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A Scary Energy Winter Is Coming. Don’t Blame the Greens

Thomas Friedman (NY Times, Oct 5, 2021)

“The good news is that every major economy has signed onto
reducing its carbon footprint by phasing out dirtier fuels like coal to
heat homes and to power industries. The bad news is that most
nations are doing it in totally uncoordinated ways, from the top down,
and before the market has produced sufficient clean renewables like
wind, solar and hydro.”

“Achieving the scale of clean energy that we need requires not only
wind, solar and hydro, but also a carbon tax in every major industrial
economy, nuclear power and natural gas as a bridge.”

Can optimization help improve this situation?
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Engineering, Economics and Environment

Determine generators’ output to reliably/economically meet the load

Power flows cannot exceed lines’ transfer capacity

Tradeoff: Impose environmental regulations/incentives
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Data uncertainty: multiple futures (ω)

Introduction Multistage stochastic programming Some results Equilibrium Conclusions

Dealing with anticipation: the scenario trap

14 scenarios for electricity demand and generation mix in 2050.
There are 14 different optimal plans: which to select, if any?

14 scenarios (ω) for electricity demand and generation mix in 2050.
There are 14 different optimal plans: which to select, if any?
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Jacinda - what does fully renewable in electricity mean?

Permanently shutdown all thermal plants?

Control GHG emissions from electricity generation?

Introduction Stochastic optimization models Some results Conclusions

More about New Zealand
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Closing plants often increases average emissions (Fulton)

Hydro can act as a giant battery

Simulation runs: Reduce plant capacity, store more water “in case of
dry winter”:

Introduction Multistage stochastic programming Some results Equilibrium Conclusions

EMERALD output
[Fulton and Foster, 2018]

With low nonrenewable plant capacity, can’t wait till last minute and
reservoir levels in summer need to be close to full just in case.
Tradeoff: Burning fuel to achieve this increases emissions.
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Uncertainty is experienced at different time scales

Demand growth, technology
change, capital costs are
long-term uncertainties
(years)

Seasonal inflows to
hydroelectric reservoirs are
medium-term uncertainties
(weeks)

Levels of wind and solar
generation are short-term
uncertainties (half hours)

Very short term effects from
random variation in
renewables and plant failures
(seconds)

years weeks half-hours seconds

Infrastructure
investment

Optimal
releases

Demand
satisfaction

Spinning
reserves

Tradeoff: Uncertainty, cost and
operability, regulations,
security/robustness/resilience

Needs modelling at finer time
scales
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Simplified two-stage stochastic optimization model

Capacity decisions are z at cost K (z)

Operating decisions are: generation y at cost C (y), loadshedding q at
cost Vq.

Random demand is d(ω).

Minimize capital cost plus expected operating cost:

P: min
z,y ,q∈X

K (z) + Eω[C (y(ω)) + Vq(ω)]

s.t. y(ω) ≤ z ,
y(ω) ≥ d(ω)− q(ω),
zN ≤ (1− θ)zN (2017)
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Costs as we impose tighter emission restrictions

Markets based on marginal (operating) prices
Tradeoff: Building more (renewable) capacity costs more, but makes
operations cheaper - how to recover the fixed cost investment
Operational costs dominated (at 100% renewable) by load shedding
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Introduction Stochastic optimization models Some results Conclusions

More realistic model

Plant k has current capacity Uk , expansion xk at capital cost Kk
per MW, maintenance cost Lk per MW, and operating cost Ck .
Minimize fixed and expected variable costs. Here t = 0, 1, 2, 3, is a
season and w(t) is reservoir storage at end of season t.

P: minψ = ∑k (Kkxk + Lkzk ) +∑t Eω[Z (t,ω)]
s.t. Z (t,ω) = ∑b T (b) (∑k Ckyk (t,ω, b) + Vq(t,ω, b)) ,

xk ≤ uk ,
zk ≤ xk + Uk ,

yk (t,ω, b) ≤ µk (t,ω, b)zk ,
∑b T (b)yk (t,ω, b) ≤ νk (t,ω)∑b T (b)zk + w(t − 1)− w(t),

q(t,ω, b) ≤ d(t,ω, b),
d(t,ω, b) ≤ ∑k yk (t,ω, b) + q(t,ω, b),

w(t) ≤ W ,
y , q,w ≥ 0.
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Environmental constraints
Some capacity zk , k ∈ N , is “non renewable”. Some generation yk(ω),
k ∈ E emits βkyk(ω) tonnes of CO2. For a choice of θ ∈ [0, 1] constraint
is either:

Eω[
∑
k∈E

βkyk(ω)] ≤ (1− θ)Eω[
∑
k∈E

βkyk(ω, 2017)],

(reduce CO2 emissions compared with 2017)∑
k∈N

zk ≤ (1− θ)
∑
k∈N

zk(2017),

(reduce non-renewable capacity compared with 2017)

Eω[
∑
k∈N

yk(ω)] ≤ (1− θ)Eω[
∑
k∈N

yk(ω, 2017)],

(reduce non-renewable generation compared with 2017)

Could impose constraints almost surely instead of in expectation or with
risk measure (small impact) or use chance constraints
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Since (renewable) geothermal and CCS emit some CO2 100% renewable
yields modest reductions in CO2 emissions.
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Average emissions for increasing carbon price ($ / tonne)
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Technology choices as θ increases (% CO2 redn)

Rich portfolio of renewable technologies used

More capacity needed as more uncertain generation
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Large pumped storage investment: Lake Onslow

Technology Without With
SI HAY NI SI HAY NI

ONSLOW 0.0 0.0 0.0 1000.0 0.0 0.0
SLOWBATT 500.0 500.0 500.0 0.0 500.0 500.0
WIND 0.0 2049.9 5000.0 0.0 1407.4 5000.0

Worried about the effects of dry winters and excess wind capacity

Pumped storage costs amortized over long period

Economical if emissions constraint is strict enough (i.e. no more than
5% of 2017 levels)

Remove large battery in SI, reduce wind capacity at HAY
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Wisconsin: wind and solar penetration

WEREWOLF model outputs: Renewable increases (wind and solar) for
0%, 40%, 80% carbon reduction policy scenarios in Wisconsin
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Impact of Electric Vehicles on Generator Investments

Carbon Goals: 60% reduction
on in-state carbon emissions

Nuclear (low-carbon) used

Coal steam generators shut
down, supplanted by renewables

Additional 180,000 MWh
demand for EVs

Storage investment needed

Additional demand or carbon
goals give more dramatic effects

Ferris/Philpott Energy and environment Supported by DOE 17 / 23



Cost of actually reaching zero CO2 emissions (without geothermal or CCS)
increases as we approach the limit.
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Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total GHG emissions in 2016 were 80 M t CO2 equivalent.
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Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total CO2 emissions in 2016 were 30 M t.
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Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total CO2 emissions from electricity in 2016 were 3 M t.
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General equilibrium (with contracts/incentives)

Consumption dk , energy yj , flows f , prices π, σ

Consumers max
dk∈C

utility(dk)− TC (σ, d , f , y)− πTdk

Generators max
(yj )∈G

profit(yj , π)− TG (σ, d , f , y)

Transport min
f ∈F

cost(f , π, σ)

Market clearing

0 ≤ π ⊥
∑
j

yj −
∑
k

dk −Af ≥ 0

0 ≤ σ ⊥ E −
∑
j

Ej(yj) ≥ 0
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Conclusions

100% renewable electricity system has several interpretations with
different implications.

Policy should choose the objective function not the action: e.g.
reducing thermal capacity ceteris paribus can increase average
emissions.

Uncertainty in the model makes a difference.

Electricity system has uncertainties at many time scales. Can include
these in a single model with some approximations.

100% emission reduction in (NZ) electricity is needlessly expensive
given proportion of electricity emissions.

Next steps: A multistage model, and its competitive equilibrium
counterpart.
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A mathematical modelling approach to planning

Build and solve a social plannning model that optimizes electricity
capacity investment with constraints on CO2 emissions.

Social planning solution should be stochastic: i.e. account for future
uncertainty

Social planning solution should be risk-averse: because the industry is.

Approximate the outcomes of the social plan by a competitive
equilibrium with risk-averse investors.

Compensate for market failures from imperfect competition or
incomplete markets.
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