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Power generation, transmission and distribution

Determine generators’ output to reliably meet the load
I

∑
Gen MW ≥

∑
Load MW, at all times.

I Power flows cannot exceed lines’ transfer capacity.
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Single market, single good: equilibrium

Walras: 0 ≤ s(π)− d(π) ⊥ π ≥ 0

Market design and rules to
foster competitive
behavior/efficiency

Spatial extension: Locational
Marginal Prices (LMP) at nodes
(buses) in the network

Supply arises often from a generator
offer curve (lumpy)

Technologies and physics affect
production and distribution
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The setup: agents a =(solar, wind, diesel, consumer)
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A (competitive) equilibrium

ua solves AO(a, π): min
ua∈Ua,π

Ca,π(ua)

and
0 ≤

∑
a∈A

ga(ua(n)) ⊥ π(n) ≥ 0

Actions ua (dispatch, curtail, generate, shed), with costs Ca

One optimization per agent, coupled with solution of complementarity
(equilibrium) constraint: ga converts actions into energy

Overall, a Nash Equilibrium problem (or a MOPEC), solvable as a
large scale complementarity problem (replacing all the optimization
problems by their KKT conditions) using the PATH solver

Model to understand behaviour of (rational) agents assuming price
taking (π) behavior

What is the gold standard?
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System Optimization

SO: min
u

∑
a∈A

Ca(ua)

s.t.
∑
a∈A

ga(ua(n)) ≥ 0

ua ∈ Ua

Lagrangian theory shows MOPEC is equivalent to SO under
behavioral assumptions (perfectly competitive) and some standard
technical assumptions

Could use as a counter-factual to determine if agents are in practice
acting perfectly competitively

So what’s the issue?
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There’s more: dynamics and uncertainties

Lousy solution - no transfer of energy
across time: need dynamics

Storage allows energy to be moved
across stages (batteries, pump,
compressed air, etc)

Power distribution not modeled (single
consumer location)

Uncertainties (wind flow, cloud cover,
rainfall, demand) ωa(n)

Scenario tree is data

Nodes n ∈ N , n+ successors

State and shared variables (storage,
prices)

T stages (e.g.
t ∈ 0, 1, 2, 3, 4, 5, 6)
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Add storage (smoother) to uncertain supply
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The Philpott bach problem

Solar panels:

Petrol generator:

Battery:

Pump storage:
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Example: 100% renewables

Motivated by european/US model about batteries

Allows direct delivery of renewables, models efficiency of charging,
and uses installed capacities

Using risk neutral (expectation) optimization
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Risk modeling

Modern approach to
modeling risk
aversion uses concept
of risk measures

CVaRα: mean of
upper tail beyond
α-quantile (e.g.
α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

Dual representation in terms of risk sets: D
Different agents have different risk profiles

Recursive (nested) definition of expected cost-to-go
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Risk averse equilibrium

Replace each agents problem by:

AO(a, π,Da): min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θa(n) ≥
∑
m∈n+

pka (m)(Za(m) + θa(m)), k ∈ K (n)

Za(n) = Ca(ua(n))− π(n)ga(ua(n))

pka (m) are extreme points of the agents risk set at m

No longer system optimization

Must solve using complementarity solver

Need new techniques to treat stochastic optimization problems within
equilibrium
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Risk averse (λ = 0.5) case: 100% renewables
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Prices: different values of risk

Right hand figure increases risk aversion to λ = 0.5

Equilibrium prices generally lower (different equilibria!)
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Increase (capture) capability of renewables

Right hand figure increases capture capability by 50%

Welfare increasing but not counting infrastructure cost

May need smaller increase so can pay for investment (see later)
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Prices: increased capture capability of renewables

Right hand figure increases capture capability by 50%

Distribution of prices at selected decreasing levels of thermal
generation capacity
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Cascading hydro-thermal system: XMGD

Two hydros on same river: ’1’ is above
’2’: spill or release with generation

Thermal generator ’T’ and consumer
(risk neutral)

D1

D2

D3

T

1

2

Competing firms
(collections of
consumers, or generators
in energy market)

Each firm minimizes
objective independently

Look at joint ownership
issues (firms represented
colors: X, M, G)

Label consumer as ’D’
(but can be partitioned
into ’D1’,’D2’,’D3’)
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Equilibria with cascades: water prices
Tab encodes the water network, water prices are multipliers on:

xa(n−) +
∑
b

Tabub(n) + ωa(n) ≥ xa(n)

Allows interaction with other water uses (irrigation, tourism, conservation)

AO(a, π,Da): min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. θa(n) ≥
∑
m∈n+

pka (m)(Za(m) + θa(m)), k ∈ K (n)

where Za(n) is updated to incorporate prices of interactions

Za(n; u, x) = Ca(ua(n))− π(n)ga(ua(n))+

αa(n) (xa(n)− xa(n−)− ωa(n))−
∑
b∈A

αb(n)Tbaua(n),
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Average inflow 0.6

XMGD
TotRA = 87351
SysRA = 92763
SysRN = 93109

D1

D2

D3

T

1

2

MMGD
TotRA = 87351
SysRA = 92763
SysRN = 93109

D1

D2

D3

T

1

2

Ownership of both hydros is not beneficial with competitive pricing of
water
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Low inflow 0.1

XMGD
TotRA = 62382
SysRA = 65269
SysRN = 65375

D1

D2

D3

T

1

2

MMGD
TotRA = 62552
SysRA = 65371
SysRN = 65375

D1

D2

D3

T

1

2

Not true: risk averse and low inflows shows advantage to
co-ownership of hydros
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Vertical integration/asset swaps

SysRN and TotRN in risk neutral case,
followed by SysRA and TotRA for three
cases depicted on left

Vertical integration and risk matters!

Base: XMGDEF

D1

D2

D3

T

1

2

Vertical integration: MMGDMG

D1

D2

D3

T

1

2

VI & Asset Swap: GMGDMG

D1

D2

D3

T

1

2
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XMGDEF/MMGDMG/GMGDMG (water price differences)

Ferris/Philpott (Univ. Wisconsin) Dynamic Risked Equilibria Supported by DOE/ARPA-E 22 / 31



Equilibrium or optimization?

Theorem

If (u, θ) solves SO(Ds), then there is a probability distribution
(µ̄(n), n ∈ N ) and prices (π(n), n ∈ N ) so that defining Da = {µ̄} for all
a ∈ A, (u, π) solves SE(DA). That is, the social plan is decomposable into
a risk-neutral multi-stage stochastic optimization problem for each agent,
with coupling via complementarity constraints.

(Observe that each agent must maximize their own expected profit using
probabilities µ̄ that are derived from identifying the worst outcomes as
measured by SO. These will correspond to the worst outcomes for each
agent only under very special circumstances)

Attempt to construct agreement on what would be the worst-case
outcome by trading risk
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Contracts in MOPEC (Philpott/F./Wets)

Can we modify (complete) system to have a social optimum by
trading risk?

How do we design these instruments? How many are needed? What
is cost of deficiency?

Given any node n, an Arrow-Debreu security for node m ∈ n+ is a
contract that charges a price µ(m) in node n ∈ N , to receive a
payment of 1 in node m ∈ n+.

Conceptually allows to transfer money from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Such contracts complete the market (RTE)

AOa(π, µ,Da): min
(θ,Z ,x ,u,W )∈F(ω)

Za(0) + θa(0)

s.t. θa(n) ≥
∑
m∈n+

pka (m)(Za(m) + θa(m)−Wa(m)), k ∈ K (n)

Za(n) = Ca(ua(n))− π(n)ga(ua(n)) +
∑
m∈n+

µ(m)Wa(m)

coupled to clearing of energy, (water) and contracts

0 ≤ −
∑
a∈A

Wa(n) ⊥ µ(n) ≥ 0

Theorem

Consider agents a ∈ A, with risk sets Da(n), n ∈ N \ L. Let (u, θ) solve
SO(Ds) with risk sets Ds(n) =

⋂
a∈ADa(n). There exist prices

(π̄(n), n ∈ N ) and (µ̄(n), n ∈ N \ {0}) and actions ūa(n), n ∈ N ,
W̄a(n), n ∈ N \ {0} that form a multistage risk-trading equilibrium
RTE(DA).
Ferris/Philpott (Univ. Wisconsin) Dynamic Risked Equilibria Supported by DOE/ARPA-E 25 / 31



Conversely...

Theorem

Consider a set of agents a ∈ A, each endowed with a polyhedral
node-dependent risk set Da(n), n ∈ N \ L. Suppose (π̄(n), n ∈ N ) and
(µ̄(n), n ∈ N \ {0}) form a multistage risk-trading equilibrium RTE(DA)
in which agent a solves AOa(π̄, µ̄,Da) with a policy defined by ūa(·)
together with a policy of trading Arrow-Debreu securities defined by
{W̄a(n), n ∈ N \ {0}}. Then (ū, θ̄) is a solution to SO(Ds) with risk sets
Ds(n) =

⋂
a∈ADa(n), where θ̄ is defined recursively (above) with µσ = µ̄

and ua(n) = ūa(n).

In battery problem can recover by trading the system optimal solution
(and its properties) since the retailer/generator agent is risk neutral

Both theorems are generalizable to the water pricing setting too!
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Risked capacity expansion (Corey Kok PhD thesis)

Agents in the model

}
}

LowLow
InflowsInflows

LowLow
DemandDemand

HighHigh
DemandDemand

HighHigh
InflowsInflows

P(u2)=0.1

P(u3)=0.1

P(u4)=0.1

P(u5)=0.1

P(u1)=0.1

P(u6)=0.1

P(u7)=0.1

P(u8)=0.1

P(u9)=0.1

P(u10)=0.1

Scenarios for capacity expansion model
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Expansion decisions and their social welfare
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Risk adjusted welfare of agents
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Results generated using GAMS/EMP

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

dualvar (use multipliers from one agent as variables for another)

implicit functions and shared constraints

Currently available within GAMS

Some solution algorithms implemented in modeling system -
limitations on size, decomposition and advanced algorithms

Ferris/Philpott (Univ. Wisconsin) Dynamic Risked Equilibria Supported by DOE/ARPA-E 30 / 31



Conclusions/Questions/Comments

Risk matters!

Optimization guides the development of complex interaction
processes within application domains

Combination of models (including transmission) provides effective
decision tool at multiple scales

Problems solved by combination of domain expertise, modeling
prowess, good theory/algorithms and efficient implementations: all
facets needed

Policy implications addressable using optimization and
complementarity

Can evaluate effects of regulations and their implementation in a
competitive environment

Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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