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Engineering, Economics and Environment

Determine generators’ output to reliably meet the load

Power flows cannot exceed lines’ transfer capacity

Tradeoff: Impose environmental constraints/regulations
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Introduction Stochastic optimization models Some results Conclusions

New Zealand: How to implement Jacinda’s deal

Confidence and Supply Agreement between Labour Party and
Green Party, October 2017.

(https://www.greens.org.nz/sites/default/files)
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Data uncertainty: multiple futures (ω)

Introduction Multistage stochastic programming Some results Equilibrium Conclusions

Dealing with anticipation: the scenario trap

14 scenarios for electricity demand and generation mix in 2050.
There are 14 different optimal plans: which to select, if any?

14 scenarios (ω) for electricity demand and generation mix in 2050.
There are 14 different optimal plans: which to select, if any?
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What does fully renewable in electricity mean?

Permanently shutdown all thermal plants?

Control GHG emissions from electricity generation?

Introduction Stochastic optimization models Some results Conclusions

More about New Zealand
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Closing plants often increases average emissions (Fulton)

Hydro can act as a giant battery

Simulation runs: Reduce plant capacity, store more water “in case of
dry winter”:

Introduction Multistage stochastic programming Some results Equilibrium Conclusions

EMERALD output
[Fulton and Foster, 2018]

With low nonrenewable plant capacity, can’t wait till last minute and
reservoir levels in summer need to be close to full just in case.
Tradeoff: Burning fuel to achieve this increases emissions.
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Uncertainty is experienced at different time scales

Demand growth, technology
change, capital costs are
long-term uncertainties
(years)

Seasonal inflows to
hydroelectric reservoirs are
medium-term uncertainties
(weeks)

Levels of wind and solar
generation are short-term
uncertainties (half hours)

Very short term effects from
random variation in
renewables and plant failures
(seconds)

years weeks half-hours seconds

Infrastructure
investment

Optimal
releases

Demand
satisfaction

Spinning
reserves

Tradeoff: Uncertainty, cost and
operability, regulations,
security/robustness

Needs modelling at finer time
scales
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Simplified two-stage stochastic optimization model

Capacity decisions are z at cost K (z)

Operating decisions are: generation y at cost C (y), loadshedding q at
cost Vq.

Random demand is d(ω).

Minimize capital cost plus expected operating cost:

P: min
z,y ,q∈X

K (z) + Eω[C (y(ω)) + Vq(ω)]

s.t. y(ω) ≤ z ,
y(ω) + q(ω) ≥ d(ω),

zN ≤ (1− θ)zN (2017)
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Costs as we impose tighter emission restrictions

Markets based on marginal (operating) prices
Tradeoff: Building more capacity costs more, but makes operations
cheaper - how to recover the fixed cost investment
Operational costs dominated (at 100% renewable) by load shedding
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Introduction Stochastic optimization models Some results Conclusions

More realistic model

Plant k has current capacity Uk , expansion xk at capital cost Kk
per MW, maintenance cost Lk per MW, and operating cost Ck .
Minimize fixed and expected variable costs. Here t = 0, 1, 2, 3, is a
season and w(t) is reservoir storage at end of season t.

P: minψ = ∑k (Kkxk + Lkzk ) +∑t Eω[Z (t,ω)]
s.t. Z (t,ω) = ∑b T (b) (∑k Ckyk (t,ω, b) + Vq(t,ω, b)) ,

xk ≤ uk ,
zk ≤ xk + Uk ,

yk (t,ω, b) ≤ µk (t,ω, b)zk ,
∑b T (b)yk (t,ω, b) ≤ νk (t,ω)∑b T (b)zk + w(t − 1)− w(t),

q(t,ω, b) ≤ d(t,ω, b),
d(t,ω, b) ≤ ∑k yk (t,ω, b) + q(t,ω, b),

w(t) ≤ W ,
y , q,w ≥ 0.
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Introduction Stochastic optimization models Some results Conclusions

Operating costs are random

Plant k has current capacity Uk , expansion xk at capital cost Kk
per MW, maintenance cost Lk per MW, and operating cost Ck .
Transfer energy w(t) from season t to season t + 1. Minimize
fixed and expected variable costs. Here T (b) is the number of
hours in load block b of annual load duration curve.

P: minψ = ∑k (Kkxk + Lkzk ) +∑t Eω[Z (t,ω)]
s.t. Z (t,ω) = ∑b T (b) (∑k Ckyk (t,ω, b) + Vq(t,ω, b)),

xk ≤ uk ,
zk ≤ xk + Uk ,

yk (t,ω, b) ≤ µk (t,ω, b)zk ,
∑b T (b)yk (t,ω, b) ≤ νk (t,ω)∑b T (b)zk + w(t − 1)− w(t),

q(t,ω, b) ≤ d(t,ω, b),
d(t,ω, b) ≤ ∑k yk (t,ω, b) + q(t,ω, b),

w(t) ≤ W ,
y , q,w ≥ 0.
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Introduction Stochastic optimization models Some results Conclusions

Shedding load incurs VOLL penalties

Plant k has current capacity Uk , expansion xk at capital cost Kk
per MW, maintenance cost Lk per MW, and SRMC Ck . Transfer
energy w(t) from season t to season t + 1. Minimize fixed and
expected variable costs.

P: minψ = ∑k (Kkxk + Lkzk ) +∑t Eω[Z (t,ω)]
s.t. Z (t,ω) = ∑b T (b) (∑k Ckyk (t,ω, b) + Vq(t,ω, b)) ,

xk ≤ uk ,
zk ≤ xk + Uk ,

yk (t,ω, b) ≤ µk (t,ω, b)zk ,
∑b T (b)yk (t,ω, b) ≤ νk (t,ω)∑b T (b)zk + w(t − 1)− w(t),

q(t,ω, b) ≤ d(t,ω, b),
d(t,ω, b) ≤ ∑k yk (t,ω, b) + q(t,ω, b),

w(t) ≤ W ,
y , q,w ≥ 0.
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Introduction Stochastic optimization models Some results Conclusions

Capacity of wind and run-of-river is random in a season

Plant k has current capacity Uk , expansion xk at capital cost Kk
per MW, maintenance cost Lk per MW, and SRMC Ck . Minimize
fixed and expected variable costs.

P: minψ = ∑k (Kkxk + Lkzk ) +∑t Eω[Z (t,ω)]
s.t. Z (t,ω) = ∑b T (b) (∑k Ckyk (t,ω, b) + Vq(t,ω, b)),

xk ≤ uk ,
zk ≤ xk + Uk ,

yk (t,ω, b) ≤ µk (t,ω, b)zk ,
∑b T (b)yk (t,ω, b) ≤ νk (t,ω)∑b T (b)zk + w(t − 1)− w(t),

q(t,ω, b) ≤ d(t,ω, b),
d(t,ω, b) ≤ ∑k yk (t,ω, b) + q(t,ω, b),

w(t) ≤ W ,
y , q,w ≥ 0.
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Introduction Stochastic optimization models Some results Conclusions

Energy input from reservoir inflows is random in a season

Plant k has current capacity Uk , expansion xk at capital cost Kk
per MW, maintenance cost Lk per MW, and SRMC Ck . Minimize
fixed and expected variable costs.

P: minψ = ∑k (Kkxk + Lkzk ) +∑t Eω[Z (t,ω)]
s.t. Z (t,ω) = ∑b T (b) (∑k Ckyk (t,ω, b) + Vq(t,ω, b)),

xk ≤ uk ,
zk ≤ xk + Uk ,

yk (t,ω, b) ≤ µk (t,ω, b)zk ,
∑b T (b)yk (t,ω, b) ≤ νk (t,ω)∑b T (b)zk+w(t − 1)− w(t),

q(t,ω, b) ≤ d(t,ω, b),
d(t,ω, b) ≤ ∑k yk (t,ω, b) + q(t,ω, b),

w(t) ≤ W ,
y , q,w ≥ 0.
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Environmental constraints
Some capacity xk , k ∈ N , is “non renewable”. Some generation yk(ω),
k ∈ E emits βkyk(ω) tonnes of CO2. For a choice of θ ∈ [0, 1] constraint
is either:

Eω[
∑
k∈E

βkyk(ω)] ≤ (1− θ)Eω[
∑
k∈E

βkyk(ω, 2017)],

(reduce CO2 emissions compared with 2017)∑
k∈N

zk ≤ (1− θ)
∑
k∈N

zk(2017),

(reduce non-renewable capacity compared with 2017)

Eω[
∑
k∈N

yk(ω)] ≤ (1− θ)Eω[
∑
k∈N

yk(ω, 2017)],

(reduce non-renewable generation compared with 2017)

Could impose constraints almost surely instead of in expectation or with
risk measure (small impact)
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Since (renewable) geothermal and CCS emit some CO2 100% renewable
yields modest reductions in CO2 emissions.
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Technology choices as θ increases (NR capacity redn)

Use geothermal, CCS, wind, batteries

Fairly constant capacity

Ferris/Philpott 100 percent renewables Supported by DOE/ARPA-E 18 / 29



Technology choices as θ increases (% CO2 redn)

Rich portfolio of renewable technologies used

More capacity needed as more uncertain generation
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Technology choices as carbon price ($ per MW) increases
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Technology choices (chance constraints)

Force zero emissions in at least 50% of years (normal hydrology)

Emissions increase by 60%, cost increases by 20% over 99% renewable case
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Risk-averse solutions for 95% NR energy reduction

Risk aversion modelled using (1− λ)E [Z ] + λAVaR0.90(Z ), for
λ = 0, 0.5, 0.8

Replace wind/battery with CCS
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Cost of actually reaching zero CO2 emissions (without geothermal or CCS)
increases as we approach the limit.
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Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total GHG emissions in 2016 were 80 M t CO2 equivalent.
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Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total CO2 emissions in 2016 were 30 M t.
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Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total CO2 emissions from electricity in 2016 were 3 M t.
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General equilibrium (with contracts/incentives)

Consumption dk , energy yj , flows f , prices π, σ

Consumers max
dk∈C

utility(dk)− TC (σ, d , f , y)− πTdk

Generators max
(yj )∈G

profit(yj , π)− TG (σ, d , f , y)

Transmission min
f ∈F

congestion rates(f , π)

Market clearing

0 ≤ π ⊥
∑
j

yj −
∑
k

dk −Af ≥ 0

0 ≤ σ ⊥ E −
∑
j

Ej(yj) ≥ 0
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Introduction Stochastic optimization models Some results Conclusions

Conclusions

100% renewable electricity system has several
interpretations with different implications.
Policy should choose the objective function not the
action: e.g. reducing thermal capacity ceteris paribus can
increase average emissions.
Uncertainty in the model makes a difference.
Electricity system has uncertainties at many time scales.
Can include these in a single model with some
approximations.
If geothermal and CCS are renewable then 100%
renewable is feasible, but emission reduction is modest.
100% emission reduction in NZ electricity is needlessly
expensive given proportion of electricity emissions.
Next steps: A multistage model, and its competitive
equilibrium counterpart.
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Introduction Multistage stochastic programming Some results Equilibrium Conclusions

New Zealand
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Introduction Stochastic optimization models Some results Conclusions

A mathematical modelling approach to planning

Build and solve a social plannning model that optimizes
electricity capacity investment with constraints on CO2
emissions.
Social planning solution should be stochastic: i.e. account
for future uncertainty
Social planning solution should be risk-averse: because
the industry is.
Approximate the outcomes of the social plan by a
competitive equilibrium with risk-averse investors.
Compensate for market failures from imperfect
competition or incomplete markets.
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