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Convex subdifferentials

@ Assume f is convex, then
f(z) > f(x) + VF(x)T(z — x)
(linearization is below the
function)

@ Incorporate constraints by
allowing f to take on +o0 if
constraint is violated
f:R"— (—o0, +00]

e Jf(x) =
{g f(2) > fF(x)+gT(z— X),Vz},
the subdifferential of f at x
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@ Assume f is convex, then
f(z) > f(x) + VF(x)T(z — x)
(linearization is below the
function)

@ Incorporate constraints by
allowing f to take on +o0 if
constraint is violated
f:R"— (—o0, +00]

e Jf(x) =
{g f(2) > fF(x)+gT(z— X),Vz},
the subdifferential of f at x

e If f is differentiable and convex, then 0f(x) = {Vf(x)}
o eg. f(z)=12"7Qz+ pTz, then 9f(x) = {Qx + p}
e x* solves min f(x) if and only if 0 € Of(x*)
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Indicator functions and normal cones
0 ifzeC
Ye(z) = { v
oo else

e is a convex function when C is a
convex set
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Indicator functions and normal cones
0 ifzeC
Ye(z) = { v
oo else

e is a convex function when C is a
convex set

If x € C, then
= P B
— ¢C )Zi,bc(x)—l—gT(z—x), Vz

— 0>g"(z—x), VzeC

Normal cone to C at x,

{g:gT(z—x)<0,vzeC} ifxeC

Ne(x):= 0vpe(x) = {(Z) FxdcC
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Some calculus

o fi :R"+— (—o0,00], i =1,...,m, proper, convex functions

F=f+--+"fny

assume m rint(dom(f;)) # 0 then (as sets)
i=1

OF (x) = 0fi(x) + - - - 4+ Ofm(x), Vx

) C:ﬂC;, then ¢C:¢Ci+...+¢cm'so NC:NCi+"'+NCm
i=1

x* solves mig f(x) < x* solves min(f + ¢¢)(x)
xXe X

< 0€9(f +9Yc)(x*) < 0 VF(x*)+ Ne(x¥)
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Special cases and examples

@ Normal cone is a cone
e x € int(C), then Ng(x) = {0}
e C =" then Ng(x) ={0}, VxeC
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Special cases and examples

@ Normal cone is a cone
e x € int(C), then N¢(x) = {0}
e C=R", then Ng(x) = {0}, Vx € C

° C:{z:aingb,-,izl,...,m}

polyhedral
° Ne(x) =
a1 {Z/\,-a,-:ogb,-—a,-TxJ_)\,-EO}
i=1
Nc(x)/ - ° (J)_ irneakes product of items around it

(bi—alx)\i=0,i=1,...,m
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Combining: KKT conditions

@ Example: convex optimization first-order optimality condition:

x* solves mirc1 f(x) <= 0¢e VF(x")+ Ne(x*)
X€

<= 0=VI(x")+y, y € Ne(x")

= 0=VIix)+y, y=AT)\
0<b—Ax"LA>0

— 0=VF(x*)+ AT,
0<b—Ax"LA>0

o More generally, if C = {z: g(z) < 0}, g convex, (with CQ)

x* solves mig f(x) < 0¢€ VF(x*)+ Ne(x¥)
x€e

<= 0= VF(x")+ Vg(x*)A,
0<—g(x*)LA>0
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Variational Inequality (replace Vf(z) with F(z))

F:R" - R"
Ideally: C C R" — constraint set; Often: C C R" — simple bounds

VI(F,C): 0¢€ F(z)+ N¢(z)

VI generalizes many problem classes

Nonlinear Equations: F(z) =0 set C = R”"

Convex optimization: F(z) = Vf(z)

For NCP: 0 < F(z) L z>0, set C =R

For MCP (rectangular VI), set C = [/, u]".

For LP, set F(z) = Vf(z) =pand C ={z: Az = a, Hz < h}.
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VI: 0 € F(z) + Ne(z2)
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Many applications where F is not the derivative of some f
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Other applications of complementarity

@ Economics: Walrasian equilibrium (supply equals demand), taxes and
tariffs, computable general equilibria, option pricing (electricity
market), airline overbooking

e Transportation: Wardropian equilibrium (shortest paths), selfish
routing, dynamic traffic assignment

Applied mathematics: Free boundary problems
Engineering: Optimal control (ELQP)
Mechanics: Structure design, contact problems (with friction)

Geology: Earthquake propogation
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Tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min |Ax — v/
X
Additional structure: Compressed sensing: sparse signal to account for y
: 2
min |Ax — y[3 st. [Ixlly < ¢
Regularized regression:

. 2
min [|A4x — yI[3 + o x]
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Tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min |Ax — v/
X

Additional structure: Compressed sensing: sparse signal to account for y

; 2

min |Ax — y[|5 s.t. [[x][p < ¢
Regularized regression:
; 2

min [|Ax — y 3 + aJx|

Machine learning: SVM for classification

. [0 2
min i+ = |lw]||® s.t. D(Aw —~1) > 1 —
min D76+ 5 1wl 55 D(Aw =71 21-¢

General model:

)rpei)rg E(x) + aS(x)

X are constraints, E measures “error’ and S penalizes.bad structure
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Image denoising (Wright)

Rudin-Osher-Fatemi (ROF) model (¢,—TV). Given a domain Q C R? and
an observed image f : Q — R, seek a restored image v : Q — R that
preserves edges while removing noise. The regularized image v can
typically be stored more economically. Seek to “minimize” both

o |[u—f|, and
e the total-variation (TV) norm o |Vu| dx

Use constrained formulations, or a weighting of the two objectives:
min P(u) := |lu — f||3 + oz/ |Vul dx
u Q

The minimizing u tends to have regions in which u is constant (Vu = 0).
More “cartoon-like” when « is large.
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Original, noisy, denoised (tol = 1072, 107*)
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Conclusions

o Convexity separates easy optimization problems from hard ones

@ Modern convex analysis extends linear programming to richer but still
tractable settings

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

@ Variational inequalities and set valued analysis important tools for big
data problems

@ Modeling, optimization, statistics and computation embedded within
the application domain is critical

@ Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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Complementarity Problems via Graphs

o T =Ne, =Ry x{0})U({0} xR_)

@ 7 is “monotone”

—y€T(z) < (z,—-y)eT <= 0<y1z>0

By approximating (smoothing) graph can generate interior point
algorithms for example yz = ¢,y,z >0

0€ F(z) +Ngn(2) <= (2,-F(2)) €T" <= 0<F(z) Lz>0
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zj =

Operators and Graphs (C = [-1,1], T = N¢)

1,—Fi(z) <0orz e (-1,1),—Fi(z) =0o0r zz=1,—Fi(z) > 0
|

y _/‘
T'()
P7(y) is the projection of y onto [—1,1]
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Generalized Equations

@ Suppose T is a maximal monotone operator
0e F(z)+7(z) (GE)

o Define Pr=(Z+7T)!

e If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then Py is piecewise affine (continous, single-valued,
non-expansive)

0€F(2)+T(z) <= zeF(2)+Z(2)+T(2)
= z—-F2)e(Z+T)(z) = Pr(z—F(2))=z

Use in fixed point iterations (cf projected gradient methods)
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Splitting Methods

@ Suppose T is a maximal monotone operator
0e F(z)+7(z) (GE)

@ Can devise Newton methods (e.g. SQP) that treat F via calculus and
T via convex analysis

o Alternatively, can split F(z) = A(z) + B(z) (and possibly 7 also) so
we solve solve (GE) by solving a sequence of problems involving just

Ti(z) = A(z) and Ta2(z) = B(z) + T(2)

where each of these is “simpler”
e Forward-Backward splitting (or ADMM):

Zk—i_1 = (/ + Ck Tz)il (I — Ck Tl) (Zk) ,
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Normal Map

@ Suppose T is a maximal monotone operator
0e F(z)+T7(z) (GE)

o Define Pr = (I + 7)™ (continuous, single-valued, non-expansive)

0e F(z)+T(2) ze F(z2)+Z(2) + T(2)
z—F(z)=xand x€ (Z+T)(2)
z—F(z)=xand Pr(x) =z
Pr(x) - F(Pr(x)) = x

0 = F(Pr(x)) + x — Pr(x)

1reey

This is the so-called Normal Map Equation
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Normal manifold = {F; + Ng,}

(Relative) interiors of faces F;
form partition of C
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C ={z|Bz > b}, Nc(z) = {B'v|v <0, v,y = 0}

Mz + B'v
Mro(x) + x — mo(x) z € F;
v S O,'UI(Z) =0
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C ={z|Bz > b}, Nc(z) = {B'v|v <0, v,y = 0}

Mz + B'v
By By || e

v S O,'UI(Z) =0
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C={z|Bz> b}, F(z) =Mz +q

| By Mp.— M. |




The PATH algorithm

@ Start in cell that has interior
(face is an extreme point)

@ Move towards a zero of
affine map in cell

@ Update direction when hit
boundary (pivot)

@ Solves or determines
infeasible if M is
copositive-plus on rec(C)

@ Solves 2-person bimatrix
games, 3-person games too,
but these are nonlinear
But algorithm has exponential complexity (von Stengel et al)
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Theorem

Suppose C is a polyhedral convex set and M is an L—matrix with respect
to recC which is invertible on the lineality space of C. Then exactly one of
the following occurs:

o PATHAVI solves (AVI)

@ the following system has no solution

Mz + q € (recC)P?,  zeC. (1)

Corollary

If M is copositive—plus with respect to recC, then exactly one of the
following occurs:

e PATHAVI solves (AVI)

@ (1) has no solution

Note also that if C is compact, then any matrix M is an L—matrix with
respect to recC. So always solved.
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Experimental results: AVI vs MCP
PATH is a solver for MCP (mixed complementarity problem).
@ Run PathAVI over AVI formulation.
@ Run PATH over AVl in MCP form (poorer theory as recC larger).
@ Data generation

» M is an n X n symmetric positive definite/indefinite matrix.
> A has m randomly generated bounded inequality constraints.

PathAVI PATH % negative

(m, n) status | # iterations | status | # iterations | eigenvalues
(180,60) S 55 S 72 0
(180,60) S 45 S 306 20
(180,60) S 2 F 9616 60
(180,60) S 1 F 10981 80
(360,120) S 124 S 267 0
(360,120) S 55 S 1095 20
(360,120) S 2 F 10020 60
(360,120) S 1 F 7988 80
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Complementarity Systems (DVI)

9 (t) = f(x(t), z(t)) ;

y(t) = h(x(t), z(¢))
0<y(t)Lz(t)>0

=Y
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Complementarity Systems (DVI)

9X(t) = F(x(t), z(t)) ; :
y(t) = h(x(t), z(t))
0<y(t) Lz(t)>0

-y

Vo |
HIVZ B

relay with dead zone

saturation relay
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Complementarity Systems (DVI)

9X(t) = F(x(t), z(t)) ; :
y(t) = h(x(t), z(t))
(z(t),—y(t)) €T

-y

e |
HIVZ B

relay with dead zone

saturation relay
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Bimatrix Games: Golden Balls

VI can be used to formulate many standard problem instances
corresponding to special choices of M and C.

Nash game: two players have / and J pure strategies.

p and g (strategy probabilities) belong to unit simplex A; and A
respectively.

Payoff matrices A € R?*/ and B € R'*/, where Aj i is the profit
received by the first player if strategy i is selected by the first player
and j by the second, etc.

The expected profit for the first and the second players are g7 Ap and
p' Bq respectively.

A Nash equilibrium is reached by the pair of strategies (p*, g*) if and
only if

* ¢ arg min (Ag*,p) and g* € arg min (B’ p*,
p gpeAl< q,p) q gquJ< P, q)
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Formulation using complementarity

The optimality conditions for the above problems are:
—Aq* € Na,(p*) and — BT p* € Na,(q")

Therefore the corresponding VI is affine and can be written as:

OE[BOT /3:||:5:|+NA,><AJ(|:5:|)' (2)
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

@ equilibrium

@ vi (agents can solve min/max/vi)

@ bilevel (reformulate as MPEC, or as SOCP)

@ dualvar (use multipliers from one agent as variables for another)

e QS functions (both in objectives and constraints)

@ Currently available within GAMS (full license available to course
participants until March X, 2017 - contact me!)

@ Some solution algorithms implemented in modeling system -
limitations on size, decomposition and advanced algorithms

@ QS extensions to Moreau-Yoshida regularization, compositions,
composite optimization
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