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The PIES Model (Hogan) - Optimal Power Flow (OPF)

min ¢(x) cost
X
st. Ax>gq balance
Bx=b,x>0 technical constr
=] 5 = E El= DA
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The PIES Model (Hogan) - Optimal Power Flow (OPF)

min c(x) cost
X

s.t. Ax > d(m) balance

Bx=b,x>0 technical constr

@ g = d(): issue is that 7 is the multiplier on the “balance” constraint
@ Such multipliers (LMP's) are critical to operation of market

@ Can try to solve the problem iteratively (shooting method):

7" € multiplier(OPF(d(m)))
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Alternative: Form KKT of QP, exposing 7 to modeler

L(x, 1, \) = c(x) + p(d(7) — Ax) + AT (b — Bx)

0< —V,uL=Ax—d(r) L u>0
0= —VyL=Bx—b LA
0< Vil=Ve(x)—ATp—B™Xx L x>0

@ empinfo: dualvar 7 balance

o Fixed point: replaces p ==
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Alternative: Form KKT of QP, exposing 7 to modeler

0 < Ax —d(m) 1L >0
0=Bx—b LA
0<Ve(x)—ATn—B™ X 1L x>0

@ empinfo: dualvar 7 balance
o Fixed point: replaces p ==
e LCP/MCP is then solvable using PATH

T A —d()
z=|A|l, F(z)= Blz+ | —b
X ~AT BT Ve(x)

@ Existence, uniqueness, stability from variational analysis
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Convex subdifferentials

@ Assume f is convex, then
f(z) > f(x) + VF(x)T(z — x)
(linearization is below the
function)

@ Incorporate constraints by
allowing f to take on +o0 if
constraint is violated
f:R"— (—o0, +00]

e Jf(x) =
{g f(2) > fF(x)+gT(z— X),Vz},
the subdifferential of f at x
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Convex subdifferentials
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@ Assume f is convex, then
f(z) > f(x) + VF(x)T(z — x)
(linearization is below the
function)

@ Incorporate constraints by
allowing f to take on +o0 if
constraint is violated
f:R"— (—o0, +00]

e Jf(x) =
{g f(2) > fF(x)+gT(z— X),Vz},
the subdifferential of f at x

e If f is differentiable and convex, then 0f(x) = {Vf(x)}
o eg. f(z)=12"7Qz+ pTz, then 9f(x) = {Qx + p}
e x* solves min f(x) if and only if 0 € Of(x*)
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Indicator functions and normal cones
0 ifzeC
Ye(z) = { v
oo else

e is a convex function when C is a
convex set
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Indicator functions and normal cones
0 ifzeC
Ye(z) = {
oo else

e is a convex function when C is a
convex set

If x € C, then
/@ >< £ € el
<:>¢c

Ye

2) > e(x) + 87 (2~ x), vz

— 0>g"(z—x), VzeC

Normal cone to C at x,

Ne(x):= 0vpe(x) = {(Z)
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{g:gT(z—x)<0,vzeC} ifxeC

if x¢C
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Some calculus

o fi :R"+— (—o0,00], i =1,...,m, proper, convex functions

F=f+--+"fny

assume m rint(dom(f;)) # 0 then (as sets)
i=1

OF (x) = 0fi(x) + - - - 4+ Ofm(x), Vx

) C:ﬂC;, then ¢C:¢Ci+...+¢cm'so NC:NCi+"'+NCm
i=1

x* solves mig f(x) < x* solves min(f + ¢¢)(x)
xXe X

< 0€9(f +9Yc)(x*) < 0 VF(x*)+ Ne(x¥)
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Special cases and examples

@ Normal cone is a cone
e x € int(C), then Ng(x) = {0}
e C =" then Ng(x) ={0}, VxeC
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Special cases and examples

@ Normal cone is a cone
e x € int(C), then N¢(x) = {0}
e C=R", then Ng(x) = {0}, Vx € C

° C:{z:aingb,-,izl,...,m}

polyhedral
° Ne(x) =
a1 {Z/\,-a,-:ogb,-—a,-TxJ_)\,-EO}
i=1
Nc(x)/ - ° (J)_ irneakes product of items around it

(bi—alx)\i=0,i=1,...,m
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Combining: KKT conditions

@ Example: convex optimization first-order optimality condition:

x* solves mirc1 f(x) <= 0¢e VF(x")+ Ne(x*)
X€

<= 0=VI(x")+y, y € Ne(x")

= 0=VIix)+y, y=AT)\
0<b—Ax"LA>0

— 0=VF(x*)+ AT\,
0<b—Ax* LA>0

o More generally, if C = {z: g(z) < 0}, g convex, (with CQ)

x* solves mig f(x) < 0¢€ VF(x*)+ Ne(x¥)
x€e

<= 0= VF(x*)+ Vg(x*)A,
0<—g(x*)LA>0
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Variational Inequality (replace Vf(z) with F(z))

F:R" - R"
Ideally: C C R" — constraint set; Often: C C R" — simple bounds

VI(F,C): 0¢€ F(z)+ N¢(z)

VI generalizes many problem classes

Nonlinear Equations: F(z) =0 set C = R”"

Convex optimization: F(z) = Vf(z)

For NCP: 0 < F(z) L z>0, set C =R

For MCP (rectangular VI), set C = [/, u]".

For LP, set F(z) = Vf(z) =pand C ={z: Az = a, Hz < h}.
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VI: 0 € F(z) + Ne(z2)
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Many applications where F is not the derivative of some f

Optimality and Complementarity
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Other applications of complementarity

Complementarity can model fixed points and disjunctions

@ Economics: Walrasian equilibrium (supply equals demand), taxes and
tariffs, computable general equilibria, option pricing (electricity
market), airline overbooking

@ Transportation: Wardropian equilibrium (shortest paths), selfish
routing, dynamic traffic assignment

Applied mathematics: Free boundary problems
Engineering: Optimal control (ELQP)

Mechanics: Structure design, contact problems (with friction)
o Geology: Earthquake propagation

Good solvers exist for large-scale instances of Complementarity Problems
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Complementarity Problems via Graphs

o T =Ne, =Ry x{0})U({0} xR_)

@ 7 is “monotone”

—y€T(z) < (z,—-y)eT <= 0<y1z>0

By approximating (smoothing) graph can generate interior point
algorithms for example yz = ¢,y,z >0

0€ F(z) +Ngn(2) <= (2,-F(2)) €T" <= 0<F(z) Lz>0
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Operators and Graphs (C = [-1,1], T = N¢)

zi=-1,—-y;<0orze(-1,1),—y;=0o0rz;=1,—y; >0

T(z) T y) (Z+T) y)=Pely)

(Z + T)~(y) is the projection of y onto [~1,1]: Pe(y)
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Generalized Equations

@ Suppose T is a maximal monotone operator
0e F(z)+7(z) (GE)

o Define Pr=(Z+7T)!

e If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then Py is piecewise affine (continous, single-valued,
non-expansive)

0€F(2)+T(z) <= zeF(2)+Z(2)+T(2)
= z—-F2)e(Z+T)(z) = Pr(z—F(2))=z

Use in fixed point iterations (cf projected gradient methods)
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Splitting Methods

@ Suppose T is a maximal monotone operator
0e F(z)+7(z) (GE)

@ Can devise Newton methods (e.g. SQP) that treat F via calculus and
T via convex analysis

o Alternatively, can split F(z) = A(z) + B(z) (and possibly 7 also) so
we solve solve (GE) by solving a sequence of problems involving just

Ti(z) = A(z) and Ta2(z) = B(z) + T(2)

where each of these is “simpler”
e Forward-Backward splitting (or ADMM):

Zk—i_1 = (/ + Ck Tz)il (I — Ck Tl) (Zk) ,
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Normal Map

@ Suppose T is a maximal monotone operator
0e F(z)+T7(z) (GE)

o Define Pr = (I + 7)™ (continuous, single-valued, non-expansive)

0e F(z)+T(2) ze F(z2)+Z(2) + T(2)
z—F(z)=xand x€ (Z+T)(2)
z—F(z)=xand Pr(x) =z
Pr(x) - F(Pr(x)) = x

0 = F(Pr(x)) + x — Pr(x)

1reey

This is the so-called Normal Map Equation
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Conclusions

o Convexity separates easy optimization problems from hard ones

@ Modern convex analysis extends linear programming to richer but still
tractable settings

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

@ Variational inequalities and set valued analysis important tools for big
data problems

@ Modeling, optimization, statistics and computation embedded within
the application domain is critical

@ Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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Bimatrix Games: Golden Balls

@ VI can be used to formulate many standard problem instances
corresponding to special choices of M and C.

@ Nash game: two players have | and J pure strategies.

e p and g (strategy probabilities) belong to unit simplex A; and A
respectively.

o Payoff matrices A € R*! and B € R/*/, where Aj i is the profit
received by the first player if strategy i is selected by the first player
and j by the second, etc.

@ The expected profit for the first and the second players are g7 Ap and
p' Bq respectively.

@ A Nash equilibrium is reached by the pair of strategies (p*, g*) if and
only if

* ¢ arg min (Ag*,p) and g* € arg min (B’ p*,
p gpeAl< q,p) q gquJ< P, q)
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Formulation using complementarity

The optimality conditions for the above problems are:
—Aq* € Na,(p*) and — BT p* € Na,(q")

Therefore the corresponding VI is affine and can be written as:

OE[BOT /3:||:5:|+NA,><AJ(|:5:|)' (1)
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