamentally new
insights

Simple rules (policies) d = ⇡(s), reduce complexity of optimization,
enhance explainability
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Planning models treat uncertainty at di↵erent time scales

Demand growth, technology
change, capital costs are
long-term uncertainties
(years)

Seasonal inflows to
hydroelectric reservoirs are
medium-term uncertainties
(weeks)

Levels of wind and solar
generation are short-term
uncertainties (half hours)

Very short term e↵ects from
random variation in
renewables and plant failures
(seconds)

years weeks half-hours seconds

Infrastructure
investment

Optimal
releases

Demand
satisfaction

Spinning
reserves

Tradeo↵: Uncertainty, cost and
operability, regulations,
security/robustness/resilience

Needs modelling at finer time
scales
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Simplified two-stage stochastic optimization model

Investment decisions are z at cost K (z)
Operating decisions are: generation y at cost C (y), loadshedding q at
cost Vq.
Random demand is d(!).
Minimize capital cost plus expected operating cost:

P: min
z,y ,q2X

K (z) + E![C (y(!)) + Vq(!)]

s.t. y(!)  z ,
y(!) � d(!)� q(!),
zN  (1� ✓)zN (2017)

Who do you have on your bench, what
reserves are in your plan?
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Approaches

Value of (constrained) optimization

Constraints can capture domain knowledge much more than a single
objective

Machine learning can be used to inform models

Informed strategic decisions and tradeo↵s

Facility location: where to locate reserves, agents, sizing

Disaster recovery: hedging risk, promoting flexibility, dynamics,
windows and staging

Risk models: not all outcomes are equally bad, trade risk

Extreme event models: small tails, change policies

Truth is in the details
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