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The good news!

PATH solves rectangular VI

−F (x) ∈ NI1×...×Im(x)

(feasible set is a Cartesian product of possibly unbounded intervals)

PATHVI solves VI
−F (x) ∈ NC (x)

by identifying
C = {x ∈ P : g(x) ∈ K}

and reformulating as

x∗ solves VI(F , C) ⇐⇒ 0 ∈ F (x∗) + NC(x∗)

⇐⇒ 0 ∈
[
F (x∗) +∇g(x∗)λ

−g(x∗)

]
+ NP×K◦(x∗, λ)

Use Newton method, each step solves an affine variational inequality
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Experimental results: AVI vs MCP

Run PathAVI over AVI formulation.

Run PATH over rectangular form (poorer theory as recC larger).
I M is an n × n symmetric positive definite/indefinite matrix.
I A has m randomly generated bounded inequality constraints.

Structure knowledge leads to improved reliability

(m, n)
PathAVI PATH % negative

status # iterations status # iterations eigenvalues

(180,60) S 55 S 72 0
(180,60) S 45 S 306 20
(180,60) S 2 F 9616 60
(180,60) S 1 F 10981 80

(360,120) S 124 S 267 0
(360,120) S 55 S 1095 20
(360,120) S 2 F 10020 60
(360,120) S 1 F 7988 80
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MOPEC

min
xi
θi (xi , x−i , π) s.t. gi (xi , x−i , π) ≤ 0,∀i

π solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h pi cons

(Generalized) Nash

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve

Solve overall problem
using “individual
optimizations”?

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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Bad news! Cournot Model (inverse demand function)

max
xi

p(
∑
j

xj)
T xi − ci (xi )

s.t. Bixi = bi , xi ≥ 0

Cournot model: |A| = 5

Size n = |A| ∗ Na

Size (n) Time (secs)

1,000 35.4
2,500 294.8
5,000 1024.6
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Computation: implicit functions

Use implicit fn: z(x) =
∑

j xj

Generalization to F (z , x) = 0 (via
adjoints)

empinfo: implicit z F

Size (n) Time (secs)

1,000 2.0
2,500 8.7
5,000 38.8

10,000 > 1080
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Computation: implicit functions and local variables

Use implicit fn: z(x) =
∑

j xj
(and local aggregation)

Generalization to F (z , x) = 0 (via
adjoints)

empinfo: implicit z F

Size (n) Time (secs)

1,000 0.5
2,500 0.8
5,000 1.6

10,000 3.9
25,000 17.7
50,000 52.3
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Other specializations and extensions

min
xi
θi (xi , x−i , z(xi , x−i ), π) s.t. gi (xi , x−i , z , π) ≤ 0, ∀i , f (x , z , π) = 0

π solves VI(h(x , ·),C )

NE: Nash equilibrium (no VI coupling constraints, gi (xi ) only)

GNE: Generalized Nash Equilibrium (feasible sets of each players
problem depends on other players variables)

Implicit variables: z(xi , x−i ) shared

Shared constraints: f is known to all (many) players

Force all shared constraints to have same dual variable (VI solution)

Can use EMP to write all these problems, and convert to MCP form

Use models to evaluate effects of regulations and their
implementation in a competitive environment

Kim & Ferris (Univ. Wisconsin) Structure in MOPEC Supported by DOE/AFOSR 8 / 25



A Simple Network Model

Load segments s
represent electrical load
at various instances

d s
n Demand at node n in

load segment s (MWe)

X s
i Generation by unit i

(MWe)

F s
L Net electricity

transmission on link L
(MWe)

Y s
n Net supply at node n

(MWe)

πsn Wholesale price ($ per
MWhe)

n1
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Nodes n, load segments s, generators i , Ψ is node-generator map

max
X ,F ,d ,Y

∑
s

(
W (d s(λs))−

∑
i

ci (X
s
i )

)
s.t. Ψ(X s)− d s(λs) = Y s

0 ≤ X s
i ≤ X i , G i ≥

∑
s

X s
i

Y ∈ X

where the network is described using:

X =

{
Y : ∃F ,F s = HY s ,−F s ≤ F s ≤ F

s
,
∑
n

Y s
n ≥ 0,∀s

}

Key issue: decompose. Introduce multiplier πs on supply demand
constraint (and use λs := πs)

How different approximations of X affect the overall solution
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Case H: Loop flow model

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
Y

∑
s

−πsY s

s.t.
∑
i

Y s
i ≥ 0,−F s ≤ HY s ≤ F

s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Let A be the node-arc incidence matrix, H be the shift matrix, L be the
loop constraint matrix. Standard results show:

X = {Y : ∃F ,F = HY ,F ∈ F}

X =
{
Y : ∃(F , θ),Y = AF ,BAT θ = F , θ ∈ Θ,F ∈ F

}
X = {Y : ∃F ,Y = AF ,LF = 0,F ∈ F}
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Loopflow model (using A,L)

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,LF s = 0,−F s ≤ F s ≤ F
s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Network model
Drop loop constraints:

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,−F s ≤ F s ≤ F
s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Comparing Network and Loopflow: Demand
Here we look at simulations which impose a proportional reduction in
transmission across the network. The network and loopflow models
demonstrate similar responses:
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Comparing Network and Loopflow: Generation
Likewise, generation is similar in the two models:
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Comparing Network and Loopflow: Transmission
Network transmission levels reveal that the two models are quite different:
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The Game: update red, blue and purple components

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
Y

∑
s

−πsY s

s.t.
∑
i

Y s
i ≥ 0,−F s ≤ HY s ≤ F

s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Top down/bottom up

λs = πs so use complementarity to expose (EMP: dualvar)

Change interaction via new price mechanisms

All network constraints encapsulated in (bottom up) NLP (or its
approximation by dropping LF s = 0):

max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,LF s = 0,−F s ≤ F s ≤ F
s

Could instead use the NLP over Y with H
Clear how to instrument different behavior or different policies in
interactions (e.g. Cournot, etc) within EMP

Can add additional detail into top level economic model describing
consumers and producers
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Pricing
Our implementation of the heterogeneous demand model incorporates
three alternative pricing rules. The first is average cost pricing, defined by

Pacp =

∑
jn∈Racp

∑
s pjnsqjns∑

jn∈Racp

∑
s qjns

The second is time of use pricing, defined by:

Ptou
s =

∑
jn∈Rtou

pjnsqjns∑
jn∈Rtou

qjns

The third is location marginal pricing corresponding to the wholesale
prices denoted Pns above. Prices for individual demand segments are then
assigned:

pjns =


Pacp (jn) ∈ Racp

Ptou
s (jn) ∈ Rtou

Pns (jn) ∈ Rlmp
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Smart Metering Lowers the Cost of Congestion
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Economic Application

Model is a partial equilibrium, geographic exchange model.

Goods are distinguished by region of origin.

There is one unit of region r goods.

These goods may be consumed in region r or they may be exported.

Each region solves:

min
X ,Tr

fr (X ,T ) s.t. H(X ,T ) = 0, Tj = T̄j , j 6= r

where fr (X ,T ) is a quadratic form and H(X ,T ) defines X uniquely
as a function of T .

H(X ,T ) defines an equilibrium; here it is simply a set of equations,
not a complementarity problem

Applications: Brexit, modified GATT, Russian Sanctions
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Model statistics and performance comparison of the EPEC

MCP statistics according to the shared variable formulation

Replication Switching Substitution

12,144 rows/cols 6,578 rows/cols 129,030 rows/cols
544,019 non-zeros 444,243 non-zeros 3,561,521 non-zeros

0.37% dense 1.03% dense 0.02% dense

Path Shared variable formulation (major, time)
crash spacer prox Replication Switching Substitution

X X 7 iters 20 iters 20 iters
8 secs 22 secs 406 secs

X 24 iters 22 iters 21 iters
376 secs 19 secs 395 secs

X 8 iters 8 iters 8 iters
28 secs 18 secs 219 secs
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Results

Gauss-Seidel residuals
Iteration deviation

1 3.14930
2 0.90970
3 0.14224
4 0.02285
5 0.00373
6 0.00061
7 0.00010
8 0.00002
9 0.00000

Tariff revenue
region SysOpt MOPEC

1 0.117 0.012
2 0.517 0.407
3 0.496 0.214
4 0.517 0.407
5 0.117 0.012

Note that competitive solution produces much less revenue than
system optimal solution

Model has non-convex objective, but each subproblem is solved
globally (lindoglobal)
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Conclusions

Equilibrium problems can be formulated naturally and modeler can
specify who controls what

It’s available (in GAMS)

Enables modelers to convey simple structures to algorithms and
allows algorithms to exploit this

New decomposition algorithms available to modeler (Gauss Seidel,
Randomized Sweeps, Gauss Southwell, Grouping of subproblems)

Can evaluate effects of regulations and their implementation in a
competitive environment
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MCP size of equilibrium problems containing shared
variables by formulation strategy

Strategy Size of the MCP

replication (n + 2mN)
switching (n + mN + m)

substitution (explicit) (n + m)
substitution (implicit) (n + nm + m)

Fi (z) =

∇xi fi (x , y)− (∇xiH(y , x))µi
∇yi fi (x , y)− (∇yiH(y , x))µi

H(yi , x)

 , zi =

xiyi
µi

 .
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Spacer steps

Given (x , y , µ) during iterations

Compute a unique feasible pair (ỹ , µ̃)

Evaluate the residual at (x , ỹ , µ̃)

Choose the point if it has less residual than the one of (x , y , µ)
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