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Stochastic recourse

@ Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

@ R is a risk measure (e.g. expectation, CVaR)

SP: min c¢'x+R[dy]

st. Ax=b, x>0,

VweQ: T(w)x+ W(w)y(w) > h(w),

y(w) > 0. r
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Key-idea: Non-anticipativity constraints

@ Replace x with 4
X1, X2y -+ XK

o Non-anticipativity:
(x1,x2,...,xk) € L
(a subspace) - the H
constraints 4

7

Computational methods exploit the separability of these constraints,
essentially by dualization of the non-anticipativity constraints.
e Primal and dual decompositions (Lagrangian relaxation, progressive
hedging , etc)
o L shaped method (Benders decomposition applied to det. equiv.)

@ Trust region methods and/or regularized decomposition

H
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Models with explicit random variables

@ Model transformation:

» Write a core model as if the random variables are constants
» Identify the random variables and decision variables and their staging
» Specify the distributions of the random variables

@ Solver configuration:

» Specify the manner of sampling from the distributions
» Determine which algorithm (and parameter settings) to use

@ Output handling:

» Optionally, list the variables for which we want a scenario-by-scenario
report
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Example: Farm Model (core model)

@ Allocate land (L) for planting crops x(c) to max (p/wise lin) profit
@ Yield rate per crop c is FxY(c)

@ Can purchase extra crops b and sell s, but must have enough crops d
to feed cattle

max rofit = p(x, b, s
max P p(x, b, s)

s.t. ZX(C) <L
FC*Y(C) * x(c) 4 b(c) —s(c) > d(c)

e Random variables are F, realized at stage 2: structured T (w)
@ Variables x stage 1, b and s stage 2.
@ landuse constraints in stage 1, requirements in stage 2.

Can now generate the extensive form problem or pass on directly to
specialized solver
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Stochastic Programming as an EMP

Three separate pieces of information (extended mathematical program)
needed
@ emp.info: model transformation

randvar F discrete 0.25 0.8 // below
0.50 1.0 // avg
0.25 1.2 // above

stage 2 F b s req
@ solver.opt: solver configuration (benders, sampling strategy, etc)
4 "ISTRAT" * solve universe problem (DECIS/Benders)

@ dictionary: output handling (where to put all the “scenario solutions”)
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How does this help?

e Clarity/simplicity of model
@ Separates solution process from model description

@ Models can be solved by the extensive form equivalent, exisiting codes
such as LINDO and DECIS, or decomposition approaches such as
Benders, ATR, etc

@ Allows description of compositional (nonlinear) random effects in
generating w

e, w=wi Xwy, T(w)="F(X(w1),Y(w2))

o Easy to write down multi-stage problems

o Automatically generates “"COR”, “TIM" and “STQ" files for
Stochastic MPS (SMPS) input
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Sampling methods

But what if the number of scenarios is too big (or the probability
distribution is not discrete)? use sample average approximation (SAA)

o Take sample &1,...,&y of N realizations of random vector &

» viewed as historical data of V observations of &, or
» generated via Monte Carlo sampling

e for any x € X estimate f(x) by averaging values F(x, &)

N
(SAA): mi)rg : Z (x, &)

S

@ Nice theoretical asymptotic properties
@ Can use standard optimization tools to solve the SAA problem
@ EMP = SLP — SAA — (large scale) LP
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Risk Measures
CVaR,: mean of upper tail beyond

a-quantile (e.g. o = 0.95)
o Classical: utility/disutility u(-):

min f(x) = E[u(F(x,§))]

xeX

uuuuuuuu

@ Modern approach to modeling 1
risk aversion uses concept of risk 1 |
. ...|||I||‘

Frequency

Pro bbh)

measures CVBR

Loss

@ mean-risk, semi-deviations, mean deviations from quantiles, VaR,
CVaR
Romisch, Schultz, Rockafellar, Urasyev (in Math Prog literature)

°
@ Much more in mathematical economics and finance literature
@ Optimization approaches still valid, different objectives
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Example: Portfolio Model (core model)

Determine portfolio weights w; for each of a collection of assets
Asset returns v are random, but jointly distributed

Portfolio return r(w, v)

Minimize a “risk” measure
max 0.2+ [E(r) + 0.8« CVaR (r)

st r=)vpEw
>iwi=1w>0

Jointly distributed random variables v, realized at stage 2

Variables: portfolio weights w in stage 1, returns r in stage 2

@ Coherent risk measures E and CVaR
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Other EMP information

@ emp.info: model transformation

expected_value EV_r r

cvarlo CVaR_r r alpha
stage 2 v r defr
jrandvar v("att") v("gmc") v("usx") discrete

table of probabilities and outcomes

@ Variables are assigned to E(r) and CVaR,_(r); can be used in model
(appropriately) for objective, constraints, or be bounded

@ Problem transformation: theory states this expression can be written
as convex optimization using:

N

1

CVaR,(r) = — =Y Probjx(a— 1,

CVaR,(r) = max{ a a; robj + (a— 1)+
J:
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Solution options

Form the extensive form equivalent

Solve using LINDO api (stochastic solver)

Convert to two stage problem and solve using DECIS or any number
of competing methods
Problem with 340 & 1.2 % 10! realizations in stage 2

» DECIS using Benders and Importance Sampling: < 1 second
(and provides confidence bounds)
» CPLEX on a presampled approximation:

sample samp. time(s) CPLEX time(s) for solution cols (mil)
500 0.0 5 (4.5 barrier, 0.5 xover) 0.25
1000 0.2 18 (16 barrier, 2 xover) 0.5
10000 28 195 (44 barrier, 151 xover) 5
20000 110 1063 (98 barrier, 965 xover) 10
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

AN
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

e
o—»o<©

Cut at stage 2

AAN]
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

AN
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Additional techniques requiring extensive computation

@ Continuous distributions, sampling functions, density estimation

e Chance constraints: Prob( Tix + W;y; > h;) > 1 — « - can reformulate
as MIP and adapt cuts (Luedtke) empinfo: chance E1 E2 0.95

@ Use of discrete variables (in submodels) to capture logical or discrete
choices (logmip - Grossmann et al)

@ Robust or stochastic programming

@ Decomposition approaches to exploit underlying structure identified
by EMP

@ Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods (ENLP)

@ Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Risk averse hydro (Philpott, MCF, Wets)

Hydro agents solve two stage stochastic program with increasing risk
aversion

Thermal agents solve two stage stochastic program (in effect risk
neutral)

Prices cleared in both periods by Walras
Modeled as a MOPEC:

min c(x;, x_;
X;GIX; (XlaX lap)

OSS(Xap)_D(va)J—pzo
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First stage electricity price
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Spatial Price Equilibrium (Dirkse)

€y
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Spatial Price Equilibrium (Dirkse)

ne{1,2,3,4,5,6}
Le{1,2,3}

A Supply quantity: S;
Production cost: W(5,) = ..
Demand: D;
/% Unit demand price: 6(Dy) = ..

O——@
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Spatial Price Equilibrium (Dirkse)

ne{l1,2,3,4,5,6}
Le{1,23}

R Supply quantity: S;
Production cost: W(5,) = ..
Demand: D;
Unit demand price: 6(Dy) = ..
Transport: Tj;

@\/’ ‘\/@ Unit transport cost: c;i( Tjj) = ..

One large system of equations and inequalities to describe this (GAMS).
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Nonlinear Program Model (Monopolist)

@ One producer controlling all regions
o Full knowledge of demand system

o Full knowledge of transportation system

S 60D~ Y wi(S) Zcu( ) Ti

ST leL leL

s.t. 5/—D/+ZT,-,—ZTU:0VI€L
il 1j

D,S,TeF

EMP = NLP
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2 agents: NLP + VI Model (Monopolist)

@ One producer controlling all regions
o Full knowledge of demand system

@ Price-taker in transportation system

Pij
mac S 0(D)D Y Wi(S) ~ Yo EIT;
leL leL iJ
st. S;—Di+Y Ty—> Ty=0Viel
il 1j
D,S,TecF
pij = <ij(Ty)

empinfo: vi tcDef tc
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2 agents: NLP + VI Model (Monopolist)

@ One producer controlling all regions
o Full knowledge of demand system

@ Price-taker in transportation system

Pij
mac S 0(D)D Y Wi(S) ~ Yo EIT;
leL leL iJ
st. S;—Di+Y Ty—> Ty=0Viel
il 1j
D,S,TecF
pij = <ij(Ty)

EMP = MOPEC = MCP
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Classic SPE Model (NLP + VI agents)

@ One producer controlling all regions
@ Price-taker in demand system

@ Price-taker in transportation system

qy Pij
max D BBAD — 3 Wi(S) - Y GHFATy
leL leL iJ
st. S—Dj+> Ty—» T;=0Viel
il 1.
D,S,TeF
pij = <ij(Ty)
™ = 9/(D/)
empinfo: vi tcDef tc
pricedef price
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Classic SPE Model (NLP + VI agents)

@ One producer controlling all regions
@ Price-taker in demand system

@ Price-taker in transportation system

m Pij
max D BBAD — 3 Wi(S) - Y GHFATy
leL leL iJ
st. S—Dj+> Ty—» T;=0Viel
il 1j
D,S,TeF
pij = <ij(Ty)
T = 9/(D/)

EMP = MOPEC = MCP
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Cournot-Nash equilibrium (multiple agents)

Assumes that each agent:
@ Treats other agent decisions as fixed

@ |s a price-taker in transport and demand

EMP info file

equilibrium

max obj('one’) vars('one’) eqns(‘one’)
max obj('two") vars('two’) eqns('two")
max obj('three') vars('three’) eqns('three’)
vi tcDef tc pricedef price

EMP = MOPEC = MCP
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Bilevel Program (Stackelberg)

@ Assumes one leader firm, the rest follow
@ Leader firm optimizes subject to expected follower behavior
@ Follower firms act in a Nash manner

@ All firms are price-takers in transport and demand

EMP info file

bilevel obj('one’) vars('one’) eqns('one’)
max obj('two") vars('two’) eqns('two’)
max obj('three") vars('three’) eqns('three’)
vi tcDef tc pricedef price

EMP = bilevel = MPEC = (via NLPEC) NLP(y)
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Design: Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)
Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

o Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program
Each agent minimizes:
U, = Zws (k — 1‘(qa,5,*))2

Budget time 0: 3, po,iGa0,i + > ; ViVaj < >_; Po,i€a0,i
Budget time 1: >~ ps idasi < > PsiD_j Dsijyaj+ 2 i Psi€as.i

Additional constraints (complementarity) outside of control of agents:

(contract) 0 < —ZyaJ Lvi>0
a

(walras) 0 < — Z dasi L psi>0
a
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Model and solve

@ Can model financial instruments such as “financial transmission
rights”, “spot markets”, “reactive power markets”

@ Reduce effects of uncertainty, not simply quantify

@ Use structure in preconditioners

» Use nonsmooth Newton methods to formulate complementarity
problem

> Solve each “Newton” system using GMRES

» Precondition using “individual optimization” with fixed externalities

il N

Ferris (Univ. Wisconsin) EMP Zurick 2011

25 / 27



What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plg functions)

Currently available within GAMS

Ferris (Univ. Wisconsin) EMP Zurick 2011 26 / 27



Conclusions

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

o EMP model type is clear and extensible, additional structure available
to solver

@ Extended Mathematical Programming available within the GAMS
modeling system

@ Able to pass additional (structure) information to solvers

@ Embedded optimization models automatically reformulated for
appropriate solution engine

@ Exploit structure in solvers

@ Extend application usage further
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