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The PIES Model (Hogan) - Optimal Power Flow (OPF)

min
x

c(x) cost

s.t. Ax ≥ q balance

Bx = b, x ≥ 0 technical constr

q = d(π): issue is that π is the multiplier on the “balance” constraint

Such multipliers (LMP’s) are critical to operation of market

Can try to solve the problem iteratively (shooting method):

πnew ∈ multiplier(OPF (d(π)))
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Alternative: Form KKT of QP, exposing π to modeler

L(x , µ, λ) = c(x) + µT (d(π)− Ax) + λT (b − Bx)

0 ≤ −∇µL = Ax − d(π) ⊥ µ ≥ 0

0 = −∇λL = Bx − b ⊥ λ

0 ≤ ∇xL = ∇c(x)− ATµ− BTλ ⊥ x ≥ 0

empinfo: dualvar π balance

Fixed point: replaces µ ≡ π
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0 = Bx − b ⊥ λ

0 ≤ ∇c(x)− ATπ − BTλ ⊥ x ≥ 0

empinfo: dualvar π balance

Fixed point: replaces µ ≡ π
LCP/MCP is then solvable using PATH

z =



π
λ
x


 , F (z) =




A
B

−AT −BT


 z +



−d(π)
−b
∇c(x)




Existence, uniqueness, stability from variational analysis
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Convex subdifferentials
SUBGRADIENTS

0

(�g, 1)

f(z)

�
x, f(x)

⇥

z

• Let f : �n → (−⇣,⇣] be a convex function.
A vector g ⌘ �n is a subgradient of f at a point
x ⌘ dom(f) if

f(z) ≥ f(x) + (z − x)�g,  z ⌘ �n

• Support Hyperplane Interpretation: g is
a subgradient if and only if

f(z)− z�g ≥ f(x)− x�g,  z ⌘ �n

so g is a subgradient at x if and only if the hyper-
plane in ��n+1 that has normal (−g, 1) and passes
through x, f(x)

⇥
supports the epigraph of f .

• The set of all subgradients at x is the subdiffer-
ential of f at x, denoted ◆f(x).

By convention ◆f(x) = Ø for x / dom(f).

◆

• ⌘
2

Assume f is convex, then
f (z) ≥ f (x) +∇f (x)T (z − x)
(linearization is below the
function)

Incorporate constraints by
allowing f to take on +∞ if
constraint is violated
f : Rn 7→ (−∞,+∞]

∂f (x) ={
g : f (z) ≥ f (x) + gT (z − x), ∀z

}
,

the subdifferential of f at x

If f is differentiable and convex, then ∂f (x) = {∇f (x)}
e.g. f (z) = 1

2z
TQz + pT z , then ∂f (x) = {Qx + p}

x∗ solves min f (x) if and only if 0 ∈ ∂f (x∗)
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Indicator functions and normal cones

ψC(z) =

{
0 if z ∈ C
∞ else

ψC is a convex function when C is a
convex set

EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and ⌅C be its indicator
function.

• For x ⌘/ C, ◆⌅C(x) = Ø (by convention).

• For x ⌘ C, we have g ⌘ ◆⌅C(x) iff

⌅C(z) ≥ ⌅C(x) + g�(z − x),  z ⌘ C,

or equivalently g�(z − x) ⌥ 0 for all z ⌘ C. Thus
◆⌅C(x) is the normal cone of C at x, denoted
NC(x):

NC(x) = g g�(z x) 0, z C .
⇤

| − ⌥  ⌘
⌅

C

NC(x)

x C

NC(x)

x

5

If x ∈ C, then

g ∈ ∂ψC(x)

⇐⇒ ψC(z) ≥ ψC(x) + gT (z − x), ∀z
⇐⇒ 0 ≥ gT (z − x), ∀z ∈ C

Normal cone to C at x ,

NC(x):= ∂ψC(x) =

{{
g : gT (z − x) ≤ 0, ∀z ∈ C

}
if x ∈ C

∅ if x /∈ C
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Some calculus

fi : Rn 7→ (−∞,∞], i = 1, . . . ,m, proper, convex functions

F = f1 + · · ·+ fm

assume
m⋂

i=1

rint(dom(fi )) 6= ∅ then (as sets)

∂F (x) = ∂f1(x) + · · ·+ ∂fm(x), ∀x

C =
m⋂

i=1

Ci , then ψC = ψCi + · · ·+ ψCm , so NC = NCi + · · ·+ NCm

x∗ solves min
x∈C

f (x) ⇐⇒ x∗ solves min
x

(f + ψC)(x)

⇐⇒ 0 ∈ ∂(f + ψC)(x∗) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)
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Special cases and examples

Normal cone is a cone

x ∈ int(C), then NC(x) = {0}
C = Rn, then NC(x) = {0}, ∀x ∈ C

EXAMPLE: POLYHEDRAL CASE

NC(x)

C

a1

a2

x

• For the case of a polyhedral set

C = {x | a�ix ⌥ bi, i = 1, . . . ,m},

we have

NC(x) =

� {0} if x ⌘ int(C),
cone

�
{ai | a�ix = bi}

⇥
if x ⌘/ int(C).

• Proof: Given x, disregard inequalities with
a�ix < bi, and translate C to move x to 0, so it
becomes a cone. The polar cone is NC(x).

6

C =
{
z : aTi z ≤ bi , i = 1, . . . ,m

}

polyhedral

NC(x) ={
m∑

i=1

λiai : 0 ≤ bi − aTi x ⊥ λi ≥ 0

}

⊥ makes product of items around it
0, i.e.

(bi − aTi x)λi = 0, i = 1, . . . ,m
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Combining: KKT conditions

Example: convex optimization first-order optimality condition:

x∗ solves min
x∈C

f (x) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)

⇐⇒ 0 = ∇f (x∗) + y , y ∈ NC(x∗)

⇐⇒ 0 = ∇f (x∗) + y , y = ATλ,

0 ≤ b − Ax∗ ⊥ λ ≥ 0

⇐⇒ 0 = ∇f (x∗) + ATλ,

0 ≤ b − Ax∗ ⊥ λ ≥ 0

More generally, if C = {z : g(z) ≤ 0}, g convex, (with CQ)

x∗ solves min
x∈C

f (x) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)

⇐⇒ 0 = ∇f (x∗) +∇g(x∗)λ,

0 ≤ −g(x∗) ⊥ λ ≥ 0
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Variational Inequality (replace ∇f (z) with F (z))

F : Rn → Rn

Ideally: C ⊆ Rn – constraint set; Often: C ⊆ Rn – simple bounds

VI (F , C) : 0 ∈ F (z) + NC(z)

VI generalizes many problem classes

Nonlinear Equations: F (z) = 0 set C ≡ Rn

Convex optimization: F (z) = ∇f (z)

For NCP: 0 ≤ F (z) ⊥ z ≥ 0, set C ≡ Rn
+

For MCP (rectangular VI), set C ≡ [l , u]n.

For LP, set F (z) ≡ ∇f (z) = p and C = {z : Az = a,Hz ≤ h}.

Ferris (Univ. Wisconsin) Optimality and Complementarity Auckland, April 2018 9 / 17



VI: 0 ∈ F (z) +NC(z)

C

−F (z∗)

z∗

Nomal cone NC (z∗)

v

y − z∗

Many applications where F is not the derivative of some f

Ferris (Univ. Wisconsin) Optimality and Complementarity Auckland, April 2018 10 / 17



Other applications of complementarity

Complementarity can model fixed points and disjunctions

Economics: Walrasian equilibrium (supply equals demand), taxes and
tariffs, computable general equilibria, option pricing (electricity
market), airline overbooking

Transportation: Wardropian equilibrium (shortest paths), selfish
routing, dynamic traffic assignment

Applied mathematics: Free boundary problems

Engineering: Optimal control (ELQP)

Mechanics: Structure design, contact problems (with friction)

Geology: Earthquake propagation

Good solvers exist for large-scale instances of Complementarity Problems
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Complementarity Problems via Graphs

T = NR+ = (R+ × {0})
⋃

({0} × R−)

T is “monotone”

−y ∈ T (z) ⇐⇒ (z ,−y) ∈ T ⇐⇒ 0 ≤ y ⊥ z ≥ 0

By approximating (smoothing) graph can generate interior point
algorithms for example yz = ε, y , z > 0

0 ∈ F (z) +NRn
+

(z) ⇐⇒ (z ,−F (z)) ∈ T n ⇐⇒ 0 ≤ F (z) ⊥ z ≥ 0
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Operators and Graphs (C = [−1, 1], T = NC)

zi = −1,−yi ≤ 0 or zi ∈ (−1, 1),−yi = 0 or zi = 1,−yi ≥ 0

T (z) T −1(y) (I + T )−1(y) = PC(y)

(I + T )−1(y) is the projection of y onto [−1, 1]: PC(y)
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Generalized Equations

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1

If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then PT is piecewise affine (continous, single-valued,
non-expansive)

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) ∈ (I + T )(z) ⇐⇒ PT (z − F (z)) = z

Use in fixed point iterations (cf projected gradient methods)
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Splitting Methods

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Can devise Newton methods (e.g. SQP) that treat F via calculus and
T via convex analysis

Alternatively, can split F (z) = A(z) + B(z) (and possibly T also) so
we solve solve (GE) by solving a sequence of problems involving just

T1(z) = A(z) and T2(z) = B(z) + T (z)

where each of these is “simpler”

Forward-Backward splitting (or ADMM):

zk+1 = (I + ckT2)−1 (I − ckT1)
(
zk
)
,
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Normal Map

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1 (continuous, single-valued, non-expansive)

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) = x and x ∈ (I + T )(z)

⇐⇒ z − F (z) = x and PT (x) = z

⇐⇒ PT (x)− F (PT (x)) = x

⇐⇒ 0 = F (PT (x)) + x − PT (x)

This is the so-called Normal Map Equation
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Conclusions

Convexity separates easy optimization problems from hard ones

Modern convex analysis extends linear programming to richer but still
tractable settings

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

Variational inequalities and set valued analysis important tools for big
data problems

Modeling, optimization, statistics and computation embedded within
the application domain is critical

Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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Bimatrix Games: Golden Balls

VI can be used to formulate many standard problem instances
corresponding to special choices of M and C.

Nash game: two players have I and J pure strategies.

p and q (strategy probabilities) belong to unit simplex 4I and 4J

respectively.

Payoff matrices A ∈ RJ×I and B ∈ R I×J , where Aj ,i is the profit
received by the first player if strategy i is selected by the first player
and j by the second, etc.

The expected profit for the first and the second players are qTAp and
pTBq respectively.

A Nash equilibrium is reached by the pair of strategies (p∗, q∗) if and
only if

p∗ ∈ arg min
p∈4I

〈Aq∗, p〉 and q∗ ∈ arg min
q∈4J

〈BTp∗, q〉
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Formulation using complementarity

The optimality conditions for the above problems are:

−Aq∗ ∈ N4I
(p∗) and − BTp∗ ∈ N4J

(q∗)

Therefore the corresponding VI is affine and can be written as:

0 ∈
[

0 A
BT 0

] [
p
q

]
+ N4I×4J

(

[
p
q

]
). (1)
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