
Multistage Process Models and
Grid Computation

Michael C. Ferris
University of Wisconsin

joint with Christos Maravelias
(AFOSR, NSF, AChS)

I’m depressed!

• Last year I told you about
GAMS/grid on Condor

• Even better now!
– Able to do directed runtime output

switching
– Simpler mechanisms for collecting jobs

• Condor is bigger and better
• Paper at www.cs.wisc.edu/~ferris

Typical Application for
GAMS

loop(sloop(s,,
b(jb(j) =) = dem(s,jdem(s,j))
solve transport min zsolve transport min z using using lplp;;
report(sreport(s) =) = z.lz.l;;

) ;) ;

Typical Application for
GAMS

loop(sloop(s,,
b(jb(j) =) = dem(s,jdem(s,j))
solve transport min zsolve transport min z using using lplp;;
report(sreport(s) =) = z.lz.l;;

) ;) ;

Need
notion of a
handle

Typical Application for
GAMS/grid

transport.solvelinktransport.solvelink = 3; = 3; // turn on grid option// turn on grid option
loop(sloop(s,,

b(jb(j) =) = dem(s,jdem(s,j))
solve transport min zsolve transport min z using using lplp;;
h(sh(s) =) = transport.handletransport.handle); // save instance handle); // save instance handle

repeatrepeat
loop(s$loop(s$handlecollecthandlecollect(h(s(h(s)),)),

report(sreport(s) =) = z.lz.l;;
h(sh(s) = 0) ; // indicate that we have loaded the solution) = 0) ; // indicate that we have loaded the solution

display$sleep(card(hdisplay$sleep(card(h)*0.2) 'was sleeping for some time';)*0.2) 'was sleeping for some time';
until until card(hcard(h) = 0 or) = 0 or timeelapsedtimeelapsed > 10; > 10;

Why used only by my buddies?

• Entry cost to parallel computing is high
– Accounts at supercomputer site
– Source code changes – debugging hard
– Wait for 2 days for job to start
– Install Condor

• Good news - diminishing – 4 proc laptops
– No change at all to GAMS source
– Can use already – relies on OS not grid tools

• Is this true of your parallel application?

Worker setup cost

• ‘Free’ for background process
• Easy on Sun-Grid since ‘shared FS’
• Condor-Grid much larger, has no SFS

– Worker set up installs GAMS
– Design has 1 task per worker

• Good news – MW/GAMS
– 1 worker, many tasks

Worker / task

• Local copy of gams needed
– Zip file, job dir
– Mimic environment

• Problem instance
• Start flag
• End flag
• Trigger file

– Updates

Data

Results

Exec

Shortcomings

• Iterative schemes update small
amount of model “data”

• As convergence occurs models
become easier to solve (great start
point)

• Model regeneration time is longer
than solution time!

• Fix: use MW and gams_submit

Problems are hard

• Embarrassingly parallel applications are not
transformative

• Naïve parallelism usually not effective
– Hamming distance decomposition
– Important variable decomposition
– dumptree = 400 option better
– B&B, LP & fix, Dantzig-Wolfe decomposition

possible using GAMS/grid but not trivial
• Good news – domain knowledge critical

rC

U1

U2

U3

U4

U5

U6

U7

A

k = 1

rA

rB

dA

dB

dC

Stages: k ∈ K = {1, 2, 3}

Units: j ∈ J = J(1) ∪ J(2) ∪ J(3)

k = 2 k = 3
J(1) = {U1, U2} J(2) = {U3, U4, U5} J(3) = {U6, U7}

Orders: i ∈ I = {A, B, C}

B

C

Batches

qi

rC

U1

U2

U3

U4

U5

U6

U7

A

k = 1

rA

rB

dA

dB

dC

Stages: k ∈ K = {1, 2, 3}

Units: j ∈ J = J(1) ∪ J(2) ∪ J(3)

k = 2 k = 3
J(1) = {U1, U2} J(2) = {U3, U4, U5} J(3) = {U6, U7}

Orders: i ∈ I = {A, B, C}

B

C

Batches

qi

Batching and scheduling

Heirarchical MIP
Determine
• the number and size of batches required

to meet each order (batching decision),
• the assignment of batches to processing

units at each stage,
• the sequencing of assigned batches in

each processing unit,
in order to minimize the time necessary to

meet all orders.

Fixing Zil

Fixing Xilj

P

P2P1 P3 PM1

Promising Non-promising

P4 Π1 = {

Π2 =

where,

2
2P 2

3P2
1P 2

M2(2)P 4
1P

4
1,1P 4

1,2P 4
1,3P 4

1,M3(4)P

m
U

Π

Promising Non-promising

Fixing Zil

Fixing Xilj

P

P2P1 P3 PM1

Promising Non-promising

P4 Π1 = {

Π2 =

where,

2
2P 2

3P2
1P 2

M2(2)P 4
1P

4
1,1P 4

1,2P 4
1,3P 4

1,M3(4)P

m
U

Π

Promising Non-promising

Results
• Models parameterized by q, nonstandard

option file used for CPLEX
• Model 1: optimality proof in 17 secs
• Model 2:

– CPLEX (9.0) fails to prove optimality in 2hrs
– dumptree=400 optimality proof in 2 hrs, but 13

hrs of computing done
– Interprocessor communication, “good heuristic”,

reduces optimality proof to 21 mins
– Domain partitioning, optimality proof in 7.5 mins
– CPLEX (10.2) optimality proof in 8 mins

Model 3
• CPLEX 10.2 fails after 2 hrs, …
• dumptree, dynamic repartitioning with 1 hr

time limit – filled disk
• Domain partitioning (2 levels) followed by

dumptree – 12 days CPU without lower
bound update

• Domain partitioning (3 levels) followed by
dumptree (1 hr) – 9 hrs wall clock time

• Domain partitioning (4 levels) – 12 hours
wall clock time

Model 4

• Even harder
• Domain partitioning

– 745 problems left at level 2
– One subproblem partitioned into 28886
– 29 left after 1 hr

• 12 hrs wall clock provided 126 CPU
days

• Time-constrained application fails

Optimal Transmission Switching

• Change topology of electrical network
• How to choose optimally?
• Similar type MIP, similar solution

strategy – 3 days wall clock time
• Application requires “overnight”

turnaround
• “Time constrained” optimization (as

opposed to “real-time”) via grid

Conclusions
• Grid systems available (e.g. Condor, IBM,

SUN)
• Grid computing convenient via simple

language extensions to modeling languages
• Can experiment with coarse grain parallel

approaches for solving difficult problems
• Exploiting underlying structure and model

knowledge key for “larger, faster” solution
• Please use it!

	Multistage Process Models and Grid Computation
	I’m depressed!
	Typical Application for GAMS
	Typical Application for GAMS
	Typical Application for GAMS/grid
	Why used only by my buddies?
	Worker setup cost
	Worker / task
	Shortcomings
	Problems are hard
	Batching and scheduling
	Heirarchical MIP
	Results
	Model 3
	Model 4
	Optimal Transmission Switching
	Conclusions

