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The problems

MCP(F ): 0 ≤ F (x) ⊥ x ≥ 0

VI(F ,C ): x∗ ∈ C , 〈F (x∗), x − x∗〉 ≥ 0,∀x ∈ C

QVI: x∗ ∈ K (x∗), 〈F (x∗), x − x∗〉 ≥ 0,∀x ∈ K (x∗)

MPEC:

min
x ,y

θ(x , y)

s.t. (x , y) ∈ D,

y solves VI (F (x , ·),C )

GNE: x∗: x∗i solves min
xi∈Ki (x

∗
−i )
θ(xi , x

∗
−i ),∀i

MOPEC: x∗, p:

x∗i solves min
xi∈Ki (x

∗
−i ,p)

θ(xi , x
∗
−i , p),∀i

p solves VI (F (x∗, ·),C )
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(M)OPEC

min
x
θ(x , p) s.t. g(x , p) ≤ 0

0 ≤ p ⊥ h(x , p) ≥ 0

equilibrium

min theta x g

vi h p

x ⊥ ∇xθ(x , p) + λT∇xg(x , p)

0 ≤ λ ⊥ −g(x , p) ≥ 0

0 ≤ p ⊥ h(x , p) ≥ 0

Solved concurrently (in a Nash manner)

Requires global solutions of agents problems (or theory to guarantee
KKT are equivalent)

Theory of existence, uniqueness and stability based in variational
analysis
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MOPEC

min
xi
θi (xi , x−i , p) s.t. gi (xi , x−i , p) ≤ 0,∀i

p solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h p cons

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve
complementarity problem

Solve overall problem
using “individual
optimizations”?

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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Iteration with Indefinite Splitting

Ax = b

Splitting A = P − N naturally leads to a stationary iteration of the form

x0 arbitrary, Pxk+1 = Nxk + b, k = 0, 1, . . .

This iteration may or may not converge; simply applicable sufficient
conditions for convergence are particularly valuable.

Most well-known such conditions are diagonal dominance:
I if the preconditioner is P = diag(A) (leading to Jacobi iteration) or
I P is the lower triangular part of A (leading to Gauss-Seidel iteration),

then convergence is guaranteed if the strict diagonal dominance
condition

|ai ,i | >
∑

j=1,...,n,j 6=i

|ai ,j |, i = 1, . . . , n (1)

is satisfied by A = {ai ,j , i , j = 1, . . . , n}.

Ferris (Univ. Wisconsin) MOPEC SIOPT 2014 5 / 27



Weaker diagonal dominance conditions

For irreducible matrices, it is well documented that the weaker condition

|ai ,i | ≥
∑

j=1,...,n,j 6=i

|ai ,j |, i = 1, . . . , n (2)

is also sufficient provided strict inequality holds for at least one row index, i
The condition (1) or (2) also guarantees that A ∈ Rn×n is invertible, so a
unique solution exists.
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Strongly Convex (Generalized) Nash Equilibria

min
x1≥0

1

2
x21 − θx1x2 − 4x1 s.t. x1 + x2 ≥ 1

min
x2≥0

1

2
x22 − x1x2 − 3x2

No solution for θ ≥ 1:

x1(x2) = (θx2 + 4)+, x2(x1) = (x1 + 3)+

Solution −4
3 ≤ θ < 1: x1 = 4+3θ

1−θ , x2 = x1 + 3

Solution θ ≤ −4
3 : x1 = 0, x1 = 3

Jacobi works provided θ < 1, but theory fails
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The Issues

This is not the optimality conditions of a single optimization problem:

0 ≤

 1 1 −1
1 1

−1 1

 x1
−p1
x2

−
4

1
3

 ⊥

 x1
−p1
x2

 ≥ 0

The matrix A in general is never diagonally dominant except in trivial
cases

Iterations based on succesive inversion of local blocks (or successive
optimization of local strategies) can converge.

We establish sufficient conditions which guarantee convergence of
block Jacobi and block Gauss-Seidel iterations for such matrices.
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The Setting

We focus on matrices of the form

A =


A1 A1,2 · · · A1,p E1

A2,1 A2
. . .

...
...

...
. . .

. . . Ap−1,p Ep−1
Ap,1 · · · Ap,p−1 Ap Ep

F1 · · · Fp−1 Fp D

 (3)

where

Ai =

[
Qi BT

i

Bi 0

]
, i = 1, . . . , p (4)

with Qi = QT
i ∈ Rni×ni positive definite and Bi ∈ Rmi×ni of full rank

mi < ni for each i (mi > 0). These conditions guarantee that each Ai is
invertible. The submatrix D ∈ Rs×s , s ≥ 0 must be symmetric and
invertible (unless s = 0).
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Old Block Theory

For the blocked matrix (3) a result of Feingold and Varga (1962) applies:
If A is block irreducible and

(‖A−1i ‖2)−1 ≥ ‖Ei‖2 +
∑

j=1,...,p,j 6=i

‖Ai ,j‖2, i = 1, . . . , p (5)

and (‖D−1‖2)−1 ≥
∑

j=1,...,p,j 6=i

‖Fi‖2 (6)

with strict inequality in (6) or for at least one index, i , in (5), then A is
invertible (existence and uniqueness)

Ferris (Univ. Wisconsin) MOPEC SIOPT 2014 10 / 27



Relation to Iteration

Before considering these conditions in more detail, consider a block Jacobi
or block Gauss-Seidel iteration based on the splitting with

P =


A1 0 · · · 0 0

0 A2
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 Ap 0
0 · · · 0 0 D

 or P =


A1 0 · · · 0 0

A2,1 A2
. . .

...
...

...
. . .

. . . 0 0
Ap,1 · · · Ap,p−1 Ap 0
F1 · · · Fp−1 Fp D


Asymptotic convergence of the corresponding stationary (or simple)
iteration will be guaranteed for any starting vector if all of the eigenvalues,
λ, of I − P−1A lie strictly inside the unit disc.
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The link
Such eigenvalues satisfy (I − P−1A)x = λx , x 6= 0 or equivalently
(A+ (λ− 1)P)x = 0, x 6= 0. In the case of block Jacobi, asymptotic
convergence will be guaranteed if there does not exist any λ with |λ| ≥ 1
such that the matrix

A(λ) = A+ (λ− 1)P =


λA1 A1,2 · · · A1,p E1

A2,1 λA2
. . .

...
...

...
. . .

. . . Ap−1,p Ep−1
Ap,1 · · · Ap,p−1 λAp Ep

F1 · · · Fp−1 Fp λD


is singular. But

(‖(λAi )
−1‖2)−1 = |λ|(‖A−1i ‖2)−1 ≥ (‖A−1i ‖2)−1

whenever |λ| ≥ 1 with a identical argument holding for D. Hence
satisfaction of the conditions (5),(6) not only guarantees invertibility of A,
but also guarantees covergence of the block Jacobi iteration.
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Another piece

Let µi denote the smallest eigenvalue of the positive definite matrix Qi

and γi denote the smallest eigenvalue of the positive definite (Schur
complement) matrix BiQ

−1
i BT

i , then there are no eigenvalues of

Ai =

[
Qi BT

i

Bi 0

]
in the interval (

1

2

(
µi −

√
µ2i + 4γiµi

)
, µi

)
which contains the origin.
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Finally...

If the matrix A given by (3),(4) is block irreducible, then it is invertible
and the block Jacobi and block Gauss-Seidel iterations for a linear system
Ax = b converge to x for any starting vector if

min

{
1

2

(√
µ2i + 4γiµi − µi

)
, µi

}
≥

‖Ei‖2 +
∑

j=1,...,p,j 6=i

‖Ai ,j‖2, i = 1, . . . , p (7)

and d ≥
∑

j=1,...,p,j 6=i

‖Fi‖2 (8)

with strict inequality in (8)1 or for at least one index, i , in (7).

1d is the absolute value of eighenvalue of D closest to origin
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A Simplification

If for each i = 1, . . . , p, γi ≥ 2µi then A is invertible and the block Jacobi
and block Gauss-Seidel iterations for a linear system Ax = b converge to x
for any starting vector if

µi ≥ ‖Ei‖2 +
∑

j=1,...,p,j 6=i

‖Ai ,j‖2, i = 1, . . . , p (9)

and d ≥
∑

j=1,...,p,j 6=i

‖Fi‖2 (10)

with strict inequality in (10) or for at least one index, i , in (9).
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Extensions

Can also prove same result for SOR schemes

Can apply regularization (proximal iterations) on the constraints: for
εi > 0

Ai =

[
Qi BT

i

Bi −εi I

]
,

can be used for some subset (or indeed all) of the indices i = 1, . . . , p.

This simply increases the value of γi to γi + εi and strengthens the
above theory

Can apply when block solves are smaller scale Quadratic Programs
(with inequalities, etc) rather than systems of equations
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Strongly convex optimization

min
x1

1

2
x21 − x1x2 − 4x1 s.t. x1 + x2 = 1

min
x2

1

2
x22 − x1x2 − 3x2

 1 1 −1
1 1

−1 1

 x1
−p1
x2

 =

4
1
3


Solution: x1 = −1, x2 = 2, p1 = −7

Jacobi fails: after 4 steps back at (1, 1)T

Modified Jacobi ε1 = 0.1 solves in 20 steps
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Extensions

Replace systems of equations by (normal map formulation of)
complementarity problems ∀i :

Qi (πKi
(xi )) + BT

i p + ci + xi − πKi
(xi ) = 0

Bi (πKi
(xi )) = bi

Note this is a natural extension of the case considered above

Choose active set at each iteration based on prediction from previous
iteration

Apply theory to all selections of the resulting linear systems
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Does it work at realistic scales: GTAP?

The latest GTAP database represents global production and trade for
113 country/regions, 57 commodities and 5 primary factors.

Data characterizes intermediate demand and bilateral trade in 2007,
including tax rates on imports/exports and other indirect taxes.

The core GTAP model is a static, multi-regional model which tracks
the production and distribution of goods in the global economy.

In GTAP the world is divided into regions (typically representing
individual countries), and each region’s final demand structure is
composed of public and private expenditure across goods.
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The Model

The GTAP model may be posed as a system of nonlinear equations:

F (w , z ; t) = 0

in which: where

wr is a vector of regional welfare levels

z ∈ RN represents a vector of endogenous economic variables, e.g.

prices and quantities, z =

(
P
Q

)
.

t represents matrices of trade tax instruments – import tariffs (tMirs)
and export taxes (tXirs) for each commodity i and region r

Ferris (Univ. Wisconsin) MOPEC SIOPT 2014 20 / 27



Optimal Sanctions

Coalition member states strategically choose trade taxes which minimize
Russian welfare:

min
tr :r∈C

wrus

s.t.

F (w , z ; t) = 0

tr = t̄r ∀r /∈ C

tMi ,rus,r ≤ t̄Mi ,r ,rus ∀r ∈ C

tXi ,r ,rus ≤ t̄Xi ,rus,r ∀r ∈ C
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Optimal Retaliation

Russia choose trade taxes which maximize Russian welfare in response to
the coalition actions:

max
trus

wrus

s.t.

F (w , z ; t) = 0

tr =

{
t̂r r ∈ C
t̄r r /∈ C

where t̂r represents trade taxes for coalition countries (r ∈ C) from the
optimal sanction calculation.
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Coalition Member States for Illustrative Calculation

usa United States

anz Australia and New Zealand

can Canada

fra France

deu Germany

ita Italy

jpn Japan

gbr United Kingdom

reu Rest of the European Union
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Welfare Changes (% Hicksian EV)

sanction retaliation tradewar

rus -4.4 -3.5 -9.8
C average 0.03 0.05 0.03

can 0.021 0.033 0.032
usa 0.007 -0.017 0.032
fra 0.042 0.020 0.032
deu 0.119 -0.047 0.032
ita 0.069 0.050 0.032
gbr 0.045 -0.002 0.032
reu 0.058 0.365 0.032
anz 0.011 0.003 0.032
jpn 0.012 -0.020 0.032

chn 0.115 0.057 0.290
sau 0.240 1.865 -0.892
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Scenarios and Key Insights

sanction If coalition states were to increases tariffs and export taxes
on Russia to the same level which is currently applied by
Russia on bilateral trade flows with the coalition, Russian
welfare could be substantially impacted with no economic
cost for any coalition members.

retaliation Russia could respond to such sanctions by changing it’s
own trade taxes, but optimal “retaliation” largely results in a
reduction rather than an increase in trade taxes on trade
flows to and from coalition states. These tariff changes can
only partially offset the adverse impact of the sanctions.

tradewar If sanctions and retaliation were to result in an unconstrained
trade war, Russia faces a drastic economic cost while the
coalition countries could even be slight better off.
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS
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Conclusions

MOPEC problems capture complex interactions between optimizing
agents

Policy implications addressable using MOPEC

MOPEC available to use within the GAMS modeling system

New sufficient conditions for existence, uniqueness and convergence
shown in special cases

Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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