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Engineering, Economics and Environment
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@ Determine generators’ output to reliably meet the load
@ Power flows cannot exceed lines’ transfer capacity
e Tradeoff: Impose environmental constraints/regulations

Ferris/Philpott 100 percent renewables Supported by DOE/ARPA-E 2 /29



New Zealand: How to implement Jacinda's deal

3. Request the Climate Commission to plan the transition to 100% renewable electricity by

2035 (which includes geothermal) in a normal hydrological year.
a. Solar panels on schools will be investigated as part of this goal.

4. Stimulate up to $1 billion of new investment in low carbon industries by 2020, kick-started

by a Government-backed Green Investment Fund of $100 million.

Confidence and Supply Agreement between the New Zealand Labour Party and the Green Party of Aotearca New Zealand 3

Confidence and Supply Agreement between Labour Party and
Green Party, October 2017.
(https://www.greens.org.nz/sites/default/files)
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Data uncertainty: multiple futures (w)

Increase in Demand for Generation by 2050
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14 scenarios (w) for electricity demand and generation mix in 2050.
There are 14 different optimal plans: which to select, if any?
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What does fully renewable in electricity mean?

@ Permanently shutdown all thermal plants?

@ Control GHG emissions from electricity generation?

demand

demand

Ferris/Philpott

demand

Huntly = 500MW coal,
403 MW CCGT, 50 MW OCGT
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Closing plants often increases average emissions (Fulton)

@ Hydro can act as a giant battery

@ Simulation runs: Reduce plant capacity, store more water “in case of

- 1
dry winter":
4,000 4,000 4,000
z = z
H = s
g S g
& & &
£ 2,000 2 2,000 £ 2,000
T ® T
5 5 5
& b b
50 100 150 50 100 150 50 100 150
Frequency Frequency Frequency

Scenario 1: Full Huntly Scenario 2: Gas Only Scenario 3: No Huntly

@ With low nonrenewable plant capacity, can’t wait till last minute and
reservoir levels in summer need to be close to full just in case.
Tradeoff: Burning fuel to achieve this increases emissions.

Ferris/Philpott 100 percent renewables Supported by DOE/ARPA-E 6 /29



Uncertainty is experienced at different time scales

@ Demand growth, technology
change, capital costs are
long-term uncertainties
(years)

@ Seasonal inflows to
hydroelectric reservoirs are
medium-term uncertainties
(weeks)

@ Levels of wind and solar
generation are short-term
uncertainties (half hours)

@ Very short term effects from
random variation in
renewables and plant failures
(seconds)

Infrastructure Optimal Demand Spinning
investment  releases satisfaction reserves

1 1111 1l

half-hours  seconds

years weeks

@ Tradeoff: Uncertainty, cost and
operability, regulations,
security/robustness

@ Needs modelling at finer time
scales
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Simplified two-stage stochastic optimization model

o Capacity decisions are z at cost K(z)
@ Operating decisions are: generation y at cost C(y), loadshedding g at
cost Vq.
e Random demand is d(w).
@ Minimize capital cost plus expected operating cost:
P: min K(z) + E,[C(y(w))+ Vg(w)]
z,y,qeX
s.t. y(w) <z,
y(w)+aqlw) = dw),
zy < (1—0)zn(2017)
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Costs as we impose tighter emission restrictions

1e9 Investment and Operating Costs
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@ Markets based on marginal (operating) prices

@ Tradeoff: Building more capacity costs more, but makes operations

cheaper - how to recover the fixed cost investment

Invest
Maintain
Operate
LostLoad

@ Operational costs dominated (at 100% renewable) by load shedding
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More realistic model

Plant k has current capacity Uy, expansion xj at capital cost K
per MW, maintenance cost L, per MW, and operating cost C.
Minimize fixed and expected variable costs. Here t =0,1,2,3, is a
season and w(t) is reservoir storage at end of season t.

P: miny = Y, (Kixk+ Leze) + 2 Ew[Z(t, w)]
st. Z(t,w) = Y, T(b) (Tk Ceyk(t,w, b)+ Vq(t,w, b)),
Xk < Uk,
zk < xx+ Uk,
yi(t,w,b) < p (t w, b)z,
Sy TB(twb) < vilt.w) By T(b)zc +w(t—1) — w()
q(t,w,b) < d(t,w,b),
d(t,w,b) < Yyy(t,w, b)+q(t,w,b),
w(t) < W,
y.qw = 0.
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Operating costs are random

Plant k has current capacity Uy, expansion xj at capital cost K
per MW, maintenance cost L, per MW, and operating cost C.
Transfer energy w(t) from season t to season t + 1. Minimize
fixed and expected variable costs. Here T(b) is the number of
hours in load block b of annual load duration curve.

P min Y = Ek(Kka + Lka) + Et ]Ew[Z(t, w)]
st Z(tw) = Lo T(b) (i Gkt . b) -+ Va(t,w, b)),

Xk < g,
ze < xx+ U,

w(twb) < wltw bz,

Yo T(D)yk(t,w, b) < wvi(t,w)Xp T(b)zx + w(t —1) —w(t),
q(t,w,b) < d(t,w,b),
d(t,w,b) < Y, w(t,w,b)+q(t w,b),
w(t) < W,
yv.q,w > 0.
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Shedding load incurs VOLL penalties

Plant k has current capacity Uy, expansion xj at capital cost K
per MW, maintenance cost L, per MW, and SRMC C,. Transfer
energy w(t) from season t to season t + 1. Minimize fixed and
expected variable costs.

P miny = Zk(Kka + Lkzk) > IEw[Z(t, w)]
st Z(tw) = Ty T(6) (X Cowilt,on by + Va(t,w, b)),

Xk < g,
zr < xx+ Uk,

yi(t,w,b) < p (t w, b)z,

Yo T(D)yk(t,w,b) < vi(t,w)Y, T(b)zx +w(t—1)— w(t),
q(t,w,b) < d(t,w,b),
d(t,w,b) < Y, y(t,w, b)+q(t,w,b),
w(t) < W,
y.qg,w > 0.
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Capacity of wind and run-of-river is random in a season

Plant k has current capacity Uy, expansion xj at capital cost K
per MW, maintenance cost L, per MW, and SRMC C,. Minimize
fixed and expected variable costs.

P: miny = Y, (Kixk + Lezk) + L Ew[Z(t, w)]
st. Z(t,w) = Y, T(b) (T Chyk(t, w, b) + Vq(t, w, b)),

Xk < g,
zr < xx+ Uk,

yi(t,w,b) < u (t w, b)z,

Yo T(b)yk(t,w, b) < wvp(t,w)Y, T(b)zx +w(t—1) — w(t),
q(t,w,b) < d(t,w,b),
d(t,w,b) < Yuw(t,w, b)+q(t w,b),
w(t) < W,
y.qw = 0.
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Energy input from reservoir inflows is random in a season

Plant k has current capacity Uy, expansion xj at capital cost K
per MW, maintenance cost L, per MW, and SRMC C,. Minimize
fixed and expected variable costs.

P: miny = Y, (Kixk + Lezk) + L Ew[Z(t, w)]
st. Z(t,w) = Y, T(b) (T Chyk(t, w, b) + Vq(t, w, b)),

Xk < g,
ze < xx+ U,

yi(t,w, b) < (t,w,b)z,

Yo T(D)yk(t,w,b) < wi(t,w) Xy T(b)zt+w(t —1) —w(t),
q(t,w,b) < d(t,w,b),
d(t,w,b) < Y, yk(t,w,b)+q(t,w,b),
w(t) < W,
y.qw = 0.
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Average CO2 emissions with % reduction from 2017
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Environmental constraints

Some capacity xx, k € N/, is “non renewable”. Some generation yx(w),

k € € emits Bryk(w) tonnes of CO2. For a choice of § € [0, 1] constraint
is either:

E, [Z Bryk(w)] < (1 —0)E,, [Z Bryk(w,2017)],
ke& ke&
(reduce CO2 emissions compared with 2017)
Yz <(1-0)> z/(2017),
keN keN

(reduce non-renewable capacity compared with 2017)

Eu[ ) ye(w)] < (1-0)E Z yie(w,2017)]

keN

(reduce non-renewable generation compared with 2017)

Could impose constraints almost surely instead of in expectation or with
risk measure (small impact)
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Average CO2 emissions with % reduction from 2017
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Since (renewable) geothermal and CCS emit some CO2 100% renewable

yields modest reductions in CO2 emissions.
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Technology choices as 6 increases (NR capacity redn)

Capacity mix for reducing % NR capacity from 2017
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@ Use geothermal, CCS, wind, batteries

@ Fairly constant capacity
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Technology choices as 6 increases (% CO2 redn)

Capacity mix for reducing % CO2 from 2017
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@ Rich portfolio of renewable technologies used

@ More capacity needed as more uncertain generation
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Technology choices as carbon price ($ per MW) increases

Capacity mix for increasing o (% CO2 reduction)
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Technology choices (chance constraints)

Force zero emissions in at least 50% of years (normal hydrology)

Capacity mix for chance constraint at 0.5
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Emissions increase by 60%, cost increases by 20% over 99% renewable case
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Risk-averse solutions for 95% NR energy reduction

Generation mix at 95% NR reduction with increasing risk aversion
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@ Risk aversion modelled using (1 — A\)E[Z] + AAVaRg.g0(Z), for
A=0,0508
@ Replace wind/battery with CCS
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Total Cost ($M)
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Cost of actually reaching zero CO2 emissions (without geothermal or CCS)

increases as we approach the limit.
=] 5

100 percent renewables



New Zealand greenhouse gas emissions

View Table
Export Data

Emissions from sectors
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Energy Industrial Agricufture Land Use,
Processes and Land-Use
Product Use Change and

Forastry

Sectors

Total GHG emissions in 2016 were 80 M t CO2 equivalent.
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New Zealand greenhouse gas emissions

View Table

Emissions from Fuel Combustion - Sectoral approach
Export Data
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Energy Industries Manufacturing Transport Gther Sectors
Industries and
Construction

Energy
Total CO2 emissions in 2016 were 30 M t.
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New Zealand greenhouse gas emissions

View Table Emissions from Energy Industries
Export Data
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Public Electricity and Petroleum Refining Manufacture of Solid
Heat Production Fuels and Other Energy
Industries

Energy
Total CO2 emissions from electricity in 2016 were 3 M t.
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General equilibrium (with contracts/incentives)

Consumption dy, energy y;, flows f, prices 7, o

Consumers max utility(di) — Te(o, d, f,y) — " dy
K€

Generators max profit(y;, 7) — Tg(o,d, f,y)
(vj)eg

Transmission ;m]r_l congestion rates(f,7)
€

Market clearing

0<mLY yi—> di—Af >0
j k

J

0<o LE-) &(y)>0
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Conclusions

e 100% renewable electricity system has several
interpretations with different implications.

@ Policy should choose the objective function not the
action: e.g. reducing thermal capacity ceteris paribus can
increase average emissions.

e Uncertainty in the model makes a difference.

o Electricity system has uncertainties at many time scales.
Can include these in a single model with some
approximations.

e If geothermal and CCS are renewable then 100%
renewable is feasible, but emission reduction is modest.

e 100% emission reduction in NZ electricity is needlessly
expensive given proportion of electricity emissions.

o Next steps: A multistage model, and its competitive
equilibrium counterpart.
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A mathematical modelling approach to planning

e Build and solve a social plannning model that optimizes
electricity capacity investment with constraints on CO2
emissions.

e Social planning solution should be stochastic: i.e. account
for future uncertainty

e Social planning solution should be risk-averse: because
the industry is.

e Approximate the outcomes of the social plan by a
competitive equilibrium with risk-averse investors.

e Compensate for market failures from imperfect
competition or incomplete markets.
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