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Engineering, Economics and Environment

Determine generators’ output to reliably/economically meet the load

Power flows cannot exceed lines’ transfer capacity

Tradeoff: Impose environmental regulations/incentives
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Perfect competition (MOPEC)

max
xi

πT xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

0 ≤π ⊥
∑
i

xi − d(π) ≥ 0

When there are many agents, assume none can affect π by themselves

Each agent is a price taker

Two agents, d(π) = 24− π, c1 = 3, c2 = 2

KKT(1) + KKT(2) + Market Clearing gives Complementarity
Problem

x1 = 0, x2 = 22, π = 2
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Duopoly: two agents (Cournot)

max
xi

p(
∑
j

xj)
T xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

Cournot: assume each can affect π by choice of xi

Inverse demand p(q): π = p(q) ⇐⇒ q = d(π)

Two agents, same data

KKT(1) + KKT(2) gives Complementarity Problem

x1 = 20/3, x2 = 23/3, π = 29/3

Exercise of market power (some price takers, some Cournot), or
maybe agent hedging
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Simple dynamics (discrete time, finite horizon)

∀a ∈ A:

min
xa·∈Xa0

fa1(xa1; ·,·) + fa2(xa2; ·,·)

+ · · ·+ faT (xaT ; ·,·)

Dynamics link over time
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Simple dynamics (discrete time, finite horizon)

∀a ∈ A:

min
xa·∈Xa0

fa1(xa1; x9a1,π1) + fa2(xa2; x9a2,π2)

+ · · ·+ faT (xaT ; x9aT ,πT ) ∀a ∈ A,
0 ∈Hj(πj ; x·j) + NPj

(πj), ∀j ∈ T .

Dynamics link over time

Complementarity links nodes
across agents
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Uncertainty is experienced at different time scales

Demand growth, technology
change, capital costs are
long-term uncertainties
(years)

Seasonal inflows to
hydroelectric reservoirs are
medium-term uncertainties
(weeks)

Levels of wind and solar
generation are short-term
uncertainties (half hours)

Very short term effects from
random variation in
renewables and plant failures
(seconds)

years weeks half-hours seconds

Infrastructure
investment

Optimal
releases

Demand
satisfaction

Spinning
reserves

Tradeoff: Uncertainty, cost and
operability, regulations,
security/robustness/resilience

Needs modelling at finer time
scales
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Scenario tree with nodes N = {1, 2, . . . , 9}, and T = 3

f1 + ρ1◦F1

f2+ ρ2◦F2

f5 f6

f3+ ρ3◦F3

f7

f4+ ρ4◦F4

f8 f9

At leaf nodes:

min
xa`∈Xa`

← fa`(xa`; x9a`,π`) ∀a ∈ A,

0 ∈ H`(π`; x·`) + NP`
(π`)

“;” separates variables from parameters in function definition
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Stochastic equilibrium (MOPEC)

f1 + ρ1◦F1

f2+ ρ2◦F2

f5 f6

f3+ ρ3◦F3

f7

f4+ ρ4◦F4

f8 f9

Agents solve problem at root node, linking at all nodes:

min
xa·∈Xa0

fa1(xa1; x9a1,π1)

+ ρa1([faj(xaj ; x9aj ,πj) + ρaj([fa`(xa`; x9a`,π`)]`∈j+)]j∈1+) ∀a ∈ A,
0 ∈Hj(πj ; x·j) + NPj

(πj), ∀j ∈ T .
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Scenario trees linked across agents

Dynamics link over time

Complementarity links nodes of
scenario tree across agents

Three sources of difficulty:

1 Size: number of scenarios,
agents, details

2 Non-convexity: Nash behavior

3 Risk aversion: Nonsmooth or
Nonlinear (product of
probabilities)
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Risk Measures

Problem type

Objective function

min
x∈X

θ(x) + ρ(F (x))

or Constraint

min
x∈X

θ(x) s.t. ρ(F (x)) ≤ α

Dual representation (of coherent r.m.) in terms of risk sets

ρ(Z ) = sup
y∈D

Ey [Z ]

If D = {p} then ρ(Z ) = E[Z ]

If Dα,p = {y ∈ [0, p/(1− α)] : 〈1, y〉 = 1}, then ρ(Z ) = CVaRα(Z )

Combinations - increasing risk aversion as λ increases

ρ(Z ) = (1− λ)E[Z ] + λCVaRα(Z )
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The transformation to complementarity

min
x∈X

θ(x) + ρ(F (x))

where ρ(u) = sup
y∈D

{
〈y , u〉 − 1

2
〈y ,My〉

}
optimality condition:

0 ∈ ∂θ(x) +∇F (x)T∂ρ(F (x)) + NX (x)

calculus:

0 ∈ ∂θ(x) +∇F (x)T y + NX (x)

0 ∈−y + ∂ρ(F (x)) ⇐⇒ 0 ∈ −F (x) + My + ND(y)

This is a complementarity problem: opt conds in x coupled with opt
conds in y - separated
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Stochastic Equilibrium as (extended) MOPEC

min
xa·∈Xa0

fa1(xa1; x−a1,π1)+

∑
j∈1+

yaj

faj(xaj ; x−aj ,πj) +
∑
`∈j+

ya`fa`(xa`; x−a`,π`)

 , ∀a ∈ A
(1)

0 ∈Hj(πj ; x·j) + NPj
(πj), ∀j ∈ T (2)

ra1(x ,π) = max
ya1+∈Da1

∑
j∈1+

yaj(faj(xaj ; x−aj ,πj) + raj(x ,π))

ra2(x ,π) = max
ya2+∈Da2

∑
`∈2+

ya`fa`(xa`; x−a`,π`)

ra3(x ,π) = max
ya3+∈Da3

∑
`∈3+

ya`fa`(xa`; x−a`,π`)

ra4(x ,π) = max
ya4+∈Da4

∑
`∈4+

ya`fa`(xa`; x−a`,π`)

(3)
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Simple example (3 agents, 2 stages, 10 scenarios)
A two-stage electricity market example

Low stage 1 inflow:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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release
worst
objective

Second stage probabilities:

Higher stage 1 inflow:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40
release
worst
objective
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Algorithms and problems

PATH: nonsmooth Newton method (defaults) (blue+red+black)

PD (Primal-dual): iteratively blue+red then black

PD-PTH (Primal-dual + PATH)

PD-CC-PTH (Primal-dual + convex-comb(black) + PATH)

Homot(λ) + Primal-dual + convex-comb(black) + PATH

Multistage economic dispatch, capacity expansion, hydroelectric
system

3 types of demand formulation (I,II and III)

Two scenario trees (4 stages, 40 nodes) and (4 stages, 156 nodes)

32 data instances for each formulation

Several modulus of convexity and risk aversion parameters

ρ(Z ) = (1− λ)E[Z ] + λCVaRα(Z )
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Dispatch example, large tree, type I

quad λ PATH PATH-RN PD PD-PTH PD-CC-PTH

0 0.1 0.0 37.5 0.0 59.4 100.0
0 0.3 0.0 0.0 0.0 12.5 96.9
0 0.5 0.0 0.0 0.0 9.4 71.9
0 0.7 0.0 0.0 0.0 3.1 18.8
0 0.9 0.0 0.0 0.0 0.0 9.4
1e-2 0.1 28.1 90.6 15.6 100.0 100.0
1e-2 0.3 0.0 0.0 0.0 90.6 100.0
1e-2 0.5 0.0 0.0 0.0 40.6 100.0
1e-2 0.7 0.0 0.0 0.0 21.9 84.4
1e-2 0.9 0.0 0.0 0.0 6.2 53.1
1e-1 0.1 0.0 100.0 59.4 100.0 100.0
1e-1 0.3 0.0 68.8 43.8 100.0 100.0
1e-1 0.5 0.0 3.1 18.8 96.9 100.0
1e-1 0.7 0.0 0.0 12.5 100.0 100.0
1e-1 0.9 0.0 0.0 15.6 93.8 100.0
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Market
Type

PATH PATH-RN PD PD-PATH No mixed solution
percentage(%)SR(%) SR(%) SR(%) SR(%)

Type I 56.4 78.0 98.2 100.0 98 .4
Type II 64.8 82.4 97.9 100.0 97 .9
Type III 89.9 93.2 77.4 100.0 78. 0

Summary table of performance of PATH, PATH-RN, PD and PD-PATH over
capacity expansion example on smaller scenario tree

Market
Type

PATH PATH-RN PD PD-PATH No mixed solution
percentage(%)SR(%) SR(%) SR(%) SR(%)

Type I 50.9 42.1 95.5 99.5 96.8
Type II 77.9 43.5 95.1 99.8 99.9
Type III 58.9 26.6 97.5 100.0 97.9

Summary table of performance of PATH, PATH-RN, PD and PD-PATH over
hydroelectricity example on smaller scenario tree
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Performance on economic dispatch (Type I and II) on
smaller tree

quad λ
Type I market Type II market

PD-PATH PD-CC-PATH PD-PATH PD-CC-PATH
SR(%) Time(s) SR(%) Time(s) SR(%) Time (s) SR(%) Time(s)

0 0.1 96.9 7.8 100.0 8.9 96.9 9.2 100.0 10.2
0 0.3 78.1 8.6 100.0 12.8 84.4 9.3 100.0 10.7
0 0.5 59.4 7.6 96.9 15.2 62.5 8.0 100.0 12.8
0 0.7 18.8 6.4 96.9 30.9 25.0 7.5 100.0 35.6
0 0.9 3.1 9.0 65.6 32.6 3.1 6.1 68.8 33.6

1e-2 0.1 100.0 6.8 100.0 7.6 100.0 7.0 100.0 7.4
1e-2 0.3 100.0 7.5 100.0 8.6 100.0 7.5 100.0 8.5
1e-2 0.5 90.6 7.6 100.0 9.0 96.9 7.7 100.0 8.7
1e-2 0.7 71.9 6.7 100.0 9.8 84.4 6.7 100.0 10.0
1e-2 0.9 37.5 6.8 100.0 18.7 43.8 8.6 100.0 10.1

PATH times vary from 0.3 to 2.7 (s)

All Type III problems on small and larger scenario tree solved by
PD-CC-PTH
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Performance on economic dispatch (Type I and II) on
larger tree

quad λ
Type I market Type II market

PD-CC-PATH Homot PD-CC-PATH Homot

0 0.1 100.0 100.0 100.0 100.0
0 0.3 96.9 100.0 100.0 100.0
0 0.5 71.9 90.6 71.9 87.5
0 0.7 18.8 53.1 31.2 50.0
0 0.9 9.4 21.9 9.4 12.5

1e-2 0.1 100.0 100.0 100.0 100.0
1e-2 0.3 100.0 100.0 100.0 100.0
1e-2 0.5 100.0 100.0 100.0 100.0
1e-2 0.7 84.4 93.8 96.9 100.0
1e-2 0.9 53.1 68.8 65.6 81.2
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Large pumped storage investment: Lake Onslow

Technology Without With
SI HAY NI SI HAY NI

ONSLOW 0.0 0.0 0.0 1000.0 0.0 0.0
SLOWBATT 500.0 500.0 500.0 0.0 500.0 500.0
WIND 0.0 2049.9 5000.0 0.0 1407.4 5000.0

Worried about the effects of dry winters and excess wind capacity

Pumped storage costs amortized over long period

Economical if emissions constraint is strict enough (i.e. no more than
5% of 2017 levels)

Remove large battery in SI, reduce wind capacity at HAY
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Impact of Electric Vehicles on Generator Investments

Carbon Goals: 60% reduction
on in-state carbon emissions

Nuclear (low-carbon) used

Coal steam generators shut
down, supplanted by renewables

Additional 180,000 MWh
demand for EVs

Storage investment needed

Additional demand or carbon
goals give more dramatic effects
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A mathematical modelling approach to planning

Build and solve a social plannning model that optimizes electricity
capacity investment with constraints on CO2 emissions.

Social planning solution should be stochastic: i.e. account for future
uncertainty

Social planning solution should be risk-averse: because the industry is.

Approximate the outcomes of the social plan by a competitive
equilibrium with risk-averse investors.

Compensate for market failures from imperfect competition or
incomplete markets.
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