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Abstract

Computer simulations are used extensively as models of real systems to eval-

uate output responses. The choice of optimal simulation parameters can

lead to improved operation, but configuring them well remains a challenging

problem. Simulation-based optimization is an emerging field which integrates

optimization techniques into simulation analysis. The parameter calibration

or optimization problem is formulated as a stochastic programming problem

whose objective function is an associated measurement of an experimental

simulation. Due to the complexity of the simulation, the objective function

is typically (a) subject to various levels of noise, (b) not necessarily differen-

tiable, and (c) computationally expensive to evaluate.

Contemporary simulation-based optimization methods include response

surface methodology, heuristic methods and stochastic approximation. Our

optimization methods proposed in the dissertation are adapted from the

derivative-free optimization approach, which does not try to utilize or di-

rectly estimate the gradient value. Accordingly, we can avoid the sensitive

gradient estimation process. Another important feature of our methods is

to use replicated samples to reduce the noise level. The idea is similar to

that of the sample-path optimization method, except that we have applied

Bayesian inference tools in a novel fashion to compute variable numbers of
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replications for different points.

The dissertation work is comprised of both optimization algorithm design

and real-world applications. We have formulated the simulation-based op-

timization as a stochastic minimization problem, with the expectation form

of the stochastic function. Simple constraints of parameters and separate

situations concerning implementing Common Random Numbers (CRN) are

considered. We concentrate on algorithms for problems where the number of

simulation parameters is small.

We propose a two-phase optimization framework for simulation-based

optimization. Phase I is a global exploration step over the entire domain.

One of our methods employs classification tools to facilitate the global search

process. By learning a surrogate from existing data the approach identifies

promising regions for optimization. Another Phase I method is an extension

of the DIRECT (DIviding RECTangles) optimization algorithm. Similar

to the classification-based global search, the method returns a collection of

promising regions which are represented by unions of rectangles. As a phase

transition module linking the two phases, a nonparametric statistical method

is applied to determine regions for multistart Phase II optimizations.

Phase II is a collection of local trust-region derivative-free optimizations

based on the UOBYQA (Unconstrained Optimization BY Quadratic Ap-

proximation) algorithm. The methods apply Bayesian techniques to guide

appropriate sampling strategies while simultaneously enhancing algorithmic
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efficiency to obtain solutions of a desired accuracy. The statistically accurate

scheme determines the number of simulation runs and guarantees the global

convergence of the algorithm. In specific cases, we outline adaptations of the

termination criteria for our algorithms.

A key guiding principle in this thesis is the use of the distribution infor-

mation from the Bayesian analysis to instrument existing optimization codes

to make them more robust to noisy function evaluations. In particular, the

space partitioning scheme in DIRECT is significantly enhanced using a Monte

Carlo validation based on Bayesian posterior distribution. More simulation

runs are allocated when it is necessary to meet a desired accuracy level. In

the extensions of UOBYQA algorithms, we use Bayesian tools to estimate

the uncertainty in the quadratic model construction and even in solution

distribution, thus we are able to make correct decisions within the steps of

the algorithms.

A major deliverable of the research is a sophisticated implementation of

this algorithm (WISOPT), combined with documentation to allow applica-

tion experts to independently use this code. The methodologies have been

applied in various applications. One project with Biomedical Engineering re-

searchers explores the optimal design for a coaxial sleeve antenna for hepatic

tumor ablation. Finite element (FE) simulation models are used to generate

the electromagnetic (EM) radiation field in liver given a particular design.

In addition to maximize the desired performance for the antenna, we take
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into account the varying physical properties of tissue amongst individuals.

Another collaborative project is with researchers in the Medical School

on the Wisconsin Breast Cancer Epidemiology simulation model. The model

uses detailed individual-woman level discrete event simulation to replicate

breast cancer incidence rates according to the SEER Program data. The two-

phase optimization approach was applied to determine the parameter vector

that minimizes a scoring function associated with the simulation model.

Besides applying the WISOPT package for black-box noisy output func-

tions, we also consider solving a special type of simulation problem in Dy-

namic Programming (DP). Such a simulation problem typically includes state

information (at each time stage) and state transition processes (along time

stages). Normally, the objective function is associated with intermediate

costs during state transitions plus a cost measurement of the final state.

We consider a similar Monte Carlo simulation analysis using the Bayesian

method within Neuro-Dynamic Programming (NDP), which is a class of ap-

proximation methods for solving complex DP problems. One of the NDP

algorithms, the rollout method, approximates the optimal cost-to-go func-

tion by a heuristic cost function which is calculated via simulations. We

efficiently manage the simulation resources in the rollout method to obtain

accurate stochastic optimal controls. An example of scheduling radiation

treatments is provided to illustrate the effectiveness of our new algorithm.

We believe this demonstrates the applicability of the ideas in this thesis in
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another application domain and points to possible generalizations for other

optimization procedures.
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Chapter 1

Introduction

1.1 Simulation-Based Optimization

Computer simulations are used extensively as models of real systems to eval-

uate output responses. Applications of simulation are widely found in many

areas including supply chain management, finance, manufacturing, engineer-

ing design and medical treatment [42, 48, 60, 83, 96]. The choice of optimal

simulation parameters can lead to improved operation, but configuring them

well remains a challenging problem. Historically, the parameters are chosen

by selecting the best from a set of candidate parameter settings. Simulation-

based optimization [3, 40, 41, 47, 69, 90] is an emerging field which integrates

optimization techniques into simulation analysis. The corresponding objec-

tive function is an associated measurement of an experimental simulation.

Due to the complexity of the simulation, the objective function may be dif-

ficult and expensive to evaluate. Moreover, the inaccuracy of the objective

function often complicates the optimization process. Deterministic optimiza-

tion tools may lead to inaccurate solutions. Indeed, derivative information
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Figure 1: Structure of the floating sleeve antenna.

is typically unavailable, so many derivative-dependent methods are not ap-

plicable to these problems.

A particular example is an engineering design problem for an microwave

coaxial antenna in hepatic tumor ablation. (More details can be found in

Section 4.2.) We aim to determine the optimal dimensions of the antenna,

such as the slot size, the dipole tip length, and the thicknesses of the Teflon

coatings (see Figure 1 for the antenna illustration) to yield a desired treat-

ment performance. Finite element models (MultiPhysics 3.2) are used to

simulate the electromagnetic (EM) field distribution in liver given a particu-

lar design. Since dielectric properties of the tissue are assumed to vary within

±10% of average properties, it is important to ensure that the antenna used

in ablation is robust, i.e., relatively insensitive to the variations in physical

properties of the tissue.
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Although real world problems have many forms, in the thesis we consider

the following bounded stochastic formulation:

min
x∈Ω

f(x) = E [F (x, ξ(ω))] , (1.1)

where

Ω = {x ∈ Rn : l ≤ x ≤ u}.

Here, l and u are the lower and upper bounds for the input parameter x,

respectively. We focus on the case where the parameter x comes from a

continuous set Ω, but not necessarily a finite set. ξ(ω) is a random vector

defined on a probability space. The sample response function F : Rn×Rd →

R takes two inputs, the simulation parameters x ∈ Rn and a random sample

of ξ(ω) in Rd. Note that the variables x correspond to the design parameters

(e.g., slot size, dipole tip length, etc.) in the above example, and the random

realizations correspond to different dielectric properties of individuals. As

in the example, our approaches concentrate on cases where the number of

design parameters is small.

F (x, ξ(ω)) corresponds to a particular evaluation using the finite element

model. Given a random realization ξi of ξ(ω), F (x, ξi) can be evaluated via a

single simulation run. The underlying objective function f(x) is computed by

taking an expectation over the sample response function and has no explicit

form. (Different formulations other than expectation are acceptable; for ex-

ample, maximum, minimum, or quantiles of the sample objectives [4, 32]). A
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basic assumption requires that the expectation function f(x) is well defined

(for any x ∈ Rn the function F (x, ·) is measurable, and either E[F (x, ξ(ω))+]

or E[F (x, ξ(ω))−] is finite, see page 57 of [91]).

1.1.1 Simulation-Based Optimization Methods

There are several excellent review papers on the subject of simulation-based

optimization methods, such as [3, 40, 41]. These papers also provide a

good survey on optimization add-ons for discrete-event simulation software,

which have been undergoing fast development over the last decade; for ex-

ample, OptQuest (www.optquest.com) for Arena (www.arena.com) and for

SIMUL8 (www.simul8.com). A detailed summary of commercial simulation

software and optimization add-ons can be found in Table 1 of [41]. Con-

temporary methods for continuous simulation-based optimization, which are

implemented in these add-ons, are classified in several categories.

Response surface methodology The idea of Response Surface Method-

ology [12, 90] (RSM) is to construct one (or multiple) mathematical model A,

which is called a surrogate model, to approximate the underlying function f ,

so that it is can be easily and cheaply evaluated at each parameter point x.

Optimization procedures are executed over the inexpensive model A, instead

of the expensive cost function. Moreover, the approximating model A could

have estimated gradient values that enable the application of more efficient
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optimization algorithms. We determine the model A(·) by minimizing the

difference of A(·) and the function F (·) over a representative set of points S:

min
∑

xi∈S Θ (F (xi, ξi) − A(xi))

s.t. A(·) ∈ A
(1.2)

Here Θ(·) is a merit function, which is typically chosen as an l2-norm; ξi

is one sample realization; and the set A is a class of tunable functional

forms. The most popular choices of A are linear and quadratic models.

Polynomial models are also compact forms and easy to evaluate, but they

often have limited capacity to model complex functions of arbitrary shape.

Splines are alternative tools, which are more flexible in fitting and are capable

of handling large scale data. But in high dimensional approximation, the

(Tensor product) spline requires sample data on a grid mesh for efficient

implementation. Kriging is a type of interpolative tool which was originally

developed in geo-statistics. It is flexible enough to be implemented on high-

dimensional spatial data and has been used in many engineering problems.

However, the performance is limited by the total number of design points;

for example, increasing the number of points in S can quadratically increase

the Kriging model construction time.

Heuristic methods Heuristic methods have proven to be practically use-

ful in many real-world applications. We will briefly introduce the three most

popular methods: genetic algorithms, tabu search and simulated annealing.
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Genetic algorithms [13, 94, 95] are inspired from the process of biological

evolution. The algorithm is initialized with a finite set of potential solutions

called the population. Each potential solution, referred to as an individual,

may be coded as a binary string or a real-coded integer or taken from a fixed

alphabet of characters. These solutions are evaluated by a fitness function

(normally the objective function) and the fit individuals are assigned a high

probability to “reproduce” in the next generation of solutions, a sort of sur-

vival of the fittest scheme. In the reproducing process, new offspring inherit

traits from parents (crossover) and are subject to mutation changes. The

new offspring are accepted using various criteria to form a new population

of candidate solutions. The algorithm proceeds to generate more favorable

solutions in each iteration and eventually converges to a population with a

distribution of good solutions.

Tabu search [45, 46] is a metaheuristic based on the local search method,

which iteratively moves the current iterate to a neighbor solution, until cer-

tain criteria are satisfied. The algorithm allows a move to a neighbor solution

that has a worse objective value. Meanwhile, in order to prevent circling to

the previous solutions or infinite loops, a list of tabu or forbidden moves are

kept and updated at each iteration. A short-term memory tabu list is the

most used type and is often referred to as a tabu tenure.

Simulated annealing [23, 31] searches local moves randomly from a list

of candidate neighbor points. If a better neighbor point is encountered, it



7

replaces the current iterate with probability one, or if a worse point is found,

it replaces the iterate with a probability value strictly less than one. The

appropriate probability value is determined by the difference of the objective

values. For the algorithm to converge, the probability of moving towards a

worse point should decrease along the iterations according to the decrement

of a certain ‘temperature’ value, which changes based on a cooling schedule.

All of the three algorithms are considered as global optimization methods

since they are able to move iterates out of regions where locally optimal

solutions reside.

Stochastic approximation Stochastic approximation [67, 104] falls into

the category of gradient-based approaches. Typically, the method iteratively

updates the current solution by

xk+1 = xk + ak∇f̃(xk),

where the estimated gradient ∇f̃(xk) can be calculated by various gradient

estimation tools and ak is the step length. Since the method is an extension

of the line search method, it obviously is a local optimization method. Under

proper conditions, such as when the error in the gradient approximation and

the step length converges to zero as a certain rate, the stochastic approxima-

tion method can be shown to converge to a local optimum of the underlying

function.

The approximate gradient ∇f̃(xk) is estimated using sample responses F .
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Popular gradient estimation methods include perturbation analysis and the

likelihood ratio method [43]. Spall’s lab develops simultaneous perturbation

(SP) and finite difference (FD) based stochastic approximation algorithms:

SPSA and FDSA. The lab’s web site (www.jhuapl.edu/SPSA) provides a

good source of references on these two algorithms.

Derivative-free optimization methods Derivative-free optimization meth-

ods [80] are a class of methods that do not try to utilize or directly estimate

the gradient value, thus are a good fit for the optimization problem (1.1).

Compared to stochastic approximation algorithms, the derivative-free meth-

ods avoid the gradient estimation step, which is sensitive and crucial to the

convergence of these algorithms. In many practical examples, we find that

the gradient estimation tools often become incorrect and problematic when

the gradient value gets close to zero (i.e., when near a local solution).

There are two categories of derivative-free methods: the so-called model-

based approach [20, 21] and the pattern or geometry-based approach. The

model-based approach typically constructs a chain of local models that ap-

proximate the objective function, and the algorithm proceeds based on model

predictions; an alternative to the model-based approach is the pattern-based

approach, which directly uses the functional output at locations specified by

geometric arguments, such as the pattern search method [70].

One of the optimization methods we apply in the thesis is the UOBYQA
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algorithm [85] (Unconstrained Optimization BY Quadratic Approximation),

which is a model-based method. It is designed for solving nonlinear problems

with a moderate number of dimensions. The method shares similarities to

response surface methodology (RSM): both of them construct a series of

models to the simulation response during the optimization process. However,

many features in UOBYQA, such as the quadratic model update and local

region shift have advantages over the classical RSM, and UOBYQA is more

mathematically rigorous in convergence.

Dynamic programming and neuro-dynamic programming Dynamic

Programming (DP) [6] problems are a special type of simulation-based op-

timization problems with internal time stages and state transitions. The

objective function is not a single black-box output, but typically is a combi-

nation of intermediate costs during state transitions plus a cost measurement

of the final state. Appropriate controls are determined at each time stage,

typically in a sequential favor.

Neuro-Dynamic Programming (NDP) [9, 47, 106] is a class of reinforce-

ment learning methods to solve complex DP problems. The central idea of

NDP is to approximate the optimal cost-to-go function using simple struc-

tured functions, such as neuro networks or simulation evaluations. NDP ob-

tains sub-optimal controls, trading off expensive computational costs. This

feature distinguishes NDP methods from standard DP methods.



10

1.1.2 White Noise vs. Common Random Numbers

To handle stochastic functional output, we adopt a simple and effective ap-

proach - sample multiple replications per point and take the average to reduce

the uncertainty. Algorithms without such a procedure can obtain a good so-

lution but not the exact solution, because a single-replication observation

is inevitably affected by noise. The trickly question of setting the replica-

tion number is actually algorithm dependent. We have applied tools from

Bayesian inference in a novel way to facilitate this computation process.

We separate our optimization approaches into two cases, using an impor-

tant property of the simulation system, which is based on properties of the

replications.

The white noise case corresponds to the situation when simulation out-

puts F (x, ξ(ω)) are independent for different simulation runs, whatever the

input x is. The random component ξ(ω) of the function is not fixable. The

simulation outputs are observed to be biased by white noise. The second case

is the implementation of Common Random Numbers (CRN), which as-

sumes the random factor ξ(ω) can be fixed; for example, this can be achieved

by fixing the random seed in the computer simulation process. One of the

advantageous properties of using CRN is that given a realized sample ξi, the

sample response function F (x, ξi) is a deterministic function. The introduc-

tion of CRN significantly reduces the level of randomness and can facilitate

comparisons between different x.
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When CRN is used, the expected value function f(x) in (1.1) can be

approximated by a deterministic averaged sample response function

f(x) ≈ f̂N(x) :=
1

N

N∑
i=1

F (x, ξi), (1.3)

where N is the number of samples. This is the core idea of the sample-

path method [35, 49, 50, 83, 84, 89], which is a well-recognized method in

simulation-based optimization. The sample-path method is sometimes called

the Monte Carlo sampling approach [99] or the sample average approxima-

tion method [52, 53, 63, 98, 100, 101]. The sample-path method has been

applied in many settings, including buffer allocation, tandem queue servers,

network design, etc. A wealth of deterministic optimization techniques can

be employed to solve the sample-path problem

min
x∈Ω

f̂N(x), (1.4)

which serves as a substitute for (1.1). An optimal solution x∗,N to the prob-

lem (1.4) is then treated as an approximation of x∗, the solution of (1.1).

Note that the method is not restricted to bounded problems, but in more

general settings it requires appropriate deterministic tools (i.e., constrained

optimization methods) to be used.

Convergence proofs of the sample-path method are given in [89, 97]. Sup-

pose there is a unique solution x∗ to the problem (1.1), then under the as-

sumption that the sequence of functions {f̂N} epiconverges1 to the function

1The functions f̂N epiconverges to a function f if the epigraphs of the function f̂N

converges to the epigraph of the function f [91].
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f , the optimal solution sequence {x∗,N} converges to x∗ almost surely for all

sample paths. See Figure 2 for the illustration of the sample-path optimiza-

tion method. Starting from x0, for a given N , a deterministic algorithm is

applied to solve the sample-path problem. Invoking the above analysis then

allows us to use the solution x∗,N as an approximation to the true solution

x∗.

Figure 2: Mechanism of the sample-path optimization method.

1.2 Bayesian Analysis in Simulation

We have extensively used Bayesian analysis in our optimization methods.

Our analysis is inspired by its application in selecting the best system, which

is one of the fundamental problems in discrete simulation-based optimization.
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In Bayesian analysis, a posterior distribution for the simulation output, in-

cluding both mean and variance information, is derived. Since the posterior

distribution has a parametric form, it can be readily assembled and used in

optimization methods.

Another important usage of Bayesian analysis is Monte Carlo validation.

When Bayesian posterior distributions cannot be used directly in the algo-

rithms, the Monte Carlo validation step serves as an alternative. This idea is

motivated by using Monte Carlo simulation of random variables to construct

statistical estimators for unknown quantities. For example, in the compu-

tation of the expectation of a random variable, a simple way to accomplish

this is to generate a large number of realizations from the random variable

and take the arithmetic mean (or compute the sample mean). This provides

a so called Monte Carlo estimator for the unknown expectation. Note that

one crucial part of the Monte Carlo method necessitates an efficient way to

generate random samples from a given distribution.

We adopt the same idea in Monte Carlo validation. Assume that Bayesian

posterior distributions can capture the real uncertainty of the unknown ran-

dom quantity well from a practical standpoint. In order to valid a given

variance criterion, we can extract a vast amount of samples from the derived

posterior distributions and plug them into the criterion to validate it. For

example, we may observe that 1 − α of all the samples satisfy the criterion,
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therefore, we can assert that such a criterion can be satisfied with an accu-

racy of 1−α. The Monte Carlo validation step avoids using the forms of the

Bayesian distributions directly.

We will introduce the problem of selecting the best system in Section 1.2.1

and the role which Bayesian analysis plays. In Section 1.2.2, we describe

the construction of Bayesian posterior estimations and in Section 1.2.3, we

illustrate how the analysis is applied to a simple selecting the best system

problem.

1.2.1 Selecting the Best System

The goal of selecting the best system is to identify the best system from a

collection of candidate systems. The type of problem is encountered many

times (in various forms) in our algorithmic designs, as will be shown later.

Selecting the best system is equivalent to solving a discrete optimization

problem:

arg min
i

E(Yi), (1.5)

where Yi is a random variable representing the output of system i, i =

1, 2, · · · , K. (Without loss of generality, we assume that a desired system

has the smallest expected mean.) Let µi be the unknown mean of Yi and

µ[1] ≥ µ[2] ≥ · · · ≥ µ[K] be the ordered sequence of the means µi, but such

a sequence is unknown. We prefer to determine the index [k] and there is a
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probability of correct selection (PCS) value that quantifies the correctness:

PCS = Pr(select Y[K]| µ[j] ≥ µ[K], j = 1, 2, · · · , K − 1). (1.6)

The difficulty of selecting the best system is to design a statistically accurate

procedure that identifies the best system with the condition

PCS ≥ 1 − α,

where α is a threshold value, while using the least number of realized samples

of Yi.

The standard approach to selecting the best system includes Indifference-

Zone Ranking and Selection (IZ-R&S). An indifference-zone parameter δ

should first be prescribed. When the means of two systems are within a

tolerance δ, it is indifferent to choose either system. One of the most in-

fluential IZ-R&S approaches is a two-stage sampling strategy, described by

Rinott [88] in 1978. Firstly, r0 replications of each system are simulated to

estimate the preliminary sample variance. Secondly, it evaluates additional

replications for each system, whereby numbers of replications are determined

by the corresponding variance information. The best system is then chosen

as the one having the smallest sample mean. Kim and Nelson [61] include a

screen step that is designed to eliminate a set of inferior systems from con-

sideration at an early stage. A good survey on the IZ-R&S procedures can

be found in [62].
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The Bayesian method is an alternative to the standard IZ-R&S [16, 17,

19]. The idea is to construct posterior distributions for the underlying mean

µi using observations and acquired knowledge. The selection accuracy is ac-

cordingly estimated via joint posterior distributions. There are many prac-

tically efficient procedures including Chen’s OCBA [16] (Optimal Computer

Budget Allocation) and Chick’s 0-1(B) [17, 19]. The report [56] offers an em-

pirical comparison of these methods, as well as Rinott’s two-stage IZ-R&S

method.

The Bayesian approach has advantages over the traditional IZ-R&S ap-

proach. First, it is not necessary to set the indifference-zone parameter δ. In

fact, it deals with the ranking and selection problem (1.5) directly. Moreover,

it utilizes both the mean and variance information of the data, while IZ-R&S

only uses the variance information directly.

1.2.2 Constructing Bayesian Posterior Estimations

The Bayesian approach described in this subsection is standard and close to

that presented in Chick’s papers [17, 19].

Given a set of points {x1, x2, . . . , xL}, we assume the simulation output

at these points

FFF = (F (x1, ξ(ω)), F (x2, ξ(ω)), . . . , F (xL, ξ(ω)))

is a multivariate normal variable, with mean µµµ = (µ(x1), . . . , µ(xL)) and
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covariance matrix ΣΣΣ:

FFF ∼ N(µµµ,ΣΣΣ). (1.7)

In the white noise case, since simulation outputs are independent, ΣΣΣ should

be a diagonal matrix; while for the CRN case, it is typically not. Suppose we

evaluate N replications of simulation runs at each point, the existing data X

can be accumulated as an N × L matrix, with

Xi,j = F (xj, ξi), i = 1, . . . , N, j = 1, . . . , L.

Let µ̄µµ and Σ̂ΣΣ denote the sample mean and sample covariance matrix of the

data. For simplicity, we introduce the notation sssi = (F (x1, ξi), . . . , F (xL, ξi)), i =

1, . . . , N , so that

X =



sss1

sss2

...

sssN


.

The sample mean and sample covariance matrix are calculated as

µ̄µµ =
1

N

N∑
i=1

sssi

= (f̂N(x1), . . . , f̂N(xL)), (1.8)

and

Σ̂ΣΣ =
1

N − 1

N∑
i=1

(sssi − µ̄µµ)T (sssi − µ̄µµ). (1.9)
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Since we do not have any prior assumption for the distributions of µµµ and

ΣΣΣ, we assign non-informative prior distributions for them. In doing this, the

joint posterior distributions of µµµ and ΣΣΣ are derived as

ΣΣΣ|X ∼ WishartL(Σ̂ΣΣ, N + L − 2),

µµµ|ΣΣΣ, X ∼ N(µ̄µµ,ΣΣΣ/N). (1.10)

Here the Wishart distribution Wishartp(ννν,m) has covariance matrix ννν and

m degrees of freedom [25]. The Wishart distribution is a multivariate gener-

alization of the χ2 distribution.

The distribution of the mean value µµµ is of most interest to us. When the

sample size is large, we can replace the covariance matrix ΣΣΣ in (1.10) with

the sample covariance matrix Σ̂̂Σ̂Σ, and asymptotically derive the posterior

distribution of µµµ|X as

µµµ|X ∼ N(µ̄µµ, Σ̂ΣΣ/N). (1.11)

It should be noted that, with an exact computation, the marginal distribution

of µµµ|X inferred by (1.10) (eliminating ΣΣΣ) is,

µµµ|X ∼ StL(µ̄µµ,NΣ̂ΣΣ
−1

, N − 1), (1.12)

where a random variable with Student’s t-distribution StL(µµµ,κκκ,m) has mean

µµµ, precision κκκ, and m degrees of freedom. The normal formulation (1.11) is

more convenient to manipulate than the t-version (1.12). We have applied

both forms in our algorithms when appropriate, but typically prefer the sim-

pler normal form.
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Particularly, in the white noise case, the distribution in (1.12) is separable.

We have the component posterior distribution

µ(xi)|X ∼ N(µ̄(xi), σ̂2(xi)/N),

where σ̂2(xi) is the sample mean for the point xi and is the ith component

in the diagonal of the matrix Σ̂ΣΣ.

While the multivariate normal assumption (1.7) is not always valid, sev-

eral relevant points indicate that it is likely to be satisfied in practice [18].

• The form (1.7) is only used to derive the (normal) posterior distribution

µµµ|X.

• Other types of distribution assumptions may be appropriate in differ-

ent circumstances. For example, when a simulation output follows a

Bernoulli 0-1 distribution, then it would be easier to perform parame-

ter analysis using beta prior and posterior distributions. The normal

assumption (1.7) is the more relevant to continuous simulation output

with unknown mean and variance.

• The normal assumption is asymptotically valid for many applications.

Many regular distributions, such as distributions from the exponen-

tial family, are normal-like distributions. The analysis using normal

distributions is asymptotically correct.
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1.2.3 The Bayesian Method for Selecting the Best Sys-

tem

As an introductory application, we consider a preliminary case in select-

ing the best system when there are only two systems involved, K = 2. A

simplified analysis on how to compute the PCS is presented as follows. In-

terested readers can seek details (e.g., multiple comparisons and procedures)

in [17, 19].

Let X = {yi,j, i = 1, 2, j = 1, 2, · · · , ri} denote two sequences of output

of both systems. The sample mean µ̄i and sample variance σ̂2
i are defined as

µ̄i =
∑ri

j=1 yi,j/ri and

σ̂2
i =

ri∑
j=1

(yi,j − µ̄i)
2/(ri − 1), for i = 1, 2.

A decision is drawn by directly comparing the two sample means. The system

evidenced with a smaller average output is selected:

Choose system

 1, if µ̄1 ≤ µ̄2;

2, otherwise.

Without loss of generality, we assume that we observe the order of the sample

means µ̄1 ≤ µ̄2 and select the first system as the winner.

In the Bayesian framework, the posterior distribution of µi|X can be

asymptotically estimated as

µi|X ∼ N(µ̄i, σ̂
2
i /ri). (1.13)
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Following our earlier assumption, the PCS corresponds to the probability of

event {µ1 ≤ µ2},

PCS ∼ Pr(µ1 ≤ µ2|X) = Pr(µ1|X − µ2|X ≤ 0). (1.14)

The difference of two normal random variables µ1|X and µ2|X remains a

normal random variable. It is straightforward to show:

µ1|X − µ2|X ∼ N(µ̄1 − µ̄2, σ̂
2
1/r1 + σ̂2

2/r2).

Therefore, the PCS defined in (1.14) is a tail probability of a normal distri-

bution:

PCS ∼ Pr(N(µ̄1 − µ̄2, σ̂
2
1/r1 + σ̂2

2/r2) ≤ 0). (1.15)

The computation corresponds to a single cdf evaluation of a one-dimensional

normal distribution. The value can be computed either by looking up in a

standard cdf table or using routines in mathematics software, i.e., Matlab’s

function normcdf.

In general, for formulation (1.15), one may expect the PCS value to

become higher as the numbers of replications r1 and r2 increase.

1.3 The Two-Phase Optimization Framework

The thesis focuses on a two-phase optimization framework for solving (1.1),

which is motivated by response surface methodology. Recalling the model

construction step (1.2), the overall error in approximation comes from two
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sources: random error and model error. Random error is the type of er-

ror directly induced by the uncertainty ξ(ω) in the sample response; model

error is due to an inappropriate choice of functional forms to fit the data.

For example, fitting a cubic curve with a quadratic function will result in a

large discrepancy, when the domain of interest is not appropriately restricted.

This type of error exists independent of the random term ξ(ω). In the global

view, the model error dominates the random error; therefore, constructing

a surrogate function aims at reducing the model error to the maximum ex-

tent. However, in the local view, reducing the random error becomes the

primary consideration. For this reason, we design a two-phase framework for

simulation-based optimization which addresses distinct goals:

1. Phase I is a global exploration and rough search step. The algorithm

explores the entire domain and proceeds to determine potentially good

subregions for future investigation. We assume the observed random-

ness in the subregion detection process is insignificant and can be ig-

nored. Appropriate criteria to determine when a good subregion has

been identified are required.

2. Phase II is a local exploitation step. Local optimization algorithms

are applied in each subregion to determine the exact optimum. The

algorithms are required to deal with the randomness explicitly, since in

local subregions, random error is considered as the dominating feature.
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Phase I typically produces one or multiple good points representing cen-

ters of good local subregions. These points are used as starting points for

the Phase II local search algorithms. Alternatively, Phase I may generate

geometric information for the location and shape of the subregions, which

are more interesting for analyzing the significance, interactions and patterns

of individual dimensions.

1.3.1 The WISOPT Structure

We design an optimization package WISOPT (which stands for WIsconsin

Simulation OPTimization) incorporating different optimization methodolo-

gies, based on the two-phase framework. See Figure 3 for a flow chart.

Phase I is a global exploration step over the entire domain. Algorithms

in Phase I should be able to generate (and evaluate) densely distributed

samples in promising subregions and sparsely distributed samples in inferior

subregions. The entire set of samples will be passed to a phase transition

procedure between Phase I and Phase II, which implements a non-parametric

statistical method to determine starting points and surrounding subregions

for multistart Phase II optimizations.

One of our Phase I methods employs classification tools to facilitate the

global search process. By learning a surrogate from existing data the ap-

proach identifies promising subregions and generates dense samples in the
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subregions. Additional features of the method are: (a) more reliable pre-

dictions obtained using a voting scheme combining the options of multiple

classifiers, (b) a data pre-processing step that copes with imbalanced training

data. Another Phase I method is the Noisy DIRECT (DIviding RECTangles)

algorithm, which is an extension of the DIRECT optimization algorithm to

the noisy case. As with the classification-based global search, the method

returns a collection of promising points together with surrounding rectangles.

Phase II performs local derivative-free optimization based on the UOBYQA

(Unconstrained Optimization BY Quadratic Approximation) algorithm, in

each of the subregions identified. We do consider whether we can implement

CRN in the simulator, corresponding to the VNSP-UOBYQA (Variable-

Number Sample-Path UOBYQA) algorithm for the CRN case and the Noisy

UOBYQA algorithm for the white noise case. Both algorithms apply Bayesian

techniques to guide appropriate sampling strategies while simultaneously en-

hancing algorithmic efficiency to obtain solutions of a desired accuracy. The

statistically accurate scheme determines the number of simulation runs and

guarantees the global convergence of the algorithm.

A key component in the extended algorithms is to incorporate distribu-

tion information provided by Bayesian estimations. Bayesian inference is an

effective tool in input modeling and uncertainty analysis. In particular, in

order to prevent unnecessarily exploring hyperrectangles in inferior regions,
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DIRECT tests the accuracy of selecting hyperrectangles for future partition-

ing using a Monte Carlo validation process. Trial samples are extracted from

the Bayesian posterior distributions to validate a predefined variance crite-

rion. In UOBYQA algorithms, we derive the posterior volatility for the local

model construction step, and therefore control the uncertainty of solutions

in the trust region subproblems.

Certainly, the variety of methods in both phases is not restricted to what

we present. Additional methods that satisfy the purposes of both phases may

work as new modules and can be plugged into the two-phase framework.

1.3.2 Introduction to the Methodologies

We give a brief introduction to the methodologies we use in WISOPT (refer

to Figure 3). Details will be discussed in later chapters.

Classification-based global optimization A good surrogate model for

the entire space (often noted as a metamodel) may require a large amount of

simulations and can be very expensive to compute, but it may be capable of

approximating global behavior of the underlying function f . Since Phase I

only attempts to determine promising subregions of the search space, the

model can be constructed in a coarser manner.
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Figure 3: The two-phase WISOPT structure.
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We are indeed interested in the behavior of a simple indicator function:

I(x) =

 1, for x in a promising subregion

0, otherwise,
(1.16)

where promising subregions in the method correspond to level sets. This

function gives sufficient information to determine where a subregion is lo-

cated. Approximating the indicator function I is simpler than approximating

the underlying function f , especially in a high dimension case. Normally, we

sample dense designs in the subregion and sparse designs out of the subregion.

In the classification-based global search, we utilize the predicting power

of a classifier: the classifier works as a surrogate function for the indicator

function I, which reveals the location of promising subregions. A classifier

is a cheap mechanism to predict whether new samples are in promising sub-

regions or not, thus we can generate a dense collection of points in these

subregions. Figure 4 illustrates the local regions (the dotted circles and the

level sets) and the samples (the ‘+’s). The method fits well to the theme

of the Phase I optimization, which is to identify local regions. In fact, the

method is relatively insensitive to noise, because the simplification step (1.16)

smoothes out the occurrence of noise. That is reason we normally do not use

replicated samples in training the classifiers. Setting the algorithm may re-

quire specific parameters; for example, we have to potentially understand the

proper number of samples to use in training the classifiers.
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Classification forms a major branch in in machine learning/data min-

ing [51, 77]. In the past couple of years, there has been increasing interest

on techniques interfacing optimization and machine learning. For example,

Kim and Ding [60] have implemented data mining tools in an engineering

design optimization problem. Mangasarian [74] has enhanced optimization

robustness in support vector machines.
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Figure 4: Predicated local subregions of the Griewank function. The function
has local optimums in each subregion (circles) and the global optimum at
[0, 0].

The Noisy DIRECT algorithm The DIRECT optimization method [37,

38, 58, 59] is a deterministic global optimization algorithm for bound-constrained
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problems. The algorithm, first motivated by Lipschitz optimization [59], has

proven to be effective in a wide range of application domains. The algorithm

centers around a space-partitioning scheme that divides large hyperrectangles

into small ones. Promising hyperrectangles are subject to further division.

Figure 5 provides an illustration of the algorithm on the Goldstein Price

function. The algorithm therefore proceeds to gradually explore promising

subregions.

Figure 5: The DIRECT optimization algorithm on the Goldstein Price func-
tion. The contour plot of the Goldstein Price function is shown in Figure 15.

When the objective function is subjected to uncertainty, some crucial

operational steps of the DIRECT algorithm are affected. For example, the

choice of potentially optimal hyperrectangles becomes incorrect because of
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the noisy function values, possibly misleading the algorithm to search in

inferior regions. We modify the original DIRECT algorithm using a simple

approach - multiple replications are sampled to reduce output uncertainty.

We expect the algorithm to proceed correctly as in the deterministic case.

However, we must face the issue of handling the tradeoff between two design

goals: efficiency of the algorithm versus total computational effort. Since

the objective function is often computationally expensive to evaluate, we

must be very cautious in using function evaluations. On the other hand, we

need to maintain a certain precision in the functions for correctness of the

algorithm. In our modification, we apply Bayesian techniques to derive a

posterior distribution for the function output at each point, and incorporate

the distribution information into the algorithm to determine an appropriate

number of replications to be used.

The parameters for this algorithm are easy to set. Since determinis-

tic DIRECT is designed for both global and local optimization, one should

note that it is desirable to terminate the algorithm at a reasonable time, at

which sufficient information of local regions can be identified. This can avoid

unnecessary function evaluations for handling comparisons that are really

dominated by noise.

The phase transition Using the evaluated samples in Phase I, the phase

transition procedure consists of a non-parametric local quadratic regression
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method to determine the appropriate subregion size. Being different from

regular regression methods, which use the entire set of samples in the domain

to construct one model, local regression makes a prediction (at a point) using

a local model based on samples within a ‘window size’, thus the approach

values the local behavior of a function more. ‘Non-parametric’ means the

regression model is not from a single parametric family. It is presumed that

the samples outside the local region have a slight relevance to the current

prediction. In our procedure, we treat the resulting ‘window size’ as our

subregion radius.

A sequence of good starting points is generated, satisfying the criteria:

(a) each starting point is the center of a subregion, (b) the subregions are

mutually separated. The sequence of starting points and the subregion sizes

are passed to Phase II for local processing, possibly in a parallel setting.

Extended UOBYQA algorithms In Phase II, the deterministic UOBYQA

algorithm is applied as the base local search method and is extended for noisy

function optimization. The method is an iterative algorithm in a trust region

framework [80], but it differs from a classical trust region method in that it

creates quadratic models by interpolating a set of sample points instead of

using the gradient and Hessian values of the objective function (thus mak-

ing it a derivative-free tool). Besides UOBYQA, other model-based software

include WEDGE [75] and NEWUOA [86]. We choose UOBYQA, because it
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is a self-contained, efficient and robust algorithm.

Figure 6: In the model-based approach, a sequence of quadratic models are
constructed to approximate the objective function.

We developed variants of the original UOBYQA, called the VNSP-UOBYQA

and the Noisy UOBYQA, that are adapted for noisy optimization problems.

The extension idea is similar to that of the Noisy DIRECT algorithm. We

sample multiple replications per point to reduce variance and apply Bayesian

techniques to guide appropriate sampling strategies to estimate the objective

function. The two algorithms employ different mechanisms in the sampling

process. The VNSP-UOBYQA determines appropriate replication numbers

by whether sufficient reduction is identified in the trust-region subproblem,

while the Noisy UOBYQA determines the number by whether the quadratic
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models can be shown to be stable or not. Generally speaking, when CRN is

implemented, the noise is relatively easy to handle because it is correlated

among sites. Therefore, it is shown that the VNSP-UOBYQA has better

convergence properties.

1.4 Outline of the Thesis

The general theme of thesis centers around the WISOPT package, which

is designed based on the two-phase optimization framework. Phase I tech-

niques are described in Chapter 2 and Phase II techniques are described in

Chapter 3.

More specifically, the first section of Chapter 2 presents the classification-

based global search. The detailed procedures of applying several types of

classifiers are included, together with two special features: a voting scheme

to assemble multiple classifiers and imbalanced data handling. The second

section introduces and explains the development of the Noisy DIRECT al-

gorithm. We will first describe the deterministic DIRECT algorithm, then

analyze how to enhance the algorithm under uncertain conditions. Several

numerical examples and a simulation problem are presented. The third sec-

tion is on the procedure of the phase transition.

Chapter 3 contains the details about the Phase II noisy versions of the

UOBYQA algorithm. The ideas of the extensions of both the VNSP-UOBYQA



34

and the Noisy UOBYQA are similar: the Bayesian posterior distributions for

the parameters of the quadratic model are derived and further we can esti-

mate the stability of the algorithms. Since the VNSP-UOBYQA is in the

CRN setting, the corresponding section is written in a more rigorous manner,

with the convergence proof of the algorithm provided.

We show in Chapter 4 two real-world simulation optimization examples.

We aim to fine tune the simulation parameters in the Wisconsin Breast

Cancer Epidemiology model, which is from a collaborative project with re-

searchers in the Medical School at the University of Wisconsin. In the second

example, we optimize the shape of a type of microwave coaxial antenna for

hepatic tumor ablation, which is a current ongoing project with the Biomed-

ical Engineering Department at the University of Wisconsin.

In Chapter 5 we demonstrate a special simulation-based problem in dy-

namic programming. This type of simulation problem has an internal time

structure – the objective function is not a pure black-box stochastic function,

but is constituted of a sequence of costs along the time stages. We modify the

rollout algorithm from neuro-dynamic programming, using a similar Bayesian

analysis to that outline above to improve the simulation efficiency in training

and in deriving optimal controls at each stage. We illustrate the effective-

ness of our new algorithm using an example in fractionated radiotherapy

treatment. This approach to using Bayesian analysis in neuro-dynamic pro-

gramming effectively generalizes the methods of this thesis to time domain
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problems, and leads to further possible applications in other optimization

contexts.
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Chapter 2

The Phase I Methods

Methods in Phase I provide a global search over the entire domain Ω (refer

to Figure 3), with the goal of identifying several promising subregions for

Phase II local optimization. Two Phase I methods – the classification-based

global search and the Noisy DIRECT method, are presented in Section 2.1

and Section 2.2, respectively. Both methods are designed to generate densely

distributed samples in promising subregions. All of the evaluated samples

are passed to a phase transition module, described in Section 2.3, to identify

the locations and sizes of the subregions.

Compared with the Noisy DIRECT method, the classification-based global

search has shown more robustness to noise. The simplification step of the

complex objective function to an indicator function smoothes out the noisy

effects and reduces the occurrence of uncertainty. Moreover, the method

can handle high dimensional problems, because it works with a simplified

model. The drawback of applying the method is the trickiness in setting the

parameters; for example, choosing a proper number of samples for training
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the classifiers. The more samples that are available, the better the perfor-

mance of the method. Insufficient samples may lead to missing promising

subregions, especially the small, hard to detect subregions.

The Noisy DIRECT algorithm is easy to implement, with a standard

setting of parameters. It generates samples gradually during the exploration

of the domain. The density of samples is in proportion to the goodness of the

objective values. In this sense, the method is able to save computational effort

because the smooth density distribution is better than the two-level density

distribution as in the classification-based global search. The drawback of

the method is that it becomes inefficient when handling high dimensional

problems, i.e., the dimension n > 30.

When the problem is of moderate and small dimensions, we suggest the

Noisy DIRECT method. For the reasons stated above, the method is more

economical in function evaluations and it has a succinct way to operate. For

high dimensional problems, the classification-based global search is a better

choice.

For both of these methods, we do not distinguish the cases of CRN and

white noise. In fact, there are no special mechanisms implemented to take

advantage of CRN. For the classification-based global search, we use a single

replication (the default value) for each sample, because we observe that the

method handles noise well. If we use multiple replications (with a replica-

tion number greater than 1) for all the samples in the method (which is the
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sample-path optimization idea), the algorithm may perform better due to

a reduction in the variance of the noise. If CRN is implemented as well,

the method may perform even better because of the reduction of covariance

among the samples. For the Noisy DIRECT method, the multiple repli-

cations approach is employed and the replication number is automatically

determined by the algorithm.

2.1 Classification-Based Global Search

Classification, as a major branch in machine learning/data mining, uses sta-

tistical or artificial intelligence tools to classify objects into two (or multiple)

categories based on available information. Our method of classification-based

global search utilizes the predicting power of classifiers: the classifier acts in

the role of an indicator function which reveals locations of promising regions.

Additional features of the method are: (a) more reliable predictions obtained

using a voting scheme combining the options of multiple classifiers, (b) a data

pre-processing step that copes with imbalanced training data.

2.1.1 The Idea of Classification-Based Global Search

Since the goal of Phase I is to locate promising subregions rather than to

determine the exact solution, one may not care about how an objective func-

tion f behaves over the whole space, instead, caring about the behavior of a
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simple indicator function:

I(x) =

 1, for x in a promising subregion;

0, otherwise.

This function provides sufficient information to determine where subregions

are located. Approximating the indicator function I is much simpler than ap-

proximating the underlying function f , especially in high dimensional cases.

In our approach, a classifier works as a surrogate function for the indicator

function I. A classifier is a cheap mechanism to predict whether new samples

are in a promising subregion or not. The target promising subregion is often

defined as a certain level set

L(c) = {x f(x) ≤ c} , (2.1)

where c is an adjustable parameter that quantifies the volume of the set.

The value of c may be determined, for example, as a quantile value of the

responses.

One important component of the classification-based approach is to pre-

pare the training set. We generate spacing-filling samples (points) all over

the domain. A straightforward way to do this is by mesh grid sampling; other

advanced techniques include the Latin Hypercube Sampling (LHS) [92]. The

training set is further divided into two classes: a positive class for points in

L(c) and a negative class for the rest (as illustrated in Figure 7(a)). The

lower the value of c, the smaller the size of the level set L(c). Adjusting it

can balance portions of samples in both classes.
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The classifier is built on the training data to create appropriate decision

rules. (Details of the training process will be discussed later.) The decision

rule is then applied to predict the membership of a set of more refined space-

filling points – the evaluation set (see Figure 7(b)). As a consequence, the

classification implicitly partitions the domain space into positive and negative

zones. Typically, we expect the process to greatly increase the chance of

generating refined points in promising subregions.

The identified promising points are then evaluated by the function f and

passed to the phase transition module.

2.1.2 A Voting Scheme to Assemble Multiple Classi-

fiers

Given a particular training set, a variety of classifiers can be generated,

including typical classifiers such as Support Vector Machine (SVM) [73], De-

cision Trees [87], and k-Nearest Neighbor (k-NN) [77]. Unfortunately, it is

almost impossible for any individual classifier to perform satisfactorily for

all classification tasks. We propose a voting scheme to combine the predic-

tions of various classifiers to build a single robust classifier, which typically

increases the prediction power over any component classifier. The voting

idea of classifiers is addressed in many research works, such as Kotsiantis

and Pintelas’s Agent-Based Knowledge Discovery (ABKD) [64] and Optiz et

al.’s bagging and boosting [81].
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(a) For the training set, samples in the level set L(c)
are classified as positive and the others are classified
as negative. The solid circle represents the level set
L(c).

(b) Classification is performed on the evaluation set,
which consists of more refined space-filling samples.
As a result, four points are predicted as positive and
rest are negative.

Figure 7: In Phase I, classifiers determine new refined samples in a promising
subregion.
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We investigate the use of 6 candidate classifiers: 4 SVMs with linear,

quadratic, cubic and Gaussian kernels, C4.5 (a decision tree classifier) and

5-NN. The performance measure of each classifier is summarized in a con-

fusion matrix (Table 1); for example, the accuracy of a classifier is defined

as acc = a+d
a+b+c+d

. Similarly, the accuracy on positive samples is acc+ = a
a+b

and the accuracy on negative samples is acc− = d
c+d

. Kubat et al. [65] pro-

vide the geometric-mean (g-mean) measure, a more robust measure taking

considerations on both classes:

g =
√

acc+ · acc− =

√
a

a + b
· d

c + d
.

Inclusion of each classifier to the ensemble is selective based on its perfor-

mance evaluations. The ones that fail a performance test are excluded, e.g.,

failing a test criterion requiring the g-mean g ≥ 0.5.

Table 1: Confusion matrix

Predicted:
Positive Negative

True: Positive True Positive (a) False Positive (b)
Negative False Negative (c) True Negative (d)

We describe the voting scheme for multiple classifiers as follows:

Procedure 1. The voting scheme:

1. Split the input training set T into two subsets, denoted as training sub-

set T1 and testing subset T2. For example, we may use 75% of randomly
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selected samples to make the training subset T1, and rest are treated as

the testing subset T2.

2. Perform a prior performance test: train each classifier on the training

subset T1 and evaluate it with the samples in the testing subset T2. If

the classification accuracy is not assured, we will discard the classifier.

3. Classifiers that pass the performance test are trained on the original

training set T . In the evaluation process, assign new samples to the

class which is majorally voted.

2.1.3 Handling Imbalanced Dataset

The aforementioned level set parameter c in (2.1) plays a crucial role in

setting up the training set. We intend to drop c as much as possible, so that

the level set L(c) only represents exceptionally good points. For example, we

may choose c as the 10% quantile value of the observed responses, such that

L(c) represents the top 10% region in the domain. However, L(c) cannot

be very small, because the dataset that naturally follows from such a choice

can significantly hinder the classifier performance. When the negative class

heavily outnumbers the positive class, the under-represented positive class

has a low accuracy of being correctly classified. The class imbalance problem

is prevalent in real-world settings, e.g., the detection of fraud credit card

usage [14] and the detection of oil spills in satellite radar images [65].
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There are two mainstream techniques to cope with the class imbalance

problem: (a) resize the training set, including under-sampling the majority

class [66] and over-sampling the minority class [15], and (b) assign different

misclassification costs [28]. We adopt the approach to carrying out both

under- and over-sampling. The one-sided selection procedure [66] is applied

for under-sampling and positive samples are simply duplicated once for over-

sampling. The one-sided selection constitutes detection and removal of the

negative samples that participate in so called Tomek links [107] (see Figure 8).

These samples are generally considered border samples or samples affected

by noise, and are therefore detrimental to classifier fitting. Denoting d(x, y)

as the distance between two points x and y, a Tomek link is defined as a pair

of two points x and y from opposite classes, satisfying that there is no third

sample z such that d(x, z) < d(x, y) or d(y, z) < d(x, y).

Our pre-processing procedure to adjust the imbalanced data is described

as follows.

Procedure 2. The data pre-processing step:

1. Under-sample the negative class using one-sided selection:

(a) Keep all the positive samples unchanged. To obtain a consistent

subset C of the original training set T , train 1-NN classifier with

the positive samples plus one randomly chosen negative sample.

Test the 1-NN rule on the rest of the samples in the set T . The new
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(a) Determine the pairs of Tomek links

(b) Remove the negative samples participat-
ing Tomek links

Figure 8: Cleaning the dataset with Tomek links
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subset C will consist of the misclassified samples plus the samples

used for training. In doing this, we derive a consistent subset C

of T such that all the samples in T can be correctly predicted using

the 1-NN rule on C.

(b) Detect the Tomek links in C and remove the associated negative

samples.

2. Over-sample the positive class by duplicating all the positive samples

once.

The above pre-processing procedure typically returns a much more bal-

anced training set. Indeed, carrying out the under-sampling sampling step

(Step 1) multiple times can significantly reduce the negative samples, but

our numerical examples show that it is not necessary to do so, because one

under-sampling step often performs well enough. A small example on the

Rosenbrock function shows the effectiveness of our data balancing proce-

dure. Without using the procedure in the training data, we obtained the

classifier accuracies acc+ = 0.20 and acc− = 0.99, which resulted a g-mean

value 0.4450; while with the procedure implemented, we had acc+ = 0.89

and acc− = 0.90, which is equivalent to a much better g-mean value 0.8950.
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2.1.4 General Procedure

The general procedure is summarized in detail (refer to the flow chart in

Figure 9).

Procedure 3. The classification-based global search:

1. Generate coarse space-filling samples and evaluate them via simulation.

Choose an appropriate value of c, and split the samples into positive

(points in L(c)) and negative samples (points outside L(c)). Typically,

we suggest to set c as the 10% quantile value.

2. Use the pre-processing procedure (Procedure 2) to generate a balanced

dataset. 6 classifiers are considered, but those passing the performance

test are used.

3. Given the training set, derive an ensemble of classifiers (Procedure 1).

4. Generate a fine space-filling evaluation set either by the grid sampling

or the LHS. Determine the membership points by classification.

5. For those points that are predicted to lie in L(c), evaluate them via

simulation.

2.1.5 Numerical Examples

The classification-based global search is relatively insensitive to noise. The

accuracy of the method is highly related to the accuracy of the training set,
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Figure 9: The classification-based global search
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i.e., whether a positive sample is indeed a positive sample, which is equivalent

to the positive sample being located in a subregion of the underlying objective

function. We show here that the estimated level sets (represented by positive

points) are quite insensitive to the noisy data.

We plot several estimated level sets of a small example in Figure 10. The

test function was the Gauss function with additive noise:

F (x, ξ(ω)) = 1 − exp(−20(x1 − 0.25)2 − 2(x2 − 0.25)2) + ξ(ω).

ξ(ω) here is a noise term distributed as N(0, σ2). We applied the grid sam-

pling method to generate 400 samples in the range [0 0.8] × [0 0.8]. Of all

the samples, the top 10% were considered as positive samples and plotted as

‘+’, and the rest were considered as negative samples and plotted as ‘·’. As

we observed, when we simplified all the samples as positive or negative, most

samples (in the first two figures) were correctly labeled. When the noise was

intense, i.e., the third figure, it could produce a biased training set.

As a second example, we applied the entire classification-based global

search to the FR function

F (x, ξ(ω)) = (−13 + x1 + ((5 − x2)x2 − 2)x2)
2

+(−29 + x1 + ((x2 + 1)x2 − 14)x2)
2 + ξ(ω),

which has two local subregions with two local minimizers. ξ(ω) is a zero-mean

normal quantity with variance σ2 = 0.1. Following the steps in Procedure 3,

we first generated 400 grid samples which were labeled positive and negative
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Figure 10: Estimated level sets based on noisy data.
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(Figure 11 (a)). The green curves represent the real level sets (the real local

subregions). After we applied the data pre-processing step, the data set was

much more balanced. A significant amount of negative samples were removed

from the training data set while all the positive samples were retained and

duplicated (Figure 11 (b)). Note that the negative samples removed were

mostly likely in inferior regions. The ensemble of classifiers was trained and

used to predict a vast amount of new samples (10,000 samples), generated by

the LHS sampling method. Once the ensemble of classifiers was trained, the

prediction process was very fast. In the figures, we plot only the new positive

samples identified. Figure 11 (c) shows that all the predicted samples that

have been evaluated in the domain. We finally were able to generate a dense

sample set in the promising subregions.

2.2 The Noisy DIRECT Algorithm

DIRECT (DIviding RECTangles) is a deterministic global optimization al-

gorithm for bound-constrained problems. The algorithm, based on a space-

partitioning scheme, performs both global exploration and local exploitation.

We modify the deterministic DIRECT algorithm to handle simulation-based

optimization problem (1.1)

min
x∈Ω

f(x) = E [F (x, ξ(ω))] ,
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(a) Original training set
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Figure 11: Apply the classification-based global search on the FR function.
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where

Ω = {x ∈ Rn : l ≤ x ≤ u}.

We adopt a simple approach that replicates multiple function evaluations

per point and takes an average to reduce functional uncertainty. Particular

features of the DIRECT method are modified using acquired Bayesian sample

information to determine appropriate numbers of replications.

The extended DIRECT algorithm is suited for noisy function optimization

problems. The algorithm is a sampling approach, that only uses objective

function evaluations. We have applied the new algorithm in a number of noisy

global optimizations, including an ambulance base simulation optimization

problem.

The remainder of the section is arranged as follows. In Section 2.2.1 we

will describe the DIRECT optimization algorithm. In Section 2.2.2 we focus

on the modifications of the algorithm, including a variance controlling rule

to determine the replication numbers. In Section 2.2.3, we will present test

examples and comparison of the algorithm with other algorithms.

2.2.1 The DIRECT Optimization Algorithm

The DIRECT algorithm is defined for Lipschitz continuous objective func-

tion, a class that includes some non-smooth functions. Bounds on the range

of the simulation parameter x are required in the design of the algorithm.
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The feasible region starts as a single hyperrectangle that is internally normal-

ized to a unit hyperrectangle. The algorithm partitions the hyperrectangle

into a collection of smaller hyperrectangles and evaluates the objective func-

tion at their center points (Figure 5). Potentially optimal hyperrectangles

are identified and passed to the next iteration for further partitioning and

investigation. The DIRECT algorithm will converge to the global optimum

of the objective function for dense enough sampling, but the search process

may consume a large amount of function evaluations. For the algorithm to

be effective, the typical dimension of a problem, as cited in [59], should be

less than 30.

We will give a brief description of the DIRECT algorithm, including two

major component steps: (a) partitioning hyperrectangles, and (b) identifying

potentially optimal hyperrectangles.

Partitioning hyperrectangles For each hyperrectangle, let D be the co-

ordinate directions corresponding to the largest side lengths, δ be one third

of the largest length, and c be the center point. The function will explore

the objective values at the points c ± δei, for all ei ∈ D, where ei is the ith

unit vector. The hyperrectangle will be trisected along the dimensions in

D, first along dimensions whose objective values are better. The procedure

continues until each point c ± δei occupies a single hyperrectangle.

In a two-dimensional case, two possible partitioning scheme are illustrated
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as follows. Since we only perform trisections, the length of any side in the

unit hyperrectangle can possibly be 3−k, k = 1, 2, . . .

Figure 12: Partitioning hyperrectangles

Identifying potentially optimal hyperrectangles Selection of poten-

tially optimal hyperrectangles combines the purposes of both global and lo-

cal searches. Let H be the index set of existing hyperrectangles. For each

hyperrectangle j ∈ H, we evaluate the function value at the center repre-

senting point f(cj) and note the size of the hyperrectangle αj. The size αj

is computed as the distance from the center point to the corner point. A

hyperrectangle j ∈ H is said to be potentially optimal (j ∈ S) if there exists
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a constant K̃ such that

f(cj) − K̃αj ≤ f(ci) − K̃αi, ∀i ∈ H, (2.2)

f(cj) − K̃αj ≤ fmin − ε|fmin|. (2.3)

In the above expressions, fmin is the lowest function value available and ε is

a parameter that balances between global and local search. The parameter

is typically nonsensitive and set as 0.0001.

An equivalent interpretation of the process of selecting potential optimal

rectangles is illustrated in Figure 13. First sort the hyperrectangles in groups

according to the size α. Each hyperrectangle is plotted in the figure as a black

dot in accordance with its center function value f(cj) and size αj. Criteria

(2.2) and (2.3) correspond to selecting rectangles on the lower convex hull

of the graph (hyperrectangles that are selected are denoted as white dots).

The introduction of ε may result in exclusions of good hyperrectangles in the

smaller size groups. Thus ε is considered as a balancing parameter between

local and global search. As noted from the figure, the best hyperrectangle in

the largest size group is always selected. The author claims that the algorithm

will eventually converge to the global optimum because the maximum size

maxj αj decreases to zero and the entire search space is thoroughly explored.

With the two key component steps available, the process of the DIRECT

algorithm is straightforward and we summarize the steps of the algorithm
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Figure 13: Identifying potentially optimal hyperrectangles
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below. More details on this algorithm can be found in [59].

Procedure 4. The DIRECT optimization algorithm

Given the lower bound l and upper bound u for the optimization problem.

1. Normalize the domain as a unit hyperrectangle.

2. For iterations k = 1, 2, . . .

(a) Identify the potentially optimal hyperrectangle set S ⊂ H.

(b) Divide the hyperrectangles in S according to the partitioning scheme.

3. Terminate the algorithm when the total number of function evaluations

hits a maximum limit or no improvement of the objective function val-

ues is observed after a number of iterations.

4. Return the best point found.

2.2.2 Modifications

We will focus on describing our modifications to the deterministic DIRECT

algorithm. When noise is present in the objective function output, there are

two problematic points in the original DIRECT algorithm.

• Incorrect potentially optimal hyperrectangle set S As we have

discussed in Section 2.2.1, S ⊂ H is determined according to the func-

tion values f(cj), j ∈ H and size αj (see the equivalent process in
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Figure 13). When the objective values are volatile, the resulting set S

is unstable. Therefore, the algorithm working with the unstable set will

possibly miss important search regions or waste computational effort

in redundant regions.

• Biased solution The DIRECT algorithm always keeps track of the

best point and corresponding best objective value fmin. If the objec-

tive function is noisy, we cannot assert that the point with the lowest

objective value fmin is the best point. In such cases, the algorithm may

return a solution that is incorrect due to bias from noise.

As we have mentioned above, our primary approach is to sample multiple

replications per point and use the averaged value in the algorithm. In order to

choose the appropriate number of replications, we first construct a Bayesian

posterior distribution for the functional output at each point, and incorporate

the distribution information to help determine the appropriate number of

replications (see Figure 14). Based on the replication samples, the Bayesian

posterior distribution provides not only mean but also variance information of

the functional output that can be utilized by the algorithm. At each iteration

of the algorithm, our modification focuses on determining and evaluating a

necessary number of replications at each point, such that the algorithm can

maintain a certain accuracy. The accuracy here explicitly addresses the two

problematic issues: the accuracy of the identified promising set S and the
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accuracy of the final output of the algorithm.

Based on the mean and variance information, our sampling scheme may

generate different numbers of samples for different points. For example, in

Figure 14, since Point 1 has a large mean function value (or the volatility

is relatively small), 3 replications are enough to obtain the desired accuracy.

The number 3 is the minimum number of replications in order to construct

the posterior distribution. For Point 3 and Point 5, since their objective

values are small (or volatilities are relatively large), more replications are

neede.

Following the discussion in Section 1.2, in the Bayesian framework, the

unknown mean µ(cj) and variance σ2(cj) of F (cj, ξ(ω)) are considered as

random variables. Suppose we have rj replicated samples at the point cj, we

can derive two versions of posterior distributions, the normal version

µ(cj)|X ∼ N(µ̄(cj), σ̂
2(cj)/rj). (2.4)

and the t version

µ(cj)|X ∼ St(µ̄(cj), rj/σ̂
2(cj), rj − 1). (2.5)

In the above expressions, µ̄(cj) and σ̂2(cj) are the sample mean and sample

variance at the point cj, respectively.

Monte Carlo validation The goal of our approach is to quantify how

the randomness in the objective function affects the identification of the
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Figure 14: Generate multiple replications at each point and derive Bayesian
posterior distributions
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promising hyperrectangle set S. This is done by Monte Carlo validations.

Note that the set S is derived using the observed sample means µ̄(cj) in

place of f(cj). As we know, increasing the number of replications rj at cj can

reduce the uncertainty of the set S, but in our procedure we want to control

the total number of function evaluations
∑

j rj. We do this by sampling the

posterior distribution and use the samples to determine if further replications

are needed.

Suppose we carry out Nt Monte Carlo trial experiments. In the ith ex-

periment i = 1, 2, . . . , Nt, we sample objective values f̃i(cj) from the derived

posterior distribution µ(cj)|X, j ∈ H (cf., (2.4), (2.5)) and plug them into

the potentially optimal set identification process (e.g., Figure 13) to gener-

ate a trial set S̃i. On completion of all the experiments (corresponding to

multiple executions of one step of DIRECT), we come up with a collection

of trial sets S̃1, S̃2, . . . , S̃Nt . We then test the difference between the set S̃i

and the original set S that is suggested by the default execution of DIRECT.

Here, we introduce a volatility controlling rule that requires the trial sets to

be close to the set S

1

Nt

Nt∑
i

card
(
S̃i

∩
S

)
card (S)

≥ β, (2.6)

where β is a threshold value that is normally set as 90%. The function card

returns the cardinality of a set. The rule is a Monte Carlo validation criterion

that guarantees a sufficiently large overlap between S̃i and S (S̃i and S are
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90% alike on average). Increasing rj should help reduce the volatility of S,

and thus increase the possibility of satisfying the rule (2.6).

On the other hand, satisfying the above rule necessitates an appropriate

number of replication rj. We adopt a sequential resource allocation proce-

dure. That is, we gradually increase the number rj until the rule (2.6) is

satisfied. In doing this, we attempt to minimize the total number of function

evaluations. We will selectively increase

rj := γ · rj

for j ∈ R, where γ is an inflation factor and

R =
Nt∪
i

((
S̃i/S

) ∪ (
S/S̃i

))
. (2.7)

The index set R is the union of the possible potential optimal rectangles in S̃i

and S, but excluding the intersection of them. That implies we only increase

rj for hyperrectangles that are likely to be potentially optimal, but for which

the Monte Carlo experiments give differing output. Note that if rule (2.6)

is not satisfied, the set R is nonempty. The rule (2.6) will be eventually

satisfied because when rj increase to infinity, Monte Carlo samples f̃i(cj) are

nonvolatile (generated from delta distributions), and the trial sets S̃i become

stable.

Procedure 5. Determine a stable set S:

Given an initial sample size r0, a threshold value β, and a number Nt of

Monte Carlo experiments. At each iteration of the DIRECT algorithm, the
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following procedures should be executed to identify the potentially optimal set

S.

1. Generate r0 function evaluations for each point cj for pre-estimations

of sample mean and sample variance. Set rj ← r0, j ∈ H.

2. Carry out Nt Monte Carlo experiments to generate S̃1, S̃2, . . . , S̃Nt.

3. While the test rule (2.6) is not satisfied, increase rj → γ ·rj, for j ∈ R.

R is defined in (2.7). Repeat Step 2.

4. Return the potentially optimal set S.

Previously evaluated function values can certainly be reused.

Our modification does not change the fact that one of the rectangles

in the largest size group is divided. Therefore, the division process will

finally generate a dense collection of points filling the entire domain. At the

return of the algorithm, the point with the lowest averaged sample mean (or

averaged sample response function value) is selected. We cannot guarantee

the selected point is the real best point (in term of the underlying function

f(x)) among the explored points, because the sample mean is still subject

to noise. In fact, choosing the best point from the vast candidate points is

itself a difficult problem [62]. However, compared to the single replication

case in the original method, our approach of returning the point with the

best sample mean is much more reliable.
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2.2.3 Numerical Examples

In this subsection, several numerical experiments of the Noisy DIRECT algo-

rithm are reported, including a particular simulation optimization problem.

We also consider comparing the Noisy DIRECT algorithm against the stan-

dard DIRECT and the Snobfit (Stable Noisy Optimization by Branch and

Fit) optimization algorithm [55], both of which are well known global opti-

mization methods.

Numerical functions

For a numerical objective function F (x, ξ(ω)), we consider a special case

where ξ(ω) is an additive ‘white noise’ term, thus the form of the objective

function becomes

F (x, ξ(ω)) = f(x) + ξ(ω). (2.8)

We assume the noise term is a normally distributed variable N(0, σ2), there-

fore, the expectation form of the objective is consistent with model (1.1).

Using this formulation, we are able to compare to the known solutions of the

deterministic function f(x).

The first test function we employed was the Goldstein Price function; see

Figure 15 for a contour plot. The function is a two-dimensional function

with a global optimum at (0,−1). The global objective value at this point

is 3. We used the bounds [−2, 2]× [−2, 2] in the optimization methods. The

iterates of DIRECT on the noiseless Goldstein Price function were shown in
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Figure 5. We used the following parameter settings for the Noisy DIRECT

algorithm: the initial sample number r0 = 3, the threshold value β = 90%,

the number of Monte Carlo trial experiments Nt = 100, the inflation factor

γ = 1.3, and the maximum number of replications per point Nmax = 100.
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Figure 15: Contour plot of the Goldstein Price function

Table 2 shows the performance of the Noisy DIRECT algorithm for the

case σ2 = 10. We terminated the algorithm when the total number of func-

tion evaluations reached 3000. The column F̄ (xk) records the best value of

the averaged sample response function at iteration k, and f(xk) records the
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corresponding best underlying objective function value. In the earlier itera-

tions, the algorithm used relatively few function evaluations. We found only

3 replications were used per point in iterations 1-6. As the iterates got close

to the real solution, more and more replications were used to maintain the

accuracy of the algorithm. Several points that were near the global solution

(0,−1) hit the maximum replication number 100. We generated a replication

number plot for the whole optimization process, as shown in Figure 16. It

can be shown in this figure that replication numbers increase in promising

regions.

Table 2: The performance of the Noisy DIRECT algorithm for the Goldstein
Price function, with σ2 = 10.

Iteration (k) f(xk) F̄ (xk) FN
1 200.54 201.03 15
2 200.54 201.03 21
3 14.92 12.68 39
4 14.92 12.68 63
5 3.64 7.16 81
6 3.64 7.16 111
7 5.84 -0.74 298
8 4.55 2.13 380
9 3.55 3.89 1270
10 3.55 3.72 3010

Based on the same Goldstein Price example, we compared the noisy ver-

sion DIRECT algorithm against the deterministic DIRECT and Snobfit. See

Table 3 for the comparison results. We present both the normal and t version
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Figure 16: Replication number plot in Goldstein Price function optimization.
The center region is magnified for a clear view.
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Bayesian approaches. In order to show the advantage of our automatic repli-

cation number selection scheme, we used different fixed replications numbers

for other algorithms, for example, 1, 5, 10, 50, and 100. We generated 10

runs of each algorithm and computed the averaged difference in terms of

the objective value and the position of solution. (y∗ and x∗ are the optimal

objective value and solution to the Goldstein Price function.) Our Noisy

DIRECT alogrithm performed the best among all the algorithms. As we

observed in the table, DIRECT with 1 replication generated worse solutions

because the best point is biased by noise, similar to our analysis in Sec-

tion 2.2.2. DIRECT with 50 fixed replications performed very close to our

algorithm, and DIRECT with 100 fixed replications performed slightly worse

because of early termination of the algorithm (not enough iterations). The

automatic scheme indeed saved computation effort in the earlier iterations of

the algorithm compared to the fixed replications approaches (cf., Figure 16).

The Snobfit algorithm showed the same issues. The Snobfit algorithm in gen-

eral needed more function evaluations. As we used 3000 maximum function

evaluations, Snobfit with 50 and 100 fixed replications cases terminated very

early, thus the solutions were significantly worse. We expect the algorithm

would perform better given more function evaluations.

We also tested the algorithm on higher dimensional problems. Although

the author claims that the suggested dimension of problem should be less

than 30, the test problems in [59] have dimensions ranging from 4-6. Here
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Table 3: Comparison of the Noisy DIRECT algorithm and other algorithms
for the Goldstein Price function. (Results are based on 10 replications of
each algorithm).

Replication
#

Mean
|f(xend) − f∗|

Mean
|xend − x∗|

Noisy DIRECT
(normal)

Auto 0.3787 0.0288

Noisy DIRECT
(t)

Auto 0.3445 0.0283

DIRECT

1 2.4570 0.0694
5 1.5045 0.0601
10 0.6119 0.0432
50 0.4073 0.0296
100 0.6474 0.0370

Snobfit

1 2.3231 0.0688
5 2.0332 0.0802
10 0.9761 0.0536
50 11.683 0.1805
100 44.456 0.5695
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we introduce the ‘perm’ function, which has an adjustable dimension n

f(x) =
n∑

k=1

(
n∑

i=1

[ik + θ][xk
i − (1/i)k])2.

This function has a global solution at xi = 1/i, i = 1, 2, . . . , n, at which

the global objective value attains 0. The value θ was set at 0.5, and the

range of the region was [0, 1]n. In our experiment, we allowed a total of

100,000 function evaluations. Increasing the dimension n made the problem

significantly more difficult to solve. In fact, we were not able to obtain

a satisfactory solution for 20 dimensional problems. A single run of a 10

dimensional problem (Table 4) showed the same pattern as in the Goldstein

Price case.

Table 4: The performance of the Noisy DIRECT algorithm for the 10-
dimensional perm function, with σ2 = 1.

Iteration (k) f(xk) F̄ (xk) FN
1 372.5 372.6 63
5 45.9 45.3 435
10 5.45 5.84 1299
15 2.3 1.52 2598
20 0.87 0.82 14139
25 0.55 0.28 50131
30 0.30 0.16 107593
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A Simulation Problem

We applied the Noisy DIRECT algorithm to solve the ambulance base prob-

lem, one of the testbed problems provided in [82]. The problem aims to de-

termine the optimal locations of ambulance bases p(i), i = 1, 2, . . . , d, where

d is the number of bases. The emergency calls follow a Poisson arrival process

at the rate of λa, and all calls are initiated in the region [0, 1]2. The location

of a call follows a joint triangle distribution function g(x1, x2) = ĝ(x1)ĝ(x2),

where ĝ(x) is a triangle distribution ĝa,b,c(x) (Figure 17).

We assume each ambulance travels at a constant speed v, thus the routing

time is twice the distance between the call location and the base divided

by the speed v (round trip). The scene time of an ambulance follows an

exponential distribution with a location parameter λs. The total time of an

ambulance at work will be the routing time plus the scene time.

When a call arrives, the nearest free ambulance should respond to the

call. If no ambulance is available, the call will be put on wait, and the first

ambulance to be freed will respond to this call. The waiting calls are added in

FIFO order. In the problem, we aim to find the optimal positions of the am-

bulance bases such that the total response time is minimized. The response

time is consisted of the one-way routing time plus the possible waiting time.

We considered two objectives (a) minimize the expected response time, and

(b) minimize the maximum response time in a fixed period.

A particular model had the following parameter settings. We considered
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a simulation period time 500 hours, and λa = 0.5, thus around 1000 calls

occurred in each simulation run. ĝ(x) used parameters a = 0, b = 1, c = 0.8,

thus the distribution of calls centered around the location (0.8, 0.8). The

vehicle speed was 0.5 and parameter λs = 0.1. The simulation showed that

roughly 10% of calls were put on wait.

We allowed a maximum of 20,000 simulation runs. The Noisy DIRECT

algorithm ended up with 25 iterations and the final positions of the am-

bulance bases are plotted in Figure 18. Since the calls were symmetrically

distributed about the diagonal of the unit square, the final positions were

also observed approximately symmetric about the diagonal. The solution we

obtained shows an averaged response time of an ambulance is 0.3307 hour.

For a comparison, we ran an exhaustive computation using a refined model

with a simulation period of 25,000 hours, which is equivalent to replicating

the previous coarse model 50 times. The best solution we obtained yielded

an average response time 0.3291 hour, about a 0.48% improvement over our

solution. We note however that this solution while being close to symmetric

again, is not simply a refinement to the solution our DIRECT code generates.

2.3 The Phase Transition Module

Phase II methods, such as the extended UOBYQA algorithms, normally

require an initial point x0 and a trust region radius ∆, such that a model is
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Figure 17: Pdf function of a triangular distribution

Figure 18: Positions of the ambulance bases
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centered at x
(i)
0 and the trust region is defined as

{x | ‖x − x
(i)
0 ‖2 ≤ ∆}.

In Phase II, we perform M multiple optimizations based on a set of trail

starting points I = {x(1)
0 , x

(2)
0 , . . . , x

(M)
0 } (M is also the cardinality of I). For

simplicity in computation, we set a uniform local region size ∆ for all x
(i)
0

and require that the associated subregions should be mutually separated by

∆. When defining a proper subregion size, we assume that the underlying

function f should perform as or close to a quadratic function within the

subregion.

A non-parametric regression is performed to determine the uniform trust

region radius ∆. Being different from regular regression methods, which use

the entire samples in the domain to construct one model, local regression

predicts the value at a point using a local model based on the samples within

a ‘window size’. It is presumed that the samples outside the local region

have only slight relevance to the current prediction. ‘Non-parametric’ means

that there is no single model in a setting of parameters that can explain

the underlying response function. In our procedure, we treat the optimal

‘window size’ as our subregion radius.
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Denote by P the points evaluated in Phase I. To compute the best ‘win-

dow size’ for non-parametric local regression, we consider the problem

∆ ∈ arg min
h

sse(h)

= arg min
h

∑
y∈P

(F (y, ξ(ω)) − Qy
h(y))2 , (2.9)

where sse(h) is the sum of squares error of knock-one out prediction (in local

quadratic regression). Given a window-size h and a point y, the knock-one

out predicted value is Qy
h(y), where

Qy
h(x) = c + gT (x − y) +

1

2
(x − y)T H(x − y)

is a regression model constructed using the data point set {x|‖x − y‖ < h}.

Note that knock-one out prediction means that the point y is excluded from

the point set.

We apply the following procedures to generate the initial point set I of

cardinality at most M = 10:

Procedure 6. Phase transition procedure:

1. Use non-parametric regression method (2.9) to determine the initial

trust region radius ∆.

2. Sort the points in P by their sample response values (values may be

biased by noise) and put the best point into the initial point set I.
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3. For each x taken in ascending order of sample response values from the

point set P, compute the shortest distance from the point to the initial

point set

dist = min
y∈I

‖y − x‖.

If dist > ∆, add the point to the initial point set I := I ∪ {x}.

4. Stop if card(I) ≥ M = 10 or all the points have been enumerated.

For a numerical example, we continue the discussion in Section 2.1.5.

Figure 19 (a) shows all the evaluated samples generated by the classification-

based global search. We applied Procedure 6 to yield the initial point set I

for Phase II. First, the non-parametric regression method was executed with

different values of h. We used 11 values of h from 1–2, with a 0.1 step length.

The corresponding function sse(h) is plotted in Figure 19 (b), showing that

h∗ = 1.4 was the best window size. The uniform region size ∆ was then set

at 1.4 and applying Procedure 6, we generated a set of 10 points that were

mutually separated by ∆. (Note that in other examples the number of initial

points may be less than 10.)

We provide an approach for generating a set of initial starting points and

the region sizes. Our approach is well adapted to problems in various noisy

situations. When the underlying function is flat and smooth and has few

subregions of interest, we observe our approach generates a large subregion

size (thus a small number of initial points). When the underlying function
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Figure 19: Produce the initial point set I.
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is bumpy, our approach accordingly generates a small subregion size. The

level of noise affects this approach: when noise is significant, it makes local

regressions difficult. Since we assume the regions are mutually separated,

we obtain sparsely distributed starting points. One disadvantage is that we

use the same region size for every subregion, which might not be valid in

practice. Further research should be done to investigate how to determine

variable region sizes.
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Chapter 3

Phase II Methods

In Phase II we apply local optimization algorithms to solve the exact opti-

mum in each promising region that is identified in Phase I. Powell’s UOBYQA

algorithm is modified to handle the local optimization task. Uncertainty in

the objective function becomes the major concern. Our modifications apply

Bayesian techniques to guide appropriate sample strategies to estimate the

objective function and thus determine the proper number of replications to

use. We aim to make the underlying UOBYQA algorithm proceed efficiently

while simultaneously controlling the amount of computational effort.

According to the implementation of CRN (common random numbers) in

the simulation system, the modified algorithms are the VNSP-UOBYQA al-

gorithm for the CRN case, and the Noisy UOBYQA algorithm for the white

noise case. Sections are arranged as follows. In Section 3.1 we introduce

the deterministic UOBYQA algorithm, together with the core part on con-

structing quadratic models. In Section 3.2 we describe the algorithm with

the VNSP extension and focus on the sufficient reduction criterion in the

trust region method that potentially guarantees the convergence proof. In
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Section 3.3, we discuss the Noisy UOBYQA algorithm, which provides an

alternative approach especially designed for the white noise case.

3.1 The Deterministic UOBYQA Algorithm

We apply Powell’s UOBYQA (Unconstrained Optimization BY Quadratic

Approximation) algorithm [85] as our base Phase II local optimization solver.

The algorithm is a derivative-free approach and thus is a good fit for the

simulation-based optimization problem (1.1). It is designed to solve nonlinear

problems with a moderate number of dimensions. The general structure of

UOBYQA follows a model-based approach [20, 21], which constructs a chain

of local quadratic models that approximate the objective function (Figure 6).

The method is an iterative algorithm in a trust region framework [80], but

it differs from the classical trust region method in that it creates quadratic

models by interpolating a set of sample points instead of using the gradient

and Hessian values of the objective function (thus making it a derivative-free

tool). Besides UOBYQA, other model-based software include WEDGE [75]

and NEWUOA [86].
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3.1.1 The Core Algorithm

A general framework for the model-based approach is given by Conn and

Toint [21], and convergence analysis is presented in [20]. We present an algo-

rithm outline based on the general model-based approach, omitting specific

details of UOBYQA. Interested readers may refer to Powell’s paper [85] for

further details.

Starting the algorithm requires an initial trial point x0 and an initial trust

region radius ∆0. As in a classical trust region method, a new promising point

is determined from a subproblem:

min
s∈Rn

Qk(xk + s), subject to ‖s‖ ≤ ∆k. (3.1)

The new solution s∗ is accepted (or not) by evaluating the ‘degree of agree-

ment’ between f and Qk:

ρk =
f(xk) − f(xk + s∗)

Qk(xk) − Qk(xk + s∗)
. (3.2)

If the ratio ρk is large enough, which indicates a good agreement between the

quadratic model Qk and the function f , the point xk + s∗ is accepted into

the set Ik.

It may happen that the quadratic model becomes inadequate after a po-

tential step. Accordingly, UOBYQA first checks and improves the adequacy

of Ik before the trust region radius is updated following standard trust region

rules. Whenever a new point x+ enters (the point x+ may be the solution
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point xk+s∗ or a replacement point to improve the geometry), the agreement

is rechecked to determine the next iterate.

The notion of adequacy of the interpolation points in a ball

Bk(d) := {x ∈ Rn| ‖x − xk‖ ≤ d}

is defined in [20]. Implicitly, adequacy relates to good conditioning of an

underlying matrix, which enables the interpolation model to work well. For

example, if the interpolation points lie on a line, then it is difficult to con-

struct the quadratic model (off the line) based on these points. Improving

the adequacy of the point set involves replacing a subset of points with new

ones. The paper [20] shows a mechanism that will generate adequate in-

terpolation points after a finite number of operations. UOBYQA applies a

heuristic procedure, which may not guarantee these properties, but is very

effective in practice. Since this point is unrelated to the issues we address

here, we state the theory in terms of adequacy to be rigorous, but use the

UOBYQA scheme for our practical implementation.

We now present an outline of the UOBYQA algorithm. The constants

associated with the trust region update are:

0 < η0 ≤ η1 < 1, 0 < γ0 ≤ γ1 < 1 ≤ γ2, ε1 > 0 and ε2 ≥ 1.

Procedure 7. The UOBYQA Algorithm:

Choose a starting point x0, an initial trust region radius ∆0 and a termi-

nation trust region radius ∆end.



84

1. Generate initial trial points in the interpolation set Ik. Determine the

first iterate x1 ∈ Ik as the best point in Ik.

2. For iterations k = 1, 2, . . .

(a) Construct a quadratic model Qk of the form (3.5) which interpo-

lates points in Ik. If ‖gk‖ ≤ ε1 and Ik is inadequate in Bk(ε2‖gk‖)

(see Section 3.1.2), then improve the quality of Ik.

(b) Solve the trust region subproblem (3.1). Evaluate f at the new

point xk + s∗ and compute the agreement ratio ρk in (3.2).

(c) If ρk ≥ η1, then insert xk + s∗ into Ik. If a point is added to

the set Ik, another element in Ik should be removed to maintain

the cardinality |Ik| = L. If ρk < η1 and Ik is inadequate in Bk,

improve the quality of Ik.

(d) Update the trust region radius ∆k:

∆k+1


∈ [∆k, γ2∆k], if ρk ≥ η1;

∈ [γ0∆k, γ1∆k], if ρk < η1 and Ik is adequate in Bk(∆k);

= ∆k, otherwise.

(3.3)

(e) When a new point x+ is added into Ik, if

ρ̂k =
f(xk) − f(x+)

Qk(xk) − Qk(xk + s∗)
≥ η0, (3.4)

then xk+1 = x+, otherwise, xk+1 = xk.
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(f) Check whether any of the termination criteria is satisfied, other-

wise repeat the loop. The termination criteria include ∆k ≤ ∆end

and hitting the maximum limit of function evaluations.

3. Evaluate and return the final solution point.

Note that in the algorithm a successful iteration is claimed only if the

new iterate xk+1 satisfies the condition

ρ̂k ≥ η0,

otherwise, the iteration is called unsuccessful.

3.1.2 Interpolating Quadratic Model Properties

At every iteration of the algorithm, a quadratic model

Qk(x) = ck + (gk)
T (x − xk) +

1

2
(x − xk)

T Gk(x − xk), (3.5)

is constructed by interpolating a set of adequate points (see explanation

below) Ik = {y1, y2, . . . , yL},

Qk(y
i) = f(yi), i = 1, 2, . . . , L. (3.6)

The point xk acts as the center of a trust region, the coefficient ck is

a scalar, gk is a vector in Rn, and Gk is an n × n real symmetric matrix.

The interpolation model is expected to approximate f well around the base

point xk, such that the parameters ck, gk and Gk approximate the Taylor
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series expansion coefficients of f around xk. Thus, gk is used as a derivative

estimate for f . To ensure a unique quadratic interpolator, the number of

interpolating points should satisfy

L =
1

2
(n + 1)(n + 2). (3.7)

Note that the model construction step (3.5) does not require evaluations of

the gradient or the Hessian.

3.2 The VNSP-UOBYQA Algorithm

The sample-path method is one of the most important tools in simulation-

based optimization. The basic idea of the method is to approximate the

expected simulation output by the average of sample observations with a

common random number sequence. Instead of directly solving problem (1.1),

we consider an approximate problem

min
x∈Rn

f̂N(x) :=
1

N

N∑
i=1

F (x, ξi), (3.8)

Our purpose of this section is to introduce a Variable-Number Sample-

Path (VNSP) scheme, an extension of sample-path optimization. The classi-

cal sample-path method is criticized for its excessive simulation evaluations:

in order to obtain a solution point x∗,N , one has to solve an individual op-

timization problem (3.8) and at each iterate xk of the algorithm f̂N(xk) is

required (with N large). The new VNSP scheme is designed to generate dif-

ferent numbers of samples (N) at each iteration. Denoting Nk as the number



87

of samples at iteration k, the VNSP scheme integrates Bayesian techniques

to determine a satisfactory Nk, which accordingly ensures the accuracy of the

approximation of f̂N(x) to f(x). The numbers {Nk} form a non-decreasing

sequence within the algorithm, with possible convergence to infinity. The

new approach is briefly described in Figure 20. Starting from x0, the algo-

rithm generates its iterates across different averaged sample functions. In

an intermediate iteration k, it first computes a satisfactory Nk which guar-

antees certain level of accuracy, then an optimization step is taken exactly

the same as in problem (3.8), with N = Nk. The algorithm has a globally

convergent solution x∗,N∞ , where N∞ := limk→∞ Nk. The convergence is

almost sure for all the sample paths, which correspond to different runs of

the algorithm. The solution, we will prove later, matches the solution x∗,∞.

Significant computational savings accrue when k is small.

Figure 20: Mechanism of the new sample-path method with the VNSP
scheme.
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Another ‘variable-sample’ scheme for sample-path optimization is pro-

posed by Homem-de-Mello in [52]. The work proposes a framework for itera-

tive algorithms that use, at iteration k, an estimator fNk of the true function

f constructed via the sample average of Nk samples. It is shown in [52]

that, if the convergence of such an algorithm requires that fNk(x) → f(x)

almost surely for all sample paths, then it is necessary that Nk → ∞ at a

certain rate. Our VNSP scheme is significantly different: Nk in our scheme

is validated based on the uncertainty of the iterate xk. We require xk → x∗

almost surely, but we do not impose the convergence condition f̂Nk → f . As

a consequence, {Nk} is a non-decreasing sequence with the limit value N∞

being either finite or infinite. Here is a toy example showing that the limit

sample number N∞ in our algorithm can be finite. Consider a simulation

system with only additive noise:

F (x, ξ(ω)) = φ(x) + ξ(ω),

where φ(x) is a deterministic function and ξ(ω) ∼ N(0, σ2). As a result, the

minimizer of each piece F (x, ξi) = φ(x) + ξi coincides with the minimizer

of f(x) = φ(x) (thus the solutions of f̂k are: x∗,1 = x∗,2 = · · · = x∗,∞). In

this case, our VNSP scheme turns out to use a constant sequence of sample

numbers Nk : N1 = N2 = · · · = N∞ < +∞. We obtain limk→∞ xk = x∗,N1 =

· · · = x∗,N∞ = x∗, but obviously limk→∞ f̂Nk 6= f . However, the ‘variable-

sample’ scheme in [52] still requires limk→∞ Nk = ∞ on this example. More

details about this toy example can be found in the numerical example section.
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3.2.1 The Bayesian VNSP Scheme

The goal of the VNSP scheme is to determine the suitable sample number Nk

to be applied at iteration k. Such a step should be inserted before construct-

ing the quadratic model Qk. See the UOBYQA Algorithm - Procedure 7. As

a consequence, the algorithm, performing on averaged sample function f̂Nk ,

produces solutions xk that converge to x∗,N∞ = x∗,∞ (see Figure 21).

Figure 21: Choose the correct Nk and move the next iterate along the aver-
aged sample function f̂Nk .

Revisiting the Quadratic Models

When we consider the sample response function F (x, ξ(ω)), we inherit several

basic assumptions regarding the nature of the objective function from [20].

We will also discover properties associated with the quadratic model QN
k (x)
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that interpolates the function f̂N .

Assumption 1. For a fixed y ∈ Rd the function F (·, y) is twice continuously

differentiable and its gradient and Hessian are uniformly bounded on Rn ×

Rd. There exist constants κFg > 0 and κFh > 0, such that the following

inequalities hold:

sup
x∈Rn,y∈Rd

∥∥∥∥∂F (x, y)

∂x

∥∥∥∥ ≤ κFg and sup
x∈Rn,y∈Rd

∥∥∥∥∂2F (x, y)

∂2x

∥∥∥∥ ≤ κFh.

Assumption 2. For a given y ∈ Rd, the function F (·, y) and the underlying

function f(·) are bounded below on Rn.

Let QN
k be the quadratic model interpolating the sample average function

f̂N at the point set Ik. We assume that its Hessian is bounded uniformly.

Assumption 3. The Hessian of the quadratic function QN
k is uniformly

bounded for all x in the trust region, i.e., there exists a constant κQh > 0

such that

‖GN
k ‖ ≤ κQh, for all x ∈ {x ∈ Rn| ‖x − xk‖ ≤ ∆k}.

As a key component of the analysis, Conn, Scheinberg, and Toint address

the difference of using the classical Taylor expansion model

Q̂N
k (x) = f̂N(xk) + ∇f̂N(xk)

T (x − xk) +
1

2
(x − xk)

T∇2f̂N(xk)(x − xk)

and the interpolative quadratic model QN
k . The model Q̂N

k shares the same

gradient ∇f̂N(xk) at xk with the underlying function, while for the inter-

polative model QN
k , its gradient gN

k is merely an approximation. The error in
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this approximation is shown in the following lemma to decrease quadratically

with the trust region radius. As an implication of the lemma, within a small

trust region, the model QN
k is also a decent approximation model.

Lemma 3.1. (Theorem 4 in [20]) Suppose Assumptions 1-3 hold and Ik is

adequate in the trust region Bk(∆k). Furthermore, if at iteration k, QN
k is the

interpolative approximation model for the function f̂N , then assume the bias

of the function value and the gradient are bounded within the trust region.

Then there exist constants κem and κeg, for each x ∈ Bk(∆k), the following

inequalities hold

|f̂N(x) − QN
k (x)| ≤ κem max[∆2

k, ∆
3
k] (3.9)

and

||∇f̂N(x) − gN
k || ≤ κeg max[∆k, ∆

2
k]. (3.10)

In fact, the proof of Lemma 3.1 is associated with manipulating Newton

polynomials instead of the Lagrange functions that UOBYQA uses. Since

the quadratic model is unique via interpolation (by choice of L), the results

are valid regardless of how the model is constructed.

We have seen that QN
k interpolates the function f̂N at the points in Ik.

Let Q∞
k be the ‘expected’ quadratic model interpolating the function f at

the same points. The following lemma provides convergence of QN
k to Q∞

k .

Lemma 3.2. QN
k (x) converges pointwise to Q∞

k (x) with probability 1 (w.p.1)

as N → ∞.
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Proof. The Law of Large Numbers (LLN) guarantees the pointwise conver-

gence of f̂N(x) to f(x) w.p.1 [91]. By solving the system of linear equations

(3.6), each component of the coefficients of QN
k , cN

k , gN
k (i), GN

k (i, j), i, j =

1, 2, . . . , n, is uniquely expressed as a linear combination of f̂N(yi), f̂N(yi)f̂N(yj),

i, j = 1, 2, . . . , L. (The uniqueness of solution requires the adequacy of the

interpolation points.) Therefore, as N → ∞ the coefficients cN
k , gN

k , GN
k con-

verge to c∞k , g∞
k , G∞

k w.p.1 because the values f̂N(yi) converge to f(yi), i =

1, 2, · · · , L, w.p.1. Finally, for a fixed value x ∈ Rn, QN
k (x) converges to

Q∞
k (x) w.p.1.

Posterior Estimations for the Quadratic Model

Q∞
k (unknown) is of most interest to us. We derive the posterior distributions

of the coefficients of Q∞
k as follows. Assume the simulation output at points

of Ik

FFF = (F (y1, ξ(ω)), F (y2, ξ(ω)), . . . , F (yL, ξ(ω))

has mean µµµ = (µ(y1), µ(y2), . . . , µ(yL)) and covariance matrix ΣΣΣ. According

to the Bayesian analysis in Section 1.2, we have

µµµ|XN ∼ N(µ̄µµ, Σ̂ΣΣ/N), (3.11)

where µ̄µµ and Σ̂ΣΣ are the sample mean and sample covariance respectively. XN

is used instead of X to indicate the number of replications N used.

We delve into the detailed steps of quadratic model construction in the
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UOBYQA algorithm. The quadratic model Q∞
k is expressed as a linear com-

bination of Lagrange functions lj(x),

Q∞
k (x) =

L∑
j=1

f(yj)lj(x) =
L∑

j=1

µ(yj)lj(x), x ∈ Rn. (3.12)

Each piece of lj(x) is a quadratic polynomial from Rn to R

lj(xk + s) = cj + gT
j s +

1

2
sT Gjs, j = 1, 2, . . . , L,

that has the property

lj(y
i) = δij, i = 1, 2, . . . , L,

where δij is 1 if i = j and 0 otherwise. It follows from (3.5) and (3.12) that

the parameters of Q∞
k are derived as

c∞k = cccµµµT , g∞
k = gggµµµT ,

and G∞
k =

L∑
j=1

µ(yj)Gj, (3.13)

where ccc = (c1, . . . , cL) and ggg = (g1, . . . , gL). Note that the parameters cj,

gj, and Gj in each Lagrange function lj are uniquely determined when the

points yj are given, regardless of the function f .

Combining (3.11) and (3.13), it follows that the posterior distributions of

c∞k , g∞
k and G∞

k are normal-like distributions:

c∞k |XN ∼ N(cccµ̄µµT , cccΣ̂ΣΣcccT /N), (3.14)

g∞
k |XN ∼ N(gggµ̄µµT , gggΣ̂ΣΣgggT /N), (3.15)

G∞
k |XN ∼ MN(

L∑
j=1

µ̄(yj)Gj,PPP
TΣ̂ΣΣPPP/N,PPP TΣ̂ΣΣPPP/N), (3.16)
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where the L × N matrix PPP = (G1111, . . . , GL111)T . The matrix normal dis-

tribution MN(µµµ,ννν1, ννν2) has parameters mean µµµ, left variance ννν1, and right

variance ννν2 [24]. In (3.16), because Gj are symmetric, the left variance and

right variance coincide.

The Bayesian VNSP Scheme

We will develop and summarize the Bayesian VNSP scheme in this section.

We first introduce the following lemma concerning the ‘sufficient reduction’

within a trust region step. This is an important but standard result in the

trust region literature.

Lemma 3.3. The solution s∗,Nk of the subproblem (3.1) satisfies

QN
k (xk) − QN

k (xk + s∗,N) ≥ κmdc‖gN
k ‖min

[
‖gN

k ‖
κQh

, ∆k

]
(3.17)

for some constant κmdc ∈ (0, 1
2
) independent of k.

Proof. For the Cauchy point xk +sN
c defined as the minimizer of the model in

the trust region along the steepest decent direction, we have a corresponding

reduction [78]

QN
k (xk) − QN

k (xk + s∗,Nc ) ≥ 1

2
‖gN

k ‖min

[
‖gN

k ‖
κQh

, ∆k

]
. (3.18)

Since the solution s∗,N of the subproblem yields an even lower objective value

of QN
k , we have the inequality (3.17). The complete proof can be found in

[80].
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Comment 1: Lemma 3.3 is generally true for models QN
k and Q∞

k .

Comment 2: There are issues concerning setting the values of κmdc and

κQh in an implementation. For κmdc, we use a safeguard value of 0.49, which

is slightly smaller than 1
2
. This value is true for Cauchy points, so is valid

for the solutions of the subproblem. For κQh, we update it as the algorithm

proceeds

κQh := max
(
κQh, ‖GN

k ‖
)
, (3.19)

that is, κQh is updated whenever a new GN
k is generated. Assumption 3

ensures the boundedness of the sampled Hessian and prevents the occurrence

of ill-conditioned problems. It is hard to find a good value of κQh satisfying

Assumption 3, but in practice the above scheme updates the value very

infrequently.

In our algorithm, QN
k (xk)−QN

k (xk+s∗,N) is the observed model reduction,

which serves to promote the next iterate (i.e., used to compute the agreement

ρN
k in (3.2)). The key idea for the global convergence of algorithm is that,

by replacing gN
k with g∞

k in (3.17), we force the model reduction QN
k (xk) −

QN
k (xk + s∗,N) to regulate the size of ‖g∞

k ‖, and so drive ‖g∞
k ‖ to zero. We

present the modified ‘sufficient reduction’ criterion:

QN
k (xk) − QN

k (xk + s∗,N) ≥ κmdc‖g∞
k ‖min

[
‖g∞

k ‖
κQh

, ∆k

]
. (3.20)

Lemma 3.2 and 3.3 imply that increasing the replication number N lessens

the bias between the quadratic models QN
k and Q∞

k , and is likely to produce
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a more precise step length s∗,N , close to s∗,∞. The criterion will be eventually

satisfied when N → ∞.

To ensure the ‘sufficient reduction’ criterion (3.20) is satisfied accurately,

we require

Pr(EN
k ) = Pr

(
QN

k (xk) − QN
k (xk + s∗,N) < κmdc‖g∞

k ‖min

[
‖g∞

k ‖
κQh

, ∆k

])
≤ αk, (3.21)

where the event EN
k is defined as the failure of (3.20) for the current N

and αk is the significance level. In practice, the risk Pr(EN
k ) is difficult to

evaluate because 1) it requires multiple sample paths, while the available

data is limited to one sample path, and 2) we do not know the explicit form

of Q∞
k (and hence g∞

k ).

By adapting knowledge from Bayesian inference, we approximate the risk

value by a Bayesian posterior estimation based on the current observations

XN

Pr(EN
k ) ≈ Pr(EN

k |XN). (3.22)

The value Pr(EN
k |XN) is thus called Bayes risk, which depends on a par-

ticular sample path. In the Bayesian perspective, the unknown quantities,

such as f(x) and g∞
k , are considered as random variables, whose posterior

distributions are inferred by Bayes’ rule. Given the observations XN , we
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have

Pr(EN
k |XN) (3.23)

= Pr

(
QN

k (xk) − QN
k (xk + s∗,N) < κmdc‖g∞

k ‖min

[
‖g∞

k ‖
κQh

, ∆k

]
XN

)
= Pr

(
QN

k (xk) − QN
k (xk + s∗,N) < κmdc‖g∞

k |XN‖min

[
‖g∞

k |XN‖
κQh

, ∆k

])
.

The left hand side QN
k (xk)−QN

k (xk + s∗,N) of the inequality becomes a fixed

quantity given XN . The probability evaluation is computed with respect to

the posterior distribution g∞
k |XN . Here we show the fact:

Lemma 3.4. The Bayes risk Pr(EN
k |XN) converges to zero as N → ∞.

Proof. For simplicity in notation, let AN = ‖g∞
k |XN‖min

[
‖g∞k |XN‖

κQh
, ∆k

]
be

a sequence of random variables, and bN = QN
k (xk) − QN

k (xk + s∗,N) be a

sequence of scalars. As shown in (3.15), as N → ∞ the distribution g∞|XN

converges to a delta distribution. AN also converges to a delta distribution

A∞ centered at ‖g∞
k ‖min

[
‖g∞k ‖
κQh

, ∆k

]
. Therefore, A∞ is essentially a constant

with zero variance. We can rewrite the Bayes risk in (3.23) as follows:

Pr(EN
k |XN)

= Pr
(
bN < κmdcA

N
)

= Pr

(
(bN − b∞) +

(
b∞ − 1

2
A∞

)
+(

1

2
A∞ − κmdcA

∞
)

< κmdc(A
N − A∞)

)
= Pr

(
AN − A∞ >

(bN − b∞) + (b∞ − 1
2
A∞) + (1

2
A∞ − κmdcA

∞)

κmdc

)
.
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As N → ∞, bN − b∞ converges to zero, b∞ − 1
2
A∞ ≥ 0 by Lemma 3.3, and

1
2
A∞−κmdcA

∞ converges to a strictly positive value because κmdc < 1
2
. Thus

the right hand side of the inequality converges to a strictly positive value.

Showing the Bayes risk converges to zero is equivalent to showing the random

variable AN converges to A∞ in probability.

If we let aN = E[AN ], then aN → E[A∞] = A∞ (Theorem (3.8) p17 [30]).

For a given positive value ε > 0, there exists a large enough N ′ such that

when N > N ′ we have |aN − A∞| ≤ ε/2. If N > N ′,

Pr(AN − A∞ > ε) ≤ Pr(|AN − A∞| > ε)

= Pr(|AN − aN + aN − A∞| > ε)

≤ Pr(|AN − aN | + |aN − A∞| > ε)

≤ Pr(|AN − aN | > ε/2)

≤ (2/ε)2var(AN).

The last inequality is by the Chebyshev’s inequality [30]. Because var(AN)

decreases to zero, we have Pr(AN − A∞ > ε) decreases to zero and AN

converges to A∞ in probability. The proof of the lemma follows.

Lemma 3.4 guarantees that Pr(EN
k |XN) ≤ αk will eventually be satisfied

when N is large enough.

In Section 3.2.1, we derive the posterior distributions for the parameters of

Q∞
k . These distributions can be plugged in (3.23) to evaluate the Bayes risk.
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However, the exact evaluation of the probability is hard to compute, espe-

cially involving the component κmdc‖g∞
k |XN‖min

[
‖g∞k |XN‖

κQh
, ∆k

]
. Instead we

use the Monte Carlo method to approximate the probability value: we gener-

ate M random samples from the posterior distribution of g∞
k |XN . Based on

the samples, we check the event of ‘sufficient reduction’ and make a count on

the failed cases: Mfail. The probability value in (3.23) is then approximated

by

Pr(EN
k |XN) ≈ Mfail

M
. (3.24)

The approximation becomes accurate as M increases. Normally, we use a

large value M = 500. Note that this does not require any new evaluations of

the sample response function, but instead samples from the inferred Bayesian

distribution g∞
k |XN . We actually enforce a stricter accuracy on the fraction

value for reasons that will be described below:

Mfail

M
≤ αk

2
. (3.25)

A complete description of our Bayesian VNSP scheme follows:

Procedure 8. The VNSP scheme

At the kth iteration of the algorithm, start with N = Nk−1.

Loop

1. Evaluate N replications at each point yj in the interpolation set Ik, to

construct the data matrix XN . Note: data from previous iterations can

be included.
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2. Construct the quadratic model QN
k and solve the subproblem for xk +

s∗,N .

3. Update the value of κQh by (3.19).

4. Compute the Bayesian posterior distributions for the parameters of Q∞
k

as described above.

5. Validate the Monte Carlo estimate (3.25). If the criterion is satisfied,

then stop with Nk = N ; otherwise increase N , and repeat the loop.

Since a smaller Nk is preferable, a practical approach is to sequentially

allocate computing resources: starting with N = Nk−1, we decide to increase

N or keep N by checking (3.25). If rejected, N is updated as

N := N · β,

where β is an incremental factor. Otherwise, the current N is used as the

sample number Nk at iteration k.

Two approximation steps (3.22) and (3.24) are employed in the compu-

tation. The following assumptions formally guarantee that risk Pr(EN
k ) is

eventually approximated by the Monte Carlo fraction value Mfail/M .

Assumption 4. The difference between the risk Pr(EN
k ) and the Monte

Carlo estimation value is bounded by αk

2

∣∣∣∣Pr(EN
k ) − Mfail

M

∣∣∣∣ ≤ αk

2
.
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When M → ∞,
Mfail

M
approaches the Bayes risk Pr(EN

k |XN). The as-

sumption essentially guarantees the Bayes risk Pr(EN
k |XN) is a good approx-

imation of the real risk Pr(EN
k ). Under this assumption and the criterion

(3.25), it implies

|Pr(EN
k )| ≤

∣∣∣∣Pr(EN
k ) − Mfail

M

∣∣∣∣ +

∣∣∣∣Mfail

M

∣∣∣∣ ≤ αk

2
+

αk

2
= αk,

which guarantees the accuracy of the ‘sufficient reduction’ criterion (3.21).

The algorithm enforces (3.25) and the convergence proof can thus use the

criterion (3.21).

Assumption 5. The sequence of significance level values {αk} satisfy the

property:
∞∑

k=1

αk < ∞. (3.26)

The assumption necessitates a stricter accuracy to be satisfied as the algo-

rithm proceeds, which allows the use of the Borel-Cantelli Lemma in proba-

bility theory.

Lemma 3.5 ((1st) Borel-Cantelli Lemma). Let {EN
k } be a sequence of events,

and the sum of the probabilities of EN
k is finite, then the probability of in-

finitely many EN
k occur is 0.

Proof. See the book by Durrett [30].

Consider the event EN
k to be the failure to satisfy the ‘sufficient reduction’

criterion (3.20). Given the error rate (3.21) and Assumption 5, the Borel-

Cantelli Lemma provides that the events EN
k only happen finitely many times
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w.p.1. Therefore, if we define K as the first successful index after all failed

instances, then (3.20) is satisfied w.p.1 for all iterations k ≥ K. We will use

this without reference in the sequel.

Finally, we will require the following uniformity assumptions to be valid

in the convergence proof.

Assumption 6. Given two points x1, x2 ∈ Rn, the sample response difference

of the two points is F (x1, ξ(ω)) − F (x2, ξ(ω)). We assume that the 2nd and

4th central moments of the sample response difference are uniformly bounded.

For simplicity, we denote the ith central moment of a random variable Z by

ϕi(Z), that is

ϕi(Z) = E[(Z − EZ)i].

Then the assumptions are, for any x1, x2 ∈ Rn,

ϕ2(F (x1, ξ(ω)) − F (x2, ξ(ω))) ≤ κσ2 (3.27)

ϕ4(F (x1, ξ(ω)) − F (x2, ξ(ω))) ≤ κσ4 (3.28)

for some constants κσ2 and κσ4.

Note that difference of the underlying function is the mean of the sample

response difference

f(x1) − f(x2) = E[F (x1, ξ(ω)) − F (x2, ξ(ω))].

The assumptions in fact constrain the gap between the change of the sample

response function and the change of the underlying function. The 4th central
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moment exists for almost all statistical distributions. In Assumption 6, we

consider two points x1 and x2, because we would like to constrain their

correlations (covariance, high order covariance) as well.

Moreover, for the averaged sample function f̂N(x),

ϕ4

(
f̂N(x1, ξ(ω)) − f̂N(x2, ξ(ω))

)
=

1

N3
ϕ4 (F (x1, ξ(ω)) − F (x2, ξ(ω))) +

3(N − 1)

N3
ϕ2

2 (F (x1, ξ(ω)) − F (x2, ξ(ω)))

=
1

N2

(
1

N
ϕ4 (F (x1, ξ(ω)) − F (x2, ξ(ω))) +

3(N − 1)

N
ϕ2

2(F (x1, ξ(ω)) − F (x2, ξ(ω)))

)
≤ 1

N2

(
κσ4 + 3κ2

σ2

)
. (3.29)

Therefore, Assumption 6 implies that the 4th central moment of the change

of averaged sample function decreases quadratically fast with the sample

number N .

3.2.2 Convergence Analysis of the Algorithm

Convergence analysis of the general model-based approach is given by Conn,

Scheinberg, and Toint in [20]. Since the model-based approach is in the trust

region framework, their proof of global convergence follows general ideas for

the proof of the standard trust region method [78, 80].

We start by showing that there is at least one stationary accumulation
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point. The stationary point of a function is a point at which the gradient of

the function is zero. The idea is to first show that the gradient g∞
k , driven by

the ‘sufficient reduction’ criterion (3.20), converges to zero, and then prove

that ‖∇f(xk)‖ converges to zero as well.

Lemma 3.6. If Assumptions 1–6 hold and ‖g∞
k ‖ ≥ εg for all k and for some

constant εg > 0, then there exists a constant ε∆ > 0 such that w.p.1,

∆k > ε∆, for all k ≥ K. (3.30)

Proof. Given the condition ‖g∞
k ‖ ≥ εg, we will show that the corresponding

∆k cannot become too small, therefore, we can derive the constant ε∆.

Let us evaluate the following term associated with the agreement level

|ρNk
k − 1| =

∣∣∣∣∣ f̂Nk(xk + s∗,Nk) − QNk
k (xk + s∗,Nk)

QNk
k (xk) − QNk

k (xk + s∗,Nk)

∣∣∣∣∣ . (3.31)

By Lemma 3.1, we compute the error bound for the numerator

∣∣∣f̂Nk(xk + s∗,Nk) − QNk
k (xk + s∗,Nk)

∣∣∣ ≤ κem max[∆2
k, ∆

3
k]. (3.32)

Note that when ∆k is small enough, satisfying the condition

∆k ≤ min

[
1,

κmdcεg(1 − η1)

max[κQh, κem]

]
, (3.33)

according to the facts η1, κmdc ∈ (0, 1) and ‖g∞
k ‖ ≥ εg, we deduce

∆k ≤ ‖g∞
k ‖

κQh

. (3.34)
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For the denominator in (3.31), our ‘sufficient reduction’ criterion (3.20) pro-

vides a lower bound for QNk
k (xk) − QNk

k (xk + s∗,Nk). When k ≥ K the in-

equality holds w.p.1

QNk
k (xk) − QNk

k (xk + s∗,Nk) ≥ κmdc‖g∞
k ‖min

[
‖g∞

k ‖
κQh

, ∆k

]
= κmdc‖g∞

k ‖∆k.

(3.35)

Combining (3.31), (3.32), (3.33) and (3.35), we see that the following

inequality holds w.p.1 for iteration k ≥ K

|ρNk
k − 1| =

∣∣∣∣∣ f̂Nk(xk + s∗,Nk) − QNk
k (xk + s∗,Nk)

QNk
k (xk) − QNk

k (xk + s∗,Nk)

∣∣∣∣∣
≤ κem max[∆2

k, ∆
3
k]

κmdc‖g∞
k ‖∆k

≤ κem∆k

κmdc‖g∞
k ‖

≤ 1 − η1. (3.36)

The criterion ρNk
k ≥ η1 implies the identification of a good agreement

between the model QNk
k and the function f̂Nk , which will induce an increase

of the trust region radius ∆k+1 ≥ ∆k (3.3). We thus have

ρNk
k ≥ η1 valid w.p.1 for all k ≥ K.

According to (3.33), it is equivalent to say that ∆k can shrink only when

∆k ≥ min

[
1,

κmdcεg(1 − η1)

max[κQh, κem]

]
.

We therefore derive a lower bound for ∆k:

∆k > ε∆ = γ0 min

[
1,

κmdcεg(1 − η1)

max[κQh, κem]

]
, for k ≥ K. (3.37)
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Theorem 3.1. If Assumptions 1–6 hold, then, w.p.1

lim inf
k→∞

‖g∞
k ‖ = 0. (3.38)

Proof. We prove the statement (3.38) by contradiction. Suppose there is

εg > 0 such that

‖g∞
k ‖ ≥ εg. (3.39)

By Lemma 3.6, we have w.p.1, ∆k > ε∆ for k ≥ K.

We first show there exists only finitely many successful iterations. If not,

suppose we have infinitely many successful iterations. At each successful

iteration k ≥ K, by (3.2), (3.20), (3.39) and ∆k > ε∆, the inequality

f̂Nk(xk) − f̂Nk(xk+1) ≥ η0

[
QNk

k (xk) − QNk
k (xk + s∗,Nk)

]
≥ η0κmdcεg min

[
εg

κQh

, ε∆

]
(3.40)

holds w.p.1.

We will discuss two situations here: (a) when the limit of the sequence

limk→∞ Nk = N∞ is a finite number, and (b) when N∞ is infinite. Both

situations are possible in our algorithm. For simplicity, we use S to denote

the index set of successful iterations and define

εd := η0κmdcεg min

[
εg

κQh

, ε∆

]
,

the positive reduction in right hand side of (3.40).
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Situation (a): If N∞ < ∞, then there exists an index K̃ ≥ K such that

Nk = N∞ for k ≥ K̃. Since {f̂N∞(xk)| k ≥ K̃} is monotonically decreasing

f̂N∞(xK̃) − f̂N∞(xK̂+1) ≥
∑

k≥K̃,k≤K̂,
k∈S

f̂N∞(xk) − f̂N∞(xk+1)

≥ t(K̂)εd, (3.41)

where K̂ is a large index in S and t(K̂) is a count number of indexes in the

summation term. Since f̂N∞ is bounded below (Assumption 2), we know that

f̂N∞(xK̃) − f̂N∞(xK̂+1) is a finite value. However, the right hand side goes

to infinity because there are infinitely many indexes in S w.p.1 (t(K̂) → ∞,

as K̂ → ∞ ). This induces a contradiction, therefore, there are only a finite

number of successful iterations.

Situation (b): For this situation, N∞ = ∞. Let us define a specific sub-

sequence of indexes {kj′| kj′ ≥ K} (see Figure 22), indicating where there is

a jump in Nk, i.e., a truncated part of subsequence is

· · · < Nkj′ = Nkj′+1 = · · · = Nkj′+1−1 < Nkj′+1
= · · · .

Let S ′ be a subset of {kj′}, including kj′ if there is at least one successful

iteration in {kj′ , . . . , kj′+1 − 1}. This implies

xkj′+1

 6= xkj′
, for kj′ ∈ S ′;

= xkj′
(unchanged) , for kj′ /∈ S ′.
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Figure 22: Illustration of the subsequence {kj′}.

For kj′ ∈ S ′, sum the inequality (3.40) for k ∈ {Nkj′
, . . . , Nkj′+1−1} to derive

f̂
Nkj′ (xkj′ ) − f̂

Nkj′ (xkj′+1
) ≥

∑
k≥kj′ ,k≤kj′+1−1

k∈S′

f̂
Nkj′ (xk) − f̂

Nkj′ (xk+1)

≥ εd. (3.42)

We want to quantify the difference between f̂
Nkj′ (xkj′ ) − f̂

Nkj′ (xkj′+1) and

f(xkj′ ) − f(xkj′+1
). The idea behind this is that moving from xkj′ to xkj′+1

,

the function f̂
Nkj′ decreases, and so does the underlying function f . Since

infinitely many decrement steps for f are impossible, we derive a contradic-

tion.

Define the event Êkj′ as the occurrence of f̂
Nkj′ (xkj′ ) − f̂

Nkj′ (xkj′+1
) ≥ εd
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while f(xkj′
) − f(xkj′+1

) ≤ εd

2
. The probability of event

Pr
(
Êkj′

)
≤ Pr

((
f̂

Nkj′ (xkj′
) − f̂

Nkj′ (xkj′+1
)
)
−

(
f(xkj′

) − f(xkj′+1
)
)
≥ εd

2

)
≤ Pr

(∣∣∣(f̂
Nkj′ (xkj′

) − f̂
Nkj′ (xkj′+1

)
)
−

(
f(xkj′

) − f(xkj′+1
)
)∣∣∣ ≥ εd

2

)
= Pr

(((
f̂

Nkj′ (xkj′
) − f̂

Nkj′ (xkj′+1
)
)
−

(
f(xkj′

) − f(xkj′+1
)
))4

≥
(εd

2

)4
)

≤ 16

ε4
d

· E
[(

f̂
Nkj′ (xkj′ ) − f̂

Nkj′ (xkj′+1
)
)
−

(
f(xkj′ ) − f(xkj′+1

)
)]4

=
16

ε4
d

· ϕ4

(
f̂

Nkj′ (xkj′ ) − f̂
Nkj′ (xkj′+1

)
)

≤
16

(
κσ4 + 3κ2

σ2

)
ε4
d(Nkj′

)2
.

The third inequality is due to Markov’s inequality [30]. The random quan-

tity f̂
Nkj′ (xkj′

) − f̂
Nkj′ (xkj′+1

) has mean value f(xkj′
) − f(xkj′+1

). The last

inequality is due to the implication of Assumption 6, see (3.29).

The result implies that probability of the event Êk decreases quadratically

fast with k. Since the sum of the probability values is finite

∞∑
j′=1

kj′∈S′

Pr
(
Êkj′

)
≤

∞∑
j′=1

kj′∈S′

16
(
κσ4 + 3κ2

σ2

)
ε4
d(Nkj′

)2
< ∞,

applying the Borel-Cantelli Lemma again, the event Êkj′ occurs only finitely

many times w.p.1. Thus, there exists an index K̄, such that

f(xkj′ ) − f(xkj′+1
) ≥ εd

2
, for all {kj′|kj′ ≥ K̄, kj′ ∈ S ′} w.p.1.

Playing the same trick as before, by summing over all kj′ ≥ K̄, we derive
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that w.p.1

f(xK̄) − f(xK̂+1) ≥
∑

kj′≥K̄,kj′≤K̂

kj′∈S′

f(xkj′ ) − f(xkj′+1)

≥ t(K̂)
εd

2
. (3.43)

The left hand side is a finite value, but the right hand side goes to infinity.

This contradiction also shows that the number of successful iterations is

finite.

Combining the two situations above, we must have infinitely many un-

successful iterations when k is sufficiently large. As a consequence, the trust

region radius ∆k decreases to zero

lim
k→∞

∆k = 0,

which contradicts the statement that ∆k is bounded below (3.37). Thus

(3.39) is false, and the theorem is proved.

Theorem 3.2. If Assumptions 1–6 hold and

lim inf
j→∞

‖g∞
kj
‖ = 0 w.p.1 (3.44)

holds for a subsequence {kj}, then we also have

lim inf
j→∞

‖∇f(xkj
)‖ = 0 w.p.1. (3.45)

Proof. Due to the fact limj→ ∆kj
= 0, Lemma 3.1 guarantees that the dif-

ference between ‖g∞
kj
‖ and ‖∇f(xkj)‖ is small. Thus the assertion (3.45)

follows. The details of the proof refer to Theorem 11 in [20].
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Theorem 3.3. If Assumptions 1–6 hold, every limit point x∗ of the sequence

{xk} is stationary.

Proof. The procedure of proof is essentially the same as given for Theorem

12 in [20]. However, we use the ‘sufficient reduction’ inequalities (3.41) when

N∞ is finite and (3.43) when N∞ is infinite.

3.2.3 Numerical Results

We apply the VNSP-UOBYQA algorithm (Procedure 8) to several numerical

examples. The noisy test functions are altered from deterministic functions

with artificial randomness.

The first numerical function we employed was the well-known extended

Rosenbrock function. The random term was added only to the first compo-

nent of the input variable. Define

x̂(x, ξ(ω)) := (x(1)ξ(ω), x(2), . . . , x(n))

and the corresponding function becomes

F (x, ξ(ω)) =
n−1∑
i=1

100(x̂(i+1) − x̂2
(i))

2 + (x̂(i) − 1)2. (3.46)

We assume ξ(ω) is a normal variable centered at 1:

ξ(ω) ∼ N(1, σ2).

As a general setting, the initial and end trust region radius ∆0, ∆end were

set to 2 and 1.0e − 5, respectively. Implementing the algorithm required a
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starting value N0 = 3, which was used to estimate the initial sample mean and

sample covariance matrix. We believe such a value is the minimum required

for reasonable estimates. Larger values of N0 would in most cases lead to

wasted evaluations. M = 500 (see (3.24)) trials samples were generated to

evaluate the Bayes probability (3.23) in the VNSP procedure. To satisfy

Assumption 5, the sequence {αk} was pre-defined as

αk = 0.5 × (0.98)k.

Table 5: The performance of the new algorithm for the noisy Rosenbrock
function, with n = 2 and σ2 = 0.01.

Iteration k Nk FN xk f̄Nk(xk) ∆k

0 3 3 (-1.0000,1.2000) 11.7019 2.0
19 3 81 (0.5002,0.2449) 0.3616 0.1
20 4 91 (0.5002,0.2449) 0.4904 0.05
21 5 102 (0.5208,0.2904) 0.4944 0.02
22 22 226 (0.5082,0.2864) 0.4018 0.02
23 22 248 (0.5082,0.2864) 0.4018 0.02
24 30 326 (0.5082,0.2864) 0.5018 0.02
29 30 476 (0.4183,0.1862) 0.4447 0.04
30 113 1087 (0.4328,0.1939) 0.4290 0.02
31 113 1200 (0.4328,0.1939) 0.4290 0.02
32 221 1848 (0.4328,0.1939) 0.4437 0.02
33 604 4750 (0.4328,0.1939) 0.4601 0.01
35 604 5958 (0.4276,0.1837) 0.4569 0.0125
36 845 8249 (0.4197,0.1774) 0.4556 0.0101
37 1183 10277 (0.4172,0.1760) 0.4616 0.0101

Table 5 presents the details about a single-run of the new algorithm on

the two-dimensional Rosenbrock function with σ2 = 0.01. The starting point
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was chosen to be (-1,1.2), and the maximum number of function evaluations

was 10000. We recorded the iteration number k when there was a change in

Nk. For example, Nk remained at 3 in iterations 1–19, and Nk changed to 4 at

iteration 20. Since in the first 19 iterations, the averaged sample function was

f̂3, all the steps were taken regarding f̂3 as the objective function. Therefore,

it was observed that the iterates xk moved toward the solution x∗,3 of the

averaged sample problem (3.8) with N = 3. In Table 6 we present the

corresponding sample-path solution of the optimization problem (3.8). For

example, x∗,3 = (0.5415, 0.2778). Note that, in order to derive the solution

to f in the two dimensional problem, the noisy Rosenbrock function was

rearranged as

f(x) = E
[
100(x̂(2) − x̂2

(1))
2 + (x̂(1) − 1)2

]
= 100x2

(2) + 1 − 2x(1)E[ξ] + (−200x(2)x
2
(1) + x2

(1))E[ξ2] + 100x4
(1)E[ξ4].

By plugging the values E[ξ] = 1, E[ξ2] = 1.01, and E[ξ4] = 1.0603, we ob-

tained the solution x∗,∞ = (0.4162, 0.1750), which was different from the

deterministic Rosenbrock solution (1, 1). For different Nk, the averaged

function f̂Nk might vary greatly. In Table 5, we observe that x19 = x20 =

(0.5002, 0.2449). The value of f̂N19(x19) is 0.3616, while the value of f̂N20(x20)

is 0.4904. It shows that the algorithm actually worked on objective functions

with increasing accuracy.

As shown in Table 5, the algorithm used a small Nk to generate new
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Table 6: Averaged sample-path solution with different sample number N

N x∗,N f̂Nk(x∗,N)
3 (0.5415,0.2778) 0.3499
4 (0.4302,0.1922) 0.4412
5 (0.4218,0.1936) 0.4395
22 (0.4695,0.2380) 0.3892
30 (0.4222,0.1896) 0.4446
113 (0.4423,0.2027) 0.4286
221 (0.4331,0.1910) 0.4427
604 (0.4226,0.1798) 0.4567
845 (0.4236,0.1807) 0.4556
1183 (0.4174,0.1761) 0.4615
∞ (0.4162,0.1750) 0.4632

iterates in the earlier iterations. Only 476 function evaluations were ap-

plied for the first 29 iterations. This implies that when noisy effects were

small compared to the large change of function values, the basic operation

of the method was unchanged and Nk = N0 samples were used. As the

algorithm proceeded, the demand for accuracy increased, therefore, Nk in-

creased as well as the total number of function evaluations. We obtained

very good solutions. At the end of the algorithm, we generated a solu-

tion x37 = (0.4172, 0.1760), which is close to the averaged sample-path solu-

tion x∗,N=1183 = (0.4174, 0.1761) and is better than the solution x∗,N=845 =

(0.4236, 0.1807). In a standard sample-path optimization method, assuming

that there are around 40 iterations in the algorithm, we need 845×40 = 33800

function evaluations for the solution x∗,N=845 and 1183 × 40 = 43720 for the
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solution x∗,N=1183. Our algorithm indeed saved a significant amount of func-

tion operations.

To study the changes of Nk, in Figure 23, we plot Nk against the iteration

number for two problems. One is a high volatility case with σ2 = 1 and the

other is a low volatility case with σ2 = 0.01. In both problems, Nk was 3 for

the first 20 iterations, when the noise is not the dominating factor. In the

later iterations, the noise became significant and we observe that the demand

for Nk increased faster for the high volatility case. If we restricted the total

function evaluations to be 10000, the high volatility case resulted in a early

termination at the 34th iteration.
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Figure 23: Compare changes of Nk with different levels of noise.
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We applied the algorithm to both 2 and 10 dimensional problems. In-

creasing the dimension significantly increased computational burden. The

problem with dimension n = 10 is already very hard to tackle. Even in the

deterministic case, the standard UOBYQA requires around 1400 iterations

to terminate at ∆end = 0.0001. In Table 7, we record a summary of the algo-

rithm applied to the Rosenbrock function with different dimensions and noise

levels. For comparisons, we include the result of the standard sample-path

methods with fixed numbers of samples: 10, 100, and 1000. The statistical

results are based on 10 replications of the algorithm. The variance of the

error is small, showing that the algorithm was generally stable. For n = 10

and σ2 = 1, we notice a big mean error 2.6 and a relatively small variance of

error 0.10. This is due to the earlier termination of the algorithm when σ2 is

large (we used a limit of 20000 function evaluations in this case). There are

two reasons why the standard sample-path methods yield relatively larger

errors. 1) Methods SP(10) and SP(100) do not provide accurate averaged

sample functions f̂N . 2) For a large sample number N , the iteration number

of the algorithm is limited. For example, we can expect SP(100) is limited to

200 iterations and SP(1000) is limited to 20 iterations. Increasing the total

number of function evaluations can significantly improve the performance of

the sample path optimization methods. For example, if we allow 2,000,000

total function evaluations for the 10 dimensional case and the noise level

σ2 = 1, the mean error of SP(100) and SP(1000) are 1.6, 7.5, respectively.
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The VNSP method performs better than this.

Table 7: Statistical summary

VNSP SP(10) SP(100) SP(1000)
n Noise

level σ2

Mean
error

Variance
of error

Mean
error

Mean
error

Mean
error

2 0.01 1.1e-5 1.2e-5 0.035 0.0045 7.9e-5
2 0.1 8.9e-5 3.3e-5 0.079 0.0067 4.2e-4
2 1 1.1e-4 8.2e-5 0.098 0.0088 8.9e-4
10 0.01 0.054 0.067 0.44 28 120
10 0.1 0.087 0.060 2.1 44 129
10 1 2.6 0.10 14 32 145

For another test example, we refer back to the toy example. The objective

function is only affected by additive noise

F (x, ξ(ω)) = φ(x) + ξ(ω).

We will show Nk is unchanged for every iteration, that is, N1 = N2 = · · · =

N∞. At iteration k, the function outputs at points yj in Ik are entirely

correlated. As a result, the sample covariance matrix Σ̂̂Σ̂Σ is a rank-one matrix,

whose elements are all identical Σ̂̂Σ̂Σ(i, j) = a, i, j = 1, 2, . . . , L, where a =

var[(ξ1, . . . , ξNk
)]. Thus, the matrix can be decomposed as

Σ̂̂Σ̂Σ = 111 · a · 111T . (3.47)

Plug (3.47) into (3.15), we obtain the posterior covariance of g∞
k

cov(g∞
k |XN) = (ggg · 111)T · a · (ggg · 111) = (000)T · a · 000 = 000L×L,
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which implies g∞
k is not random and g∞

k = gNk
k . As a consequence, in the

VNSP scheme, the mechanism will not increase Nk because the criterion

(3.20) is always satisfied.

The fact ggg · 111 =
∑L

j=1 gj = 000 is a property of Lagrange functions. The

proof is simple - the sum of Lagrange functions
∑L

j=1 lj(x) is the unique

quadratic interpolant of a constant function ĝ(x) = 1 at the points yj, be-

cause
∑L

j′=1 lj′(y
j) = 1 = ĝ(yj), j = 1, . . . , L. Therefore, the gradient of the

interpolant
∑L

j=1 gj = 000.

In practice, the behavior of the toy example occurs rarely. We present it

here to show that our algorithm indeed checks the uncertainty of each iterate

xk, but not that of objective value f̂Nk(xk).

3.3 The Noisy UOBYQA Algorithm

We develop a variant of the UOBYQA algorithm, called the Noisy UOBYQA

algorithm, that is adapted for simulation-based optimization problem in the

white noise case. The modification is close to what we present for the VNSP-

UOBYQA algorithm, i.e., in the construction of quadratic models. The key

difference is that we allow different numbers of samples for each point in

the algorithm, including the point yj the interpolation point set Ik. For

example, in our following discussion, rj samples are evaluated for each point

yj; while for the VNSP-UOBYQA algorithm, we use the same number Nk
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for all yj in Ik. This is because we can take advantage of the correlations

among samples. The sampling strategy in the Noisy UOBYQA algorithm is

based on an alternative stability criterion.

3.3.1 Modifications

When noise is present, UOBYQA may behave precariously. For example, a

subproblem that minimizes the quadratic model within a trust region may

generate poor situations. The idea of our modification is to control the ran-

dom error by averaging multiple evaluations per point, helping the algorithm

to proceed appropriately. In the following subsections, we will present our

modifications to the UOBYQA algorithm to deal with problematic points of

the algorithm in the noisy case.

Reducing Quadratic Model Variance

When there is uncertainty in the objective function, the existence of noise

can cause erroneous estimations of coefficients of the quadratic model Qk(x),

say ck, gk, Gk, and as a result, generate an unstable solution xk + s∗. To

reduce the variance of the quadratic model, we consider generating multiple

function values for points yj, j = 1, 2, . . . , L in the set Ik and use the averaged

function value for the interpolation process.
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In UOBYQA, the quadratic function is constructed as a linear combina-

tion of Lagrange functions lj(x),

Qk(x) =
L∑

j=1

f(yj)lj(x), x ∈ Rn. (3.48)

The parameters of Qk are derived as

ck =
∑L

j=1 f(yj)cj, gk =
∑L

j=1 f(yj)gj,

and Gk =
∑L

j=1 f(yj)Gj.
(3.49)

Here, cj, gj and Gj are the coefficients of the quadratic function lj. See

details in Section 3.2.1.

In the Bayesian analysis, the posterior distribution of µ can be derived as

µ(yj)|X ∼ N(µ̄(yj), σ̂2(yj)/rj), (3.50)

where rj is the number of replications for the point yj. According to (3.49),

we treat the ck, gk and Gk as random variables from a Bayesian perspective.

They all follow normal distributions whose means are estimated using (3.50)

as (all of these are posterior estimates)

E[ck] = E
[∑L

j=1 f(yj, ω)cj

]
= E

[∑L
j=1 µ(yj)cj

]
=

∑L
j=1 µ̄(yj)cj,

E[gk] =
∑L

j=1 µ̄(yj)gj,

E[Gk] =
∑L

j=1 µ̄(yj)Gj

(3.51)
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and the variances are estimated as

var(ck) = var
(∑L

j=1 µ(yj)cj

)
=

∑L
j=1 c2

j σ̂
2(yj)/rj,

var(gk(i
′)) =

∑L
j=1 g2

j (i
′)σ̂2(yj)/rj,

var(Gk(i
′, j′)) =

∑L
j=1 G2

j(i
′, j′)σ̂2(yj)/rj,

i′, j′ = 1, . . . , n.

(3.52)

As rj increases to infinity, the variance decreases to zero.

To increase the stability of a quadratic model, we want to quantify how

the randomness in the coefficients ck, gk, and Gk affects the solution of the

subproblem (3.8). Suppose we solve Nt trial subproblems whose quadratic

model coefficients are extracted from their posterior distributions, we ex-

pect that solutions s∗(i), i = 1, 2, . . . , Nt have a small overall variance (see

Figure 24). Therefore, we introduce a criterion that constrains the stan-

dard deviation of solutions in each coordinate direction, requiring them to

be smaller than a threshold value β times the trust region radius:

n
max
j=1

std([s∗(1)(j), s∗(2)(j), . . . , s∗(Nt)(j)]) ≤ β∆k. (3.53)

Increasing rj should help reduce the volatility of coefficients, thus reduce the

standard deviations of solutions. Therefore, satisfying the above criterion

necessitates a sufficiently large rj for the point yj.

Sequentially allocating computational resources A new resource al-

location question arises (based on rj function evaluations at site yj) about
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Figure 24: The trial solutions within a trust region are projected to each
coordinate direction and the standard deviations of the projected values are
evaluated.
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which site to assign new function replications in order to satisfy the con-

straint (3.53) with the minimum total number of function evaluations. In

solving the subproblem (3.1), we know that only gk and Gk matter for deter-

mining the solution s∗ from the definition of Qk in (3.5). Instead of satisfying

the constraint directly, we aim to control the variance of the most volatile

coefficient. We minimize the corresponding ratio of the standard deviation

to the expected value

max
i′,j′

(
std(gk(i′))
|E[gk(i′)]| ,

std(Gk(i′,j′))
|E[Gk(i′,j′)]|

)
,

i′, j′ = 1, . . . , n.

(3.54)

We propose a fast but sub-optimal strategy here, one that assigns addi-

tional computational resources sequentially. We assume that when an addi-

tional batch of r replications at site yj are newly produced, the sample mean

µ̄(yj) and variance σ̂2(yj) remain invariant. Under this assumption, the pos-

terior variance of µ(yj) (see (3.50)) changes from σ̂2(yj)/rj → σ̂2(yj)/(rj +r).

First, let φ(~r) (here ~r = [r1, r2, . . . , rL]) denote the largest quantity in

(3.54):

φ(~r) = max
i′,j′

(
std(gk(i′))
E[gk(i′)]

, std(Gk(i′,j′))
E[Gk(i′,j′)]

)
= max

i′,j′


√

L∑
j=1

g2
j (i′)σ̂2(yj)/rj

L∑
j=1

µ̄(yj)gj(i′)

,

√
L∑

j=1
G2

j (i′,j′)σ̂2(yj)/rj

L∑
j=1

µ̄(yj)Gj(i′,j′)

 ,

i′, j′ = 1, . . . , n.

(3.55)

To achieve a good allocation scheme, we invest our new resources in the

point yj in order to most sharply decrease the quantity φ(~r). After assigning
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r samples to the point yj, we obtain a new vector ~r + rej, where ej is the

standard unit vector in RL with 1 on the jth component. We select the site

yj with the index:

arg max
j

φ(~r + rej). (3.56)

The best index is determined by comparing the L different possible options.

Procedure 9. Stabilize the quadratic model:

Given initial sample size r0, batch size r, and the threshold value β.

1. Generate r0 function evaluations for each point for pre-estimations of

sample mean and sample variance. Set rj ← r0, j = 1, 2, . . . , L.

2. Determine the largest quantity φ(~r) which corresponds to the most

volatile coefficient.

3. Select the site for further evaluations using (3.56).

4. Evaluate r function replications on the selected site and update the sam-

ple mean and sample variance.

5. Repeat Steps 2-4, until constraint (3.53) is satisfied.

Selecting the Best Point

If x+ is a new point entering the interpolation set Ik, we encounter the

problem of selecting the best point in Ik. Since xk is known to be the best

in the previous set, the question becomes how we determine the order of xk
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and x+. When there is noise in the function output, we need more precise

estimations of the underlying function value to make the correct decision.

In our case, since there are only two points involved, we implement a

simplified variant of a ranking and selection procedure OCBA [17] (refer to

Section 1.2.3). Suppose we have replicated rj function values for yj, let µ(yi)

and σ2(yj) be the unknown mean and variance of the output at yj. The point

evidenced by a smaller sample mean is selected. The approximate PSC is a

tail probability of a normal distribution:

PCS ∼ Pr

(
N

(
µ̄(y1) − µ̄(y2),

σ̂2(y1)

r1

+
σ̂2(y2)

r2

)
≤ 0

)
.

Sequentially allocating computational resources We consider a sequen-

tial allocation strategy to assign new computational resources to the points

y1 and y2, so that we can use the least number of function evaluations to

satisfy the rule

PCS ≥ 1 − α. (3.57)

The change of sample mean and sample variance follows the assumptions in

Section 3.3.1.

To determine the potentially better point, we compare the derivative

value:

max
j∈{1,2}

∂

∂rj

Pr

(
N

(
µ̄(y1) − µ̄(y2),

σ̂2(y1)

r1

+
σ̂2(y2)

r2

)
≤ 0

)
.

It is not hard to find that, since the mean of the joint distribution µ̄(y1) −

µ̄(y2) is unchanged, we desire the largest decrease in the variance ψ(~r) :=
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σ̂2(y1)/r1 + σ̂2(y2)/r2. Therefore, the problem (3.58) becomes

min
j∈{1,2}

ψ(~r + rej). (3.58)

This determines the index of the potentially better point.

Procedure 10. Select the best point in Ik:

Given initial sample size r0, batch size r, and a significance parameter α.

1. Evaluate r0 function evaluations for each point for pre-estimations of

sample mean and sample variance. Set rj ← r0, j = 1, 2.

2. Select the point to carry out further replications using (3.58).

3. Evaluate r further function replications on the point selected and update

the sample mean and sample variance.

4. Repeat Steps 2 and 3 until the constraint (3.57) is satisfied.

New Termination Criterion

In UOBYQA and other model-based optimization algorithms, a test on the

norm of the gradient ‖gk‖ or the trust region size ∆k is typically treated as

termination criteria; i.e., ∆k ≤ ∆end = 10−12. However, these criteria are

not suitable for noisy cases. When ∆k gets smaller, the estimated value of

Gk, which is a gauge for ‘curvature’ of the quadratic model, will approach

zero. This will inevitably require much more function evaluations in later
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iterations to reduce the variance of the quadratic model in order to retain

accuracy.

The new termination criterion is designed to relax the value of ∆end, such

that the algorithm terminates much earlier. We specify a parameter Nmax

that controls the maximum number of replications per site in the algorithm.

Nmax represents the amount of computing we are willing to spend at any

site. In each iteration k, we will check that any point x on the edge of the

subregion {x| ‖x − xb‖ ≤ ∆k} is ‘separable’ from the center xk, given the

control Nmax on the number of replications per site. Here ‘separable’ means

that one point is better than the other with high accuracy (PCS ≥ 1 − α).

The difficulty occurs in estimations of sample mean µ̄(x) and sample vari-

ance σ̂2(x) of an edge point x, which demand additional function evaluations.

We simplify this procedure by performing the separability test using Qk(·)

instead of the original f(·), because Qk is a good surrogate model of the

underlying mean function f when ∆k is small. We can (a) approximate µ̄(x)

with Qk(x) and (b) approximate σ̂2(x) with σ̂2(xk). The second approxima-

tion is valid because the variances of function output at two points are very

close within a small trust region.

In fact, we enumerate 2n edge points (of {x| ‖x − xk‖ < ∆k}) which are

in standard coordinate directions from xk, and check their separability from

xk. The 2n points consist of a representative set of edge points. The stopping

criterion is met when a portion of the representative point set, i.e., 80% of



128

the 2n points, are separable from xk.

In practice, what we first calculate is a least ‘separable’ distance d. By

observing the posterior distribution with the approximations:

µ(x) − µ(xk)|X

∼ N(f(x) − f(xk), σ̂
2(x) + σ̂2(xk)/Nmax)

≈ N(Qk(x) − Qk(xk), 2σ̂
2(xk)/Nmax).

We compute d, satisfying

Pr(N(d, 2σ̂2(xk)/Nmax) ≥ 0) ≥ 1 − α,

via an inverse cdf function evaluation. Then, we say x and xk are ‘separable’

if and only if the difference |Qk(x) − Qk(xb)| ≥ d.

3.3.2 Numerical Results

Numerical Functions

We tested the noisy UOBYQA algorithm on several numerical examples and

compared it with two other noisy optimization tools, NOMADm (Nonlinear

Optimization for Mixed vAriables and Derivatives in Matlab) [2] and SPSA

(Simultaneous Perturbation Stochastic Approximation) [104]. NOMADm is

a pattern search algorithm that implements ranking and selection; and SPSA

is a line search algorithm that applies simultaneous perturbation for gradient

estimation.
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The test function we employed was the well-known extended Rosenbrock

function:

f(x) =
n−1∑
i=1

100(xi+1 − x2
i )

2 + (xi − 1)2.

The function has a global optima at the point (1, 1, . . . , 1)′n, at which the

optimal objective value attains 0. A noisy optimization problem was formu-

lated by adding a white noise term to the objective. We also applied our

algorithm to the ARGLINC function with very similar results.

We assume the random term ξ(ω) was independent of x and followed a

normal distribution with mean zero and variance σ2, indicating the levels

of noise. The starting point x0 was (−1.2, 1,−1.2, 1, . . . ,−1.2, 1)′n and the

initial trust region radius ∆0 was set to 2.

Table 8 presents the details about a single-run of the Noisy UOBYQA

algorithm to the two-dimensional Rosenbrock function. The variance σ2 was

set to 0.01, which was moderately noisy from our tested noise levels. We used

the following default setting of parameters: initial sampling number r0 = 3,

which is small but enough to generate sample mean and sample variance;

the significance level α = 0.2, the threshold value β = 0.4, the number of

trail solutions Nt = 20, and the maximum number of evaluations per point

Nmax = 60. The new termination criterion we introduced terminated the

algorithm earlier, at the 81st iteration. In fact, we did not observe notice-

able improvement in terms of objective value (0.0017 to 0.0016) between the

iteration 80 and 120, because the presence of noise deteriorated the accuracy
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in these iterations. In order to keep the algorithm running and maintaining

correct decisions, a large number of function evaluations were necessary. It

was therefore preferable to stop the algorithm early.

In the earlier iterations, the algorithm used relatively few function repli-

cations. This implied that when noisy effects were small compared to the

large function values, the basic operation of the method was unchanged.

Table 8: The performance of the Noisy UOBYQA algorithm for the Rosen-
brock function, with n = 2 and σ2 = 0.01.

Iteration (k) FN F (xk) ∆k

1 1 404 2
20 78 3.56 9.8 × 10−1

40 140 0.75 1.2 × 10−1

60 580 0.10 4.5 × 10−2

80 786 0.0017 5.2 × 10−3

X Stops with the new termination criterion
100 1254 0.0019 2.8 × 10−4

120 2003 0.0016 1.1 × 10−4

X Stops with the termination criterion ∆k ≤ 10−4

In Table 10, we further compare numerical results of UOBYQA, NO-

MADm and SPSA. We tested the Rosenbrock function of dimension 2 and

10. Increasing the dimension significantly increased computational burden.

To solve a 10-dimensional problem, we need 20000 function evaluations in

total. The different scales of noise variance σ2 were specified to be 0.001,

0.01, 0.1 and 1. We constrained the algorithm with various total number of

function evaluations. The parameter setting was the same as before, except
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that we used different Nmax when the total number of function evaluations

or the variance changed. A practically useful formula for Nmax was

Nmax =
Max FN

Iteration # (n)
· δ(σ2).

Here the iteration # represented the estimated number of iterations that the

algorithm should maintain for a given dimension. This is a rough estimate

and the actual number of iterations varies in different problems. δ(σ2) was

an adjustment value associated with the variance σ2. The algorithm used

a relatively smaller Nmax when the variance was small. We provide the

following suggested values in Table 9.

Table 9: Suggested values to define Nmax.

n 2 4 7 10
Iteration # 50 200 550 1000
σ2 0.001 0.01 0.1 1
δ(σ2) 2.5 3 3.5 4

As shown in Table 10, for the 2 dimensional case, our algorithms per-

formed better than the other two algorithms. The mean value was the

smallest among the peer algorithms. For the 10 dimensional case, when

the variance σ2 was large, our algorithm did not perform well. We should

note a fact that making the variance 10 times larger, from our previous theo-

retical analysis, we potentially require 10 times more function evaluations in

order to achieve the same scale of accuracy. That is why the quality of the



132

solutions decreased sharply as σ2 increased. Another aspect that influences

the performance may be the dimension of the problem. Powell has pointed

out that in higher dimensional problems, UOBYQA may not be practically

useful because the number of interpolation points L is huge. We think that

the Noisy UOBYQA algorithm inherits the limitation in the same way.

Simulation Problems

In this subsection, we applied the noisy UOBYQA algorithm to solve a pric-

ing problem via simulation. The parameters we considered were the prices

of M similar goods in a store, say, p1, p2, . . . , pM . When a customer arrives

at the store, he is sequentially exposed to the M goods by the store keeper,

from the most expensive good which is of the best quality to the cheapest

good. He decides to purchase the item or not after viewing it, but he will buy

at most one of them. For good i, we set the probability that the customer

purchases the item as

Probi = exp(−pi/ηi), i = 1, 2, . . . ,M.

The objective of the store keeper is to determine the best combination of

prices ~p = [p1, p2, . . . , pM ] which yields the largest expected profit. Running

the simulation for a period of time, if we denote the total number of customers

as m, and the number of customers who purchase good i as mi, we formulate
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Table 10: Apply the Noisy UOBYQA algorithm to the Rosenbrock function
(results are based on 10 replications of the algorithms).

n Noise
level
σ2

Max
FN

Noisy
UOBYQA

NOMADm SPSA

Mean
Error

Mean Er-
ror

Mean
Er-
ror

2

0.001 200 0.14 0.61 0.42
0.01 200 0.28 0.63 0.65
0.1 200 0.44 0.88 0.59
1 200 0.61 1.44 0.57
0.001 500 0.099 0.44 0.38
0.01 500 0.18 0.57 0.35
0.1 500 0.32 0.77 0.43
1 500 0.47 1.26 0.49
0.001 1000 0.024 0.44 0.30
0.01 1000 0.18 0.46 0.32
0.1 1000 0.20 0.77 0.34
1 1000 0.47 1.2 0.42

10

0.001 5000 0.042 0.63 2.3
0.01 5000 0.42 0.89 2.6
0.1 5000 0.97 1.24 2.9
1 5000 7.7 1.78 3.3
0.001 10000 0.033 0.54 2.3
0.01 10000 0.15 0.88 2.9
0.1 10000 0.77 1.2 3.6
1 10000 7.2 1.66 3.9
0.001 20000 0.022 0.32 2.1
0.01 20000 0.12 0.45 2.6
0.1 20000 0.53 0.50 3.4
1 20000 5.8 1.1 3.3
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the stochastic problem as:

max
~p

(Expected Profit), where Profit :=
M∑
i=1

mi

m
pi.

The precise solution is obtained from:

max
~p

(Expected Profit) (3.59)

:= max
~p

M∑
i=1

[(
i−1∏
j=1

(1 − Probj)

)
Probipi

]
.

We used Arena 9.0 from Rockwell software to model the pricing system.

We considered cases M = 2 and M = 10, where M also indicated the

dimension of the variable ~p. In computation of the Probi, the parameter ηi

can reflect the goodness of the merchandize. We set η1 = 50 and η2 = 20

in the two-dimensional case; set η1 = 50, η2 = 48, . . . , η10 = 32 in the ten-

dimensional case.

The Noisy UOBYQA algorithm and OptQuest (the optimization add-on

for Arena, <www.opttek.com>) were compared on the stochastic simulation

problem. (See results in Table 11.) We implemented the same parametric

setting of the algorithm as in the Section 3.3.2, except that we assigned the

initial trust region as 10, and the upper bound for replication usage as 200

and 2000 for the two cases respectively. By varying the number of customers

generated in each simulation run, we can have several levels of noisy “profit

value”. The table shows the different levels of variances of the output. We

compared with the real optimal solutions solved using the same ηi’s via (3.59).
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As we can see in the table, the Noisy UOBYQA algorithm did a uniformly

better job than OptQuest, with a higher quality of solutions. For all the

tested cases, the gap to the optimal solution was reduced around 50%.

Table 11: Optimization results of the pricing model (over average value of 10
runs), where the real solution for M = 2 is 23.23 and for M = 10 is 68.28.

ModelEstimated
vari-
ance

Max
FN

Noisy
UOBYQA

OptQuest

M=2

0.0022 200 0.10 0.29
0.014 200 0.25 0.39
1.1 200 0.45 1.05

M=10

0.0098 2000 0.78 1.32
0.093 2000 0.89 1.54
1.1 2000 1.47 2.98
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Chapter 4

Applications

We first discuss two real-world applications of the two-phase simulation opti-

mization procedure: the Wisconsin Breast Cancer Epidemiology model and

microwave ablation antenna design. Since these projects were completed

before the full WISOPT code was finished, many of the detailed steps in

WISOPT were not carried out exactly. For example, we only applied the

classification-based global search in Phase I in both examples and we used

the surrogate model + the Nelder-Mead method in Phase II for the Epidemi-

ology model. We will explain the two projects in details.

In addition, we apply the WISOPT code as detailed in Appendix A to

solve the ambulance base problem that was already described in Section 2.2.

This is a simulation problem in a higher dimension (n = 10) that has been

provided by [82] as an example of a typical problem of interest to the simu-

lation community. As an alternative approach, we apply the Noisy DIRECT

as the Phase I method and implement the CRN in the simulation code.
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4.1 The Wisconsin Breast Cancer Epidemi-

ology Simulation

4.1.1 Introduction

The Wisconsin Breast Cancer Epidemiology Simulation uses detailed individual-

woman level discrete event simulation of four processes (breast cancer natu-

ral history, detection, treatment and non-breast cancer mortality among US

women) to replicate breast cancer incidence rates according to the Surveil-

lance, Epidemiology, and End Results (SEER) Program data from 1975 to

2000. Incidence rates are calculated for four different stages of tumor growth,

namely in-situ, localized, regional and distant; these correspond to increasing

size and/or progression of the disease. Each run involves the simulation of

3 million women, and takes approximately 8 minutes to execute on a 1GHz

Pentium machine with 1Gb of RAM.

The four simulated processes overlap in very complex ways, and thus it is

very difficult to formulate analytical models of their interactions. However,

each of them can be modelled by simulation; these models need to take into

account the increase in efficiency of screening processes that has occurred

since 1975, the changes in non-screen detection due to increased awareness
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of the disease and a variety of other changes during that time. The sim-

ulations are grounded in mathematical and statistical models that are for-

mulated using a parametrization. For example, the natural history process

in the simulation can be modelled using a Gompertzian growth model that

is parameterized by a mean and variance that is typically unknown exactly,

but for which a range of reasonable values can be estimated. The overall

simulation facilitates interaction between the various components, but it is

extremely difficult to determine values for the parameters that ensure the

simulation replicates known data patterns across the time period studied. In

all there are 37 of these parameters, most of which interact with each other

and are constrained by linear relationships. Further details can be found in

[1, 39].

A score is calculated that measures how well the simulation output repli-

cates an estimate of the incidence curves in each of the four growth stages.

Using SEER and Wisconsin Cancer Reporting System (WCRS) data, we

generate an envelope that captures the variation in the data that might nat-

urally be expected in a population of the size we simulated (see Figure 25,

the y-axis indicates the incidence rate per 100,000 ). For the 26 years in con-

sideration, the four growth stages give a total of 104 points, each of which

is tested to see if it lies in the envelope. The number of points outside the

envelope is summed to give the score (0 is ideal). While it could be argued

that distance to the envelope might be a better measure, such calculations are
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scale dependent and were not investigated. Unfortunately, the score function

also depends on the “history” of breast cancer incidence and mortality that

is generated in the simulation based on a random seed value ξ(ω). We will

adopt the notation F (x, ξ(ω)) where x represents the vector of parameters,

and ξ(ω) indexes the replication. While we are interested in the distribution

(over ξ(ω)) of F (x, ξ(ω)), we will focus here on the problem:

min
x

max
ξ(ω)

F (x, ξ(ω)),

or alternatively, in terms of average

min
x

E[F (x, ξ(ω))].

4.1.2 Methods and Results

The purpose of this study is to determine parameter values x that generate

small values for the scoring function. Prior to the work described here,

acceptance sampling had been used to fit the parameters. Essentially, the

simulation was run tens of thousands of times with randomly chosen inputs

to determine a set of good values. With over 450,000 simulations, only 363

were found that had a score no more than 10. That is, for a single replication

ξ1, 363 vectors x had F (x, ξ1) ≤ 10.

Our first goal was to generate many more vectors x with scores no more

than 10. To do this, we attempted to use the classification-based global

search (Procedure 3 in Chapter 2) based on the scoring function data. The
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Figure 25: An envelop captures the variation of the incident curves in the
four stages.
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level set we considered is

L(c) = {x|F (x, ξ1) ≤ c} , for a fixed replication ξ1.

We typically use c = 5 to indicate good fit and c = 10 for acceptable param-

eter choices.

Since we have a vast majority of negative samples, the data-preprocessing

step was applied to yield a much balanced training data set. A great portion

of the negative samples were removed, resulting a training set containing all

the 363 positive samples and 500 negative samples. We trained an ensemble

of classifiers that predicted membership of L(c). Each resulting classifier was

evaluated on the testing set using the measures

TP =
# correctly classified positives

total # of positives

and TN =
# correctly classified negatives

total # of negatives

Classifiers were discarded if the value of TP was less than 0.9 (TN typi-

cally is around 0.4). The value was chosen to guarantee the probability of

removing positive points in error is small. 100,000 potential values for x were

uniformly generated in the feasible domain. Each of the classifiers selected

was used to determine if the point x was negative (and hence removed from

consideration). At that stage, there were 220 points that were hypothesized

to be positive. Evaluating these points via simulation, 195 were found to be

in L(10). Thus, with very high success rate (89%), our classification-based

global search is able to predict values of x that has a lower score F (x, ξ1).
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Since the classifiers are cheap to evaluate, this process facilitates a more

efficient exploration of the parameter space. Clearly, instead of using a single

replication ξ1, we could instead replace F (x, ξ1) by maxN
i=1 F (x, ξi) for some

ξ1, ξ2, . . . , ξN and N > 1. In fact this was carried out. The difficulty is that

we require replication data (for our experiments we choose N = 10) and we

update the definition of L(c) appropriately. However, the process we follow

is identical to that outlined here.

In our setting, x has dimension 37. Using expert advice, we only allowed 9

dimensions to change; the other 28 values were fixed to the feasible values that

have highest frequency of occurrence over the positive samples. For example,

if x37 can take possible values from [φ1, φ2, . . . , φn], then we set the value of

x37 to be arg minn
i=1

Pi

Wi
, where Pi and Wi are the number of appearances of

φi in the positive and whole sample set. This is similar to using a naive

Bayesian classifier to determine which value has the highest likelihood to be

positive. Our experiments showed this choice of values outperformed even

the values that experts deemed appropriate for these 28 values; a posteriori

analysis confirmed their superiority.

In Phase II local search, we employed the sample-path method which fixes

the number of replications N = 10 and derives the minimizers x∗,10. Since

we carried out multiple local optimizations, the best x∗,10 is treated as an

approximate solution to the underlying solution x∗. The evaluation process of

a single simulation run is expensive, therefore we performed the optimization
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tasks on a surrogate model (Section 1.1.1), which was constructed using a

set of samples.

1558 samples were selected for further evaluations with replications. In

this, we included the original 363 positive samples, another 195 positive

samples selected by the classifiers and 1000 negative samples from the original

data set. The 1000 negative samples were chosen such that their original

scores were less than or equal to 30. In this research, we fixed the other

28 parameters using the ‘optimal setting’ we calculated. Each parameter

sample was evaluated 10 times for the real function F (x, ξi), i = 1, 2, . . . , 10.

Since we used a different setting for the other 28 parameters, the new results

were a little different from the first replication, but the scores were generally

better. We found that 310 out of the 1558 samples had maximum score less

than 10.

The scores varied from replication to replication. We intended to solve

the problem of minimizing g(x), where g(x) is some combination of the mul-

tiple score values. We either let g(x) = maxn
i=1 F (x, ξi) or let g(x) = f̂N(x) =∑n

i=1 F (x,ξi)

N
to serve this purpose. Since the lowest possible score is 0, min-

imizing g(x) = maxN
i=1 F (x, ξi) is equivalent to reducing the upper bound.

Thus, minimizing g(x) also controls the distribution of function values. Our

results showed that there were only small differences among the different

choices of g(x). In subsequent work, we primarily used the objective func-

tion g(x) = maxN
i=1 F (x, ξi).
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Given the 10 replications of each sample, we used the DACE toolbox [72]

to fit a Kriging model ĝ(x) to the data, which we considered as a surrogate

function for our objective function g(x). We used the Nelder-Mead simplex

method (a derivative-free method) to optimize the surrogate function and

generated several local minimizers based on different trial starting points. It

is worth noting that: the first 5 parameters can be regarded as continuous

variables. The following 4 parameters: ‘aggr4Node’, ‘aggr5Node’, ‘lag’, ‘LM-

PRegress’ can only take on limited values. Actually, we found a total of 108

combinations for these 4 parameters. We implemented a simple branching

technique when searching for the minimizers of the surrogate function. The

min problem was split into 108 small sub-problems over the 5 continuous

variables, where in each sub-problem the 4 parameters are fixed to one set-

ting. The solution of the minimization problem is the best solution of the

108 sub-problems.

These local minimizers were evaluated by simulation. To improve our

results further, we updated the surrogate function with the simulation results

of the local minimizers and repeated the optimization. The parameter values

found using this process outperform all previous values found. Our best

parameter generated a score distribution with a mode of 2. Furthermore,

expert analysis of various output curves generated from the simulation results

with the best set of parameter values confirms the quality of this solution.

All the results showed that the surrogate function using the DACE toolbox
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performs well.

At the end, we summarize several evident conclusions:

• The classifier technique is cheap to use and predicts good parameter

values very accurately without performing additional simulations.

• An ensemble of classifiers significantly improves classification accuracy.

• Imbalanced training data has a detrimental effect on classifier behav-

ior. Ensuring the data is balanced in size is crucial before generating

classifiers.

4.2 The Coaxial Antenna Design in Microwave

Ablation

4.2.1 Introduction

Microwave ablation for the treatment of hepatic and metastatic tumors is a

promising alternative when surgical resection – the gold standard – is not

practical. In this procedure, a thin, coaxial antenna (probe) is inserted into

the tumor (either percutaneously or during open surgery) and microwaves are

radiated into the tissue. The alternating fields cause rapid rotation of the

polar water molecules resulting in heating of tissue and ultimately leading to

cell death. This cell death is a function of both temperature and time, where
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higher temperatures lead to cell death in a shorter period of time. Since

studies indicate that coagulated necrosis of tissue can be achieved within a

few seconds at 60 ◦C, a common metric to predict cell death and ultimately

lesion size is the 60 ◦C contour. Since this 60 ◦C metric is valid for both can-

cerous and normal tissue, design of the antenna radiation pattern is critical

to achieve a heating pattern affecting only cancerous tissue. To meet these

design needs, several types of coaxial antennas have been have been proposed

and optimized for this for this application and are reviewed in [5].

When optimizing a design or studying performance, most studies use av-

erage dielectric properties for liver tissue that have been measured previously

and are readily available in the literature [44]. However, due to the natu-

ral variation in tissue among individuals, measured dielectric properties of

healthy and tumorous liver tissue may differ by as much as ±10% from the

average value [105]. This variation means that a given patient’s tissue may

not have the same dielectric properties as those used in the design of an

antenna, leading to suboptimal performance. Therefore it is important to

ensure that antennas to be used for hepatic microwave ablation are robust,

i.e., relatively insensitive to changes in physical properties of the tissue.

We present a method for optimizing a coaxial antenna for microwave

ablation of hepatic and metastatic tumors that takes into account the vari-

ability in liver dielectric properties among individuals. This adds additional
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Figure 26: Structure of the floating sleeve antenna. Wall thicknesses of fixed
dimensions are labeled in the figure.

complexity to the optimization problem since the performance of a particu-

lar design is now a function of its dimensions (the design variables), as well

as some unknown variation in tissue properties. To design an antenna with

robust performance, we apply the two-phase optimization procedure in Sec-

tion 1.3. The two-phase approach addresses distinct goals: global and local,

in the optimization process.

To perform this optimization we rely upon computer models. Computer

models are a widely used tool in the design of antennas for microwave abla-

tion as they provide a quick, convenient and accurate method of estimating

antenna performance. Given the physical properties of liver tissue and tumor,

such models can be used to predict the EM field distribution and resistive
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heating in tissue due to a particular antenna design. A quantitative assess-

ment of a particular antenna design may then be obtained by extracting ap-

propriate metrics from solutions provided by the computer model. Suitable

metrics may be the efficiency of the antenna (fraction of the power supplied

that is deposited into the liver), size and shape of the predicted lesion com-

pared to the tumor, and diameter of the antenna. An optimization problem

may then be formulated where the design variables are the dimensions of the

antenna, and the objective function is obtained by combining the metrics in

some fashion [57]. The floating sleeve antenna presented in [112] was chosen

to be optimized in this study due to its ability to create large, constrained

lesions. A schematic of the antenna is shown in Figure 26. We have identified

dimensions of this antenna that may be optimized to yield desirable lesion

size, shape and efficiency, and we minimize the overall diameter of the probe.

4.2.2 Methods

Floating sleeve antenna

Yang et al [112] presented a floating sleeve antenna consisting of a coaxial

dipole antenna with a floating sleeve used to constrain power deposition to

the distal end. The structure of the antenna is shown in Figure 26. For a

particular operating frequency (usually 915 MHz or 2.45 GHz), dimensions

of the antenna that affect the radiation pattern and efficiency of the antenna
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Table 12: Design metrics in the sleeve antenna.

Parameter Range of values
Length of dipole tip 1 – 60 mm
Slot size 1 – 50 mm
Sleeve position 1 – 60 mm
Thickness of Teflon coating 0.1 – 1 mm
Thickness of Teflon isolation layer 0.1 – 1 mm
Length of sleeve 5 – 50 mm

are: (a) length of the dipole tip, (b) slot size, (c) sleeve position, (d) thickness

of Teflon isolation layer, (e) thickness of Teflon coating and (f) sleeve length.

Throughout this section, an individual design, x ∈ R6, may be expressed

as the vector of the design variables (a)–(f), in mm. As explained in [112],

the floating sleeve is effective in constraining the lesion longitudinally when

it is approximately a half wavelength long. Note that this is not half the

wavelength of a plane wave propagating through either liver or the Teflon

of the catheter. Rather, this is half a wavelength in the layered Teflon/liver

medium (outside the metal sleeve) whose effective properties are somewhere

between those of liver and Teflon and is a function of the Teflon thickness.

Therefore since we are varying the thickness of the Teflon layers we expect

the optimal sleeve length to change as well. Table 12 shows the range over

which of the dimensions (a)–(f) were varied.
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Finite element model of coaxial sleeve antenna

For this study we used the commercial finite element (FE) package, COM-

SOL Multiphysics v3.2 (COMSOL Inc. Burlington, MA) to simulate an-

tenna performance and determine the objective function for a given antenna

design. This software allows us to specify the geometry of an antenna design

and then solves Maxwell’s equations in the surrounding tissue. We coupled

this software with MATLAB, to perform the optimization of the antenna.

The model involves the antenna inserted into an infinitely large piece of

liver. Dimensions of the antenna as well as design variables are illustrated

in Figure 26. Input power was set to 120 W at an operating frequency

of 2.45 GHz. Due to the cylindrical symmetry of the geometry, we were

able to reduce computational burden by implementing an axially symmetric

model. A steady state nonlinear solver was used to compute the resistive

heating (Q(rrr)) which is proportional to the square of the local electric field.

Computation time for each simulation was approximately 11 s on a computer

with a 3 GHz Intel P4 processor and 1 GB memory.

Typically, constant values of dielectric properties are assumed when de-

signing an antenna. Often these properties are obtained from average values

reported in the literature for healthy human liver [29, 44, 105]. However

there is a natural variation in tissue among individuals. [105] have measured

dielectric properties of healthy and tumorous ex-vivo human liver at room

temperature in the 0.3–3 GHz range. Their results show standard deviations
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of ±10% in samples taken from different individuals. Also, it is expected that

the dielectric properties of this tissue will vary during the course of ablation as

tissue water content and temperature change from their steady state values.

As such, it is important to ensure that antennas used for microwave ablation

are robust, i.e., relatively insensitive to changes in the physical properties of

tissue. In this study, we used average values of dielectric constant (43.03)

and conductivity (1.69), as in [112] and assumed these dielectric properties

vary randomly as a Gaussian distribution with standard deviation ±10%

about this mean. Thus, the dielectric constant and conductivity may be ex-

pressed as N (43.03, 4.3032) and N (1.69, 0.1692). While we do not account

for changes in dielectric properties during the course of ablation, because

the antenna is more robust to variations in tissue properties, it should lead

to a better performance with respect to dielectric property changes during

the course of ablation. Moreover, it may be possible to utilize this noisy

optimization algorithm to take into account these changes in future studies.

The resistive heating (Q(rrr)) profiles calculated by the FE model are used

as input to a thermal model which predicts temperature profiles from which

an estimate of lesion size is obtained. For computational efficiency, we have

chosen to use a simple thermal model

Q(rrr) = ρc
dT (rrr)

dt
, (4.1)

where c [J/(kg·K)] and ρ [kg/m3] are the specific heat capacity and density
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of liver tissue, respectively, and dT/dt [K/s] is the change in local tempera-

ture with time. Here, for computational efficiency, we have ignored thermal

conductivity and the (cooling) effects of blood perfusion. The lesion size and

shape metrics are calculated using the 60 ◦C contour after 180 s with an

input power of 120 W.

Objective metrics for assessing antenna performance

In this study we are optimizing for lesion size and shape, antenna efficiency

and antenna size. In practice, design variables may be selected to fit the

heating pattern of an antenna to the tumor at hand. Since most tumors are

spherical in shape [112], our goal in this study was to optimize an antenna

to yield the lesion with largest radius and having a shape that is as close to

a sphere as possible. We identified two metrics to assess the size and shape

of the lesion: lesion radius and axial ratio. These metrics are illustrated for

an example Q(rrr) profile in Figure 27. Note that an axial ratio (as annotated

in Figure 27) of 0.5 would yield a spherical lesion shape. The efficiency of

an antenna may be measured by computing the reflection coefficient (S11dB)

– the ratio of power reflected to power input. The more negative the S11,

the more power is coupled into the liver. Reflected power was calculated

from the FE model by sampling the net time-averaged power flow at the

antenna feedpoint and subtracting from the input power (120 W). Finally,

the antenna being optimized may be used in a minimally invasive procedure
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Figure 27: Objective metrics for assessing size and shape of a Q(rrr) profile

Table 13: Objective metrics in the sleeve antenna design.

Metric Measure of Goal
Lesion radius Size of lesion in radial di-

rection
Maximize

Axial ratio Proximity of lesion shape
to a sphere

Fit to 0.5 (see figure 27)

S11 Efficiency of antenna Minimize (or maximize
|S11|)

Probe radius Radial size Minimize

(i.e., percutaneously); thus, it is desirable to yield a design with the smallest

radius. These objective metrics are summarized in Table 13.

We employ an algorithm that only handles a single objective function

and so the above four objectives need to be combined. A simple way to do

this is to assign weights to each metric, based on their relative importance,

and then sum up the weighted objectives. Since the range over which these

objectives vary is not the same, we normalized each objective by their largest

possible value so that the weighted sum is not skewed by the scale of each

individual metric. Each metric was deemed to be equally important and so

identical weights of 0.25 were assigned to each normalized objective. The
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optimization problem thus formulated is written as:

min
x∈R6

f(x)

:= E [F (x, ξ(ω))]

= E
[
−p1

Lesion(ξ(ω))

H1

+ p2
|AR(ξ(ω)) − 0.5|

H2

+

p3
S11(ξ(ω))

H3

+ p4
Probe(ξ(ω))

H4

]
, (4.2)

where the weights p1 = p2 = p3 = p4 = 0.25 and Hi represent normal-

ization values. The function F (x, ξ(ω)) is often called the sample response

function. The optimization formulation (4.2) aims to maximize the expected

performance among different individuals, whose specific physical parameters

ξ(ω) are extracted from predefined distributions. (In our case ξ(ω) indicates

the dielectric properties.) Besides (4.2), other robust formulations such as

minx∈Rn maxN
i=1 F (x, ξi) and minx∈Rn minN

i=1 F (x, ξi) are possible, but these

are not discussed here.

4.2.3 Results

Calibrating the antenna design metrics

We present a step by step explanation of the application of the two-phase

framework (Section 1.3) in antenna design, aiming to minimize the perfor-

mance measure f in (4.2). In Phase I, to prepare the training set for clas-

sifiers, we used the uniform LHS to generate 2,000 design samples and later
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evaluated them with one replication of the FE model. At this stage, the

combined objective values f were found to have a skewed distribution in the

range [-0.3705, 3597]. Roughly around 20% samples yielded objective values

in [0 3597], while the remaining 80% of the objective values covered the range

[-0.3705, 0]. For a clear view, we only plotted the histogram of the objective

values over the interval [-0.3705, 0] (see Figure 28(a)). Note that there were

no points in the range [-0.1, 0], which showed that the 20% bad set may be

outliers of the simulation. But we still include them in the training set as

negative samples.

We set the level set parameter c to be -0.2765, which was the 10% quantile

of the objective values. The level set

L(c) = {F (x, ξ1) ≤ −0.2765}

thus defined contained 199 positive samples and the remaining 1801 sam-

ples (/∈ L(c)) were labelled as negative. This is an ill-balanced training set.

Thereby, we applied the one-sided under-sampling method (Procedure 2 in

Section 2.1) to reduce the number of negative samples to 388. The method

first applies the 1-NN rule to obtain a consistent training set and then re-

moves of Tomek links. By duplicating the positive samples, we ended up

with a much more balanced set with 398 positive vs. 388 negative samples.

The ratio of positive to negative was mitigated greatly from 1:9 to 1:1.

Before assembling classifiers, the 6 candidate classifiers were tested on

the training set. We employed the criterion g-mean g ≥ 0.5 to examine the
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accuracy of each classifier. After training and testing the classifiers on two

separate subsets respectively (Procedure 1 in Section 2.1), the observed g-

means were: SVM linear kernel 0.8149, SVM quadratic kernel 0.4852, SVM

cubic kernel 0.7661, SVM Gaussian kernel 0.8306, C4.5 0.6532 and 5-NN

0.7549. Only the SVM with quadratic kernel did not meet our criterion

and was therefore dropped from our ensemble. The other 5 classifiers were

included to our ensemble and trained with the full data set.

For vast alternative designs, we again used the uniform LHS to generate

a number of much more refined data: 15,000 designs. We felt the distances

among the designs were already sufficiently small and suitable for the local

search in Phase II. After the prediction of the ensemble of classifiers, only 522

out of the 15,000 designs were classified as positive. These newly discovered

positive samples were further evaluated with our FE model. This time, 74%

designs were found to be correctly predicted and located in the level set L(c).

The best design we obtained yielded objective value -0.3850. As a compari-

son, the histogram of the second stage data over the range [-0.3850, 0] was

plotted in Figure 28(b). We can clearly see that our newly identified designs

were much better than the previous training set, implying that we indeed

sampled over a superior region. The mode of the distribution improved from

-0.17 to -0.31.

The multistart optimization using the phase transition procedure gener-

ated the set I of 10 initial points, with corresponding initial trust region
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(b) Our new antenna design

Figure 28: Histograms of the objective values

radii.

In Phase II local optimizations, we employed the VNSP-UOBYQA al-

gorithm because CRN can be implemented in the FE model. As a general

setting for the algorithm, we set the initial number of samples N0 = 3, which

was used to estimate the initial sample mean and sample covariance matrix,

and set a predefined sequence:

αk = 0.1 × (0.98)k. (4.3)

This sequence satisfies the assumptions required in the convergence the-

ory [27]. Other choices (instead of 0.1 and 0.98) are clearly possible, but

we found these values to work well in this application setting. Future work

will determine an automatic scheme to set these values. We limited the

maximum number of function evaluations to 2000, therefore, it took roughly
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6 h for the entire optimization process. We chose the initial trust region ra-

dius ∆0 to be 1, which corresponded to a 1 mm local search region centered

around the initial design x0. The normalization values in (4.2) were H1 = 3,

H2 = 0.5, H3 = 30, and H4 = 0.5, which correspond to maximum values

expected for each of the individual metrics. The VNSP-UOBYQA algorithm

was applied 10 times using each starting point in I. At the end of Phase II,

the best design out of the 10 local optimums is (9.67 1.62 19.53 0.42 0.12

16.11).

Discussion

While comparison of the compound objective function shows that the opti-

mization procedure helped yield an improved design x∗ = (9.67 1.62 19.53

0.42 0.12 16.11), it is important to confirm that improved performance was

achieved in terms of the individual metrics. The goal of the optimization

process was twofold: (a) improve robustness of the design so that each in-

dividual metric is less sensitive to variations in tissue dielectric parameters

among individuals and (b) to improve the values of each of the individual

metrics. Figure 29 shows the distribution for each of the individual metrics

of the optimal design and the design in [112] for a common random sample

of 100 different values for the dielectric properties within the ±10% specified

range. Also included are the distributions of design presented in [112].
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The antenna presented by [112] has the following objective metrics: le-

sion radius = 1.92 cm, axial ratio = 0.42, S11 = -15.9 dB and probe radius =

0.17 cm. In comparison, the optimal design presented in this work has objec-

tive metrics: lesion radius = 2.03 cm, axial ratio = 0.48, S11 = -17.8 dB and

probe radius = 0.20 cm. Table 15 provides the mean and standard deviation

for each of the individual metrics.

These results indicate the two-phase procedure yields a design which has

improved values for the compound objective and each of the individual ob-

jective metrics when compared to the original design of the sleeve antenna,

except for probe radius. In particular, the variation in the axial ratio and

reflection coefficient of the optimal design are 24% and 90%, respectively,

lower than the original design. Although the average value of the lesion ra-

dius of the optimal design is larger than that of the original design, there is

a 15% increase in standard deviation. If this is an potential issue, we could

augment our objective function to incorporate this feature; for example, by

introducing an additional term that limits the standard deviation. The probe

radius is a function of the physical dimensions of the antenna and is thus in-

dependent of any variations in tissue properties, which explains its variance

of 0 in Table 15.

Figure 30 shows Q(rrr) heating profiles of Yang et al’s design compared

to the optimal design presented here when simulating using the average val-

ues for dielectric parameters. The optimal design not only creates a larger
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(a) (b)

(c) (d)

Figure 29: Variations of individual objective metrics (frequency plot). (a)
Lesion radius, (b) |Axial ratio - 0.5|, (c) S11, (d) Probe radius

Table 14: Comparison of dimensions of the original and optimized antennas.

Parameter Design by
Yang et al.

Our optimal
design

Length of dipole tip 9.00 mm 9.67 mm
Slot size 2.00 mm 1.62 mm
Sleeve position 20.00 mm 19.53 mm
Thickness of Teflon coating 0.15 mm 0.42 mm
Thickness of Teflon isolation layer 0.15 mm 0.12 mm
Length of sleeve 16.00 mm 16.11 mm
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Table 15: Comparison of the objective metrics of the original and optimized
antennas.

Design by Yang et al Our optimal design
Mean Std Mean Std

Lesion radius 1.9190 0.0628 2.0313 0.0727
|Axial ratio - 0.5| 0.0785 0.0311 0.0239 0.0237
S11 -15.89 0.2751 -17.75 0.0268
Probe radius 0.1730 0 0.1970 0

lesion, but also does better in constraining the lesion to the distal end of

the antenna. The antenna designed in [112] has a Q(rrr) profile with a ‘tail’

along the axis of the antenna, as is clear from Figure 30(a). Note that for

both antennas, the actual longitudinal extent of the lesion after taking into

account thermal conductivity is likely to be even larger, thereby potentially

destroying large amounts of healthy tissue. While it is plausible that the

optimal design may also exhibit a ‘tail’ in the lesion after considering effects

of thermal conductivity, it is likely to be much smaller since the amount of

electromagnetic power deposited along the axis of the coaxial cable is much

smaller.

The probe radius of the optimal design is slightly larger than that in [112].

However, both designs are well within the range of probes typically used in

percutaneous applications. If a smaller probe radius is desirable, the weight

associated with this metric (w4) may be emphasized. There is also a slight

improvement in reflection coefficient, although the difference in the actual
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(a) (b)

Figure 30: Comparing simulated Q(rrr) profiles using the average dielectric
properties (43.03,1.69). (a) antenna design presented by Yang et al (b) opti-
mal design derived by our algorithm

amount of power reflected is negligible.

The optimized antenna has a Q(rrr) profile with axial ratio closer to 0.5

(which is the axial ratio a perfectly spherical lesion would yield) than Yang

et al’s design. Notice that the shape of the Q(rrr) profile is not perfectly

spherical. This is because the metric employed only considers the extents of

the lesion in the longitudinal and radial directions. An improved metric that

analyzes the shape of the lesion along its entire boundary may help yield

even better designs.

4.2.4 Conclusions

We have optimized the design of a floating sleeve antenna for microwave ab-

lation of hepatic tumors using the two-phase optimization framework. This

was done by identifying desirable features for a coaxial antenna for this ap-

plication and formulating a mathematical optimization problem to select

the dimensions of the floating sleeve antenna that optimize these features.
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We accounted for the natural variation in physical properties of liver tu-

mors/tissue among individuals by incorporating a stochastic component into

the optimization problem.

We achieved a substantial improvement in the variation in two of the three

objective metrics (axial ratio and S11) as a function of dielectric properties of

the tissue, although variation in lesion radius slightly increased. Mean values

of all the objective metrics of the optimum design except the probe radius

were superior to the original design of the sleeve antenna.

While our method yields an improved design, several aspects of the pro-

cedure may be enhanced to yield even better performance. The metric we

have used for assessing lesion shape only utilizes knowledge of the maximal

extents in the radial and longitudinal directions. An improved metric would

analyze features along the entire lesion boundary. In order to ease compu-

tational burden, we have neglected effects of thermal conductivity. These

effects may be included to improve the accuracy of the finite element model.

Lastly, availability of more measurements of dielectric properties of human

liver tumors would allow for better modeling in the variation of these prop-

erties.
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4.3 Ambulance Base Problem

The ambulance base problem aims to determine the optimal locations of

ambulance bases such that the averaged response time of an ambulance to

an emergency call is minimized. A detailed description of the problem can

be found in Section 2.2. As a specific example, we consider 5 ambulance

bases, whose locations are p(i), i = 1, 2, . . . , 5, in the region [0, 1]2 (therefore,

the problem is a 10 dimensional optimization problem). We assume that

the emergency calls arrive following a Poisson process and the positions of

the calls follow a joint triangle distribution g(x1, x2) = ĝ(x1)ĝ(x2), where

ĝ(x) is a one-dimensional triangle distribution ĝ0,1,0.8(x). As an illustration,

we plot in Figure 33 a distribution of simulated call locations, with a mode

at [0.8, 0.8]. The other simulation parameters used were the same as that

presented in the former example; for example, we used a simulation time of

500 hours, arrival rate λa = 0.5 and the speed of the ambulance v = 0.5.

Instead of using 20,000 simulation runs to derive an exact solution using

Noisy DIRECT, we took the two-phase approach and scheduled 10,000 sim-

ulation evaluations in Phase I and another 10,000 simulation evaluations in

Phase II local optimizations. Other options of the Noisy DIRECT were the

default values (listed in the appendix). Table 16 shows the iterations of the

Noisy DIRECT algorithm.

At the end of phase I, we observe that a total of 431 possible points were
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Figure 31: A distribution of emergency calls

Table 16: The output of Noisy DIRECT in the ambulance base problem

Iteration (k) F̄ (xk) #Point # Function
Evals

1 0.5305 21 63
2 0.4490 39 117
3 0.4254 73 219
4 0.4208 103 1496
5 0.3715 145 2756
6 0.3715 185 3588
7 0.3715 223 4296
8 0.3640 319 6794
9 0.3505 431 10345
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considered. Counting replications at the points, the algorithm used 10345

total function evaluations. The best solution in Phase I yields an objective

value 0.3505. The 431 points were passed to the phase transition module,

and we obtained 10 starting points for Phase II local optimizations. Since

the 5 positions of ambulance bases were arranged in the variable x, switching

the sequence of points is considered to be different local solutions. Indeed,

when we plot the positions of the 10 starting points xi
0, i = 1, 2, . . . , 10, we

notice that it only has two types of patterns involved (Figure 32). Both

patterns are roughly symmetric about the diagonal but the orientations are

different. Future work will investigate how to deal with symmetric solutions

of this nature.

Since we were able to set the random seed in each simulation run, the

VNSP-UOBYQA was applied in Phase II for the CRN case. For each run of

the algorithm, we constrained a maximum 1,000 function evaluations. The

best solution is plotted in Figure 32 and it yielded an objective value 0.3234.

As we have explained, the output is a sample average of the replicated outputs

and is biased by noise. To test the quality of this solution, we plugged it into

the same refined model (in Section 2.2) which uses a much longer simulation

time. The result turned out to be 0.3301, slightly better than the result

computed in Section 2.2 and closer to the computed value of the global

minimum.
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(a) First (b) Second

Figure 32: Two possible patterns of ambulance bases

Figure 33: Positions of the ambulance bases.



168

Chapter 5

Monte Carlo Simulation

Efficiency in Neuro-Dynamic

Programming

Monte Carlo simulation plays an important role in neuro-dynamic program-

ming (NDP)/reinforcement learning [9]. NDP is a class of reinforcement

learning methods that approximate the optimal cost-to-go function. The

idea of an approximate cost function helps NDP avoid the curse of dimen-

sionality and distinguishes the NDP methods from earlier approximation

versions of dynamic programming (DP) methods. Sub-optimal DP solutions

are obtained at significantly smaller computational cost.

Rollout algorithms in NDP may approximate the cost-to-go function by

simulation using a heuristic policy. At each stage, a policy improvement is

calculated using the simulation approximation to estimate future costs. In

this chapter, we discuss how to improve Monte Carlo simulation efficiency

in deriving rollout policies/controls for stochastic optimal control problems.
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‘Efficiency’ explicitly refers to consuming the least simulation effort (time)

while obtaining accurate rollout policies. We perform Bayesian analysis for

Monte Carlo simulation output, and accordingly we are able to 1) evaluate

the accuracy of selected policies and 2) optimally allocate additional simula-

tion evaluations to improve the accuracy. A small scale fractionated radio-

therapy problem is presented to illustrate the advantages of our simulation

allocation procedures.

5.1 Introduction

Every year, nearly 500,000 patients in the US are treated with external beam

radiation, the most common form of radiation therapy. Before receiving irra-

diation, the patient is imaged using computed tomography (CT) or magnetic

resonance imaging (MRI). The physician contours the tumor and surrounding

critical structures on these images and prescribes a dose of radiation to be de-

livered to the tumor. Intensity-Modulated Radiotherapy (IMRT) is one of the

most powerful tools to deliver conformal dose to a tumor target [11, 111, 93].

The treatment process involves optimization over specific parameters, such

as angle selection and (pencil) beam weights [33, 34, 79, 102]. The organs

near the tumor will inevitably receive radiation as well; the physician places

constraints on how much radiation each organ should receive. The dose is

then delivered by radiotherapy devices, typically in a fractionated regime
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consisting of five doses per week for a period of 4–9 weeks [36].

Generally, the use of fractionation is known to increase the probability of

controlling the tumor and to decrease damage to normal tissue surrounding

the tumor. However, the motion of the patient or the internal organs between

treatment sessions can result in failure to deliver adequate radiation to the

tumor [68, 110]. We classify the delivery error in the following types:

1. Registration Error (see Fig. 34 (a)). Registration error is due to the

incorrect positioning of the patient in day-to-day treatment. This is

the interfraction error we primarily consider in this paper. Accuracy in

patient positioning during treatment set-up is a requirement for precise

delivery. Traditional positioning techniques include laser alignment to

skin markers. Such methods are highly prone to error and in general

show a displacement variation of 4–7mm depending on the site treated.

Other advanced devices, such as electronic portal imaging systems, can

reduce the registration error by comparing real-time digital images to

facilitate a time-efficient patient repositioning [93].

2. Internal Organ Motion Error, (Fig. 34 (b)). The error is caused by

internal motion of organs and tissues of a human body. For example,

intracranial tissue shifts up to 1.5 mm when patients change position

from prone to supine. The use of implanted radio-opaque markers allow

physicians to verify the displacement of organs.



171

3. Tumor Shrinkage Error, (Fig. 34 (c)). This error is due to tumor

area shrinkage as the treatment progresses. The originally prescribed

dose delivered to target tissue does not reflect the change in tumor

area. For example, the tumor can shrink up to 30% in volume within

3 treatments.

4. Non-rigid Transformation Error, (Fig. 34 (d)). This type of intrafrac-

tion motion error is internally induced by non-rigid deformation of or-

gans, including for example, lung and cardiac motion in normal breath-

ing conditions.

In our model formulation, we consider only the registration error between

fractions and neglect the other three types of error. Internal organ motion

error occurs during delivery and is therefore categorized as an intrafraction

error. Our methods are not real-time solution techniques at this stage and

hence are not applicable to this setting. Tumor shrinkage error and non-

rigid transformation error mainly occur between treatment sessions and are

therefore called interfraction errors. However, the changes in the tumor in

these cases are not volume preserving and incorporating such effects remains

a topic of future research. The principal computational difficulty arises in

that setting from the mapping of voxels between two stages.
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(a) Registration error (b) Internal organ shifts

(c) Tumor area shrinks (d) Non-rigid organ transformation

Figure 34: Four types of delivery error in hypo-fraction treatment

Off-line planning is currently widespread. It only involves a single plan-

ning step and delivers the same amount of dose at each stage. It was sug-

gested in [10, 71, 108] that an optimal inverse plan should incorporate an

estimated probability distribution of the patient motion during the treat-

ment. Such distribution of patient geometry can be estimated [22, 54], for
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example using a few pre-scanned images, by techniques such as Bayesian in-

ference [109]. The probability distributions vary among organs and patients.

An alternative delivery scheme is so called on-line planning, which in-

cludes multiple planning steps during the treatment. Each planning step

uses feedback from images generated during treatment, for example by CT

scans. On-line replanning accurately captures the changing requirements for

radiation dose at each stage, but it inevitably consumes much more time at

every replanning procedure.

We formulate a dynamic programming (DP) framework that solves the

day-to-day on-line planning problem. The optimal policy is selected from

several candidate deliverable dose profiles, compensating over time for move-

ment of the patient. The techniques are based on neuro-dynamic program-

ming (NDP) ideas [9], which compute sub-optimal policies. Besides the NDP

approaches, Sir et al [103] has applied other approximation techniques to

solve the DP problem; for example, certainty equivalent control and open-

loop feedback control.

In neuro-dynamic programming/reinforcement learning [6, 9, 47, 106],

Monte Carlo simulation has been extensively used to evaluate cost structure

when explicit form of the cost structure is not available or hard to obtain.

Simulated cost values are incorporated in optimization procedures to select

optimal policies, moreover, these values are employed in training for approxi-

mate cost-to-go functions. When incorporated within an optimization, Monte
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Carlo simulation may involve substantial computation and dominate the so-

lution time. Computational efficiency of simulation arises as a challenging

issue in algorithmic design.

We focus on analyzing the rollout algorithm [6, 7, 8, 9, 36], one of ap-

proximate dynamic programming (ADP) techniques, for stochastic optimal

control problems. The rollout algorithm performs a one-time policy improve-

ment over an existing heuristic policy (or possible multiple heuristic poli-

cies). To illustrate, consider a discrete-time finite horizon control problem

with N stages/periods. We assume the existence of perfect state information

xk, k = 0, 1, . . . , N, and suppose the state evolves according to a transition

function fk:

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1. (5.1)

Here uk is the policy function applied to xk at stage k and is drawn from a

finite collection of policies Uk. www = {w0, w1, . . . , wN−1} is a random vector in

the state transition. Each component wk follows a pre-defined probability dis-

tribution. The system yields an instantaneous cost/error gk(xk, uk(xk), wk)

at stage k and a final terminal cost gN(xN) at the last stage. Given an initial

state x0, we aim to find a policy vector uuu = {u0, u1, . . . , uN−1} that minimizes
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an expected total cost-to-go starting from stage 0:

J∗
0 (x0) = (5.2)

min
uuu:uj∈Uj ,

j=0,1,...,N−1

Ewww


N−1∑
k=0

gk (xk, uk, wk) + gN(xN)
xk+1 = fk(xk, uk, wk),

k = 0, 1, . . . , N − 1

 .

If we denote a cost-to-go function associated with the policy vector uuu and

starting from stage k by

Juuu
k (xk) = Ewww


N−1∑
j=k

gj(xj, uj, wj) + gN(xN)
xj+1 = fj(xj, uj, wj),

j = k, k + 1, . . . , N − 1

 ,

then the optimal cost-to-go function is simply

J∗
k (xk) = min

uuu:uj∈Uj ,
j=0,1,...,N−1

EwwwJuuu
k (xk).

In particular, we have the recursive form of optimal cost-to-go functions

J∗
k (xk) = min

uk∈Uk

Ewk

[
gk(xk, uk, wk) + J∗

k+1(fk(xk, uk, wk))
]
. (5.3)

The key idea of ADP centers around approximating the optimal cost-

to-go function J∗
k+1 with a simple-form function. Specifically, the rollout

algorithm approximates the function J∗
k+1 by a heuristic cost-to-go function

Jµµµ
k+1, where Jµµµ

k+1 is obtained by applying the heuristic policy µµµ starting from

stage k and in all future stages. The heuristic policy µµµ is called the base
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policy. Define the Q-factor of (xk, uk) based on the heuristic policy µµµ as

Qµµµ
k(xk, uk) = Ewk

[
gk(xk, uk, wk) + Jµµµ

k+1(fk(xk, uk, wk))
]

(5.4)

=
∑
wk

p(xk, uk, wk)
(
gk(xk, uk, wk) + Jµµµ

k+1(fk(xk, uk, wk))
)
,

where state xk evolves to the next stage with a transition probability p(xk, uk, wk).

This method yields a rollout policy

µ̄k(xk) = arg min
uk∈Uk

Qµµµ
k(xk, uk). (5.5)

The above equation corresponds to a one-step lookahead policy update. If

the heuristic policy µk is one of the policies in Uk, it is shown in [6] that the

rollout policy outperforms the heuristic policy

Jµ̄µµ
k (xk) ≤ Jµµµ

k (xk).

The heuristic cost Jµµµ
k+1(xk+1) = Jµµµ

k+1(fk(xk, uk, wk)) may be evaluated

by Monte Carlo simulation when no closed form of Jµµµ
k+1 is available. Sim-

ulation generates a collection of sample trajectories from xk+1: {x̃k+1,i =

xk+1, x̃k+2,i, . . . , x̃N,i}, i = 1, 2, . . . ,M . Each of them uses one set of real-

ized random values {w̃k+1,i, w̃k+2,i, . . . , w̃N−1,i}. The corresponding sample

cost-to-go equals the sum of cumulative instantaneous costs plus the final

cost

cµµµ
i (xk+1) =

N−1∑
j=k+1

gj(x̃j,i, µj, w̃j,i) + gN(x̃N,i).

The heuristic cost is estimated by

Jµµµ
k+1(xk+1) ≈ J̃µµµ

k+1(xk+1) =
1

M

M∑
i=1

cµµµ
i (xk+1). (5.6)
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Such a simulation process can be time-consuming, depending on the com-

plexity of the dynamic system and the number of simulation runs/replications

M . We expect that a lager M improves the Monte Carlo estimation accu-

racy in (5.6), thus generating correct rollout policies, c.f., (5.5). Simulation

error results in suboptimal policies, and possibly yields a lower-performance

rollout policy than the base policy. Traditionally, the number M is set at

a ‘large value’, and is uniform for all states at all stages, but the result of

the setting is ambiguous. (Note that there are two levels of approximations

involved

J∗
k ≈ Jµµµ

k and Jµµµ
k+1 ≈ J̃µµµ

k+1.

The discussion on simulation accuracy is in relation to the second level ap-

proximation, which is affected by the sample average approximation error in

(5.6).)

In this chapter, we discuss an improvement to the computational effi-

ciency of the Monte Carlo estimation. We deal with the tradeoff between

rollout algorithm accuracy and Monte Carlo simulation efficiency. On one

hand, we improve the precision of selecting rollout policies by increasing the

number of simulation runs. On the other hand, we control the total number

of simulation runs in order to save computation. In practical implementa-

tion, variable sample sizes M may be allowed for different states xk+1 and a

mechanism to determine appropriate sizes Mxk+1
is needed. The ideal pat-

tern would be: promising states are assigned more simulation replications
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in order to get accurate cost estimates; while for inferior states, a minimum

number of replications should be used.

Our approach constructs a Bayesian posterior estimation for simulation

outputs, and incorporates the posterior distribution information in the roll-

out algorithm. In Section 5.2, we first analyze the probability of correct

selection (PCS) of rollout policies, given a fixed number of simulation repli-

cations. Secondly, in Section 5.3 we design a computation resource allocation

scheme that can appropriately schedule additional simulation replications to

obtain certain policy accuracy. Section 5.4 details numerical results on a

fractionated radiotherapy example.

5.2 Evaluating Rollout Policy Accuracy

We outline some further details of the stochastic dynamic programming

model. More specifically, we assume the dynamic model has these properties:

• a finite horizon with N stages.

We do not consider infinite horizon problems, because in such prob-

lems, the lengths of simulated sample trajectories may vary. Typically,

a simulated trajectory is terminated early before reaching the final

stage, when there is an evidence that a good sample cost is obtained.

This complicates the problem and its analysis by introducing early ter-

mination error in addition to the sample average error in (5.6).
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• a finite policy set Uk = U = {ûl, l = 1, 2, . . . , L}.

Note that Uk ≡ U,∀ k, but this can generalized easily at the expense

of extra notations. If the policy set U consists of continuous or infinite

many candidate policies, we can select a representative finite policy

subset out of the original set. A typical example is the radiotherapy

problem in Section 5.4.

• the transition random variable wk has a finite number (D) of realiza-

tions.

• a finite or infinite state space S for xk.

In Section 5.1, we have mentioned that Monte Carlo simulation is em-

ployed to calculate the approximate heuristic costs J̃µµµ
k+1(fk(xk, uk, wk)), and

therefore yields approximate Q-factors

Q̃µµµ
k(xk, uk) = Ewk

[
gk(xk, uk, wk) + J̃µµµ

k+1(fk(xk, uk, wk))
]
.

Note that Q̃µµµ
k(xk, uk) is a random variable depending on the realizations of

{wk+1, wk+2, . . . , wN−1}. The rollout policy µ̄k may be imprecise due to the

sample average estimation error. The probability of correct selection (PCS)

is a measure to quantify the accuracy of the selected policy µ̄k

PCS = Pr
(
Q̃µµµ

k(xk, µ̄k) + δ ≤ Q̃µµµ
k(xk, ûl),∀ ûl ∈ U/µ̄k

)
, (5.7)

where δ is an indifference-zone parameter. An indifference-zone formula-

tion (5.7) [62] is introduced instead of direct comparisons Q̃µµµ
k(xk, µ̄k) ≤
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Q̃µµµ
k(xk, ûl), ∀ ûl ∈ U/µ̄k. The approach essentially ignores the Q-factor dif-

ference within the indifference-zone parameter δ thus relaxes the difficulty of

distinguishing the difference between two Q-factors. For certain situations,

the formulation is necessary; for example when different policies ûl for xk

yield identical Q-factor values.

In Section 5.2.1, we describe how to construct Bayesian posterior estima-

tion for the heuristic cost Jµµµ
k+1(xk+1). Both mean and variance information

is modeled by posterior distributions. In Section 5.2.2, we describe how to

employ the Bayesian information to compute the PCS of the selected policy.

5.2.1 Bayesian Posterior Estimation

The heuristic cost Jµµµ
k+1(xk+1) is estimated by the average of Monte Carlo

sample costs cµµµ
i (xk+1), i = 1, 2, . . . ,M , c.f., (5.6). We assume that the under-

lying distribution of sample costs follows a normal distribution with mean

θ(xk+1) and variance σ2(xk+1)

cµµµ
i (xk+1) ∼ N

(
θ(xk+1), σ

2(xk+1)
)
.

Based on the observed sample costs cµµµ
i (xk+1), we can derive the Bayesian pos-

terior distributions for the unknown parameters θ and σ2. (For convenience,

we ignore the state xk+1 and use the notations θ and σ2 in this subsection.)

The mean parameter θ corresponds to the heuristic cost Jµµµ
k+1(xk+1) and is of

more interest to us.
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In the Bayesian framework, the mean θ and variance σ2 are considered as

random variables, whose distributions are inferred by Bayes’ rule. Following

the procedures in Section 1.2, we can asymptotically derive the posterior

distribution of θ|X as

θ|X ∼ N(θ̄, σ̂2/M). (5.8)

Here θ̄ and σ̂2/M are the sample mean and sample variance, respectively.

‘|X’ stands for the posterior distribution given evaluated dataset.

5.2.2 Computing the PCS

Variable sample sizes M are admissible and can potentially save a significant

amount of computational effort. Suppose a total of Mxk+1
simulated trajec-

tories are generated to evaluate Mxk+1
sample costs cµµµ

i (xk+1); see Figure 35

for an illustration. According to the Bayesian analysis in Section 5.2.1, we

have the posterior estimation for the cost-to-go

Jµµµ
k+1(xk+1)|X = θ(xk+1)|X ∼ N

(
θ̄(xk+1),

σ̂2(xk+1)

Mxk+1

)
. (5.9)

By plugging (5.9) into (5.5), we see that

Qµµµ(xk, uk)|X =
∑
wk

p(xk, uk, wk)
(
gk(xk, uk, wk) + Jµµµ

k+1(fk(xk, uk, wk))|X
)

(5.10)

also follows a normal distribution, because a linear combination of normal

random variables is a normal variable. According to the definition in (5.7),
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Figure 35: Mxk+1
sample trajectories are simulated to evaluate the sample

costs starting from the state xk+1.

the PCS of the selected rollout policy can therefore be estimated via the

posterior probability

PCS = Pr
(
Q̃µµµ

k(xk, µ̄k) + δ ≤ Q̃µµµ
k(xk, ûl), ∀ ûl ∈ U/µ̄k

)
≈ Pr (Qµµµ

k(xk, µ̄k)|X + δ ≤ Qµµµ
k(xk, ûl)|X,∀ ûl ∈ U/µ̄k) (5.11)

≥ 1 −
∑

l=1,2,...,L
ûl 6=µ̄k

Pr (Qµµµ
k(xk, µ̄k)|X + δ > Qµµµ

k(xk, ûl)|X)

= 1 −
∑

l=1,2,...,L
ûl 6=µ̄k

Pr (Qµµµ
k(xk, ûl)|X − Qµµµ

k(xk, µ̄k)|X < δ) . (5.12)

In the above derivations, the first approximation is a substitution of Bayesian

posterior distributions. The probability value can be computed based on the

distributions of normal posterior variables Qµµµ
k(xk, uk)|X. The inequality is

by Bonferroni’s inequality [30]. Applying the inequality changes the joint
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probability evaluation (5.11), which is difficult to calculate, to simple-form

pairwise computations. Note that the pairwise subtraction Qµµµ
k(xk, ûl)|X −

Qµµµ
k(xk, µ̄k)|X is a normally distributed variable

Qµµµ
k(xk, ûl)|X − Qµµµ

k(xk, µ̄k)|X ∼ N(a, b). (5.13)

If we denote

Q̄µµµ
k(xk, uk) =

∑
wk

p(xk, uk, wk)
(
gk(xk, uk, wk) + θ̄(fk(xk, uk, wk))

)
,

then the parameters a and b are

a = Q̄µµµ
k(xk, ûl) − Q̄µµµ

k(xk, µ̄k),

b =
∑
wk

(
p2(xk, ûl, wk)

σ̂2(fk(xk, ûl, wk))

Mfk(xk,ûl,wk)

+ p2(xk, µ̄k, wk)
σ̂2(fk(xk, µ̄k, wk))

Mfk(xk,µ̄k,wk)

)
.

A lower bound estimate for the PCS is provided in (5.12), which is relatively

easy to evaluate. Each probability component is a simple cdf calculation.

Given simulated sample costs, we analyze the accuracy of the selected

rollout policies. Since we implement the Bayesian probability calculation,

the PCS is the so called Bayesian PCS, which is a subjective probability

value based on available sample costs. Besides the PCS evaluation, our

analysis also provides an overall picture of the distributions of Q-factors;

Figure 36 shows a plot of mean and variance of each Q-factor. Increasing

the number of simulation replications can potentially decrease the variance

of posterior Q-factors (making the shape of the curve narrower), and can

therefore assist the selection process.
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Figure 36: The posterior distribution plot of Q-factors. The rollout policy
corresponds to the best Q-factor.

5.3 Allocating Simulation Resource

5.3.1 The Resource Allocation Scheme

At each stage, our objective is to obtain a certain accuracy on the probability

of correct selection

PCS ≥ α, (5.14)

where α is a threshold value. Typically, α is a value between 90% and

99%. A new resource allocation question arises about how to optimally

assign the simulation replications, i.e., Mxk+1
, in order to satisfy the accuracy

requirement. Alternatively, we may wish to optimally allocate a limited

number of simulations to maximize the PCS of the rollout policy.



185

We propose a fast but suboptimal strategy here, one that assigns simu-

lation replications sequentially. Let PCS( ~M), where

~M = {Mxk+1=fk(xk,uk,wk)| ∀uk, wk},

be the PCS using the sample size vector ~M (as calculated using (5.9), (5.10),

and (5.12)). Note that the length of ~M depends on the cardinality L of U and

the size D of possible realizations of wk. We first evaluate Mxk+1
= M0 repli-

cated sample costs for states xk+1 = fk(xk, uk, wk),∀uk, wk, where M0 is an

initial replication number. These initial simulated costs provide an estimate

of the sample mean and sample variance. If the accuracy constraint (5.14)

is not satisfied, additional simulation runs are carried out sequentially.

We assume that when an additional batch of M̄ replications are assigned

to evaluate the cost-to-go Jµµµ
k+1(xk+1) of the state xk+1, the sample mean

θ̄(xk+1) and sample variance σ̂2(xk+1) remain invariant. Under this assump-

tion, the posterior distribution of Jµµµ
k+1(xk+1)|X changes to

Jµµµ
k+1(xk+1)|X ∼ N

(
θ̄(xk+1),

σ̂2(xk+1)

Mxk+1
+ M̄

)
.

To achieve a good allocation scheme, we invest our new resources in order to

most sharply increase the potential PCS. Select the combination:

(u̇k, ẇk) = arg max
uk,wk

PCS( ~M + M̄euk,wk
), (5.15)

where euk,wk
is the standard unit vector with 1 on the component correspond-

ing to (uk, wk). When the size of the combinations L × D is moderate, the
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computation is fast, since it only includes a limited number of cdf calcula-

tions.

Procedures to sequentially allocate simulation resources Given an

initial sample size M̄0, a batch size M̄ , a maximum sample size M̄max, and a

threshold value α.

1. Simulate M̄0 sample costs for every possible state xk+1. Set Mxk+1
←

M̄0.

2. Compute the sample mean θ̄(xk+1) and sample variance σ̂2(xk+1).

3. Determine the best combination index (u̇k, ẇk) via (5.15).

4. Simulate M̄ sample costs for the state xk+1 = fk(xk, u̇k, ẇk) correspond-

ing to the selected policy index.

5. Repeat Steps 2-4, until constraint (5.14) is satisfied or one of the sample

sizes Mxk+1
exceeds the maximum sample size M̄max.

5.3.2 Special Case – Finite State Space

We consider a special case when the state space S is finite. In particular, we

have a discrete form

• state space S = {sj, j = 1, 2, . . . , P}.
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Since any state xk+1 is an element of S, states xk+1 = fk(xk, uk, wk), resulting

from different combinations of (uk, wk), may collapse to the same state sj ∈ S.

Therefore, it is only necessary to consider variable sample sizes Msj
based

on different states sj. See Figure 37 for an illustration. For promising states

sj, we expect the numbers Msj
are large in order to accurately estimate the

cost-to-go starting from sj, while for other states, the numbers should be

limited.

Figure 37: Finite state space. Msj
sample trajectories are simulated to eval-

uate the cost-to-go starting form state sj. State sj at stage k + 1, derived
from any policy uk, use the same replication number.

Similar to our previous analysis, we have the posterior distribution of the

cost-to-go

Jµµµ
k+1(sj)|X = θ(sj)|X ∼ N

(
θ̄(sj),

σ̂2(sj)

Msj

)
. (5.16)
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The computation of PCS follows the same way.

The same sequential allocation scheme is implemented as above. The

only difference is that now the vector ~M = {Ms1 ,Ms2 , . . . ,MsP
} is of length

P , thus in Step 3 of the allocation scheme we select the best index ĵ as

ĵ = arg max
j=1,2,...,P

PCS( ~M + ~Mej), (5.17)

where PCS( ~M + ~Mej) is the potential PCS when M̄ simulation runs are

added to Msj
. Evaluation of PCS( ~M) now refers to (5.16) and (5.12). There

are a total of P potential PCS to evaluate.

5.3.3 An Extension – Group Similar M by Policy

The procedure in Section 5.3.1 assigns variable sample sizes Mxk+1
for differ-

ent states xk+1. The length of the vector ~M to determine is L×D. In order

to simplify the allocation procedure, we may group similar Mxk+1
– use the

same sample size Mûl
for all states xûl

k+1 = fk(xk, ûl, wk), that are derived by

the policy ûl. A superscript ûl is added to indicate the state xûl
k+1 is derived

by the policy ûl. The numbers Mûl
now are uniform within each policy, and

differ among policies. For promising policies, we expect the number Mûl

should be large to provide an good estimate, while for others, the number

should be kept small. This manipulation only requires to compute a vector

~M = {Mû1 ,Mû2 , . . . ,MûL
} of length L.
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Figure 38: Mûl
sample trajectories are simulated to evaluate the sample costs

starting from the state xûl
k+1 which is derived from the policy ûl. All the states

xk+1 derived from the policy ûl share the same replication number.

The posterior of the cost-to-go becomes

Jµµµ
k+1(x

ûl
k+1)|X = θ(xûl

k+1)|X ∼ N

(
θ̄(xûl

k+1),
σ̂2(xûl

k+1)

Mûl

)
, (5.18)

which is plugged in (5.12) to compute PCS. Each posterior Q-factor Qµµµ
k(xk, ûl)|X

is obtained with same sample size Mûl
. As a replacement of Step 3 in the

resource allocation scheme, we determine the best index l̂ via

l̂ = arg max
l=1,2,...,L

PCS( ~M + M̄el).

The operation is much simplified: at each iteration of the scheme, we only

need to evaluate L potential PCS. We also expect the number of iterations

of the scheme is reduced, too.
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5.4 A Fractionated Radiotherapy Problem

The first example is adapted from a dynamic programming model in radio-

therapy treatment [26, 36]. We demonstrate the application of the simulation

resource allocation scheme with grouped Mûl
by policy.

In a radiotherapy treatment, radiation dose is delivered to the cancer

tissue in a total of N fractionated treatments. The ideal plan is to deliver the

prescribed dose to the target (cancer) region, while avoiding the surrounding

healthy tissue (critical organs and normal tissue). Since patient motion is

inevitable during the treatments, our objective is to minimize the total miss-

delivered error, including both overdose and underdose errors, throughout

the treatment process.

Figure 39: A simple one-dimension problem. xk is the dose distribution over
voxels in the target: voxels 3, 4, . . . , 13.

A simple one-dimensional dynamic programming model is established.

See Figure 39 for an illustration. The setting consists of 15 voxels {1, 2, . . . , 15},
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where the target voxel set T = {3, 4, . . . , 13} is located in the center, and the

remaining voxels represent the healthy tissue. The whole process includes

N = 10 fractionated treatments. The state xk(i), k = 0, 1, . . . , N, i ∈ T ,

contains the actual dose delivered to target voxels after k stages/treatments,

with the initial state x0(i) = 0. uk(xk) is the dose applied at the kth stage and

is subject to an uncertain patient positioning error wk. The state transition

is in the form

xuk
k+1(i) = fk(xk(i), uk(i), wk) = xk(i) + uk(i + wk), ∀ i ∈ T . (5.19)

wk is regarded as a discretely distributed random variable, with D = 5

possible realizations. We assume {wk} are i.i.d. and follow the distribution

wk =



−2, with probability 0.02

−1, with probability 0.08

0, with probability 0.8

1, with probability 0.08

2, with probability 0.02,

for every state k.

If we denote the ideal prescribed dose on the target by T , where T (i) =

1, i ∈ T and T (i) = 0 elsewhere, the final cost is a linear combination of the
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absolute differences between the final dose and the ideal dose

JN(xN) =
∑
i∈T

φ(i)|xN(i) − T (i)|.

Here the vector φφφ weights the dose delivery error in different regions. Typ-

ically, we set φ(i) = 10, for i ∈ T and φ(i) = 1 elsewhere to emphasize

the importance of the target tissue. The immediate cost gk at each stage

corresponds to the amount of dose delivered outside of the target,

gk(xk, uk, wk) =
∑

i+wk /∈T

φ(i + wk)uk(i + wk).

The policy set U contains L = 5 different delivery policies

{uc, ur, umr1, umr2, umr3}:

• Constant policy uc: at each stage, deliver uc = T/N and ignores the

patient motion error.

• Reactive policy ur: at each stage, deliver the residual required dose

divided by the remaining time stages ur = max(0, T − xk)/(N − k).

• Modified reactive policies umr: an amplifying parameter β is multiplied

to the reactive policy umr = β ·max(0, T −xk)/(N−k). Three modified

reactive policies {umr1, umr2, umr3} corresponding to β = {1.5, 2, 2.5}

are considered.

In the implementation of the rollout algorithm, as umr3 yielded the best

performance among all the policies in the set U , it was used as the base
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heuristic policy µk = umr3. We implemented the version of the allocation

scheme with grouped sample sizes Mûl
, ûl ∈ U = {uc, ur, umr1, umr2, umr3}

(Section 5.3.1 and Section 5.3.3). Mûl
sample trajectories were simulated

starting at xûl
k+1 and applying the policy µµµ to approximate the cost-to-go

Jµµµ
k+1(x

ûl
k+1).

To demonstrate our simulation resource allocation scheme, we considered

the following setting. The initial sample size M̄0 = 10. 10 sample costs

were not a big quantity, but provided good estimates of the sample mean

and sample variance. The maximum sample size M̄max was set to 50,000. To

sharply increase the sample sizes Mûl
, every time we tried a batch of M̄ = Mûl

additional simulations, which is equivalent to reducing the posterior variance

σ̂2(xûl
k+1)/Mûl

to a half. For all the stages, we required the accuracy of the

selected rollout policy to be greater than α = 90%. Despite the situation

when the maximum number of sample size 50,000 was reached, the accuracy

was always obtained.

In one trajectory executing the rollout policy, Table 17 shows the sample

sizes Mûl
used at the stages 0-9. We observe that Mûl

are actually varied from

policy to policy. Another interesting observation is that the sum
∑

ûl
Mûl

decreases sharply as the stage k increases. This shows that our variable

sample size approach is advantageous over the fixed sample size approach,

which uses a uniform sample size for all states xûl
k+1 and for all stages. To

explain the decrease of sample sizes along the stage, we may refer to Table 18,
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which plots the sample-mean Q-factors Q̄µµµ
k(xk, ûl) in the same trajectory.

At early stages, the Q-factors are very close. For example, we recorded

that Q̄µµµ
0 (x0, ûl) at stage 0 were {0.3305, 0.3293, 0.3264, 0.3236, 0.3216}. The

reason for close Q-factors (cost-to-go applying different policies) is that even

if a poor policy is applied at stage 0, there are still many chances to apply

good policies in later stages to compensate for the mistake. However, as stage

k increases, there is no room for such compensation. Thus we observe that

the range of Q-factors increases as k increases. At early stages, since the Q-

factors are close, it necessitates a large sample size to distinguish the policies

correctly. On the other hand, in late stages, since the Q-factor differences

are large, only the least number of simulation runs were used; for example,

for stage 8 and 9, Mûl
= M̄0 = 10, ∀ ûl ∈ U .

The indifference-zone parameter δ was set as 0.01 in this example, because

we found that the expected initial cost-to-go J0(x0) was close to 0.3. The

value implies that we would not distinguish two policies, if their associated Q-

factors were within 0.01. The introduction of the indifference-zone parameter

is important. As we see in Table 18, at the last stage, the Q-factors for policies

{ur, umr1, umr2, umr3} are at the same value, because these reactive policies

yield exactly the same amount of dose (by their definition). If there is more

than one ‘best’ policy, the PCS cannot be larger than 0.5. The indifference-

zone formulation is introduced to tackle this problem. The indifference-zone

parameter should be set carefully, since a biased value could either lose the
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Table 17: Variable sample sizes Mûl
for all the stages.

Stage (k) Muc Mur Mumr1 Mumr2 Mumr3

0 10000 10000 10000 20000 40000

1 5000 5000 5000 10000 20000

2 10000 10000 5000 10000 20000

3 2500 5000 2500 2500 10000

4 2000 600 2000 2000 5000

5 20 640 640 20 320

6 20 80 20 20 80

7 10 10 10 10 10

8 10 10 10 10 10

9 10 10 10 10 10

selection accuracy (draw a selection decision at an improper time) or make

it difficult to identify the best policy.

The rollout policy corresponds to the policy with the best Q-factors. In

Table 18, we find that the rollout policy µ̄k matches umr3 in many stages

(because umr3 is overall the best policy), and also matches umr1 or umr2 a

couple of times. Since the constant policy uc is an offline policy, which does

not use the current delivery status xk, it performed the worst. At stage 0, the

realized displacement of w0 was 0, thus the optimal cost-to-go J1(x1) become

smaller than J0(x0). Nevertheless, at stage 1, the realized displacement was -

1, resulting in a miss-delivered dose. The optimal cost-to-go J2(x2) increased.
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Since we grouped Mûl
by policy, the promising policies in the set U end

up with larger sample sizes. As shown in Table 17, Mumr3 is likely to be

the largest number, because the policy umr3 is likely to be the best policy.

The fact is also implied from the posterior PCS computation in (5.12). We

found that if we invest simulation resources to the states xµ̄k

k+1 derived from

the best policy µ̄k, the potential variance reduction can benefit each pairwise

probability component, thus induces a quick PCS increment. Promising

policies yield Q-factors that are close to the best Q-factor Q̄µµµ
k(xk, µ̄k) (refer-

ring to Figure 36); therefore, they need more simulation replications in order

to differentiate from the best policy.

Table 18: Sample-mean Q-factors for all the stages.

Stage
(k)

Q̄µ
k(xk, uc) Q̄µ

k(xk, ur) Q̄µ
k(xk, umr1) Q̄µ

k(xk, umr2) Q̄µ
k(xk, umr3) Policy

(ûl)

0 0.3305 0.3293 0.3264 0.3236 0.3216 umr3

1 0.2405 0.2394 0.2388 0.2378 0.2359 umr3

2 0.4368 0.4357 0.4327 0.4279 0.4276 umr3

3 0.3751 0.3757 0.3729 0.3687 0.3689 umr2

4 0.6582 0.6585 0.6525 0.6437 0.6397 umr3

5 0.6044 0.6085 0.6009 0.5937 0.5867 umr3

6 0.8099 0.7233 0.6788 0.6981 0.7023 umr1

7 1.1238 0.7294 0.7001 0.6711 0.6387 umr3

8 1.5821 1.0648 0.9379 0.8112 0.8537 umr2

9 1.5356 0.6556 0.6556 0.6556 0.6556 umr1,2,3
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5.5 Conclusions

Monte Carlo simulation is an important component in neuro-dynamic pro-

gramming (for stochastic problems). Although simulation error is inevitably

involved, we aim to minimize the amount the simulation effort while ob-

taining a desired algorithmic accuracy. A variable sample size structure for

simulation is implemented. Appropriate sample sizes in the structure are

determined with the Bayesian posterior information. We have shown that

our approach significantly saves simulation effort and is more effective when

the simulation runs are expensive to carry out.
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Chapter 6

Conclusions

In a simulation-based optimization problem, we seek the optimal setting of

input parameters to maximize the simulation performance or to consume the

least simulation cost. The objective function corresponds to a performance

(or cost) measure and has several properties that distinguish it from deter-

ministic objectives: 1) There is typically no closed form of the objective func-

tion. 2) The objective function is normally computationally expensive. 3)

The objective function is affected by uncertainties in simulation. Throughout

the thesis, we have considered minimizing the expected form of the stochastic

objective function.

The two-phase optimization framework (WISOPT) has been success-

fully applied to simulation-based optimization problems; more generally, the

framework is applicable to handle noisy functions. Phase I involves global

exploration of the entire domain space to identify promising local subre-

gions. The approaches implemented in Phase I are the classification-based

global search and the Noisy DIRECT algorithm. A phase transition mod-

ule is applied to derive the locations of a collection of promising subregions.
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Phase II applies local optimization techniques to determine optimal solu-

tions in each local subregion. According to the implementation of Common

Random Numbers (CRN), we consider two extensions of the UOBYQA al-

gorithm: the VNSP-UOBYQA and Noisy UOBYQA algorithms. A Matlab

implementation of the WISOPT two-phase framework optimization is avail-

able for download, and further details are available in Appendix A.

In Phase I, both the classification-based global search and the Noisy DI-

RECT algorithm return a collection of samples (over the domain), which

are densely distributed in promising regions. The classification-based global

search simplifies the objective function as a 0-1 indicator function, which

is approximated by an ensemble of classifiers. The Noisy DIRECT method

adopts the idea of partitioning domains. The promising regions are sub-

jected to higher levels of partitioning into smaller hyperrectangles. At the

end of Phase I, the phase transition module applies a non-parametric local

regression process to identify the region centers and sizes.

In Phase II, the modified UOBYQA algorithms search the local optimums

starting from each region center. The VNSP-UOBYQA algorithm is designed

for the CRN case and the Noisy UOBYQA algorithm is designed for the white

noise case. Both algorithms apply a similar Bayesian sampling scheme to

determine the replication sizes, thus making the algorithms smoothly proceed

as in the deterministic case. The best local optimum is considered as the final

output of the algorithms.
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Bayesian analysis has played an important role in our algorithmic de-

sign. Most of our algorithms replicate multiple function evaluations to re-

duce the output uncertainty. Since Bayesian analysis constructs succinct

forms of posterior distributions to model the simulation output, i.e., using

normal distributions or t-distributions, they are easily incorporated into ex-

isting optimization algorithms. Most commonly, we establish specific vari-

ance controlling criteria for individual algorithms, i.e., controlling volatility

of promising hyperrectangle set in DIRECT and controlling volatility of the

subproblem solutions in UOBYQA. Such criteria are tested using a Monte

Carlo validation process, which is based on the derived Bayesian posterior

distributions. When the desired accuracy (or the criterion) is not satisfied,

we need to increase the replication number to reduce the uncertainty even

more.

To illustrate the effectiveness of WISOPT, we have applied it to a vari-

ety of applications. In the Wisconsin Epidemiology Simulation Model, we

aimed to determine the best parameter setting which drives the simulation

model to accurately replicate real patient incidences. In the microwave an-

tenna project, we aimed to find the best antenna design that yields a desired

performance, under some realistic assumptions regarding properties of indi-

vidual’s livers. In the ambulance base simulation problem, we determined

the locations of multiple ambulance bases such that the expected response

time of an ambulance to an emergency call was minimized.
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While these examples demonstrated the effectiveness of our code in solv-

ing simulation optimization problems, we believe its applicability is even

more widespread. For example, with the tools available, we may solve other

types of problems, such as calibration, SVM parameter tuning, inverse prob-

lems, and two-phase stochastic integer programming problems with recourse,

each of which is considered to be a difficult problem to solve. The WISOPT

code couples many contemporary statistical tools (Bayesian statistics and

nonparametric statistics) and optimization techniques, and shows effective-

ness in processing noisy function optimizations. Moreover, the WISOPT is

applicable to deterministic global optimization problem as well. In fact, for

deterministic problems, we have designed a different approach for the phase

transition module, because there is no random error involved in the regres-

sions.

There are still several challenges facing our two-phase strategy. For ex-

ample, we are currently working on unconstrained stochastic problems, but

how do we extend our work to handle problems with simple bounds? For

the UOBYQA algorithm, there are difficulties in extending the analysis to

problems with simple bounds. Another question would be how to design

a more robust phase transition procedure that generates different radii for

different subregions. Moreover, we need to consider adding more optimiza-

tion ‘modules’ besides current ones in our two-phase framework and extend

the framework to handle mixed-variable problems. More general termination
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criteria are also needed.

At the end of the thesis, we presented a special application of Bayesian

analysis in Neuro-Dynamic Programming (NDP). The type of dynamic pro-

gramming problem has time stages and internal state transitions, which are

different from the main theme of the thesis. Control at each time stage is

computed in a sequential manner. NDP provides approximation methods

to solve the dynamic programming problem efficiently, but only derive sub-

optimal controls. We modify the rollout algorithm from NDP, that has shown

advantages in deriving accurate stochastic controls, while saving Monte Carlo

simulation resources. A test example in fractionated radiotherapy treatment

is solved using the new algorithm. Besides the application in NDP, we believe

the Bayesian simulation analysis is extendable to much more optimization

techniques in various contexts.
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Appendix A

User Guide to WISOPT

WISOPT is an optimization package designed for simulation-based optimiza-

tion problems in the form (1.1). The flow chart for the two-phase framework

is given in Figure 3. In this appendix, we give a short guide to the WISOPT

optimization package. Most of the routines in the WISOPT package are im-

plemented in Matlab. Although the original versions of the VNSP-UOBYQA

and the Noisy UOBYQA are coded in C, mex interfaces [76] are employed

to call them directly within Matlab.

The primary routine in the WISOPT is called as follows:

[globX, globY] = WISOPT(problem, opt)

In the above expression, the input parameters

• problem is a structure defining the objective function

• opt is a structure defining the algorithm options, including options for

individual algorithms

and output parameters
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• globX is the global solution x∗.

• globY is the global objective value

A routine setup.m is designed to prepare the values for the structures

problem and opt. More specifically, the problem structure contains the

following fields:

• problem.fun is a function handle to the objective function.

• problem.lowBnd is the lower bound of the input parameters.

• problem.upBnd is the upper bound of the input parameters.

• problem.CRN is an indicator to the Common Random Number (CRN)

implementation. 1 = CRN case, 0 = white noise case.

• problem.n is the dimension of the problem. The value is computed

based on the length of the lower bound vector.

Since WISOPT is an optimization framework hooking up various algo-

rithms, the structure opt contains the options for running WISOPT and

options for each component algorithm in the two-phase framework.

• opt.phaseIMethod a string field indicating the Phase I method to use.

Available choices currently include

– ‘CBS’ - the classification-based global search
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– ‘NoisyDIRECT’ - the Noisy DIRECT algorithm.

• opt.phaseTransMethod is a string field indicating the phase transition

algorithm to use.

– ‘localReg’ - default algorithm for general noisy cases

– ‘RSquaure’ - algorithm to apply only when the objective function

is deterministic.

• opt.cbs is a structure of the classification-based global search options.

• opt.direct is a structure of the Noisy DIRECT options

• opt.nuobyqa is a structure of the Noisy UOBYQA options.

• opt.vnsp is a structure of the VNSP-UOBYQA options

Detailed options for each algorithm are listed below. For the classification-

based global search, the following options should be supplied (the default

value for an option is printed in the parenthesis)

• opt.cbs.samplingMethodStage1 and opt.cbs.samplingMethodStage2

- handles of stage 1 and stage 2 sampling functions. Currently available

choices of sampling functions include gridMesh for grid sampling and

LHS for the Latin Hypercube Sampling. The sampling method routines

are located in the subfolder \sampling_methods. The standard calling

format of a sampling function is
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X = sampling_fun(lowBnd, upBnd, nSample)

where X is the output sample set, lowBnd and upBnd define the domain

and nSample indicates the number of samples to be generated. Users

can supply customized sampling functions following the above format.

• opt.cbs.numSampleStage1 (500), opt.cbs.numSampleStage2 (5000)

- numbers of samples evaluated in both stages.

• opt.cbs.classifiers - contains the structure defining the classifiers

to use. Five classifiers are provided: SVM_linear, SVM_quadratic,

SVM_cubic, SVM_gaussian are support vector machine classifiers with

different kernel functions; kNearestNeighbor is the k-Nearest Neighbor

classifier. All the classifiers functions are located in the \classifiers

subfolder and should have the following calling sequence:

testY = classifier_fun(trainX, trainY, testX)

where trainX and trainY are the input training data for the classifier

and testX is the input test data. testY is the classifier prediction

based on testX.

• opt.cbs.ratio (0.1) - the cutoff ratio for level set.

For the Noisy DIRECT method, the following options are supplied:
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• opt.direct.maxevals (2000) - maximum number of function evalua-

tions.

• opt.direct.showits (0) - level of display information.

• opt.direct.iniRepNum (3) - initial number of replications per point.

• opt.direct.alpha (1.3) - replication number increment ratio.

• opt.direct.maxRepNum (50) - maximum number of replications.

• opt.direct.mcNum (100) - Monte Carlo experiment number.

• opt.direct.rateThresh (0.9) - potential set identification accuracy.

The Phase II methods, the VNSP-UOBYQA and the Noisy UOBYQA

share similarities in parameters, which are:

• opt.vnsp.maxFun (2000) - maximum number of function evaluations.

• opt.vnsp.iPrint (0) - level of display information.

• opt.vnsp.rhoBeg (1) and opt.vnsp.rhoEnd (0.0001) - staring and

ending values of the radius. The value of opt.vnsp.rhoBeg is adjusted

according to the phase transition module.

• opt.vnsp.iniRepNum (3) - initial number of replications per point.

• opt.vnsp.maxRepNum (100) - maximum number of replications.
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The objective function, varied in the CRN case and the white noise case,

is defined as follows:

the CRN case: y = fun(x,i)

the white noise case: y = fun(x)

In the CRN case, the index i should be specified and the objective function

returns the value F (x, ξi) according to the value of i. Examples of test

functions can be found in the \test_functions directory.

Here is an example of generating a noisy Rosenbrock function, which

automatically decides the functional form by detecting whether the second

input i is supplied. In the white noise case, an additive noise term with

mean 0 and variance 0.12 is appended to the function output; in the CRN

case, the first component x1 of x is modified by noise, which is the same as

the example given in Section 3.2.

function yRand = Rosen(x, varargin)

% in the white noise case, the objective function takes a single

% input x

if length(varargin) < 1

sigma = 0.1; mu = 0;

yRand = 100*(x(1)^2-x(2))^2 + (1-x(1))^2 + normrnd(mu,sigma);

else

% in the CRN case, a sequence of omega should be predefined

global omega;
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startNum = varargin{1};

xhat = x(1)*omega(startNum);

yRand = 100*(xhat^2-x(2))^2 + (1-xhat)^2;

end

As a test example, we show how to set up and solve the Rosenbrock

function in the CRN case. Given the sequence of omega ∼ N(1, 0.12) as in

Section 3.2, the global minimizer of the function is [0.4162, 0.1750], at which

the optimal objective value is 0.4632.

>> problem.fun = @Rosen;

>> problem.lowBnd = [-2 -2];

>> problem.upBnd = [2 2];

>> problem.CRN = 1;

Set up the global random vector omega,

>> global omega

>> omega = normrnd(1,0.1,1000,1);

Set the Phase I method to be the classifier method,

>> opt.phaseIMethod = ’CBS’;

Execute the WISOPT routine,

>> [globX globY] = WISOPT(problem, opt)
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Starting Phase I optimization

Applying the Classification-Based Global Search

Applying the phase transition module

Starting Phase II optimization

Common Random Number case

Applying the VNSP_UOBYQA algorithm

globX =

0.4206 0.1812

globY =

0.4551

At the return of WISOPT, the global solution is [0.4206, 0.1812] and the

global objective value is 0.4551. As we notice, the objective value is a sample

mean of the replicated outputs and is biased by noise.

We give a second example of optimizing the Goldstein Price function.

This time we minimize the function in the white noise case and use the

Noisy DIRECT method as the Phase I method. The source code for the

noisy Goldstein Price function is printed below.

function yRand = gp(x, varargin)

x1 = x(1); x2 = x(2);

value =(1+(x1+x2+1).^2.*(19-14.*x1+3.*x1.^2-14.*x2...

+6.*x1.*x2+3.*x2.^2)).*(30+(2.*x1-3.*x2).^2.*...
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(18-32.*x1+12.*x1.^2+48.*x2-36.*x1.*x2+27.*x2.^2));

% the white noise case

if length(varargin) < 1

sigma = 0.1; mu = 0;

yRand = value + normrnd(mu,sigma);

else

% the CRN case

global omega;

startNum = varargin{1};

yRand = value + omega(startNum);

end

An additive noise term N(0, 0.12) is added to the function output in the white

noise case. The Goldstein Price function has a global solution at [0,−1] and

a global objective value at 3. Let us set up the optimization problem and

the Phase I method,

>> problem.fun = @gp;

>> problem.lowBnd = [-2 -2];

>> problem.upBnd = [2 2];

>> problem.CRN = 1;

>> opt.phaseIMethod = ’NoisyDIRECT’;

Execute the optimization command,
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>> [globX globY] = WISOPT(problem, opt)

Starting Phase I optimization

Applying the Noisy DIRECT algorithm

Applying the phase transition module

Starting Phase II optimization

White Noise Case

Applying the Noisy UOBYQA algorithm

globX =

-0.0002 -0.9986

globY =

2.9677

Again, we obtain a good solution [−0.0002,−0.9986], which is close to the

true solution.

At the end of the thesis, we provide a table summarizing the options in

WISOPT.
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Table 19: Options with default values

Options Default values

opt.phaseIMethod ’NoisyDIRECT’

opt.phaseTransMethod ’localReg’

Classification-based global search

opt.cbs.samplingMethodStage1 @LHS

opt.cbs.samplingMethodStage2 @LHS

opt.cbs.numSampleStage1 500

opt.cbs.numSampleStage2 5000

opt.cbs.ratio 0.1

Noisy DIRECT

opt.direct.maxevals 2000

opt.direct.showits 0

opt.direct.iniRepNum 3

opt.direct.alpha 1.3

opt.direct.maxRepNum 50

opt.direct.mcNum 100

opt.direct.rateThresh 0.9

VNSP-UOBYQA or Noisy UOBYQA

(replace vnsp by nuobyqa)

opt.vnsp.maxFun 2000

opt.vnsp.iPrint 0

opt.vnsp.rhoBeg 1

opt.vnsp.rhoEnd 0.0001

opt.vnsp.iniRepNum 3

opt.vnsp.maxRepNum 100
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