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AVI over polyhedral convex set

An affine function

F : Rn → Rn, F (z) = Mz + q, M ∈ Rn×n, q ∈ Rn

A polyhedral convex set

C = {z ∈ Rn | Az(≥,=,≤)a, l ≤ z ≤ u}, A ∈ Rm×n

Find a point z∗ ∈ C satisfying

〈F (z∗), y − z∗〉 ≥ 0, ∀y ∈ C
(⇔) 〈−F (z∗), y − z∗〉 ≤ 0, ∀y ∈ C
(⇔) − F (z∗) ∈ NC(z∗)

where
NC(z∗) = {v | 〈v , y − z∗〉 ≤ 0,∀y ∈ C}
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Normal map for polyhedral C

Normal Map 

projection: πC (x)

x − πC (x) ∈ NC (πC (x))

If −MπC (x)−q = x−πC (x) then
So z = πC (x) solves

0 ∈ MπC (x) + q + NC (πC (x))

if and only if we can find x , a zero
of the normal map:

0 = MπC (x) + q + x − πC (x)
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The PATHAVI algorithm

Start in cell that has interior
(face is an extreme point, so
normal cone has interior -
primary ray)

Move towards a zero of
affine map in cell

Update direction when hit
boundary (pivot)

Solves, or determines
infeasible if M is
copositive-plus on rec(C )

Solves 2-person bimatrix
games, 3-person games too,
but these are nonlinear

Cao/Ferris Path (Eaves) 
•  Start in cell that has 

interior (face is an 
extreme point) 

•  Move towards a zero of 
affine map in cell 

•  Update direction when 
hit boundary 

•  Solves or determines 
infeasible if M is 
copositive-plus on rec(C) 

•  Nails 2-person game 

But algorithm has exponential complexity (von Stengel et al)
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Theorem

Suppose C is a polyhedral convex set and M is an L–matrix with respect
to recC which is invertible on the lineality space of C. Then exactly one of
the following occurs:

PATHAVI solves (AVI)

the following system has no solution

Mz + q ∈ (recC)D , z ∈ C. (1)

Corollary

If M is copositive–plus with respect to recC, then exactly one of the
following occurs:

PATHAVI solves (AVI)

(1) has no solution

Note also that if C is compact, then any matrix M is an L–matrix with
respect to recC. So always solved.
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Experimental results: AVI vs MCP
PATH is a solver for MCP (mixed complementarity problem).

Run PathAVI over AVI formulation.

Run PATH over AVI in MCP form (poorer theory as recC larger).
Data generation

I M is an n × n symmetric positive definite/indefinite matrix.
I A has m randomly generated bounded inequality constraints.

(m, n)
PathAVI PATH % negative

status # iterations status # iterations eigenvalues

(180,60) S 55 S 72 0
(180,60) S 45 S 306 20
(180,60) S 2 F 9616 60
(180,60) S 1 F 10981 80

(360,120) S 124 S 267 0
(360,120) S 55 S 1095 20
(360,120) S 2 F 10020 60
(360,120) S 1 F 7988 80
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Extension to Nonlinear Model

So now we can solve AVI, what happens when F is nonlinear

Embed AVI solver in a Newton Method - each Newton step solves an
AVI

Nonlinear equations F (x) = 0

Newton’s Method

F (xk) +∇F (xk)dk = 0

xk+1 = xk + dk

Damp using Armijo linesearch on 1
2 ‖F (x)‖22

Descent direction - gradient of merit function

Properties
I Well defined
I Global and local-fast convergence
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Nonsmooth Newton Method
Given xk

solve: 0 ∈ F (xk) +∇F (xk)(x − xk) + NC (x)

dk = x∗ − xk , x∗ from above

xk+1 = xk + αdk

Equivalent piecewise smooth equation F+(x) = 0

F+(x) ≡ F (πC (x)) + x − πC (x)

(when C = Rn
+ then πC (x) = max(x , 0) is easy to compute)

Nonsmooth Newton Method
I Iteratively solve piecewise linear system of equations, via pivoting
I Damp using Armijo search on 1

2 ‖F+(x)‖22
Properties

I Global and local-fast convergence
I Merit function not differentiable
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Piecewise Linear Example
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Fischer-Burmeister Function

φ(a, b) :=
√

a2 + b2 − a− b

φ(a, b) = 0 ⇐⇒ 0 ≤ a ⊥ b ≥ 0

Φ(x) defined componentwise

Φi (x) ≡
√

(xi )2 + (Fi (x))2 − xi − Fi (x)

Φ(x) = 0 if and only if x solves NCP(F )

Not continuously differentiable - semismooth

Natural merit function (12 ‖Φ(x)‖22) is differentiable
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Fischer-Burmeister Example
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Review

Nonlinear Complementarity Problem

Piecewise smooth system of equations
I Use nonsmooth Newton Method
I Solve linear complementarity problem per iteration
I Merit function not differentiable

Fischer-Burmeister
I Differentiable merit function

Combine to obtain new algorithm
I Well defined
I Global and local-fast convergence
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Feasible Descent Framework

Calculate direction using a local method
I Generates feasible iterates
I Local fast convergence
I Used nonsmooth Newton Method

Accept direction if descent for 1
2 ‖Φ(x)‖2

Otherwise use projected gradient step

Theorem

Let {xk} ⊆ <n be a sequence generated by the algorithm that has an
accumulation point x∗ which is a strongly regular solution of the NCP.
Then the entire sequence {xk} converges to this point, and the rate of
convergence is Q-superlinear.

Method is well defined

Accumulation points are stationary points

Locally projected gradient steps not used
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Computational Details

Preprocessing to simplify without changing underlying problem

Crashing method to quickly identify basis

Nonmonotone search with watchdog

Perturbation scheme for rank deficiency

Stable interpolating pathsearch

Restart strategy

Projected gradient searches
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Nonlinear Complementarity Problems

Given F : <n → <n

Find x ∈ <n such that

0 ≤ F (x) x ≥ 0

xTF (x) = 0

Compactly written
0 ≤ F (x) ⊥ x ≥ 0

Equivalent to nonsmooth equation (min-map):

min(x ,F (x)) = 0
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Nonsmooth alternatives

The normal map is one nonsmooth equation reformulation of the nonlinear
complementarity problem.
We have just seen two alternatives

1 Fischer-Burmeister Φ(x) = 0

2 Min-map min(x ,F (x)) = 0

Alternative methods generate generalized derivatives of these nonsmooth
functions and use within nonsmooth Newton methods

Approaches are relatively simple to implement and work well in many
(well defined) cases

Fundamental difference is nonsmoothness is outside F

PATH tends to perform better (due to the heuristic extensions) on
harder/messier problems
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Smoothing: The Fischer Function [Burmeister]

For NCP (with µ > 0):

0 = φµ(xi ,Fi (x)), i = 1, 2, . . . , n

where
φµ(a, b) :=

√
a2 + b2 + µ− a− b

Gives rise to semismooth algorithms

Need to drive µ to 0, no longer nonsmooth

Available within NLPEC
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Complementarity Problems via Graphs

T = NR+ = (R+ × {0})
⋃

({0} × R−)

T is “monotone”

−y ∈ T (z) ⇐⇒ (z ,−y) ∈ T ⇐⇒ 0 ≤ y ⊥ z ≥ 0

By approximating (smoothing) graph can generate interior point
algorithms for example yz = ε, y , z > 0

0 ∈ F (z) +NRn
+

(z) ⇐⇒ (z ,−F (z)) ∈ T n ⇐⇒ 0 ≤ F (z) ⊥ z ≥ 0
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Operators and Graphs (C = [−1, 1], T = NC)

zi = −1,−Fi (z) ≤ 0 or zi ∈ (−1, 1),−Fi (z) = 0 or zi = 1,−Fi (z) ≥ 0

T (z) T −1(y) (I + T )−1(y) = PT (y)

PT (y) is the projection of y onto [−1, 1]
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Generalized Equations

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1

If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then PT is piecewise affine (continous, single-valued,
non-expansive)

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) ∈ (I + T )(z) ⇐⇒ PT (z − F (z)) = z

Use in fixed point iterations (cf projected gradient methods): this is in fact
just the min-map!
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Normal Map

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1 (continuous, single-valued, non-expansive)

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) = x and x ∈ (I + T )(z)

⇐⇒ z − F (z) = x and PT (x) = z

⇐⇒ PT (x)− F (PT (x)) = x

⇐⇒ 0 = F (PT (x)) + x − PT (x)

This is the so-called Normal Map Equation
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Splitting Methods

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Can devise Newton methods (e.g. SQP) that treat F via calculus and
T via convex analysis

Alternatively, can split F (z) = A(z) + B(z) (and possibly T also) so
we solve solve (GE) by solving a sequence of problems involving just

T1(z) = A(z) and T2(z) = B(z) + T (z)

where each of these is “simpler”

Forward-Backward splitting (or ADMM):

zk+1 = (I + ckT2)−1 (I − ckT1)
(
zk
)
,
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The problem

MOPEC: x∗, y :

x∗i solves min
xi∈Ki (x

∗
−i ,y)

θ(xi , x
∗
−i , y), ∀i

y solves VI (F (x∗, ·),C )



A1 A1,2 · · · A1,p E1

A2,1 A2
. . .

...
...

...
. . .

. . . Ap-1,p Ep-1

Ap,1 · · · Ap,p-1 Ap Ep

F1 · · · Fp-1 Fp D


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Strongly Convex Nash Equilibria

min
x1≥0

1

2
x21 − θx1x2 − 4x1 s.t. x1 + x2 ≥ 1

min
x2≥0

1

2
x22 − x1x2 − 3x2

No solution for θ ≥ 1:

x1(x2) = (θx2 + 4)+, x2(x1) = (x1 + 3)+

Solution −4
3 ≤ θ < 1: x1 = 4+3θ

1−θ , x2 = x1 + 3

Solution θ ≤ −4
3 : x1 = 0, x1 = 3

Jacobi works provided θ < 1, but theory fails
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The Issues

This is not the optimality conditions of a single optimization problem:

0 ≤

 1 1 −θ
1 0 1

−1 1

 x1
−p1
x2

−
4

1
3

 ⊥

 x1
−p1
x2

 ≥ 0

The matrix A in general is never diagonally dominant except in trivial
cases

Iterations based on succesive inversion of local blocks (or successive
optimization of local strategies) can converge.

We establish sufficient conditions which guarantee convergence of
block Jacobi and block Gauss-Seidel iterations for such matrices.
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Economic Application

Model is a partial equilibrium, geographic exchange model.

Goods are distinguished by region of origin.

There is one unit of region r goods.

These goods may be consumed in region r or they may be exported.

Each region solves:

min
X ,Tr

fr (X ,T ) s.t. F (X ,T ) = 0, Tj = T̄j , j 6= r

where fr (X ,T ) is a quadratic form and F (X ,T ) is linear and defines
X uniquely as a function of T .

F (X ,T ) defines an equilibrium; here it is simply a set of equations,
not a complementarity problem
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Results

Gauss-Seidel residuals
Iteration deviation

1 3.14930
2 0.90970
3 0.14224
4 0.02285
5 0.00373
6 0.00061
7 0.00010
8 0.00002
9 0.00000

Tariff revenue
region SysOpt MOPEC

1 0.117 0.012
2 0.517 0.407
3 0.496 0.214
4 0.517 0.407
5 0.117 0.012

Note that competitive solution produces much less revenue than
system optimal solution

Model has non-convex objective, but each subproblem is solved
globally (lindoglobal)
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MIP formulations for Complementarity

Set yi = Fi (x), then additionally

yi ≥ 0, xi ≥ 0, xiyi = 0

If we know upper bounds on xi and yi we can model as:

(xi , yi ) ∈ SOS1

or introduce binary variable zi and

xi ≤ Mzi , yi ≤ M(1− zi )

(or use indicator variables to turn on “fixing” constraints). Works if
bounds are good and problem size is not too large. Issues with bounds on
multipliers not being evident.
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MPEC approaches

Can use nonlinear programming approaches (e.g. NLPEC (see
previous lecture))

Knitro can process MPCC’s and uses penalization for complementarity

Implicit approach: generate y(x) where y solves the parametric (in x)
complementarity problem, then solve

min f (x , y(x))

using a bundle trust region method for example. Difficult to deal with
side constraints.

Ferris (Univ. Wisconsin) Solving Complementarity Problems Zinal, Jan 2017 29 / 30



Conclusions

Many formulations and algorithms for complementarity problems

PATH algorithm is widely used, available in GAMS, AMPL, AIMMS,
JUMP, Matlab, API-format

Need for more theoretic and algorithmic enhancements in large scale
and structured cases

Need to find all solutions of complementarity problems, or to solve
MPEC/MPCC to global optimality
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Complementarity Systems (DVI)

dx
dt (t) = f (x(t), z(t))

y(t) = h(x(t), z(t))

0 ≤ y(t) ⊥ z(t) ≥ 0

saturation relay relay with dead zone
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Complementarity Systems (DVI)

dx
dt (t) = f (x(t), z(t))

y(t) = h(x(t), z(t))

(z(t),−y(t)) ∈ T

saturation relay relay with dead zone
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Separable Structure

Partition variables into (x , y)

Identify separable structure

0 ∈
[
F (x)
G (x , y)

]
+

[
N<n

+
(x)

N<n
+

(y)

]
Reductions possible if either

1 0 ∈ F (x) + N<n
+

(x) has a unique solution
2 0 ∈ G (x , y) + N<n

+
(y) has solution for all x

Theory provides appropriate conditions

Solve F and G sequentially
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