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Power generation, transmission and distribution

Determine generators’ output to reliably meet the load
I
∑

Gen MW =
∑

Load MW, at all times.
I Power flows cannot exceed lines’ transfer capacity.
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Managing the Grid

Independent System Operator (ISO)1

10 ISOs in N. America, serving 2/3 of all electricity customers in the U.S.

U.S. daily generation in 2013: 11 million MWh2

Average wholesale price: $30 - $80/MWh
1Another name is Regional Transmission Organization (RTO)
2Information from www.eia.gov
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Economic dispatch (a linear program)
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Variables: Generators’ output u; Power flows on lines x ; Bus voltage angle δ
Objective: Minimize the total generation cost, cTu
Constraints:

Kirchhoff’s laws: g(x , u) = 0, where g is a linear function, including:

I Nodal balance equations, line flow equations.

Variable bounds: h(x , u) ≤ 0, including:

I Line limit: −x̄ ≤ x ≤ x̄ ; Generator capacity: 0 ≤ u ≤ ū
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The PIES Model (Hogan)

minx cT x
cost

s.t. Ax ≥ d

(p) = d̄ − p

balance
Bx = b

technical constr
x ≥ 0

Issue is that p is the multiplier on the “balance” constraint of LP

Such multipliers (LMP’s - locational marginal prices) are critical to
operation of market

Can solve the problem by writing down the KKT conditions of this
LP, forming an LCP and exposing p to the model

EMP does this automatically from the annotations
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Reformulation details

0 ≤ Ax − d(p) ⊥ µ ≥ 0
0 = Bx − b ⊥ λ
0 ≤ −ATµ− BTλ+ c ⊥ x ≥ 0

empinfo: dualvar p balance

replaces µ ≡ p

LCP/MCP is then solvable using PATH

z =

pλ
x

 , F (z) =

 A
B

−AT −BT

 z +

−d(p)
−b
c


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Extension: maximizing profit

maxx pT x − cT x
profit

s.t. Ax ≥ d(p)
balance

Bx = b
technical constr

x ≥ 0

Issue is that there are multiple producers i
The price is now determined by total production

maxxi p(
∑

j xj)
T xi − cTi xi

profit
s.t. Bixi = bi

technical constr
xi ≥ 0

and
0 ≤ d(p)−

∑
i

xi ⊥ p ≥ 0
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Special case: many agents

maxxi p���
�XXXX(

∑
j xj)

T xi − cTi xi
profit

s.t. Bixi = bi
technical constr

xi ≥ 0

and
0 ≤ (d̄ − p)−

∑
i

xi ⊥ p ≥ 0

When there are many agents, assume none can affect p by themselves

Each agent is a price taker

Two agents, d̄ = 24, c1 = 3, c2 = 2

KKT(1) + KKT(2) + Market Clearing gives Complementarity
Problem

x1 = 0, x2 = 22, p = 2
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Special case: two agents (duopoly)

maxxi (d̄ −
∑

j xj)
T xi − cTi xi

profit
s.t. Bixi = bi

technical constr
xi ≥ 0

Cournot: assume each can affect p by choice of xi

Two agents, same data

KKT(1) + KKT(2) gives Complementarity Problem

x1 = 20/3, x2 = 23/3, p = 29/3

Exercise of market power (some price takers, some Cournot)
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MOPEC

min
xi
θi (xi , x−i , p) s.t. gi (xi , x−i , p) ≤ 0,∀i

p solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h p cons

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve
complementarity problem

Precondition using
“individual optimization”
with fixed externalities

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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Hydro-Thermal System (Philpott/F./Wets)

Let us assume that �1 > 0 and p(!)�2(!) > 0 for every ! 2 
. This corresponds to
a solution of SP meeting the demand constraints exactly, and being able to save money
by reducing demand in each time period and in each state of the world. Under this as-
sumption TP(i) and HP(i) also have unique solutions. Since they are convex optimization
problems their solution will be determined by their Karush-Kuhn-Tucker (KKT) condi-
tions. We de�ne the competitive equilibrium to be a solution to the following variational
problem:

CE: (u1(i); u2(i; !)) 2 argmaxHP(i), i 2 H
(v1(j); v2(j; !)) 2 argmaxTP(j), j 2 T
0 �

P
i2H Ui (u1(i)) +

P
j2T v1(j)� d1 ? �1 � 0;

0 � +
P

i2H Ui (u2(i; !)) +
P

j2T v2(j; !)� d2(!) ? �2(!) � 0; ! 2 
:

This gives the following result.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution for in�ows. Then the solution
to SP is the same as the solution to CE.

3.1 Example

Throughout this paper we will illustrate the concepts using the hydro-thermal system
with one reservoir and one thermal plant, as shown in Figure 1. We let thermal cost be

Figure 1: Example hydro-thermal system.

C (v) = v2, and de�ne

U(u) = 1:5u� 0:015u2

V (x) = 30� 3x+ 0:025x2

We assume in�ow 4 in period 1, and in�ows of 1; 2; : : : ; 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1. The central plan that maximizes expected welfare (by
minimizing expected generation and future cost) is shown in Table 2. One can observe
that the two solutions are identical, as predicted by Proposition 2.

6
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Simple electricity “system optimization” problem

SO: max
dk ,ui ,vj ,xi≥0

∑
k∈K

Wk(dk)−
∑
j∈T

Cj(vj) +
∑
i∈H

Vi (xi )

s.t.
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk ,

xi = x0i − ui + h1i , i ∈ H

ui water release of hydro reservoir i ∈ H
vj thermal generation of plant j ∈ T
xi water level in reservoir i ∈ H
prod fn Ui (strictly concave) converts water release to energy

Cj(vj) denote the cost of generation by thermal plant

Vi (xi ) future value of terminating with storage x (assumed separable)

Wk(dk) utility of consumption dk
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SO equivalent to CE

Consumers k ∈ K solve CP(k): max
dk≥0

Wk (dk)− pTdk

Thermal plants j ∈ T solve TP(j): max
vj≥0

pT vj − Cj(vj)

Hydro plants i ∈ H solve HP(i): max
ui ,xi≥0

pTUi (ui ) + Vi (xi )

s.t. xi = x0i − ui + h1i

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dk ∈ arg max CP(k), k ∈ K,
vj ∈ arg max TP(j), j ∈ T ,

ui , xi ∈ arg max HP(i), i ∈ H,

0 ≤ p ⊥
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk .
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General Equilibrium models

(C ) : max
xk∈Xk

Uk(xk) s.t. pT xk ≤ ik(y , p)

(I ) :ik(y , p) = pTωk +
∑
j

αkjp
Tgj(yj)

(P) : max
yj∈Yj

pTgj(yj)

(M) : max
p≥0

pT

∑
k

xk −
∑
k

ωk −
∑
j

gj(yj)

 s.t.
∑
l

pl = 1

This is an example of a MOPEC
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Nash Equilibria

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

empinfo: equilibrium
min loss(i) x(i) cons(i)
vi H q

Applications: Discrete-Time Finite-State Stochastic Games.
Specifically, the Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry.
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Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200 (with new basis extensions in PATH)

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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Representative decision-making timescales in electric power
systems

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute seconds

Transmission
Siting & Construction

Power Plant
Siting & Construction Maintenance

Scheduling

Long-term
Forward
Markets

Load
Forecasting

Closed-loop
Control and 
Relay Action

Closed-loop
Control and 

Relay Setpoint
Selection Day ahead

market w/ unit 
commitment

Hour ahead
market

Five
 minute
market

Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow

22

Many interacting levels, with different time scaled decisions at each level -
collections of models needed.
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Complications and myriad of acronyms

Size/integrity
I AC/DC models, reactive power, new devices, design/operation
I Multi-period, demand response, load shedding, demand bidding
I Day ahead, reserves, regulation, FTR’s, co-optimization

Integer:
I Unit commitment (DAUC, RUC, RT)
I Minimum up and down time
I Transmission line switching

Stochastic
I Security constraints (SCED/SCUC)
I Stochastic demand, dynamic
I Renewables/storage
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Bilevel Program (Stackelberg)
Assumes one leader firm, the rest follow
Leader firm optimizes subject to expected follower behavior
Follower firms act in a Nash manner
Bilevel programs:

min
x∗,y∗

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
y∗ solves min

y
v(x∗, y) s.t. h(x∗, y) ≤ 0

model bilev /deff,defg,defv,defh/;
empinfo: bilevel min v y defv defh
EMP tool automatically creates the MPCC

min
x∗,y∗,λ

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
0 ≤ ∇v(x∗, y∗) + λT∇h(x∗, y∗) ⊥ y∗ ≥ 0
0 ≤ −h(x∗, y∗) ⊥ λ ≥ 0
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EMP(ii): MPCC: complementarity constraints

min
x ,s

f (x , s)

s.t. g(x , s) ≤ 0,
0 ≤ s ⊥ h(x , s) ≥ 0

g , h model “engineering” expertise: finite elements, etc

⊥ models complementarity, disjunctions

Complementarity “⊥” constraints available in AIMMS, AMPL and
GAMS

NLPEC: use the convert tool to automatically reformulate as a
parameteric sequence of NLP’s

Solution by repeated use of standard NLP software
I Problems solvable, local solutions, hard
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Agents have stochastic recourse?

Two stage stochastic programming, x1 is here-and-now decision,
recourse decisions x2 depend on realization of a random variable

R is a risk measure (e.g. expectation, CVaR)

SP: max cT x1 + R[qT x2]

s.t. Ax1 = b, x1 ≥ 0,

T (ω)x1 + W (ω)x2(ω) ≥ d(ω),

x2(ω) ≥ 0,∀ω ∈ Ω.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ­
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu­
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

EMP/SP extensions to facilitate these models

Ferris (Univ. Wisconsin) Econ & Energy TWCCC 21 / 33



Contingency: a single line failure
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A network with N lines can have up to N contingencies

Each contingency case:
I Corresponds to a different network topology
I Requires a different set of equations g and h
I E.g., equations gk and hk for the k-th contingency.
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Control v.s. State variables

Generator output u is a CONTROL variable:

I System operator can directly set/adjust its level
I No abrupt change, i.e., it takes time to ramp up/down a generator

Line flow x is a STATE variable:

I The level depends on u and the network topology
I Automatically jumps to a new level when topology changes, e.g., when

a line suddenly fails

Security requirement: When a line fails, other lines should not
overload.

Change “base” state and control variables to achieve this.
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Security-constrained Economic Dispatch

Base-case network topology g0 and line flow x0.

If the k-th line fails, line flow jumps to xk in new topology gk .

Ensure that xk is within limit, for all k .

SCED model:

min
u,x0,...,xk

cTu B Total cost

s.t. 0 ≤ u ≤ ū B GEN capacity const.

g0(x0, u) = 0 BBase-case network eqn.

−x̄ ≤ x0 ≤ x̄ BBase-case flow limit

gk(xk , u) = 0, k = 1, . . . ,K BCtgcy network eqn.

−x̄ ≤ xk ≤ x̄ , k = 1, . . . ,K BCtgcy flow limit
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Model structure

0 20 40 60 80 100 120 140 160 180

0

20
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140

160

180

200

Columns

R
ow

s

Base Case

Contingency 1, time 0

Contingency 1, time 1

Contingency 1, time 2

Figure : Sparsity structure of the
Jacobian matrix of a 6-bus case,
considering 3 contingencies and 3
post-contingency checkpoints.

Base Case

Contingency 1

Contingency 2

SCED Feasible 
Region

Cost-
minimizing 

direction

SCED optimal point

ED optimal point

Figure : On the u0 plane, the feasible
region of a SCED is the intersection of
K+1 polyhedra.
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Contracts in MOPEC (F./Wets)

Competing agents (consumers, or generators in energy market)

Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered
later (e.g. Arrow-Debreu Securities)

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Buy yi contracts in period 1, to deliver D(ω)yi in period 2, scenario ω
Each agent i :

min C (x1i ) +
∑
ω

πωC (x2i (ω))

s.t. p1x1i + vyi ≤ p1e1i (budget time 1)

p2(ω)x2i (ω) ≤ p2(ω)(D(ω)yi + e2i (ω)) (budget time 2)

0 ≤ v ⊥ −
∑
i

yi ≥ 0 (contract)

0 ≤ p1 ⊥
∑
i

(
e1i − x1i

)
≥ 0 (walras 1)

0 ≤ p2(ω) ⊥
∑
i

(
D(ω)yi + e2i (ω)− x2i (ω)

)
≥ 0 (walras 2)
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Observations

Examples from literature solved using homotopy continuation seem
incorrect - need transaction costs to guarantee solution

Solution possible via disaggregation only seems possible in special
cases

I When problem is block diagonally dominant
I When overall (complementarity) problem is monotone
I (Pang): when problem is a potential game

Progressive hedging possible to decompose in these settings by agent
and scenario

Can do multi-stage models via stochastic process over scenario tree

Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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PJM buy/sell dynamic model

Storage transfers energy over time (horizon = T ).

PJM: given price path pt , determine charge q+t and discharge q−t :

max
ht ,q

+
t ,q

−
t

T∑
t=0

pt(q
−
t − q+t )

s.t. ∂ht = eq+t − q−t

0 ≤ ht ≤ S
0 ≤ q+t ≤ Q
0 ≤ q−t ≤ Q
h0, hT fixed

Uses: price shaving, load shifting, transmission line deferral

What about real-time storage, or different storage technologies?

Ferris (Univ. Wisconsin) Econ & Energy TWCCC 29 / 33



Stochastic price paths (day ahead market)

min
x ,h,q+,q−

c1(x) + Eω

[
T∑
t=0

pωt(q
+
ωt − q−ωt) + c2(q+ωt + q−ωt)

]
s.t. ∂hωt = eq+ωt − q−ωt

0 ≤ hωt ≤ Sx
0 ≤ q+ωt , q

−
ωt ≤ Qx

hω0, hωT fixed

First stage decision x : amount of storage to deploy.

Second stage decision: charging strategy in face of uncertainty

Ferris (Univ. Wisconsin) Econ & Energy TWCCC 30 / 33



Distribution of (multiple) storage types
Determine storage facilities xk to build, given distribution of price paths:
no entry barriers into market, etc. MOPEC: for all k solve a two stage SP

∀k : min
xk ,hk ,q

+
k ,q

−
k

c1k (xk) + Eω

[
T∑
t=0

pωt(q
+
ωkt − q−ωkt) + c2k (q+ωkt + q−ωkt)

]
s.t. ∂hωkt = eq+ωkt − q−ωkt

0 ≤ hωkt ≤ Sxk
0 ≤ q+ωkt , q

−
ωkt ≤ Qxk

hωk0, hωkT fixed

pωt = f

(
γ,Dωt +

∑
k

(q+ωkt − q−ωkt)

)

Parametric function (γ) determined by regression. Storage operators react
to shift in demand.
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS
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Conclusions

Optimization critical for understanding of power system markets

Different behaviors are present in practice and modeled here

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

Policy implications addressable using MOPEC

Stochastic MOPEC models capture behavioral effects (as an EMP)

Extended Mathematical Programming available within the GAMS
modeling system

Modeling, optimization, statistics and computation embedded within
the application domain is critical
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