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The issue

My problem has a solution, why does your solver fail to find it?

Inappropriate application of solver

Reality: Poor implementations of nice problems are much harder

Reality: Solver cannot detect structure of problem to exploit
computationally

Without loss of generality, we can assume our problem is in the
following standard form...

Reality: Real problems are messy

Our algorithm solves these (nonstandard) problems well - how can we
make it available?

Let modelers formulate their problem naturally, with appropriate
mathematical constructs, convey known problems structures, and

automate problem transformations for solution engines
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Equilibrium problems (GNEPs)

Generalized Nash equilibrium problems (GNEPs)

find (x∗1 , . . . , x
∗
N) satisfying,

x∗i ∈ argminxi θi (xi , x
∗
−i ),

s.t. hi (xi , x
∗
−i ) = 0,

gi (xi , x
∗
−i ) ≤ 0,

where
x−i = (x1, . . . , xi−1, xi+1, . . . , xN).

If interactions occur only in objectives, then it becomes a NEP.
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Equilibrium problems (MOPECs)

GNEP + VI agent: MOPEC

find (x∗1 , . . . , x
∗
N , π

∗) satisfying,

x∗i ∈ argminxi θi (xi , x
∗
−i , π

∗),

s.t. hi (xi , x
∗
−i , π

∗) = 0,

gi (xi , x
∗
−i , π

∗) ≤ 0,

π∗ ∈ SOL(K (x∗),F (·; x∗))

Add an additional VI agent that solves a variational inequality, i.e.
market clearing conditions

0 ≤ supply− demand ⊥ π ≥ 0
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Trading risk: Philpott et al. [2016]

CP: min
d1,d2

ω≥0,tC
σtC + p1d1 −W (d1) + ρC

[
p2
ωd

2
ω −W (d2

ω)− tCω

]
TP: min

v1,v2
ω≥0,tT

σtT + C (v1)− p1v1 + ρT

[
C (v2

ω)− p2
ωv

2(ω)− tTω

]
HP: min

u1,x1≥0
u2
ω ,x

2
ω≥0,tH

σtH − p1U(u1) + ρH

[
−p2(ω)U(u2

ω)− V (x2
ω)− tHω

]
s.t. x1 = x0 − u1 + h1,

x2
ω = x1 − u2

ω + h2
ω

0 ≤ p1 ⊥ U(u1) + v1 ≥ d1

0 ≤ p2
ω ⊥ U(u2

ω) + v2
ω ≥ d2

ω,∀ω
0 ≤ σω ⊥ tCω + tTω + tHω ≥ 0,∀ω σ = (σω)
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Issues with specifying equilibrium problems

How to specify equilibrium problems in modeling languages?
I Abstractly, a model is defined by a set of variables and equations.

F ex) a GNEP model: m := {(xi , θi , hi , gi )}Ni=1

I No constructs exist to specify equilibrium problems or variational
inequalities:

F solve m using lp min obj will not work.

I Existing way: formulate an MCP(B,F )
F Specify MCP using . in GAMS or complements in AMPL.
F However, we’ll lose agent information.
F Modeler has to compute derivatives (KKT).

I A new set of constructs are needed to specify agent information (who
controls what).
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The Emp framework for equilibrium problems

The Emp framework: Ferris et al. [2009], Kim and Ferris [2018b]
I Annotate agent information in a separate file, called the empinfo file,

using symbols of the model.

F Define a model in the usual way:

variables obj(i), x(i);

equations defobj(i), defh(i), defg(i);

...

model / defobj, defh, defg /;

F Write annotations in the empinfo file:

min obj(i) s.t. x(i), defobj(i), defh(i), defg(i)

I Identify the problem structure by parsing the empinfo file.
I Verification could be performed by checking the ownership.

Ferris/Huber/Kim (Univ. Wisconsin) Emp/Selkie Supported by DOE/ARPA-E 7 / 26



Representing sophisticated expressions: shared constraints

Shared constraints

min
xi

θi (xi , x−i ) s.t. g(xi , x−i ) ≤ 0, (⊥ µi ).

I empinfo file:

min obj(i) s.t. x(i), defg

I Switching to different solution concepts is easy:

visol defg

min obj(i) s.t. x(i), defg

F visol computes a variational equilibrium, where we force use of a
single g and a single µ:

min
xi

θi (xi , x−i )− µTg(xi , x−i ),

0 ≥ g(xi , x−i ) ⊥ µ ≤ 0
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Representing sophisticated expressions: shared variables

Shared variables (with their defining constraints)

min
xi ,y

θi (xi , y , x−i ),

s.t. h(xi , y , x−i ) = 0.

I empinfo file:

implicit y, defh

min obj(i) s.t. x(i), y, defobj(i)
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Several different uses of shared variables

Improve sparsity:

max
xi≥0

xip

 N∑
j=1

xj

− ci (xi ) (⇒) max
xi≥0,y=

∑N
i=1 xi

xip(y)− ci (xi )

I Computational performance could be significantly improved.

original y =
∑N

i=1 xi
size density time (secs) size density time (secs)

2,502 99.92% 57.78 2,508 0.20% 1.30
5,002 99.96% 420.92 5,008 0.10% 5.83

10,002 99.98% - 10,008 0.05% 22.01
- - - 25,008 0.02% 148.08
- - - 50,008 0.01% 651.14
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The sparsity patterns
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Several different uses of shared variables

Modeling mixed-behavior of agents: price-makers/price-takers

max
xi ,y=p(x)

xiy − ci (xi ) or max
xi

xiy − ci (xi ).

I empinfo file: only include y if agent i has control of it.

implicit y, defp

max obj(i) s.t. x(i), y, defobj(i)

Profit Competitive Oligo1 Oligo12 Oligo123 Oligo1234 Oligo12345
Firm 1 123.834 125.513 145.591 167.015 185.958 199.934
Firm 2 195.314 216.446 219.632 243.593 264.469 279.716
Firm 3 257.807 278.984 306.174 309.986 331.189 346.590
Firm 4 302.863 322.512 347.477 373.457 376.697 391.279
Firm 5 327.591 344.819 366.543 388.972 408.308 410.357

Total profit 1207.410 1288.273 1385.417 1483.023 1566.621 1627.875
Social welfare 39063.824 39050.191 39034.577 39022.469 39016.373 39015.125

Other usage: general economic conditions, shared objective variables,
etc.
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Optimal Value Functions

Problem type

Objective function

min
x∈X

θ(x) + ρ(F (x))

or Constraint

min
x∈X

θ(x) s.t. ρ(F (x)) ≤ α

Special case is a Quadratic Support Function (Aravkin et al. [2013])

ρ(y) = sup
u∈U
〈u,By + b〉 − 1

2
〈u,Mu〉

Dual representation (of coherent r.m.) in terms of risk sets

ρ(Z ) = sup
µ∈D

Eµ[Z ]

If D = {p} then ρ(Z ) = E[Z ]

If Dα,p = {λ ∈ [0, p/(1− α)] : 〈1, λ〉 = 1}, then ρ(Z ) = CVaRα(Z )
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The transformation to MOPEC

Emp allows any Quadratic Support Function to be defined and
facilitates model transformations to tractable forms for solution

empinfo file: OVF cvarup F(x) rho .9

min
x∈X

θ(x) + ρ(F (x))

ρ(y) = sup
u∈U

{
〈u, y〉 − 1

2
〈u,Mu〉

}
0 ∈ ∂θ(x) +∇F (x)T∂ρ(F (x)) + NX (x)

0 ∈ ∂θ(x) +∇F (x)Tu + NX (x)

0 ∈−u + ∂ρ(F (x)) ⇐⇒ 0 ∈ −F (x) + Mu + NU(u)

This is a MOPEC, and we have a copy of this construct for each agent
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Emp framework

Model m
EMPinfo

Model m′

EMPinfo′
Julia

GAMS

AMPL

Equilibrium
Solver

GAMS

Julia

AMPL

Model transformations

Value propagations

The model representation inside the Emp solver is independent of any
model language
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Solution methods for equilibrium problems

MCP using PATH
I Form an MCP(B,F ) by concatenating the KKT conditions of agents.

Fi (x , λ, µ) =

∇xi θ(x)−∇xig(x)λi −∇xih(x)µi

gi (x)
hi (x)

 ⊥
xiλi
µi

 ∈ B

I Solve the resulting MCP using the PATH solver.

Decomposition using (group) diagonalization
I Repeat for i = 1, . . . ,N agent i solves its problem while keeping x−i

fixed until convergence.
I Jacobi: agents use the same values for other agents’ variables.
I Gauss-Seidel: each agent uses the most recent values.
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Implementing decomposition methods in modeling
languages

Typical steps (unless the underlying solver directly supports it)
1 Define some number of submodels.

F ex) master and subproblems in the case of Dantzig-Wolfe or Benders

2 Define a sequence of operations to be performed over these submodels
iteratively.

Define model i for i = 1..N.

Solve  model 1

. . .
Solve  model N

Loop

Additional operations are performed
such as updating models.
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Selkie

Selkie
I Performs a model transformation: generate submodels for

decomposition.
I Supports various decomposition methods.
I Can compute a solution in an adaptable and flexible way.
I ex) Selkie on equilibrium problems:

Sub−solver

(PATH)
(agent 22, ...)

group M

group 1

(agent 1, agent 2)

...

Sub−solver

(CONOPT)

customizable

Run diagonalization (best−response scheme) over groups

model sM

...

model s1model m

agent 2

agent 1

agent N

...

customizable

Ferris/Huber/Kim (Univ. Wisconsin) Emp/Selkie Supported by DOE/ARPA-E 18 / 26



An example of using Selkie for group diagonalization

An oligopolistic market equilibrium problem:

maximize
qi≥0

qip

 5∑
j=1,j 6=i

qj + qi

− ci (qi ), for i = 1, . . . , 5.

Group
Iterations

Jacobi GS GSW GS(RS)
{{1},{2},{3},{4},{5}} 155 45 28 50

{{1,2},{3,4},{5}} 57 21 22 30
{{1..3},{4,5}} 28 14 14 18
{{1..4},{5}} 22 12 12 16
{{1..5}} 1

I GS: Gauss-Seidel
I GSW: Gauss-Southwell
I GS(RS): Gauss-Seidel with random sweep

An automatic detection of independent groups is supported.
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Example: solving a dynamic economic model using value
function iteration (VFI)

A Bellman equation
I For each state x (assuming continuous values),

V (x) := max
a∈A

[c(x , a) + βV (x ′)] ,

s.t. x ′ = h(x , a).

I Find a fixed point V : V (·) = T (V (·)) where T is an operator of the
right-hand side of the above.

Value function iteration
I Create a grid of possible states: (x1, . . . , xn) ⇒ V ∈ Rn

I Starting with V 0 ∈ Rn, repeat
F For i = 1, . . . , n,

solve V k(xi ) = maxai∈A[c(xi , ai ) + βV k−1(x ′)] s.t. x ′ = h(xi , ai ).

F Stop if ‖V k − V k−1‖ ≤ ε.

Ferris/Huber/Kim (Univ. Wisconsin) Emp/Selkie Supported by DOE/ARPA-E 20 / 26



Solving a dynamic economic model using VFI (cont)

We may need to evaluate V (x) at x not in the grid points.
I e.g., x ′ = h(xi , a) may not be in the grid points.
I Use an approximation Ṽ (x) :=

∑m
j=1 αjφj(x), where φj(·) is a basis

function.

The problem becomes an equilibrium problem (Chang et al. [2018]):

find (α∗, a∗1, . . . , a
∗
n) satisfying,

α∗ ∈ argminα

n∑
i=1

(
V (xi )− Ṽ (xi )

)2
,

a∗i ∈ argmaxai∈A

[
c(xi , ai ) + βṼ (x ′)

]
,

s.t. x ′ = h(xi , ai ).
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Using Emp and Selkie

empinfo file:
equilibrium

min objl s.t. alpha(j) defobjl

max obj(i) s.t. a(i) x(i) defobj(i) defh(i)

selkie.opt file:

agent group {1,{2..390}:jacobi}
parallel jacobi yes

I Interpretation
F There are two groups of agents: least squares and Bellman
F When solving Bellman, apply a parallel Jacobi method.
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Performance comparisons

Model statistics

# rows # cols # nnz # grid

1,946 2,724 156,768 389

# nonlinear code # nonlinear nonzeros

25,752,580 154,433

Experimental results

# iter
time (mins)

original Selkie

5 9 2
10 17 3
20 32 4

...
...

...
583 � 240 63
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Dantzig-Wolfe decomposition for VIs (Luna et al. [2012])

Given VI(K ,F ) where K = {x | gi (xi ) ≤ 0, h(x) ≤ 0},
I h(x) is assumed to be a coupling constraint: Ax = b in LP case.
I Follow a similar mechanism like LP:

F Master problem VI(Km,Fm)

Km =

{
λ | h

(
l∑

i=1

λiy
i

)
≤ 0,

l∑
i=1

λi = 1, λi ≥ 0

}
,

(Fm(λ))i = F

(
l∑

i=1

λiy
i

)T

y i

F Subproblem VI(Ks ,Fs)

Ks = {x | gi (xi ) ≤ 0} ,
Fs(x) = F (x)−∇h(x)µm
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Using Emp and Selkie

empinfo file:

vi F x cons

selkie.opt:

decomposition method dantzig wolfe

coupling constraints nameofcons

Performance comparisons:

# cols
time (secs)

original Selkie

102 1 0.2
502 6 0.9

1,002 29 4
2,502 273 26
5,002 2,040 124
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Conclusions and future work

Emp facilitates easier formulation of stochastic equilibrium problems

The Emp framework and Selkie automate the implementation of
decomposition methods in modeling languages

I Equilibrium problems with diagonalization, SJM
I Variational inequalities with Dantzig-Wolfe decomposition

They enable an efficient and flexible deployment of decomposition
methods.

I Different group decomposition

Fast running time is achieved using efficient model generation and
parallel solve of submodels.

Need better algorithms that exploit structure

Need to interface to more modeling languages

Need feedback on what is difficult to do

How to specify stochastic processes within modeling systems
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