Formulations and solution algorithms for Complementarity Problems (or seven ways to skin a cat)

Michael C. Ferris

University of Wisconsin, Madison

Funded by AFOSR and NSF

Auckland, April 26, 2018

AVI over polyhedral convex set

An affine function

$$F: \mathbb{R}^n \to \mathbb{R}^n, \ F(z) = Mz + q, \ M \in \mathbb{R}^{n \times n}, \ q \in \mathbb{R}^n$$

A polyhedral convex set

$$\mathcal{C} = \{ z \in \mathbb{R}^n \mid Az(\geq, =, \leq)a, \ l \leq z \leq u \}, \ A \in \mathbb{R}^{m \times n}$$

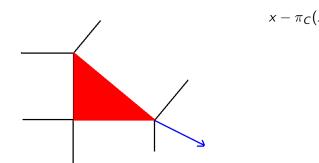
Find a point $z^* \in C$ satisfying

$$\begin{array}{ll} \langle F(z^*), y - z^* \rangle & \geq 0, \quad \forall y \in \mathcal{C} \\ (\Leftrightarrow) \ \langle -F(z^*), y - z^* \rangle & \leq 0, \quad \forall y \in \mathcal{C} \\ (\Leftrightarrow) \ -F(z^*) & \in N_{\mathcal{C}}(z^*) \end{array}$$

where

$$N_{\mathcal{C}}(z^*) = \{ v \mid \langle v, y - z^* \rangle \leq 0, \forall y \in \mathcal{C} \}$$

Normal map for polyhedral C



projection: $\pi_C(x)$

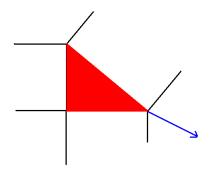
$$x - \pi_C(x) \in N_C(\pi_C(x))$$

< 67 ▶

Ferris (Univ. Wisconsin)

∃ → Auckland, April 2018 3 / 25

Normal map for polyhedral C



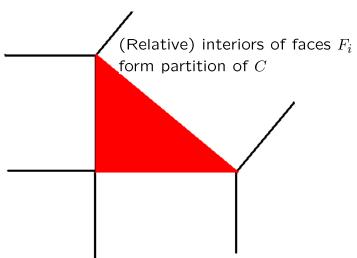
projection:
$$\pi_C(x)$$

 $x - \pi_C(x) \in N_C(\pi_C(x))$
If $-M\pi_C(x) - q = x - \pi_C(x)$ then
 $z = \pi_C(x)$ solves
 $0 \in Mz + q + N_C(z)$
if and only if we can find x, a zero

of the normal map:

$$0 = M\pi_C(x) + q + x - \pi_C(x)$$

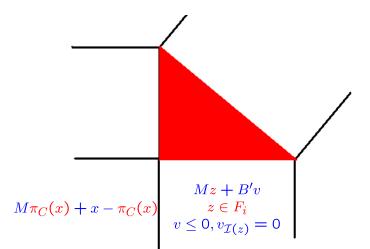
- 一司



Ferris (Univ. Wisconsin)

< 67 ▶

$C = \{z | Bz \ge b\}, N_C(z) = \{B'v | v \le 0, v_{\mathcal{I}(z)} = 0\}$

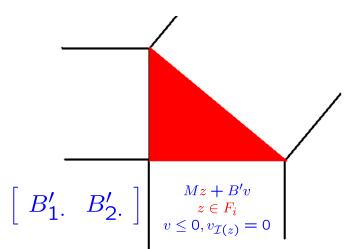


- 3

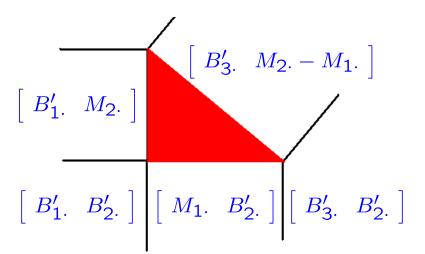
글 > - + 글 >

< (T) > <

$C = \{z | Bz \ge b\}, N_C(z) = \{B'v | v \le 0, v_{I(z)} = 0\}$



 $C = \{z | Bz \ge b\}, F(z) = Mz + q$



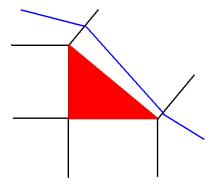
- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The PATHAVI algorithm

- Start in cell that has interior (face is an extreme point, so normal cone has interior primary ray)
- Move towards a zero of affine map in cell
- Update direction when hit boundary (pivot)
- Solves, or determines infeasible if *M* is copositive-plus on rec(*C*)
- Solves 2-person bimatrix games, 3-person games too, but these are nonlinear

But algorithm has exponential complexity (von Stengel et al)



Theorem

Suppose C is a polyhedral convex set and M is an L-matrix with respect to recC which is invertible on the lineality space of C. Then exactly one of the following occurs:

- PATHAVI solves (AVI)
- the following system has no solution

$$Mz + q \in (\operatorname{rec} \mathcal{C})^D, \qquad z \in \mathcal{C}.$$

Corollary

If M is copositive–plus with respect to $\operatorname{rec} C$, then exactly one of the following occurs:

- PATHAVI solves (AVI)
- (1) has no solution

Note also that if C is compact, then any matrix M is an L-matrix with respect to recC. So always solved.

Ferris (Univ. Wisconsin)

Experimental results: AVI vs MCP

- Run PATHVI over AVI formulation.
- Run PATH over rectangular form (poorer theory as recC larger).
- Structure knowledge leads to improved reliability

Name	(#cons,#vars)	Number of iterations (time/secs)	
		PATHVI	PATH
CVXQP1_M	(500, 1000)	3119 (0.459)	fail
CVXQP2_M	(250, 1000)	33835 (2.927)	fail
CVXQP3_M	(750, 1000)	360 (0.105)	3603 (1.992)
CONT-050	(2401, 2597)	11 (2.753)	382 (272.429)
CONT-100	(9801,10197)	3 (174.267)	fail

Extension to Nonlinear Model

- So now we can solve AVI, what happens when F is nonlinear
- Embed AVI solver in a Newton Method each Newton step solves an AVI
- Nonlinear equations F(x) = 0
- Newton's Method

 $F(x^{k}) + \nabla F(x^{k})d^{k} = 0$ $x^{k+1} = x^{k} + d^{k}$

- Damp using Armijo linesearch on $\frac{1}{2} \|F(x)\|_2^2$
- Descent direction gradient of merit function
- Properties
 - Well defined
 - Global and local-fast convergence

Nonsmooth Newton Method Given x^k

solve:
$$0 \in F(x^k) + \nabla F(x^k)(x - x^k) + N_C(x)$$

 $d_k = x^* - x^k, x^*$ from above
 $x^{k+1} = x^k + \alpha d^k$

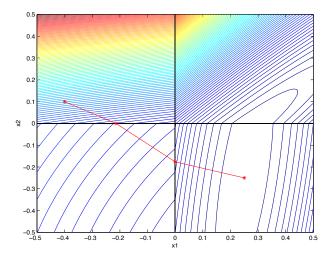
• Equivalent piecewise smooth equation $F_+(x) = 0$

$$F_+(x) \equiv F(\pi_C(x)) + x - \pi_C(x)$$

(when $C = \mathbb{R}^n_+$ then $\pi_C(x) = max(x, 0)$ is easy to compute)

- Nonsmooth Newton Method
 - Iteratively solve piecewise linear system of equations, via pivoting
 - Damp using Armijo search on $\frac{1}{2} \|F_+(x)\|_2^2$
- Properties
 - Global and local-fast convergence
 - Merit function not differentiable

Piecewise Linear Example



<ロ> (日) (日) (日) (日) (日)

13 / 25

Fischer-Burmeister Function

$$\phi(a, b) := \sqrt{a^2 + b^2} - a - b$$

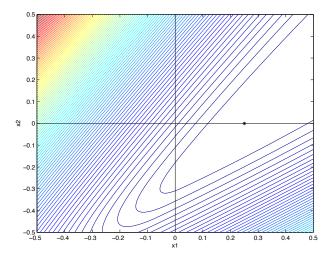
 $\phi(a, b) = 0 \iff 0 \le a \perp b \ge 0$

• $\Phi(x)$ defined componentwise

$$\Phi_i(x) \equiv \sqrt{(x_i)^2 + (F_i(x))^2 - x_i - F_i(x)}$$

- $\Phi(x) = 0$ if and only if x solves NCP(F)
- Not continuously differentiable semismooth
- Natural merit function $(\frac{1}{2} \|\Phi(x)\|_2^2)$ is differentiable

Fischer-Burmeister Example



Ferris (Univ. Wisconsin)

Auckland, April 2018

<ロ> (日) (日) (日) (日) (日)

15 / 25

æ

Review

- Nonlinear Complementarity Problem
- Piecewise smooth system of equations
 - Use nonsmooth Newton Method
 - Solve linear complementarity problem per iteration
 - Merit function not differentiable

• Fischer-Burmeister

- Differentiable merit function
- Combine to obtain new algorithm
 - Well defined
 - Global and local-fast convergence

Feasible Descent Framework

- Calculate direction using a local method
 - Generates feasible iterates
 - Local fast convergence
 - Used nonsmooth Newton Method
- Accept direction if descent for $\frac{1}{2} \|\Phi(x)\|^2$
- Otherwise use projected gradient step

Theorem

Let $\{x^k\} \subseteq \Re^n$ be a sequence generated by the algorithm that has an accumulation point x^* which is a strongly regular solution of the NCP. Then the entire sequence $\{x^k\}$ converges to this point, and the rate of convergence is Q-superlinear.

- Method is well defined
- Accumulation points are stationary points
- Locally projected gradient steps not used

Ferris (Univ. Wisconsin)

Computational Details

- Preprocessing to simplify without changing underlying problem
- Crashing method to quickly identify basis
- Nonmonotone search with watchdog
- Perturbation scheme for rank deficiency
- Stable interpolating pathsearch
- Restart strategy
- Projected gradient searches

Nonlinear Complementarity Problems

- Given $F: \Re^n \to \Re^n$
- Find $x \in \Re^n$ such that

 $0 \le F(x) \qquad x \ge 0$ $x^T F(x) = 0$

• Compactly written

 $0 \leq F(x) \perp x \geq 0$

• Equivalent to nonsmooth equation (min-map):

 $\min(x,F(x))=0$

Nonsmooth alternatives

The normal map is one nonsmooth equation reformulation of the nonlinear complementarity problem.

We have just seen two alternatives

- Fischer-Burmeister $\Phi(x) = 0$
- in-map min(x, F(x)) = 0

Alternative methods generate generalized derivatives of these nonsmooth functions and use within nonsmooth Newton methods

- Approaches are relatively simple to implement and work well in many (well defined) cases
- Fundamental difference is nonsmoothness is outside F
- PATH tends to perform better (due to the heuristic extensions) on harder/messier problems

- 3

Smoothing: The Fischer Function [Burmeister]

• For NCP (with $\mu > 0$):

$$0 = \phi_{\mu}(x_i, F_i(x)), i = 1, 2, \dots, n$$

where

$$\phi_{\mu}(a,b) := \sqrt{a^2 + b^2 + \mu} - a - b$$

- Gives rise to semismooth algorithms
- Need to drive μ to 0, no longer nonsmooth
- Available within NLPEC

MIP formulations for Complementarity

Set $y_i = F_i(x)$, then additionally

$$y_i \geq 0, x_i \geq 0, x_i y_i = 0$$

If we know upper bounds on x_i and y_i we can model as:

 $(x_i, y_i) \in SOS1$

or introduce binary variable z_i and

$$x_i \leq M z_i, y_i \leq M(1-z_i)$$

(or use indicator variables to turn on "fixing" constraints). Works if bounds are good and problem size is not too large. Issues with bounds on multipliers not being evident.

MPEC approaches

- Can use nonlinear programming approaches (e.g. NLPEC)
- Knitro can process MPCC's and uses penalization for complementarity
- Implicit approach: generate y(x) where y solves the parametric (in x) complementarity problem, then solve

 $\min f(x,y(x))$

using a bundle trust region method for example. Difficult to deal with side constraints.

Separable Structure

- Partition variables into (x, y)
- Identify separable structure

$$0 \in \left[\begin{array}{c} F(x) \\ G(x,y) \end{array}\right] + \left[\begin{array}{c} N_{\Re_{+}^{n}}(x) \\ N_{\Re_{+}^{n}}(y) \end{array}\right]$$

- Reductions possible if either
 - $0 \in F(x) + N_{\Re_+^n}(x)$ has a unique solution • $0 \in G(x, y) + N_{\Re_+^n}(y)$ has solution for all x
- Theory provides appropriate conditions
- Solve F and G sequentially

Conclusions

- Many formulations and algorithms for complementarity problems
- PATH algorithm is widely used, available in GAMS, AMPL, AIMMS, JUMP, Matlab, API-format
- Need for more theoretic and algorithmic enhancements in large scale and structured cases
- Need to find all solutions of complementarity problems, or to solve MPEC/MPCC to global optimality