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PATH for Nonlinear Complementarity Problems

@ Given F: R" — R"
@ Find x € R" such that

Compactly written
0<F(x) L x>0

Preprocessing to simplify without changing underlying problem
Crashing method to quickly identify basis

Nonmonotone pathsearch with watchdog

Perturbation scheme for rank deficiency

Restart strategy

Projected gradient searches
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The Normal Cone

° C:{x:a,-Txgb;,izl,...,m}

polyhedral
- ° Ncl(nx) =
{Z/\,-a,-:Ogb,-—a,-TxL)\,-EO}
Ne(z) ™ Jas =

@ | identifies active set, i.e.

(b —a/x)>0 = X\; =0

@ The normal cone captures complementarity relationships
o —F(x) € Ngn (x) if and only if
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The good news!

@ PATH solves rectangular VI

—F(X) c Nle...XIm(X)

(feasible set is a Cartesian product of possibly unbounded intervals)
o PATHVI solves VI
—F(x) € Ne(x)
by identifying
C={xeP:g(x)e K}

and reformulating as

x* solves VI(F,C) <=0 € F(x") 4+ Ne(x")
F(x*) + Vg(x*)A

—=0¢ .
g(x")

+ Npyko(x*, A)

@ Use Newton method, each step solves an affine variational inequality
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Experimental results: AVI vs MCP

@ Run PATHVI over AVI formulation.

@ Run PATH over rectangular form (poorer theory as rec(C) larger).

@ Structure knowledge leads to improved reliability

Name (#cons, #ivars) NuPr’rijbTerHcéllteratlons (ligt;/secs)
CVXQP1-M (500, 1000) | 3119 (0.459) fail
CVXQP2_-M (250, 1000) | 33835 (2.927) fail
CVXQP3_-M (750, 1000) 360 (0.105) 3603 (1.992)

CONT-050 | (2401, 2597) 11 (2.753) | 382 (272.429)
CONT-100 | (9801,10197) 3 (174.267) fail
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MOPEC

min f;(x;j, x_;, m) s.t. gi(xi, x_j,m) < 0,Vi

Xi

7 solves VI(h(x,),C)

equilibrium
min £(1) x(1) g(1)

min f(m) x(m) g(m)
vi h pi cons

o (Generalized) Nash

@ (x, ) solves all problems
simultaneously

@ Reformulate
optimization problem as
first order conditions
(complementarity)

@ Use nonsmooth Newton
methods to solve
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PATHVI on Nash Equilibria

Elapsed time (secs)

Name PATHVI/

PATHVI | ParH UMFEPACK
vimod1 0.372 4.129 0.437
vimod2 1.098 24.134 0.645
vimod3 3.208 60.553 1.639
vimod4 127.194 66.427 18.319
vimod5 327.970 | 325.558 40.285
vimod6 | 2341.193 | 1841.642 109.960
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Shared Constraints: river basin example

What if agents have shared knowledge? Three agents near a river,

maximizing profit by producing some commodities. Each agent can throw
pollutant in the river, but limited by two shared constraints 6

X € arg max p(z X)X — ci(x;) st x> 0,x_; = x*;,0(x) <0
X; -
J

What are the multipliers on the blue shared constraint?
Can replicate constraint one for each
agent (Generalized Nash)

inFilx x -
Xr;'nel)r},"(X”X I)

s.t. 9(X,’,X,,') <0
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Shared Constraints: river basin example

What if agents have shared knowledge? Three agents near a river,

maximizing profit by producing some commodities. Each agent can throw
pollutant in the river, but limited by two shared constraints 6

X; € arg max p(z X)X — ci(x;) st x> 0,x_; = x*;,0(x) <0
Xi

J
What are the multipliers on the blue shared constraint?

Can replicate constraint one for each Can force all multipliers to be equal -
agent (Generalized Nash) a MOPEC (variational equilibrium)
Xl‘l_nei)r}iﬁ(xi, X_j) xr,-neiQ,- fi(xi, x 1)+ ATO(xi, x ;)

s.t. 9(X,’,X,,') <0

0<—-0(x) LA>0
Different solutions; economists prefer the first one!
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Bad news! Cournot Model (inverse demand function)

max p(z X)) T xi — ci(x)
J

s.t. Bix; = bj,x; >0

@

«

e Cournot model: |A| =5

e Size n=|A|* N, o
Size (n) | Time (secs) 0
1,000 354 10 20 30 40 nzi0104ogo 70 80 90 100
2,500 294.8 Jacobian nonzero pattern
5,000 1024.6 n =100, N, = 20
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Computation: implicit functions

o Use implicit fn: y(x) =3, x »

e Generalization to h(y,x) = 0 (via
adjoints)

e empinfo: implicit y h

Size (n) | Time (secs) "

1,000 2.0 ”

2,500 8.7 ”

5,000 38.8 N
10,000 > 1080 o

Jacobian nonzero pattern
n =100, N, =20
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Computation: implicit functions and local variables

o Use implicit fn: y(x) = >, x;

(and local aggregation)

@ Generalization to h(y,x) = 0 (via

adjoints)

@ empinfo: implicit y h

60 -

80 -

Size (n) | Time (secs)
1,000 0.5
2,500 0.8
5,000 1.6

10,000 3.9
25,000 177
50,000 52.3

100 -

0{. — =
20| :

0
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Economic Application

Model is a partial equilibrium, geographic exchange model.

Goods are distinguished by region of origin.

There is one unit of region r goods.

These goods may be consumed in region r or they may be exported.
Each region solves:

min f.(y,x) s.t. h(y,x) =0, xj =X;,j # r

Y Xr

where f,(y, x) is a quadratic form and h(y, x) defines y uniquely as a
function of x.

h(y, x) defines an equilibrium; here it is simply a set of equations, not
a complementarity problem

Applications: Brexit, modified NAFTA, Russian Sanctions
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MCP size of equilibrium problems containing shared
variables by formulation strategy

Strategy Size of the MCP
replication (n+2mN)
switching (n4+ mN + m)
substitution (explicit) (n+ m)
substitution (implicit) | (n+ nm+ m)
Replication:
Vi fi(x,yi) = (Vs h(yi, x)) i Xi
Fi(2) = | Vyfilx,yi) = (Vyh(yi, x)pi |5 zi= | i
h(yi? X) i
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MCP size of equilibrium problems containing shared
variables by formulation strategy

Strategy Size of the MCP
replication (n+2mN)
switching (n+ mN + m)
substitution (explicit) (n+ m)
substitution (implicit) | (n+ nm+ m)
Switching:
Vi fi(%,y) = (Vi h(y, X)) i X;
Fi(z) = | Vyfilx,y) = (Vyh(y, x)ui | 5 zi = | i
h(y, x) y

Substitution eliminates p;, Vi
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Model statistics and performance comparison of the EPEC

MCP statistics according to the shared variable formulation
Replication Switching Substitution
12,144 rows/cols 6,578 rows/cols 129,030 rows/cols
544,019 non-zeros | 444,243 non-zeros | 3,561,521 non-zeros

0.37% dense 1.03% dense 0.02% dense
PATH Shared variable formulation (major, time)
crash | spacer | prox | Replication | Switching | Substitution
v v 7 iters 20 iters 20 iters
8 secs 22 secs 406 secs
v 24 iters 22 iters 21 iters
376 secs 19 secs 395 secs
v 8 iters 8 iters 8 iters
28 secs 18 secs 219 secs
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Decomposition Results

Gauss-Seidel residuals

Iteration  Residual Tariff revenue

1 1.526385e+04 region SysOpt MOPEC
2 1.367865e+02 1 0.117 0.012

3 2.216626e+-00 2 0.517 0.407

4 2.192500e-02 3 0.496 0.214

5 3.195836e-04 4 0.517 0.407

6 8.506711e-06 5 0.117 0.012

7 6.048344e-07

@ Note that competitive solution produces much less revenue than
system optimal solution

@ Model has non-convex objective, but each subproblem is solved
globally (lindoglobal)

@ Timing: 17.2 secs
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Conclusion: who knows (and controls) what?

min f;'(XhX*f,y(Xivai)aﬂ-) s.t. g;(x,-,x,,-,y,ﬂ) < O,Vi, 9(X7y77r) =0
Xij

m solves VI(h(x,-),C)

o NE/GNE: Generalized Nash Equilibrium (feasible sets of each players

problem depends on other players variables)

Shared constraints: 6 is known to all (many) players

Force all shared constraints to have same dual variable (VI solution)

Implicit variables: y(x;, x_;) shared

Can use EMP to write all these problems, and convert to MCP form

New decomposition algorithms available to modeler (Gauss Seidel,

Randomized Sweeps, Gauss Southwell, Grouping of subproblems)

@ Enables modelers to convey simple structures to algorithms and
allows algorithms to exploit this

o Can evaluate effects of regulations and their implementation in a
competitive environment
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Spacer steps

Given (x, y, p) during iterations

Compute a unique feasible pair (¥, fi)

Evaluate the residual at (x, ¥, fi)

Choose the point if it has less residual than the one of (x, y, i)
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