Solution of equilibrium problems using extended mathematical programming

Youngdae Kim Michael C. Ferris

University of Wisconsin, Madison

2017 Bay Optimization Meeting, Davis, California, May 13, 2017

Kim & Ferris (Univ. Wisconsin)

Structure in MOPEC

Supported by DOE/AFOSR 1 / 25

ELE NOR

The good news!

• PATH solves rectangular VI

$$-F(x) \in N_{\mathcal{I}_1 \times \ldots \times \mathcal{I}_m}(x)$$

(feasible set is a Cartesian product of possibly unbounded intervals)PATHVI solves VI

$$-F(x) \in N_C(x)$$

by identifying

$$\mathcal{C} = \{x \in P : g(x) \in K\}$$

and reformulating as

$$\begin{array}{l} x^* \text{ solves VI}(F,\mathcal{C}) \iff 0 \in F(x^*) + N_{\mathcal{C}}(x^*) \\ \iff 0 \in \begin{bmatrix} F(x^*) + \nabla g(x^*)\lambda \\ -g(x^*) \end{bmatrix} + N_{P \times K^{\circ}}(x^*,\lambda) \end{array}$$

• Use Newton method, each step solves an affine variational inequality

Experimental results: AVI vs MCP

- Run PathAVI over AVI formulation.
- Run PATH over rectangular form (poorer theory as recC larger).
 - *M* is an $n \times n$ symmetric positive definite/indefinite matrix.
 - A has *m* randomly generated bounded inequality constraints.
- Structure knowledge leads to improved reliability

(m, n)	PathAVI		PATH		% negative
(111, 11)	status	# iterations	status	# iterations	eigenvalues
(180,60)	S	55	S	72	0
(180, 60)	S	45	S	306	20
(180, 60)	S	2	F	9616	60
(180, 60)	S	1	F	10981	80
(360,120)	S	124	S	267	0
(360,120)	S	55	S	1095	20
(360,120)	S	2	F	10020	60
(360,120)	S	1	F	7988	80

EL OQO

MOPEC

$$\min_{\mathsf{x}_i} \theta_i(\mathsf{x}_i, \mathsf{x}_{-i}, \pi) \text{ s.t. } g_i(\mathsf{x}_i, \mathsf{x}_{-i}, \pi) \leq 0, \forall i$$

 π solves VI($h(x, \cdot), C$)

```
equilibrium
min theta(1) x(1) g(1)
...
```

```
min theta(m) x(m) g(m)
vi h pi cons
```


- (Generalized) Nash
- Reformulate optimization problem as first order conditions (complementarity)
- Use nonsmooth Newton methods to solve
- Solve overall problem using "individual optimizations"?

리님

Bad news! Cournot Model (inverse demand function)

$$\max_{x_i} p(\sum_j x_j)^T x_i - c_i(x_i)$$

s.t.
$$B_i x_i = b_i, x_i \ge 0$$

- Cournot model: $|\mathcal{A}| = 5$
- Size $n = |\mathcal{A}| * N_a$

Size (n)	Time (secs)
1,000	35.4
2,500	294.8
5,000	1024.6

Jacobian nonzero pattern $n = 100, N_a = 20$

ELE NOR

Computation: implicit functions

- Use implicit fn: $z(x) = \sum_{i} x_{j}$
- Generalization to F(z, x) = 0 (via adjoints)
- empinfo: implicit z F

Size (n)	Time (secs)
1,000	2.0
2,500	8.7
5,000	38.8
10,000	> 1080

Jacobian nonzero pattern $n = 100, N_a = 20$

1 =

Computation: implicit functions and local variables

- Use implicit fn: z(x) = ∑_j x_j (and local aggregation)
- Generalization to F(z, x) = 0 (via adjoints)
- empinfo: implicit z F

Size (n)	Time (secs)
1,000	0.5
2,500	0.8
5,000	1.6
10,000	3.9
25,000	17.7
50,000	52.3

 $n = 100, N_a = 20$

-

Other specializations and extensions

 $\min_{\mathbf{x}_i} \theta_i(\mathbf{x}_i, \mathbf{x}_{-i}, \mathbf{z}(\mathbf{x}_i, \mathbf{x}_{-i}), \pi) \text{ s.t. } g_i(\mathbf{x}_i, \mathbf{x}_{-i}, \mathbf{z}, \pi) \leq 0, \forall i, f(\mathbf{x}, \mathbf{z}, \pi) = 0$

 π solves VI($h(x, \cdot), C$)

- NE: Nash equilibrium (no VI coupling constraints, $g_i(x_i)$ only)
- GNE: Generalized Nash Equilibrium (feasible sets of each players problem depends on other players variables)
- Implicit variables: $z(x_i, x_{-i})$ shared
- Shared constraints: f is known to all (many) players
- Force all shared constraints to have same dual variable (VI solution)
- Can use EMP to write all these problems, and convert to MCP form
- Use models to evaluate effects of regulations and their implementation in a competitive environment

A Simple Network Model

Load segments s represent electrical load at various instances

- d_n^s Demand at node *n* in load segment s (MWe)
- X_i^s Generation by unit i (MWe)
- Net electricity F_{i}^{s} transmission on link I (MWe)
- Y_n^s Net supply at node n (MWe)
- π_n^s Wholesale price (\$ per MWhe)

Nodes *n*, load segments *s*, generators *i*, Ψ is node-generator map

$$\max_{X,F,d,Y} \sum_{s} \left(W(d^{s}(\lambda^{s})) - \sum_{i} c_{i}(X_{i}^{s}) \right)$$

s.t.
$$\Psi(X^{s}) - d^{s}(\lambda^{s}) = Y^{s}$$
$$0 \le X_{i}^{s} \le \overline{X}_{i}, \quad \overline{G}_{i} \ge \sum_{s} X_{i}^{s}$$
$$Y \in \mathcal{X}$$

where the network is described using:

$$\mathcal{X} = \left\{ Y : \exists F, F^{s} = \mathcal{H}Y^{s}, -\overline{F}^{s} \leq F^{s} \leq \overline{F}^{s}, \sum_{n} Y_{n}^{s} \geq 0, \forall s \right\}$$

- Key issue: decompose. Introduce multiplier π^s on supply demand constraint (and use λ^s := π^s)
- How different approximations of ${\mathcal X}$ affect the overall solution

ELE OQO

Case $\mathcal{H}:$ Loop flow model

$$\max_{d} \sum_{s} \left(W(d^{s}(\lambda^{s})) - \pi^{s} d^{s}(\lambda^{s}) \right) \\ + \max_{X} \sum_{s} \left(\pi^{s} \Psi(X^{s}) - \sum_{i} c_{i}(X_{i}^{s}) \right) \\ \text{s.t.} \quad 0 \le X_{i}^{s} \le \overline{X}_{i}, \quad \overline{G}_{i} \ge \sum_{s} X_{i}^{s} \\ + \max_{Y} \sum_{s} -\pi^{s} Y^{s} \\ \text{s.t.} \quad \sum_{i} Y_{i}^{s} \ge 0, -\overline{F}^{s} \le \mathcal{H}Y^{s} \le \overline{F}^{s} \end{cases}$$

$$\pi^{s} \perp \Psi(X^{s}) - d^{s}(\lambda^{s}) - Y^{s} = 0$$

Kim & Ferris (Univ. Wisconsin)

Structure in MOPEC

Let \mathcal{A} be the node-arc incidence matrix, \mathcal{H} be the shift matrix, \mathcal{L} be the loop constraint matrix. Standard results show:

$$\begin{aligned} \mathcal{X} &= \{ Y : \exists F, F = \mathcal{H}Y, F \in \mathcal{F} \} \\ \mathcal{X} &= \left\{ Y : \exists (F, \theta), Y = \mathcal{A}F, \mathcal{B}\mathcal{A}^{\mathsf{T}}\theta = F, \theta \in \Theta, F \in \mathcal{F} \right\} \\ \mathcal{X} &= \{ Y : \exists F, Y = \mathcal{A}F, \mathcal{L}F = 0, F \in \mathcal{F} \} \end{aligned}$$

ELE NOR

Loopflow model (using \mathcal{A}, \mathcal{L})

$$\begin{aligned} \max_{d} & \sum_{s} \left(W(d^{s}(\lambda^{s})) - \pi^{s} d^{s}(\lambda^{s}) \right) \\ + \max_{X} & \sum_{s} \left(\pi^{s} \Psi(X^{s}) - \sum_{i} c_{i}(X_{i}^{s}) \right) \\ \text{s.t.} & 0 \leq X_{i}^{s} \leq \overline{X}_{i}, \quad \overline{G}_{i} \geq \sum_{s} X_{i}^{s} \\ + \max_{F,Y} & \sum_{s} -\pi^{s} Y^{s} \\ \text{s.t.} & Y^{s} = \mathcal{A}F^{s}, \mathcal{L}F^{s} = 0, -\overline{F}^{s} \leq \overline{F}^{s} \leq \overline{F}^{s} \end{aligned}$$

$$\pi^{s} \perp \Psi(X^{s}) - d^{s}(\lambda^{s}) - Y^{s} = 0$$

Kim & Ferris (Univ. Wisconsin)

Structure in MOPEC

Network model

Drop loop constraints:

$$\max_{d} \sum_{s} \left(W(d^{s}(\lambda^{s})) - \pi^{s} d^{s}(\lambda^{s}) \right)$$

+
$$\max_{X} \sum_{s} \left(\pi^{s} \Psi(X^{s}) - \sum_{i} c_{i}(X_{i}^{s}) \right)$$

s.t.
$$0 \leq X_{i}^{s} \leq \overline{X}_{i}, \quad \overline{G}_{i} \geq \sum_{s} X_{i}^{s}$$

+
$$\max_{F,Y} \sum_{s} -\pi^{s} Y^{s}$$

s.t.
$$Y^{s} = \mathcal{A}F^{s}, -\overline{F}^{s} \leq F^{s} \leq \overline{F}^{s}$$

$$\pi^{s} \perp \Psi(X^{s}) - d^{s}(\lambda^{s}) - Y^{s} = 0$$

Kim & Ferris (Univ. Wisconsin)

Structure in MOPEC

Comparing Network and Loopflow: Demand

Here we look at simulations which impose a proportional reduction in transmission across the network. The *network* and *loopflow* models demonstrate similar responses:

Kim & Ferris (Univ. Wisconsin)

Comparing Network and Loopflow: Generation

Likewise, generation is similar in the two models:

Kim & Ferris (Univ. Wisconsin)

Comparing Network and Loopflow: Transmission

Network transmission levels reveal that the two models are quite different:

Kim & Ferris (Univ. Wisconsin)

Supported by DOE/AFOSR 17 / 25

The Game: update red, blue and purple components

$$\max_{d} \sum_{s} (W(d^{s}(\lambda^{s})) - \pi^{s}d^{s}(\lambda^{s})) + \max_{X} \sum_{s} \left(\pi^{s}\Psi(X^{s}) - \sum_{i}c_{i}(X_{i}^{s})\right)$$

s.t. $0 \le X_{i}^{s} \le \overline{X}_{i}, \quad \overline{G}_{i} \ge \sum_{s} X_{i}^{s}$
 $+ \max_{Y} \sum_{s} -\pi^{s}Y^{s}$
s.t. $\sum_{i} Y_{i}^{s} \ge 0, -\overline{F}^{s} \le \mathcal{H}Y^{s} \le \overline{F}^{s}$

$$\pi^{s} \perp \Psi(X^{s}) - d^{s}(\lambda^{s}) - Y^{s} = 0$$

Kim & Ferris (Univ. Wisconsin)

Structure in MOPEC

Top down/bottom up

- $\lambda^{s} = \pi^{s}$ so use complementarity to expose (EMP: dualvar)
- Change interaction via new price mechanisms
- All network constraints encapsulated in (bottom up) NLP (or its approximation by dropping *LF^s* = 0):

$$\begin{array}{ll} \max_{F,Y} & \sum_{s} -\pi^{s}Y^{s} \\ \text{s.t.} & Y^{s} = \mathcal{A}F^{s}, \mathcal{L}F^{s} = 0, -\overline{F}^{s} \leq F^{s} \leq \overline{F}^{s} \end{array}$$

- Could instead use the NLP over Y with $\mathcal H$
- Clear how to instrument different behavior or different policies in interactions (e.g. Cournot, etc) within EMP
- Can add additional detail into top level economic model describing consumers and producers

Pricing

Our implementation of the heterogeneous demand model incorporates three alternative pricing rules. The first is *average cost pricing*, defined by

$$P_{ ext{ACP}} = rac{\sum_{jn \in \mathcal{R}_{ ext{ACP}}} \sum_{s} P_{jns} q_{jns}}{\sum_{jn \in \mathcal{R}_{ ext{ACP}}} \sum_{s} q_{jns}}$$

The second is *time of use pricing*, defined by:

$$P_{s}^{\text{TOU}} = \frac{\sum_{jn \in \mathcal{R}_{\text{TOU}}} p_{jns} q_{jns}}{\sum_{jn \in \mathcal{R}_{\text{TOU}}} q_{jns}}$$

The third is *location marginal pricing* corresponding to the wholesale prices denoted P_{ns} above. Prices for individual demand segments are then assigned:

$$p_{jns} = \left\{ egin{array}{ll} P_{
m ACP} & (jn) \in \mathcal{R}_{
m ACP} \ P_{s}^{
m TOU} & (jn) \in \mathcal{R}_{
m TOU} \ P_{ns} & (jn) \in \mathcal{R}_{
m LMP} \end{array}
ight.$$

⇒ ↓ ∃ ► ↓ ∃ ⊨ √ Q ∩

Smart Metering Lowers the Cost of Congestion

Kim & Ferris (Univ. Wisconsin)

Structure in MOPE

Supported by DOE/AFOSR 21 / 25

Economic Application

- Model is a partial equilibrium, geographic exchange model.
- Goods are distinguished by region of origin.
- There is one unit of region *r* goods.
- These goods may be consumed in region r or they may be exported.
- Each region solves:

 $\min_{X,T_r} f_r(X,T) \text{ s.t. } H(X,T) = 0, \ T_j = \overline{T}_j, j \neq r$

where $f_r(X, T)$ is a quadratic form and H(X, T) defines X uniquely as a function of T.

- *H*(*X*, *T*) defines an equilibrium; here it is simply a set of equations, not a complementarity problem
- Applications: Brexit, modified GATT, Russian Sanctions

- ▲ 문 ▶ ▲ 문 ▶ - 토 | ㅂ - • • • •

Model statistics and performance comparison of the EPEC

MCP statistics according to the shared variable formulation				
Replication Switching Substitution				
12,144 rows/cols	6,578 rows/cols	129,030 rows/cols		
544,019 non-zeros	444,243 non-zeros	3,561,521 non-zeros		
0.37% dense	1.03% dense	0.02% dense		

Ратн		Shared variable formulation (major, time)			
crash	spacer	prox	Replication	Switching	Substitution
\checkmark		\checkmark	7 iters	20 iters	20 iters
			8 secs	22 secs	406 secs
		\checkmark	24 iters	22 iters	21 iters
			376 secs	19 secs	395 secs
	\checkmark		8 iters	8 iters	8 iters
			28 secs	18 secs	219 secs

1.2

Results

Gauss-Seidel residuals					
Iteration	deviation				
1	3.14930		-	Tariff reve	nue
2	0.90970		region	SysOpt	MOPEC
3	0.14224		1	0.117	0.012
4	0.02285		2	0.517	0.407
5	0.00373		3	0.496	0.214
6	0.00061		4	0.517	0.407
7	0.00010		5	0.117	0.012
8	0.00002				
9	0.00000				

- Note that competitive solution produces much less revenue than system optimal solution
- Model has non-convex objective, but each subproblem is solved globally (lindoglobal)

EL OQO

Conclusions

- Equilibrium problems can be formulated naturally and modeler can specify who controls what
- It's available (in GAMS)
- Enables modelers to convey simple structures to algorithms and allows algorithms to exploit this
- New decomposition algorithms available to modeler (Gauss Seidel, Randomized Sweeps, Gauss Southwell, Grouping of subproblems)
- Can evaluate effects of regulations and their implementation in a competitive environment

3 × 4 3 × 3 1 × 0 0 0

MCP size of equilibrium problems containing shared variables by formulation strategy

Strategy	Size of the MCP
replication	(n+2mN)
switching	(n+mN+m)
substitution (explicit)	(n+m)
substitution (implicit)	(n+nm+m)

$$F_i(z) = \begin{bmatrix} \nabla_{x_i} f_i(x, y) - (\nabla_{x_i} H(y, x)) \mu_i \\ \nabla_{y_i} f_i(x, y) - (\nabla_{y_i} H(y, x)) \mu_i \\ H(y_i, x) \end{bmatrix}, \quad z_i = \begin{bmatrix} x_i \\ y_i \\ \mu_i \end{bmatrix}.$$

- Given (x, y, μ) during iterations
- Compute a unique feasible pair $(\tilde{y}, \tilde{\mu})$
- Evaluate the residual at $(x, \tilde{y}, \tilde{\mu})$
- Choose the point if it has less residual than the one of (x, y, μ)

ELE DOG