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Stochastic recourse

Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

R is a risk measure (e.g. expectation, CVaR)

SP: min c>x + R[d>y ]

s.t. Ax = b, x ≥ 0,

∀ω ∈ Ω : T (ω)x + W (ω)y(ω) ≥ h(ω),

y(ω) ≥ 0.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 
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Key-idea: Non-anticipativity constraints

Replace x with
x1, x2, . . . , xK

Non-anticipativity:
(x1, x2, . . . , xK ) ∈ L
(a subspace) - the H
constraints

to let x,... , be copies of the firststage variable and rewrite (15) as 

1 , . . . ,r 16) 

The equations x ... = x express independence of first-stage decisions on the realizations 
of h and are called non-anticipativity constraints. Of course, there are several ways to express 
this property. To be flexible in this respect and for notational convenience we assume that 
non-anticipativity is represented by the constraint XX=i Hx = 0 where H = ( , . . . , H 
is a suitable matrix. The block structure of the constraints matrix of formulation (16) can be 
seen in igure 2 . Separability of 16) can be achieved when removing the non-anticipativit 

T W 

T 

H 

W 

igure Constraints matrix of the scenario formulation 16) 

conditions from the constraints. This leads to considering the following agrangian relaxation 
of 16) 

(\ min { J2 {x y : A < 6 G X, 

< h, y 1 , . . . r } , 

17) 

where 

(x y (cx \{ for 1 , . . . r 

The problem max^ D(X) is called the Lagrangian dual of (16). From the theory of integer 
linear programming it is well known (cf. Nemhauser and Wolsey 1988) that the optimal value 
of the agrangian dual is a lower bound to the optimal value of (16) which is strict in general 
but greater than or equal on the lower bound given by the LP relaxation of 16). If for some 

Computational methods exploit the separability of these constraints,
essentially by dualization of the non-anticipativity constraints.

Primal and dual decompositions (Lagrangian relaxation, progressive
hedging , etc)

L shaped method (Benders decomposition applied to det. equiv.)

Trust region methods and/or regularized decomposition
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Models with explicit random variables

Model transformation:
I Write a core model as if the random variables are constants
I Identify the random variables and decision variables and their staging
I Specify the distributions of the random variables

Solver configuration:
I Specify the manner of sampling from the distributions
I Determine which algorithm (and parameter settings) to use

Output handling:
I Optionally, list the variables for which we want a scenario-by-scenario

report
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Example: Farm Model (core model)

Allocate land (L) for planting crops x(c) to max (p/wise lin) profit

Yield rate per crop c is F∗Y (c)

Can purchase extra crops b and sell s, but must have enough crops d
to feed cattle

max
x ,b,s≥0

profit = p(x , b, s)

s.t.
∑
c

x(c) ≤ L,

F∗Y (c) ∗ x(c) + b(c)− s(c) ≥ d(c)

Random variables are F , realized at stage 2: structured T (ω)

Variables x stage 1, b and s stage 2.

landuse constraints in stage 1, requirements in stage 2.

Can now generate the extensive form problem or pass on directly to
specialized solver
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Stochastic Programming as an EMP

Three separate pieces of information (extended mathematical program)
needed

1 emp.info: model transformation

randvar F discrete 0.25 0.8 // below

0.50 1.0 // avg

0.25 1.2 // above

stage 2 F b s req

2 solver.opt: solver configuration (benders, sampling strategy, etc)

4 "ISTRAT" * solve universe problem (DECIS/Benders)

3 dictionary: output handling (where to put all the “scenario solutions”)
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How does this help?

Clarity/simplicity of model

Separates solution process from model description

Models can be solved by the extensive form equivalent, exisiting codes
such as LINDO and DECIS, or decomposition approaches such as
Benders, ATR, etc

Allows description of compositional (nonlinear) random effects in
generating ω

i.e. ω = ω1 × ω2, T (ω) = f (X (ω1),Y (ω2))

Easy to write down multi-stage problems

Automatically generates “COR”, “TIM” and “STO” files for
Stochastic MPS (SMPS) input
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Sampling methods

But what if the number of scenarios is too big (or the probability
distribution is not discrete)? use sample average approximation (SAA)

Take sample ξ1, . . . , ξN of N realizations of random vector ξ
I viewed as historical data of N observations of ξ, or
I generated via Monte Carlo sampling

for any x ∈ X estimate f (x) by averaging values F (x , ξj)

(SAA): min
x∈X

f̂N(x) :=
1

N

N∑
j=1

F (x , ξj)


Nice theoretical asymptotic properties

Can use standard optimization tools to solve the SAA problem

EMP = SLP =⇒ SAA =⇒ (large scale) LP
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Risk Measures

Classical: utility/disutility u(·):

min
x∈X

f (x) = E[u(F (x , ξ))]

Modern approach to modeling
risk aversion uses concept of risk
measures

CVaRα: mean of upper tail beyond
α-quantile (e.g. α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

mean-risk, semi-deviations, mean deviations from quantiles, VaR,
CVaR

Römisch, Schultz, Rockafellar, Urasyev (in Math Prog literature)

Much more in mathematical economics and finance literature

Optimization approaches still valid, different objectives
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Example: Portfolio Model (core model)

Determine portfolio weights wj for each of a collection of assets

Asset returns v are random, but jointly distributed

Portfolio return r(w , v)

Minimize a “risk” measure

max 0.2 ∗ E(r) + 0.8 ∗ CVaRα(r)
s.t. r =

∑
j vj∗wj∑

j wj = 1, w ≥ 0

Jointly distributed random variables v , realized at stage 2

Variables: portfolio weights w in stage 1, returns r in stage 2

Coherent risk measures E and CVaR
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Other EMP information

emp.info: model transformation

expected_value EV_r r

cvarlo CVaR_r r alpha

stage 2 v r defr

jrandvar v("att") v("gmc") v("usx") discrete

table of probabilities and outcomes

Variables are assigned to E(r) and CVaRα(r); can be used in model
(appropriately) for objective, constraints, or be bounded

Problem transformation: theory states this expression can be written
as convex optimization using:

CVaRα(r) = max
a∈R

a− 1

α

N∑
j=1

Probj ∗ (a− rj)+
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Solution options

Form the extensive form equivalent

Solve using LINDO api (stochastic solver)

Convert to two stage problem and solve using DECIS or any number
of competing methods

Problem with 340 ≈ 1.2 ∗ 1019 realizations in stage 2
I DECIS using Benders and Importance Sampling: < 1 second

(and provides confidence bounds)
I CPLEX on a presampled approximation:

sample samp. time(s) CPLEX time(s) for solution cols (mil)

500 0.0 5 (4.5 barrier, 0.5 xover) 0.25
1000 0.2 18 (16 barrier, 2 xover) 0.5

10000 28 195 (44 barrier, 151 xover) 5
20000 110 1063 (98 barrier, 965 xover) 10
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

Cut at stage 2

Cut at stage 3
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Additional techniques requiring extensive computation

Continuous distributions, sampling functions, density estimation

Chance constraints: Prob(Tix + Wiyi ≥ hi ) ≥ 1−α - can reformulate
as MIP and adapt cuts (Luedtke) empinfo: chance E1 E2 0.95

Use of discrete variables (in submodels) to capture logical or discrete
choices (logmip - Grossmann et al)

Robust or stochastic programming

Decomposition approaches to exploit underlying structure identified
by EMP

Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods (ENLP)

Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Risk averse hydro (Philpott, MCF, Wets)

Hydro agents solve two stage stochastic program with increasing risk
aversion

Thermal agents solve two stage stochastic program (in effect risk
neutral)

Prices cleared in both periods by Walras

Modeled as a MOPEC:

min
xi∈Xi

c(xi , x−i , p)

0 ≤ S(x , p)− D(x , p) ⊥ p ≥ 0
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Spatial Price Equilibrium (Dirkse)

1

6

4 5

2 3

1

2 3

1

2 3

1

2 3

4 5

6

n ∈ {1, 2, 3, 4, 5, 6}
L ∈ {1, 2, 3}

Supply quantity: SL

Production cost: Ψ(SL) = ..

Demand: DL

Unit demand price: θ(DL) = ..
Transport: Tij

Unit transport cost: cij(Tij) = ..

One large system of equations and inequalities to describe this (GAMS).
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Nonlinear Program Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Full knowledge of transportation system

max
D,S ,T

∑
l∈L

θl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

cij(Tij)Tij

s.t. Sl − Dl +
∑
i ,l

Til −
∑
l ,j

Tlj = 0 ∀l ∈ L

D,S ,T ∈ F

EMP = NLP
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2 agents: NLP + VI Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Price-taker in transportation system

pij

max
D,S ,T

∑
l∈L

θl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

���
�XXXXcij(Tij)Tij

s.t. Sl − Dl +
∑
i ,l

Til −
∑
l ,j

Tlj = 0 ∀l ∈ L

D,S ,T ∈ F

pij = cij(Tij)

empinfo: vi tcDef tc

EMP = MOPEC =⇒ MCP
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Classic SPE Model (NLP + VI agents)

One producer controlling all regions

Price-taker in demand system

Price-taker in transportation system

πl pij

max
D,S ,T

∑
l∈L
��
��XXXXθl(Dl)Dl −

∑
l∈L

Ψl(Sl)−
∑
i ,j

���
�XXXXcij(Tij)Tij

s.t. Sl − Dl +
∑
i ,l

Til −
∑
l ,j

Tlj = 0 ∀l ∈ L

D,S ,T ∈ F

pij = cij(Tij)

πl = θl(Dl)

empinfo: vi tcDef tc
pricedef price

EMP = MOPEC =⇒ MCP
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Cournot-Nash equilibrium (multiple agents)

Assumes that each agent:

Treats other agent decisions as fixed

Is a price-taker in transport and demand

EMP info file
equilibrium
max obj(’one’) vars(’one’) eqns(’one’)
max obj(’two’) vars(’two’) eqns(’two’)
max obj(’three’) vars(’three’) eqns(’three’)
vi tcDef tc pricedef price

EMP = MOPEC =⇒ MCP
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Bilevel Program (Stackelberg)

Assumes one leader firm, the rest follow

Leader firm optimizes subject to expected follower behavior

Follower firms act in a Nash manner

All firms are price-takers in transport and demand

EMP info file

bilevel obj(’one’) vars(’one’) eqns(’one’)
max obj(’two’) vars(’two’) eqns(’two’)
max obj(’three’) vars(’three’) eqns(’three’)
vi tcDef tc pricedef price

EMP = bilevel =⇒ MPEC =⇒ (via NLPEC) NLP(µ)
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Design: Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)

Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Each agent minimizes:

ua =
∑
s

πs (κ− f (qa,s,∗))2

Budget time 0:
∑

i p0,iqa,0,i +
∑

j vjya,j ≤
∑

i p0,iea,0,i

Budget time 1:
∑

i ps,iqa,s,i ≤
∑

i ps,i
∑

j Ds,i ,jya,j +
∑

i ps,iea,s,i

Additional constraints (complementarity) outside of control of agents:

(contract) 0 ≤ −
∑
a

ya,j ⊥ vj ≥ 0

(walras) 0 ≤ −
∑
a

da,s,i ⊥ ps,i ≥ 0
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Model and solve

Can model financial instruments such as “financial transmission
rights”, “spot markets”, “reactive power markets”

Reduce effects of uncertainty, not simply quantify

Use structure in preconditioners
I Use nonsmooth Newton methods to formulate complementarity

problem
I Solve each “Newton” system using GMRES
I Precondition using “individual optimization” with fixed externalities

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS
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Conclusions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Able to pass additional (structure) information to solvers

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage further

Ferris (Univ. Wisconsin) EMP Zurick 2011 27 / 27


	Motivation
	Stochastic Programming
	Recourse
	Risk measures
	Multi-stage problems

	Competing agent models
	Spatial Price Equilibrium
	Oligopoly (Harker)

	Stochastic VI
	Conclusions

