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abstract

This thesis primarily focuses on addressing the multistage stochastic equilibrium problem
involving risk-averse players. The impetus behind this research stems from the recent surge
in interest surrounding such problem domains, given their wide-ranging applications in
electricity power system management, natural gas markets, and other scientific, engineering,
and economic fields. Despite the growing interest and the imperative to tackle these
challenges, there exists a notable dearth of both modeling tools and algorithms that can
aid researchers in effectively handling this type of problem. Consequently, to address
this intricate issue, our study encompasses several contributions: (i) the introduction of
a standardized set of test instances that serve as benchmarks for evaluating algorithms
tailored to solve similar problems; (ii) the proposal of three decomposition frameworks
specifically designed to tackle this class of problem; and (iii) the development of a novel
graph framework capable of representing stochastic problems in a comprehensive manner.

In Chapter 1, a thorough overview of stochastic MOPECs with risk-averse players is
presented, aiming to provide a comprehensive understanding of the fundamental mathe-
matical underpinnings within this realm. The chapter delves into an in-depth exploration
of key mathematical concepts relevant to this area, including the Nash equilibrium problem,
variational inequality problem, stochastic problem incorporating a scenario tree, and the
incorporation of a coherent risk measure. By elucidating these concepts, readers gain a
nuanced understanding of the mathematical essence underlying stochastic MOPECs with
risk-averse players. Furthermore, the chapter elucidates a range of formulations utilized in
addressing these complex problems, thereby offering readers a comprehensive view of the
diverse approaches employed in tackling this particular class of problems

Chapter 2 encompasses a detailed exposition of three prominent problem instances,
namely the economic dispatch example, capacity expansion example, and hydroelectric-
ity example, which have emerged as widely employed scenarios within the field. Each
example is accompanied by a meticulous algebraic formulation, rendering a comprehen-
sive mathematical representation of the respective problem instance. Furthermore, this
chapter thoroughly investigates three distinct categories of market constraints, which hold
paramount significance within the modern economic landscape and find substantial ap-
plications across diverse domains. The inclusion of these diverse problem types and the
consideration of various market constraints collectively contribute to an expansive coverage
of the prevailing stochastic MOPECs with risk-averse players encountered in real-world
scenarios, thereby offering comprehensive insights into the realm of these problems.

Chapter 3 is dedicated to exploring the player-based inner structure of the problem,



x

with a particular emphasis on the stochastic PNEP (price-incentivized Nash Equilibrium
Problem) involving risk-averse players. A conjugate-based reformulation is employed to ensure
the independence of each player’s subproblem when the market price p is held constant.
This key property has motivated the development of numerous player-based algorithms for
solving such problems; however, their applicability to stochastic MOPECs with risk-averse
players is limited. In this chapter, two existing methods are initially examined, followed
by the introduction of an ADMM (Alternating Direction Method of Multipliers)-based
algorithm specifically designed to address the stochastic PNEP with risk-averse players.
The advantages of the proposed ADMM-based algorithm over the previously discussed
methods are demonstrated. Moreover, numerical results are presented in Chapter 3 to
illustrate various properties of the ADMM-based algorithm and to investigate the influence
of algorithmic parameters on its performance.

In Chapter 4, a new primal-MOPEC-dual-risk algorithm was introduced, presenting an
equilibrium reformulation as a novel approach to tackle the stochastic MOPEC (Multiobjec-
tive Programming with Equilibrium Constraints) with risk-averse players. This approach
leveraged a decomposition strategy motivated by the inherent nonlinearity introduced by
the inclusion of the probability vector µ in the multistage problem formulation. Conse-
quently, when addressed by the PATH solver, the problem manifests as a highly nonlinear
complementarity problem. However, by fixing the probability vector µ, the problem un-
dergoes simplification and, in the case of quadratic player objective functions, can even
be formulated as a linear complementarity problem. The resulting subproblem can then
be efficiently solved through a series of linear programming problems. In contrast to the
ADMM-based algorithm discussed in Chapter 3, the proposed primal-MOPEC-dual-risk
algorithm offers enhanced versatility in addressing general stochastic MOPECs with risk-
averse players, particularly in scenarios where players exhibit diverse Nash behavior during
their interactions. The efficacy of the algorithm is validated through its application to all
three examples, encompassing all three market constraints, demonstrating its superiority
over the classical PATH solver in terms of efficiency and performance.

Chapter 5 provides stage-based decomposition approach to deal with primal-MOPEC
subproblem defined in Chapter 4, we introduced a primal-MOPEC-dual-risk decomposition
algorithm. When dealing with scenario trees of substantial size, a notable challenge arises
due to the resultant increase in dimensions within the primal-MOPEC subproblem. To
address this challenge, a stage-based decomposition method is devised, allowing for the
partitioning of the comprehensive problem into smaller subproblems that are indexed
according to time stages. This partitioning facilitates enhanced computational efficiency
and enables the successful resolution of large-scale stochastic MOPECs with risk-averse
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players.
In Chapter 6, the formulation of the multistage stochastic MOPEC with risk-averse

players is introduced, providing a comprehensive mathematical framework for analysis.
Additionally, a novel two-level graph representation is presented as a means to represent
the general stochastic problem. This representation offers a structured visualization that
aids in understanding the complex interactions and dependencies within the problem.
By employing this two-level graph representation, the intricacies of the general stochastic
problem can be effectively communicated and analyzed.

Chapter 7 presents the primary conclusions drawn from this thesis.
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1 introduction

Nash equilibrium, and game theory, in general, has gained significant importance in a wide
range of fields, including economics [62], social science [57], algorithmic computer science
[20, 18], engineering sciences [37], and others.

The origin of the concept of equilibrium can be traced back to Cournot’s research [19] on
an oligopolistic economy, followed by von Neumann’s pioneering work on zero-sum two-
person games [69, 86]. LetA denote the set of the players. For each player a ∈ A, let xa ∈ Rda

represent the strategy of player a, where da is a positive integer. The vector consisting of
all these strategies is denoted by x := (xa)a∈A ∈ Rd, where d :=

∑
a∈A da. All other players’

strategies except the strategy of player a is denoted by x−a := (xa′)a′∈A,a′ 6=a ∈ Rd−a , where
d−a := d− da. Each player a seeks to optimize a function fa dependent on xa and x−a, and
constrained by a set Xa. The classical Nash equilibrium problem

min
xa

fa(xa;x−a)

s.t. xa ∈ Xa

(1.1)

was formally introduced by Nash [68, 67]. In this problem, the aim of player a is to select a
strategy xa ∈ Xa that minimizes the objective function fa(xa;x−a), where f : Rda+d−a → R,
given that the other players’ strategies x−a remain fixed. The generalized Nash equilibrium
problem (where Xa = Xa(x−a), meaning the constraint set Xa is dependent upon the
actions of the other players) was formally introduced by Debreu in [22]. In the period
between the Arrow and Debreu seminal paper [4] and the 1990s, the primary focus was on
studying the existence and uniqueness of equilibria in the economic field. Since the 1990s,
there have been many contributions to the calculation of equilibria.

Over the past two decades, the desire to solve complex and large-scale equilibrium
problems has been at the heart of research interest for numerous researchers and practition-
ers. One category of such problems, which is particularly challenging, involves uncertainty
and is referred to as stochastic equilibrium problems. In fact, although substantial work
has been done to investigate deterministic equilibrium problems, stochastic equilibrium
problems are still challenging to researchers, and there lacks a practical, efficient and robust
computational framework to deal with them. The main goal of this thesis is to develop
practical methods to solve this kind of problem.

The stochastic equilibrium problem is a vital tool in strategic decision-making, market
power analysis, addressing inefficiencies, contract design, and environmental concerns.
It also aids in understanding interactions between sectors like agriculture, industry, and
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transportation. Stochastic equilibrium models provide insights into complex systems,
enabling informed decisions and effective policy design.

In strategic decision-making, these models assess outcomes under uncertainty. By
incorporating stochastic elements, decision-makers can identify optimal strategies that
balance risk and reward. They evaluate scenarios, enabling the assessment of strategy
robustness. Stochastic equilibrium models are instrumental in studying market power
[53, 21, 51, 8]. They capture uncertain behavior and identify conditions for its emergence.
Researchers analyze market structures, dynamics, and strategic interactions to design regu-
latory interventions. Addressing inefficiencies benefits from stochastic equilibrium models.
These models quantify costs and benefits, facilitating the design of efficient interventions.
By considering uncertainty, researchers assess intervention effectiveness and identify mar-
ket failures. Contract design benefits from stochastic equilibrium models [72, 44]. They
model stochastic agent behavior, evaluate contract structures, and analyze risk-sharing and
efficiency. Such models allow for robust contracts that provide the right incentives. Envi-
ronmental concerns [82, 65], like carbon pricing and climate change, benefit from stochastic
equilibrium models. They integrate uncertainties in modeling carbon pricing mechanisms,
simulating market behavior, and evaluating policy consequences. Stochastic equilibrium
models enable the analysis of sectoral interactions. They help understand ripple effects and
trade-offs between sectors. By considering interconnectedness, policymakers can design
integrated policies for sustainable outcomes.

In conclusion, stochastic equilibrium models are essential in strategic decision-making,
market power analysis, addressing inefficiencies, contract design, and environmental
concerns. They provide valuable insights and facilitate evidence-based decision-making
and policy formulation.

1.1 Previous work

1.1.1 Deterministic equilibrium problems

Deterministic Nash equilibrium problems and complementarity problems have been ap-
plied extensively over the last two decades. An overivew of the application areas of the Nash
equilibrium problem and complementarity problem is given in [39]. Much research has
been devoted to utilizing deterministic Nash equilibrium problems and complementarity
problems to model market problems in a natural gas system [45, 43, 47, 28, 30, 31, 1], hydro-
thermal electricity markets [73, 84, 75, 64, 13, 6, 7, 14, 59], and transportation problems
[3, 79, 87, 5, 88, 61]. A detailed and comprehensive complementarity model for computing
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market equilibrium values in the European natural gas system is presented in [30], which
includes 52 countries that produce, consume, or ship gas to Europe. A new multiseasonal,
multiyear, natural gas market equilibrium model is presented in [45] based on the concept
of a competitive equilibrium involving the market participants: producers, storage reservoir
operators, peak gas operators, pipeline operators,marketers, and consumers. These papers
in particular are motivational for our example problems.

1.1.2 Algorithms and tools to solve deterministic equilibrium
problems

Because of its wide application, there have been many contributions to the calculation
of equilibria in the deterministic setting. These works include natural Jacobi- or Gauss-
Seidel-type decomposition methods [55, 36], Variational Inequality (VI)-type methods
[25, 35, 66], Nikaido-Isoda (NI)-function-type [50, 54, 85, 27], penalty methods [70, 34],
Oridinary Differential Equation (ODE)-based methods [15, 42] and local Newton methods
[32].

Among these methods, one of the most important is utilizing the property that these
kinds of problems can be transformed into an equivalent deterministic variational inequality
or the mixed complementarity problem format. They can be solved by algorithms that are
designed to solve complementarity problems or variational inequality problems, such as the
PATH solver [25], MILES [78], NE/SQP [71], SMOOTH [17], QPCOMP [10], SEMISMOOTH
[9], interior point methods [16], semismooth least squares method [58], KKT based method
[33], derivative-free method [48] and Lemke’s method [80]. This kind of method is often
used by researcher because it is effective for a lot of applications mentioned above even
though the underlying problems do not necessarily satisfy theoretical requisites (such as
the monotonicity property of the variational inequality or complementarity problem).

1.1.3 Stochastic equilibrium problems

The study of equilibrium problems with uncertainty has received significant attention in
recent years [53, 21, 51, 8]. Research has been conducted to analyze its applications in the
natural gas market, with works such as [53] that used a stochastic Nash-Cournot modeling
technique for the European gas market, [21] that presented a stochastic Stackelberg game
for the European gas market, [51] that used a simulation and sample-path approach to
study the European gas market, and [8] that used a gradient-based quasi-Monte Carlo sim-
ulation technique to analyze the stochastic Mixed Complementarity Problem or Variational
Inequality. The study of stochastic equilibrium problems has also been extended to the
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electricity power system, as demonstrated in works such as [72, 44, 82, 65]. For instance,
[89] examined the modeling and computation of a two-settlement oligopolistic equilibrium
in a congested electricity network.

1.1.4 Algorithms to solve stochastic equilibrium problems

Although uncertainty plays a critical role in modeling of a real life system, the curse of
dimension is an unavoidable issue in this area, especially in the multistage setting. Much
effort has been extended to design efficient algorithms to solve this type of problem. In [51]
a sample path approximation method was developed to solve the stochastic equilibrium
problem. Scenario reduction is used in [46], which is a common method in multistage
stochastic programming programming, to reduce the computational time of large-scale
stochastic equilibrium problems. A heuristic method called rolling horizon was developed
in [24] to make this kind of problem tractable. Besides, a natural way to deal with such kind
of problem is to relax the coupling constraints of the extensive form of the problem so that
it can be decomposed into smaller subproblems. The Bender’s approach was developed in
[44, 29, 83] to decompose this problem into a first stage master problem and several second
stage recourse problems. In [49], the linking constraints were relaxed between different
stages and the ADMM method was utilized as the decomposition method. In [76], the
progressive hedging was utilized to decompose the stochastic varitional inequality by sce-
narios and successfully proved the convergence under the assumption of the monotonicity.
Furthermore, they even proved the convergence rate is linear if the operator is affine and
the feasible region is polyhedral.

Decomposition by players is a commonly used method to solve equilibrium problems.
Methods using decomposition by agents mainly lie in two classes: (i) best response schemes
(ii) gradient-based schemes. Best-response schemes are usually faster than gradient-based
schemes but not as stable as the latter. However, even for the gradient-based schemes, most
works just focused on the equilibrium problems with the assumption that their correspond-
ing complementarity problems must be strongly monotone. In recent years, much work
also applied this decomposition method to solve stochastic equilibrium problems. A survey
about the analysis and basic algorithms to solve the stochastic variational inequality before
2013 is given in [81]. The convergence of the best-responses schemes remains an open
problem under stochastic regimes. For the gradient-based schemes, they also require the
expectation-valued complementarity mappings to be monotone when solving the problems
with risk-neutral agents.
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1.2 Background Material

1.2.1 Quasi Variational Inequality, Variational Inequality and Mixed
Complementarity Problem

For a given continuous function F : Rd → Rd and a point-to-set mapping K : Rd → Rd,
where K(x) is a closed convex set for each x ∈ Rd, x∗ ∈ K(x∗) is a solution to the Quasi
Variational Inequality QV I(K,F ) if

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ K(x∗) (QVI)

where 〈·, ·〉 is the Euclidean inner product.
Alternatively, QV I(K,F ) has another representation based on the concept of a normal

cone. Let S ⊂ Rd be a closed, convex set. The normal cone of S is the set-valued mapping
NS : Rd → 2Rd , given by

NS(x) =

{g ∈ Rn|gT (z − x) ≤ 0,∀z ∈ S} if x ∈ S

∅ if x /∈ S
(1.2)

It is clear to see that x∗ ∈ K(x∗) is a solution to the QV I(K,F ) if and only if −F (x∗) is
an element of NK(x∗)(x

∗), which is equivalent to

0 ∈ F (x∗) +NK(x∗)(x
∗) (1.3)

Based on the definition of the QVI, if K(x) is restricted to be a fixed closed convex set
K for every x, then x∗ ∈ K is a solution to the Variational Inequality V I(K,F ) if

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ K (VI)

As above, it follows that, x∗ ∈ K is a solution of V I(K,F ) if and only if

0 ∈ F (x∗) +NK(x∗) (1.4)

If the feasible convex set K in V I(K,F ) is restricted to be a box B = {x ∈ Rd|li ≤ xi ≤
ui, for i = 1, . . . , d} with li ≤ ui and li ∈ R ∪ {−∞} and ui ∈ R ∪ {+∞}, then we call
this special variational inequality problem V I(B,F ) a mixed complementary problem
MCP (B,F ). It follows from elementary calculations that x∗ ∈ B is a solution to this MCP
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if and only if the following conditions hold for each i = 1, . . . , d :

x∗i = li, if Fi(x∗) ≥ 0

li ≤ x∗i ≤ ui, if Fi(x∗) = 0

x∗i = ui, if Fi(x∗) ≤ 0

(MCP)

In shorthand notation, the above MCP problem can also be written as F (x∗) ⊥ x∗ ∈ [l, u].
Note that for each index i, a solution x∗ identifies which of the constraints xi = li, xi = ui

or Fi(x) = 0 is active.
Merit function of Mixed compementarity problem
Throughout this thesis, we choose the the classical Fischer Burmeister (FB) merit func-

tion Ψ(x) defined in [41] as the merit function, which is a quantitative way to measure the
quality of the point we have. In fact, a point x is a solution of the Mixed Complementarity
Problem if and only if x ∈ arg minz∈[l,u] Ψ(z) and Ψ(x) = 0. Here the merit function

Ψ(x) =
1

2
Φ(x)TΦ(x) =

1

2
‖Φ(x)‖2 (1.5)

is continuously differentiable. The operator Φ : Rn → Rn is defined componentwise as
follows:

Φi(x) :=


φ(xi − li, Fi(x)) if i ∈ Il,
−φ(ui − xi,−Fi(x)) if i ∈ Iu,
φ(xi − li, φ(ui − xi,−Fi(x))) if i ∈ Ilu,
−Fi(x) if i ∈ If .

(1.6)

where we define φ : R2 → R by

φ(a, b) :=
√
a2 + b2 − a− b (1.7)

and Il, Iu, Ilu, If is a partition of the set {1, . . . , n}, where

Il := {1 ≤ i ≤ n| −∞ < li < ui = +∞}, (1.8)

Iu := {1 ≤ i ≤ n| −∞ = li < ui < +∞}, (1.9)

Ilu := {1 ≤ i ≤ n| −∞ < li < ui < +∞}, (1.10)

If := {1 ≤ i ≤ n| −∞ = li < ui = +∞}. (1.11)

In the implementation of the algorithm, the stopping criteria is Ψ(x) < ε, where ε is an
arbitrary parameter chosen at the start.
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1.2.2 Equilibrium problems: MOPECs, GNEPs, NEPs and PNEPs

The objective of multiple optimization problems with equilibrium constraints (MOPECs)
with mutiple players and equilibrium constraints is to find a profile of strategies and
market prices that satisfy the following conditions: (1) each player’s strategy is an optimal
response to the other players’ strategies and market prices, and (2) the market prices are the
reasonable responses from the markets in response to the players’ strategies. It is important
to note that the strategy set of each player may depend on the strategies of other players
and the market prices. Recall the basic definitions of A, xa, x−a,x from Section 1.1. The
market price is denoted by p ∈ Rα, where α is a positive integer.

In the MOPEC, each player a ∈ A, taking the other players’ strategies x−a and market
price p at their given values, solves the following minimization problem:

Pa(x−a, p) : min
xa

fa(xa;x−a, p)

s.t. xa ∈ Xa(x−a, p)
(1.12)

where fa : Rd+α → R is the given cost function of player a. Xa : Rd−a+α → Rda is a given
point-to-set mapping. For each fixed x−a and p, Xa(x−a, p) is a subset of Rda , which is the
feasible strategy set of player a with fixed other players’ strategies given by x−a and market
price given by p. The market price p, taking all players’ strategies x at given values, satisfies
the equilibrium constraint:

0 ∈ F (p;x) +NK(x)(p) (1.13)

where F : Rα+d → Rα is a function that embodies the equilibrium condition and can be
influenced by the price p and the strategies of all playersx, typically representing the supply-
demand relationship in economics. K : Rd → Rα is a point-to-set mapping and K(x) is a
set in Rα given the fixed strategy vector x. NK(x) : Rα → Rα is the point-to-set mapping to
represent the normal cone of setK(x). LetQV I(x) := {p ∈ K(x) | 0 ∈ F (p;x)+NK(x)(p)}
denote the set of market prices p that safisfy the equilibrium contraint (1.13).

A vector (x, p) =
(
(xa)a∈A, p

)
is said to be feasible to MOPEC if xa ∈ Xa(x−a, p) for each

a ∈ A and p ∈ K(x). The goal of MOPEC is to find a vector (x∗, p∗) =
(
(x∗a)a∈A, p

∗)∈ Rd+α

such that
x∗a is an optimal solution of Pa(x

∗
−a, p

∗) for each a ∈ A

p∗ belongs to set QV I(x∗)
(1.14)

A vector (x∗, p∗) =
(
(x∗a)a∈A, p

∗) satisfying (1.14) is called an equilibrium point of MOPEC.
If there is no market price p and corresponding market constraint involved in the

problem, each player a ∈ A will solve the minimization problem with the fixed exogenous
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parameter x−a:
P Ga (x−a) : min

xa
fa(xa;x−a)

s.t. xa ∈ Xa(x−a)
(1.15)

In this case, we call the above problem a generalized Nash equilibrium problem (GNEP).
A vector x∗ = (x∗a)a∈A satisfying the conditions

x∗a is an optimal solution of P Ga (x∗−a) for all a ∈ A. (1.16)

is called an equilibrium point of GNEP.
Furthermore, if in a GNEP, the strategy set of each player is not impacted by the strategies

of other players, meaning Xa(x−a) = Xa is a fixed set, it is called a Pure Nash equilibrium
problem (NEP). The solution to this special type of GNEP is known as an equilibrium point
of NEP.

If there are no other players’ strategies x−a involved in each player’s optimization
problem in a MOPEC, we will have each player a ∈ A solves a minimization problem
parameterized by the fixed market price p:

PPa (p) : min
xa

fa(xa; p)

s.t. xa ∈ Xa(p)
(1.17)

The problem with the above minimization problems PPa (p) for each player a and the market
constraint (1.13) is called the price-incentivized Nash equilibrium problem (PNEP). A
vector (x∗, p∗) =

(
(x∗a)a∈A, p

∗) satisfying the conditions

x∗a is an optimal solution of PPa (p∗) for all a ∈ A.

p∗ belongs to set QV I(x∗)
(1.18)

is called an equilibrium point of PNEP.
Throughout this thesis, we make the following assumptions regarding the smoothness

and convexity of functions involved in the MOPEC.

Assumption 1.1. Suppose the vector (x, p) is a feasible vector to MOPEC. Assume the set K(x)

is a closed, convex set for each fixed x. For a ∈ A, assume the feasible strategy set Xa(x−a, p) is a
closed, convex set in Rda for each fixed x−a and p, and the function f is a continuously differentiable
function with fa(·;x−a, p) is differentiable and convex for each fixed x−a and p. F is assumed to be
a continuous function.
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We also assume the Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds
for all nonlinear constraints. This assumption enables the computation of a solution
to the equilibrium problems from their associated MCP and vice versa, given that the
constraints are explicitly given as equalities and inequalities. The use of MFCQ also allows
for the representation of all normal cones using the algebraic information derived from the
constraints.

1.2.3 Equivalence between equilibrium problems and their variational
forms

The results shown in this section are simple extensions of existing results in [52]. We first
show the equivalence between the equilibrium problems and their associated QVIs.

Proposition 1.2. For each player a ∈ A, if fa(·;x−a, p) is a convex function given (x−a, p), and
Xa(x−a, p) is a closed convex set for each (x−a, p), f is a continuously differentiable function, then
(x∗, p∗) is a solution to the MOPEC if and only if it is a solution to the QV I(K, G) where

K(x, p) =
∏
a∈A

Xa(x−a, p)×K(x)

G(x, p) = (∇x1f1(x1;x−1, p)
T , . . . ,∇x|A|f|A|(x|A|;x−|A|, p)

T , F (p;x)T )T
(1.19)

Proof. (⇒) Let (x∗, p∗) be a solution to the MOPEC. For each player a ∈ A, since each
player’s objective function fa(·;x−a, p) is a convex function for any (x−a, p), then the first
order conditions are necessary and sufficient. For that reason we will have

〈∇xafa(x
∗
a;x
∗
−a, p

∗), xa − x∗a〉 ≥ 0, ∀xa ∈ Xa(x
∗
−a, p

∗) for a ∈ A

Also, since K(x∗) is closed convex set, then from

0 ∈ F (p∗;x∗) +NK(x∗)(p
∗) (1.20)

we will have the variational inequality

〈F (p∗;x∗), p− p∗〉 ≥ 0, ∀p ∈ K(x∗) (1.21)

Thus (x∗, p∗) is a solution of the QV I(K, G).
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(⇐) If (x∗, p∗) is a solution to the QV I(K, G), then we will have

〈∇xafa(x
∗
a;x
∗
−a, p

∗), xa − x∗a〉 ≥ 0, ∀xa ∈ Xa(x
∗
−a, p

∗) for each a ∈ A

〈F (p∗;x∗), p− p∗〉 ≥ 0, ∀p ∈ K(x∗)

Since fa(·;x∗−a, p∗) is convex for (x∗−a, p
∗), we have

x∗a ∈ arg min
xa∈Xa(x∗−a,p

∗)
fa(xa;x

∗
−a, p

∗), for each a ∈ A (1.22)

Thus (x∗, p∗) is a solution of the corresponding MOPEC.

Proposition 1.3. Suppose Xa(x−a, p) = {xa ∈ [la, ua]|ha(xa;x−a, p) = 0, ga(xa;x−a, p) ≤ 0}
where ha : Rd+α → Rχa is an affine function, ga : Rd+α → Rψa is continuously differentiable
and a convex function of xa given (x−a, p) and la ≤ ua, la ∈ Rda ∪ {−∞}da , and ua ∈ Rda , and
ua ∈ Rda ∪ {∞}da . Suppose K(x) = Rα

+, fa(·; ·, ·) is continuously differentiable, fa(·;x−a, p) is a
convex function, and Xa(x−a, p) is a closed convex set for each given x−a and price p. Then (x∗, p∗)

is a solution to the MOPEC if and only if (x∗, p∗,γ∗,η∗) is a solution to the MCP (B,G), provided
the constraint qualification holds at (x∗, p∗) with

B =
∏
a∈A

[la, ua]× Rdp
+ × Rχ × Rψ

−, χ =
∑
a∈A

χa, ψ =
∑
a∈A

ψa,

G(x, p,γ,η) =
(

(∇x1f1(x1;x−1, p)−∇x1h1(x1;x−1, p)γ1 −∇x1g1(x1;x−1, p)η1)T , . . . ,

(∇x|A|f|A|(x|A|;x−|A|, p)−∇x|A|h|A|(x|A|;x−|A|, p)γ|A| −∇x|A|g|A|(x|A|;x−|A|, p)η|A|)
T ,

F (p;x)T , h1(x1;x−1, p)
T , . . . , h|A|(x|A|;x−|A|, p)

T , g1(x1;x−1, p)
T , . . . , g|A|(x|A|;x−|A|, p)

T
)T

(1.23)
where γ = (γa)a∈A,η = (ηa)a∈A.

Proof. (⇒) Let (x∗, p∗) be a solution to the MOPEC. Using the KKT conditions of each
optimization player, the VI, and the constraint qualification at (x∗, p∗), there exists (γ∗,η∗)

such that

∇xafa(x
∗
a;x
∗
−a, p

∗)−∇xaha(x
∗
a;x
∗
−a, p

∗)γ∗a −∇xaga(x
∗
a;x
∗
−a, p

∗)η∗a ⊥ la ≤ x∗a ≤ ua, ∀a ∈ A

F (p∗;x∗) ⊥ 0 ≤ p∗

ha(x
∗
a;x
∗
−a, p

∗) ⊥ γ∗a free ∀a ∈ A

ga(x
∗
a;x
∗
−a, p

∗) ⊥ η∗a ≤ 0 ∀a ∈ A
(1.24)

So (x∗, p∗,γ∗,η∗) is a solution to the MCP(B, G).
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(⇐) Let (x∗, p∗,γ∗,η∗) be a solution to the MCP(F, G), then (x∗, p∗,γ∗,η∗) satisfies (1.23).
When (x∗, p∗) satisfies the constraint qualification, we will have

NXa(x∗−a,p
∗)(x

∗
a) ={−∇xaha(x

∗
a;x
∗
−a, p

∗)γa −∇xaga(x
∗
a;x
∗
−a, p

∗)ηa|

ha(x
∗
a;x
∗
−a, p

∗) ⊥ γa, ga(x
∗
a;x
∗
−a, p

∗) ⊥ ηa ≤ 0}

+N[la,ua](x
∗
a), ∀a ∈ A

(1.25)

Then with the convexity condition, we know that (x∗, p∗) is a solution to the MOPEC.

1.3 Multistage stochastic equilibrium problems based on
a scenario tree

1.3.1 The notion of a scenario tree

Before introducing a stochastic Nash equilibrium, we first introduce a structure that is
commonly used to represent a discrete-time stochastic process, with a finite set of events in
each stage. Such a process can be modeled using a scenario tree specified by the pair (N , E),
where n ∈ N is the set of scenario nodes and ε ∈ E is the set of edges. By convention
we number the root node n = 1. A path between two nodes is defined as a sequence of
adjacent nodes, where each adjacent pair of nodes can be represented by an edge in the
set E . The set of paths from node n to node m is denoted by P(n,m). If n = 1 is the root
node, then the notation P(1,m) can be simplified to P(m). In this case, P(m) specifies
the set of nodes that form a path from the root node 1 to node m. Let P̄(n,m) denote the
path from node n to node m but excluding the node n. The previous node in the path
can be denoted as n−, the node before that as n−−, and so on. The set of children of node
n ∈ N is denoted by n+, and its cardinality is denoted by |n+|. The set of leaves of the
scenario tree, that is, nodes with no children, is denoted by L. The set of successors of node
n is S(n) = {{n} ∪ n+ ∪ n++ ∪ . . . .} where n++ is defined in the obvious way. The set of
successors of node n excluding node n is S̄(n) = {n+ ∪ n++ ∪ . . . .}. The set of successors
of node n excluding node n and its children nodes n+ is ¯̄S(n) = {n++ ∪ . . . .}. The depth
δ(n) of node n is the number of nodes on the path to node 1, so δ(1) = 1 and we assume
without loss of generality that every leaf node has the same depth, say δL. The depth of
a node can be interpreted as a time index t = 1, 2, . . . , T = δL. The corresponding time
stage set of this tree could be denoted by T = {1, 2, . . . , T}. A pictorial representation of
a scenario tree with three-time stages is given in Figure 1.1. The conditional probability
of the event represented by node n is denoted φn and so φn represents the probability of



12

moving from n− to n. Parameter πn =
∏

m∈P(n) φm is the probability of the scenario at node
n. For the root node n = 1, φ1 = π1 = 1. The sequence that travels from a root node to a leaf
node is called a scenario, i.e., (1, 2, 4). Denote N (t) ⊆ N as the set of nodes representing
the realizations of the random variable at time stage t. It can be seen that for the example
of Figure 1.1 N (1) = {1},N (2) = {2, 3} and N (3) = {4, 5, 6, 7, 8}.

1

2

3

6

5

4

7

8

4−− = {1}
2+ = {4, 5, 6}
|2+| = 3

L = {4, 5, 6, 7, 8}

3+ = {7, 8}

S(3) = {3, 7, 8}

P(6) = {6, 2, 1}

δ(1) = 1

1++ = L

Figure 1.1: A scenario tree with nodes N = {1, 2, . . . , 8}, and T = 3

1.3.2 Stochastic MOPEC defined on a scenario tree

Following the introduction of the concept of a scenario tree, a stochastic MOPEC can be
constructed based on it. For the stochastic problem, the strategy of each player xa could
be decomposed into the strategy of player on each scenario node xan ∈ Rdan . The entire
strategy of player a can then represented as xa· := (xan)n∈N ∈ Rda , where da :=

∑
n∈N dan.

The vector consisting of all strategies of players other than player a at scenario node n is
denoted by x−an := (xa′n)a′∈A,a′ 6=a ∈ Rd−an , where d−an :=

∑
a′∈A,a′ 6=a da′n = dn − dan. The

vector including entire strategies of all players excluding player a at all stages is denoted
by x−a· := (x−an)n∈N .

Additionally, there will be an individual, independent market for each scenario node
n ∈ N , associated with a market price pn ∈ Rαn for each market, where αn is a positive
integer. This will only be influenced by its corresponding market and the strategies involved
in that market. The price vector involving all time stages is denoted by p := (pn)n∈N ∈ Rα,
where α =

∑
n∈N αn. Due to the independence of the prices at each stage, the feasible
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region of the price vector p is K :=
∏

n∈N Kn ⊆ Rα, where Kn ⊆ Rαn is a closed, convex set
and represents the constraints on the price pn.

For each n ∈ N , there will be a cost fan(xan;x−an, pn) of player a, where f : Rdn+αn → R
is a continuously differentiable function and f(·;x−an, pn) is a convex function given fixed
other players’ strategies x−an and market price pn. Based on this, players could use different
risk measures to build their costs on the scenario tree. We start with the most commonly
used risk measure, which is expectation. Based on the structure of the scenario tree (N , E),
the expected disbenefit of future outcomes at node n of player a is then defined recursively
to be

En
((
fam(xam;x−am, pm)

)
m∈S̄(n)

)
=

 0, n ∈ L∑
m∈n+

φm ·
(
fam(xam;x−am, pm) + Em

((
fal(xal;x−al, pl)

)
l∈S̄(m)

))
n ∈ N\L

(1.26)
Based on (1.26), we can get

En
((
fam(xam;x−am, pm)

)
m∈S̄(n)

)
=

∑
m∈S̄(n)

(
∏

l∈P̄(n,m)

φl) · fam(xam;x−am, pm) (1.27)

The total cost the player wish to minimize is:

fa1(xa1;x−a1, p1) + E1

((
fan(xan;x−an, pn)

)
n∈S̄(1)

)
= fa1(xa1;x−a1, p1) +

∑
n∈S̄(1)

(
∏

l∈P̄(1,n)

φl) · fan(xan;x−an, pn)

= fa1(xa1;x−a1, p1) +
∑
n∈S̄(1)

πn · fan(xan;x−an, pn)

(1.28)

We also assume the stochastic MOPEC in this thesis has a special feasible region for
each player:

Xa(x−a·,p) = {(xan)n∈N |xan ∈ Xan, Gan(xan− , xan;x−an, pn) ∈ Kan, ∀n ∈ N} (1.29)

where Xan ⊆ Rdan is a closed, convex set, Kan ⊆ Rψan is a closed, convex cone, and Gan :

Rdan−+dn+αn → Rψan is a continuously differentiable function and Gan(·, ·;x−an, pn) is a
convex function for each fixed x−an and pn.

In this formulation, it is assumed that the algebraic function Gan only depend on the
player a’s decision at the current node and its parent node, the strategies of other players



14

at the current node, and the market price at the current node. This assumption means
that the problem assumes an independent market at each node, and transitions between
scenario nodes are limited to within each individual player. Furthermore, it is argued that,
for each player, considering only their decisions at the current node and its parent node is
sufficient to capture general situations, with the aid of simple transformations.

Thus, after using a scenario tree to represent the multistage stochastic process, each
player a’s multistage stochastic optimization parameterized by other players’ strategies
x−a· and market price p can be represented as the following extensive format:

PRNa (x−a·,p) : min
xa·

fa1(xa1;x−a1, p1) +
∑
n∈S̄(1)

πn · fan(xan;x−an, pn)

s.t. Gan(xan− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N

(1.30)

At scenario node n, the market price at that node pn, taking all players’ strategies at that
node x·n = (xan)a∈A as given, satisfies the equilibrium constraint:

0 ∈ Fn(pn;x·n) +NKn(pn) (1.31)

where Fn : Rαn+
∑

a∈A dan → Rαn is a given continuous function that embodies the equilib-
rium condition and is influenced by the price pn and the strategies of all players x·n at
scenario node n, typically representing the supply-demand relationship in economics.

Let QV I
n (x) := {pn|pn ∈ Kn, pn solves (1.31)} denote the set of market price pn that

safisfies the equilibrium contraint at scenario node n. Then the combination of each
players’ optimization problem (1.30) and the market constraint (1.31) leads to the following
definition for a stochastic MOPEC with risk-neutral players:

Definition 1.4. (x∗,p∗) =
(
(x∗an)a∈A,n∈N , (p

∗
n)n∈N

)
is an equilibrium point of the multistage

stochastic MOPEC with risk-neutral players if and only if

x∗a· is an optimal solution of PRNa (x∗−a·,p
∗) for all a ∈ A.

p∗n belongs to set QV I
n (x∗) for all n ∈ N .

(1.32)

Remark 1.5. A special case of the stochastic MOPEC is the dynamic MOPEC problem,
which can also be represented by a "special" tree strucutre. An example of a dynamic
problem with a total of 4 stages is shown in Figure 1.2.
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Figure 1.2: Dynamic equilibrium with 4-time stages

In the above dynamic equilibrium problem, the strategy of each player xa could be
decomposed into the strategies of player at each time stage t, denoted by xat ∈ Rdat , where
t is the time stage index and dat is the dimension of the strategy. The entire strategy of
player a can then be represented as xa· := (xat)t∈T ∈ Rda , where da :=

∑
t∈T dat. The

vector consisting of all strategies of players other than player a at time stage t is denoted
by x−at := (xa′t)a′∈A,a′ 6=a ∈ Rd−at , where d−at :=

∑
a′∈A,a′ 6=a da′n = dt − dat. The vector

including the entire strategies of all players excluding player a at all stages is denoted by
x−a· := (x−at)t∈T . pt ∈ Rαt is the market price at stage t. Each player a is trying to solve the
optimization problem parameterized by other players’ strategies x−a· and market price p:

PDa (x−a·,p) : min
xa·

∑
t∈T

fat(xat;x−at, pt)

s.t. Gat(xat−1, xat;x−at, pt) ∈ Kat, ∀t ∈ T

xat ∈ Xat, ∀t ∈ T

(1.33)

where f : Rdt+αt → R is a continuously differentiable function and f(·;x−at, pt) is a convex
function given fixed other players’ strategies x−at and market price pt, Xat ⊆ Rdat is a
closed, convex set, Kat ⊆ Rψat is a closed, convex cone, and Gat : Rdat−1+dt+αt → Rψat is a
continuously differentiable function and Gat(·, ·;x−at, pt) is a convex function for each fixed
x−at and pt. There is an equilibrium market constraint for each t ∈ T :

0 ∈ Ft(pt;x·t) +NKt(pt) (1.34)

Define QV I
t (x) := {pt|pt ∈ Kt, pt solves (1.34)}. A point (x∗,p∗) =

(
(x∗at)a∈A,t∈T , (p

∗
t )t∈T

)
is an equilibrium point of an dynamic equilibrium problem if and only if

x∗a· is an optimal solution of PDa (x∗−a·,p
∗) for all a ∈ A.

p∗t belongs to set QV I
t (x∗) for all t ∈ T .

(1.35)

The above dynamic equilibrium problem can also be represented by a stochastic MOPEC
with the format (1.32) based on the following scenario tree structure. The set of scenario
nodes of the tree is equivalent to the set of time stage T . The set of edges E could be
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constructed by letting t+ = t + 1 when t < T . Because each node t only has one child
node, we define the conditional probability φt = 1 for every t ∈ T . This formulation of the
dynamic MOPEC fits perfectly in the format (1.32), indicating that the dynamic MOPEC is
a special case of the stochastic MOPEC.

In fact, the structure of multistage stochastic MOPEC with risk-averse players could be
represented by the Figure 1.3:

Figure 1.3: Visualization of the structure of multistage stochastic MOPEC with risk-averse
players

Figure 1.3 illustrates the problem structure, wherein the black circle denotes the initial
state, and the white circles represent the nodes of the scenario tree. The purple dashed
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line symbolizes the interactions occurring between players and markets within the system.

1.4 Coherent risk measures

In this section, we delve into the concept of coherent risk measures, which play a crucial
role in this thesis. Unlike most stochastic MOPECs that utilize the expectation operator
E(·) as a tool to measure the risk of uncertainty in their objectives, this thesis incorporates
the use of coherent risk measures to cater to different requirements in the treatment of
uncertainty.

The linearity property of the expectation operator makes it a widely used risk mapping
tool. However, different players may have varying risk preferences, such as considering
the worst-case scenario to be more important or the expectation of costs above a certain
percentile ϕ.

To address these varying risk preferences, this thesis focuses on incorporating a popular
risk mapping tool, the coherent risk measure, which is defined on a discrete sample space
I = {1, 2, 3, . . . , |I|}. In this framework, the decision maker is faced with a random cost
Zi, i ∈ I , and the risk-adjusted disbenefit of Z is represented by ρ(Z). The definition of the
coherent risk measure is provided below.

Definition 1.6. A coherent risk measure ρ on probability space (Ω, I, π) is a function from
L2(Ω, I, π) to (−∞,+∞] and satisfies the following five axioms:

1. ρ(C) = C for all constant C.

2. ρ((1− λ)Z + λZ ′) ≤ (1− λ)ρ(Z) + λρ(Z ′) for λ ∈ [0, 1]

3. ρ(Z) ≤ ρ(Z ′) if Z ≤ Z ′ almost surely.

4. ρ(Z) ≤ 0 when ‖Zk − Z‖2 → 0 with ρ(Zk) ≤ 0.

5. ρ(λZ) = λρ(Z) for λ > 0.

In fact, the coherent risk measure ρ(Z) has a very important property that it has a dual
representation expressed as

ρ(Z) = σD(Z) = sup
µ∈D
〈µ, Z〉

where D ⊆ {µ ∈ R|I|+ |
∑

i∈I µi = 1} is a convex set and is the risk set of the coherent risk
measure. σD(·) is also called a support function evaluation on the risk set D. Note that µ ∈ D
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is a multi-dimensional vector with the property that
∑

i∈I µi = 1 and µi ≥ 0, where µi is
the ith component of the vector µ. Here are four examples of coherent risk measures and
their dual representations:

Example 1 (Expected value via support function evaluation) It is easy to see that the expecta-
tion operator E(·) is a coherent risk measure with the dual risk set D being a singleton and
D = {φ}. In this case, we know

E(Z) = sup
µ∈D

µTZ = σ{φ}(Z) = sup
µ∈{φ}

µTZ = φTZ,

where φ =


φ1

...
φ|I|

 .
Example 2 (CVaR via support function evaluation)CV aRϕ(Z)

∆
= minκ∈R

{
κ+ 1

1−ϕE
[
Z−κ

]
+

}
is the value of the support function of DCV aR(ϕ) at Z, where

DCV aR(ϕ) :=
{
µ ∈ 1

1− ϕ
∏
i∈I

[0, φi]|
∑
i∈I

µi = 1
}

Example 3 (Convex combination of Expectation and CVaR)

CV aR(λ, ϕ)(Z) = (1− λ) · E(Z) + λ · CV aRϕ(Z) = σ(1−λ){φ}+λD(ϕ)(Z)

Example 4 (K-Deviance via support function evaluation)DevK(Z) is the value of the support
function of DDev(K) at Z, where

DDev(K) :=
{
µi = πi · (1 + νi −

∑
j∈I

φj · νj) | 0 ≤ νi ≤ K, ∀i ∈ I
}

1.4.1 Two different mathematical formulation representations for
two-stage stochastic MOPEC with risk-averse players

We start with the two stage stochastic MOPEC as we transition from risk-neutral players to
risk-averse players, so N = {1} ∪ 1+. It is assumed that all players will adopt coherent risk
measures to reflect their risk preference. For a two-stage problem, if each player replaces
the expectation operator E(·) with their preferable risk measure ρa1(·) in equation (1.28),
then their objectives will become:

min
xa·

fa1(xa1;x−a1, p1) + ρa1

([
fan(xan;x−an, pn)

]
n∈1+

)
(1.36)
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In fact, if the stochastic process is represented by a discrete scenario tree, we could have
two different algebraic formulations to represent the stochastic MOPECs: Equilibrium
reformulation and Conjugate-based reformulation.

1.4.1.1 Equilibrium reformulation

Under the assumption that each coherent risk measure has the corresponding dual repre-
sentation, then we could represent each player’s coherent risk measure ρa1(·) by their dual
format:

ρa1(·) = σDa1(·) = sup
µa1+∈Da1

〈µa1+ , ·〉

where Da1 is the risk set of ρa1 and µa1+ = (µan)n∈1+denotes the vector that collects the risk
probability variable of each player at each node. Based on these, the optimization problem
for each player a could be written in minimax problem format:

PRA−Ea (x−a·,p) : min
xa·

fa1(xa1;x−a1, p1) + max
µa1+∈Da1

∑
n∈1+

µan · fan(xan;x−an, pn)

s.t. Gan(xan− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N
(1.37)

Combining each player’s optimization problems (1.37) and market constraints (1.31),
we could define the two-stage stochastic MOPEC with risk-averse players utilizing dual
representation of coherent risk measure:

Definition 1.7. (x∗,p∗) =
(
(x∗an)a∈A,n∈N , (p

∗
n)n∈N

)
is an equilibrium point of the above two-

stage stochastic MOPEC with risk-averse players utilizing dual representation of coherent
risk measure if and only if

x∗a· is an optimal solution of PRA−Ea (x∗−a·,p
∗) for all a ∈ A

p∗n belongs to set QV I
n (x∗) for all n ∈ N

(1.38)

An equilibrium reformulation of the above problem (1.38) was proposed in [56]. It is
shown that the player’s optimization problem PRA−Ea (x∗−a·,p

∗) can be represented by an
equilibrium problem. For each player a ∈ A, there exists one addtional player who is
controlling the vector µa1+ and trying to solve the following optimization problem:

max
µa1+∈Da1

∑
n∈1+

µan · fan(xan;x−an, pn) (1.39)
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with given x and p. We denote this problem by

Ra(x,p) : max
µa1+∈Da1

∑
n∈1+

µan · fan(xan;x−an, pn) (1.40)

After moving the risk-averse part out, each player a ∈ A is trying to solve the following
problem with given (x−a·,p, µa1+):

PFa (x−a·,p, µa1+) : min
xa·

fa1(xa1;x−a1, p1) +
∑
n∈1+

µan · fan(xan;x−an, pn)

s.t. Gan(xa,n− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N
(1.41)

Combing the above formulations (1.40)-(1.41) and market constraint (1.31), [56] gives
the definition for the equilibrium point of two-stage stochastic MOPEC with risk-averse
players in equilibrium reformulation format:

Definition 1.8. (x∗,p∗,µ∗) =
(

(x∗an)a∈A,n∈N , (p
∗
n)n∈N , (µ

∗
an)a∈A,n∈1+

)
is an equilibrium point

of the above two-stage stochastic MOPEC with risk-averse players in equilibrium reformulation
format if and only if

x∗a· is an optimal solution of PFa (x∗−a·,p
∗, µ∗a1+

) for all a ∈ A

p∗n belongs to set QV I
n (x∗) for all n ∈ N

µ∗a1+
is an optimal solution of Ra(x

∗,p∗) for all a ∈ A

(1.42)

We have the following equivalence between equilibrium points of the above two formu-
lations:

Proposition 1.9. If (x∗,p∗,µ∗) =
(

(x∗an)a∈A,n∈1+ , (p
∗
n)n∈N , (µ

∗
an)a∈A,n∈1+

)
is an equilibrium

point of two-stage stochastic MOPEC with risk-averse players in equilibrium reformulation format
(1.42) then its paritial solution (x∗,p∗) =

(
(x∗an)a∈A,n∈N , (p

∗
n)n∈N

)
is an equilibrium point of

two-stage stochastic MOPEC with risk-averse players in format (1.38).

Proof. If (x∗,p∗,µ∗) =
(

(x∗an)a∈A,n∈1+ , (p
∗
n)n∈N , (µ

∗
an)a∈A,n∈1+

)
is an equilibrium point of

(1.42). For any a ∈ A, let xa· ∈ Xa(x
∗
−a·,p

∗) = {(xan)n∈N |Gan(xa,n− , xan;x∗−an, p
∗
n) ∈



21

Kan, xan ∈ Xan,∀n ∈ N} be arbitrary. We will have

fa1(xa1;x∗−a1, p
∗
1) + max

µa1+∈Da1

∑
m∈1+

µam · fam(xam;x∗−am, p
∗
m)

≥ fa1(xa1;x∗−a1, p
∗
1) +

∑
m∈1+

µ∗am · fam(xam;x∗−am, p
∗
m)

≥ fa1(x∗a1;x∗−a1, p
∗
1) +

∑
m∈1+

µ∗am · fam(x∗am;x∗−am, p
∗
m)

= fa1(x∗a1;x∗−a1, p
∗
1) + max

µa1+∈Da1

∑
m∈1+

µam · fam(x∗am;x∗−am, p
∗
m)

(1.43)

This shows that

x∗a· ∈ arg min
xa·∈Xa(x∗−a·,p

∗)
fa1(xa1;x∗−a1, p

∗
1) + max

µa1+∈Da1

∑
m∈1+

µam · fam(xam;x∗−am, p
∗
m) (1.44)

With the market constraints:

0 ∈ Fn(p∗n;x∗·n) +NKn(p∗n), ∀n ∈ N (1.45)

we could have (x∗,p∗) is an equilibrium point of (1.38). This completes the proof of the
proposition.

1.4.1.2 Conjugate-based reformulation

In this reformulation, we consider the scenario where the risk set Da1 is a polyhedral for
each player a ∈ A. The reason is that the situation where the risk set Da1 is a polyhedral
set is really common and there is an equivalent reformulation of the support function σDa1

whenever Da1 is a polyhedral set. Assuming Da1 to be the closed convex hull of the set of
vertices {µka1+

|k ∈ Λa1}, where Λa1 is a finite index set for the extreme points of risk set Da1,
we can express it as follows:

ρa1(Z) = σDa1(Z) = sup
µa1+∈Da1

〈µa1+ , Z〉 = max
k∈Λa1

〈µka1+
, Z〉 = max

k∈Λa1

∑
n∈1+

µkan · Zn (1.46)

The third equality in equation (1.46) is a result of the linearity property of the support
function. Let θ̄ ∈ R denote the risk-adjusted disbenefit associated with all random future
outcomes (Zn)n∈1+ . It follows that:

θ̄ = max
k∈Λa1

(µka1+
)TZ =

{
min θ

s.t. θ ≥
∑

n∈1+
µkan · Zn, ∀k ∈ Λ
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Here θ ∈ R is a free variable in the minimization problem on the righthand side.
Let’s look back at our two-stage stochastic MOPEC (1.36). Let θ̄a1 ∈ R denote the

risk-adjusted disbenefit of all random outcomes of player a. We would have

θ̄a1 = ρa1

([
fan(xan;x−an, pn)

]
n∈1+

)
= max

µa1+∈Da1

∑
n∈1+

µan · fan(xan;x−an, pn)

= max
k∈Λa1

∑
n∈1+

µkan · fan(xan;x−an, pn)

=

{
min θa1

s.t. θa1 ≥
∑

n∈1+
µkan · fan(xan;x−an, pn), ∀k ∈ Λa1

(1.47)

Here θa1 ∈ R is a free variable, {µka1+|k ∈ Λa1} are the set of extreme points of polyhedral
risk set Da1. Then we will have

min
xa·

fa1(xa1;x−a1, p1) + ρa1

([
fan(xan;x−an, pn)

]
n∈1+

)
(=) min

xa·
fa1(xa1;x−a1, p1) + max

µa1+∈Da1

∑
n∈1+

µan · fan(xan;x−an, pn)

(=) min
xa·

fa1(xa1;x−a1, p1) + max
k∈Λa1

∑
n∈1+

µkan · fan(xan;x−an, pn)

(=) min
xa·,θai

fa1(xa1;x−a1, p1) + θa1

s.t. θa1 ≥
∑
n∈1+

µkan · fan(xan;x−an, pn), ∀k ∈ Λa1

(1.48)

Based on this, we can achieve the conjugate-based reformulation of a two-stage stochastic
equilibrium problem with risk-averse players as follows:

Each player a, with given x−a· and p, will solve the optimization problem:

PRA−Ca (x−a·,p) : min
xa·,θa1

fa1(xa1;x−a1, p1) + θa1

s.t. θa1 ≥
∑
n∈1+

µkan · fan(xan;x−an, pn), ∀k ∈ Λa1

Gan(xan− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N

(1.49)

Based on the players’ optimization problems (1.49) and the market constraint (1.31),
we have the definition for an equilibrium point of a two-stage stochastic MOPEC with
risk-averse players in the conjugate-based reformulation format:
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Definition 1.10. (x∗,p∗,θ∗) =
(

(x∗an)a∈A,n∈N , (p
∗
n)n∈N , (θ

∗
a1)a∈A

)
is an equilibrium point of

a two-stage stochastic MOPEC with risk-averse players in the conjugate-based reformulation
format if and only if

(x∗a·, θ
∗
a1) is an optimal solution of PRA−Ca (x∗−a·,p

∗) for all a ∈ A

p∗n belongs to set QV I
n (x∗) for all n ∈ N

(1.50)

1.5 Dynamic multistage risk measures

Now let’s transition our focus to the multistage setting. We incorporate the risk measures
discussed above into a multistage setting in which players make decisions over several
time stages to minimize risk-adjusted expected disbenefit.

For a multistage decision problem, we require a dynamic version of risk. The concept
of coherent risk measures was introduced in [74] and is described for general Markov
decision problems in [77]. Formally one defines a probability space (Ω,F , π) and a filtration
{∅,Ω} = F1 ⊂ F2 · · · ⊂ FT ⊂ F of σ−fields where all data in node 0 is assumed to
be deterministic and decisions at time t are Ft−measurable random variables (see [77]).
Working with finite probability spaces defined by a scenario tree simplifies this description.

Given a tree defined by N , suppose for each player a ∈ A the random sequence of
actions (xan)n∈N results in a random sequence of disbenefits {fan(xan;x−an, pn), n ∈ N}
parameterized by (x−an)n∈N and (pn)n∈N . We seek to measure the risk of this disbenefit
sequence when viewed by a decision maker at node 1. At node n the decision maker is
endowed with coherent risk measure ρan with a corresponding a one-step risk set Dan that
measures the risk of random risk-adjusted costs accounted for in m ∈ n+ for each player a.

In this situation, we can get an extended version of risk disbenefit at node n of player a:

ρan

((
fam(xam;x−am, pm)

)
m∈S̄(n)

)
= ρan

((
fam(xam;x−am, pm) + ρam

([
fal(xal;x−al, pl) + ρal (· · · )

]
l∈m+

))
m∈n+

) (1.51)

Similar to equation (1.26), the risk disbenefit of future outcomes at node n of player a
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can also be defined recursively to be:

ρan

((
fam(xam;x−am, pm)

)
m∈S̄(n)

)
=


0, n ∈ L

ρan

((
fam(xam;x−am, pm) + ρam

((
fal(xal;x−al, pl)

)
l∈S̄(m)

))
m∈n+

)
, n ∈ N\L

(1.52)
Based on above equation (1.52), the total cost of player a is:

fa1(xa1;x−a1, p1) + ρan

((
fam(xam;x−am, pm)

)
m∈S̄(n)

)
= fa1(xa1;x−a1, p1) + ρa1

([
fam(xam;x−am, pm)

+ ρam

(
[fal(xal;x−al, pl) + ρal(· · · )]l∈m+

)]
m∈1+

) (1.53)

Thus, for each player a ∈ A, he is trying to solve the following problem when involving
coherent risk measure {ρan(·)|n ∈ N\L}:

min
xa·

fa1(xa1;x−a1, p1) + ρa1

([
fam(xam;x−am, pm)

+ ρam

(
[fal(xal;x−al, pl) + ρal(· · · )]l∈m+

)]
m∈1+

)
s.t. Gan(xan− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N

(1.54)

1.5.1 Equilibrium reformulation

According to the equivalent dual representation

ρan(·) = σDan(·) = sup
µan+∈Dan

〈µan+ , ·〉

here Dan is the corresponding risk set for coherent risk measure ρan and µan+ = (µam)m∈n+

is a vector consisting all risk probability of player a at nodes that are children nodes of
node n. Then each player’s multistage optimization problem (1.54) can be written in the
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following format:

PRA−EMa (x−a·,p) : min
xa·

fa1(xa1;x−a1, p1) + max
µa1+∈Da1

∑
n∈1+

µan ·
[
fan(xan;x−an, pn)

+ max
µan+∈Dan

∑
m∈n+

µam ·
[
fam(xam;x−am, pm) + max

µam+∈Dam

· · ·
]]

s.t. Gan(xan− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N
(1.55)

Combining each player’s multistage optimization problems (1.55) and market con-
straints (1.31), we could define the multistage stochastic MOPEC with risk-averse players
utilizing dual representation of coherent risk measure:

Definition 1.11. (x∗,p∗) =
(
(x∗an)a∈A,n∈N , (p

∗
n)n∈N

)
is an equilibrium point of the above

multistage stochastic MOPEC with risk-averse players utilizing dual representation of
coherent risk measure if and only if

x∗a· is an optimal solution of PRA−EMa (x∗−a·,p
∗) for all a ∈ A

p∗n belongs to set QV I
n (x∗) for all n ∈ N

(1.56)

[56] also proposed an equilibrium reformulation of the above multistage problem (1.56).
For each player a ∈ A and scenario node n, there exists one addtional player who is
controlling the vector µan+ and tyring to solve the following optimization problem:

Ran(x,p, µa ¯̄S(n)) : max
µan+∈Dan

∑
m∈n+

µam ·
[
fam(xam;x−am, pm) +

∑
l∈m+

µal ·
[
fal(xal;x−al, pl) + · · ·

]]
(1.57)

with given x, p and µa ¯̄S(n) := (µal)l∈ ¯̄S(n).
After moving the risk-averse part out, each player a ∈ A is trying to solve the following

problem with given (x−a·,p,µa·), where µa· = (µan)n∈S̄(1):

PFa (x−a·,p,µa·) : min
xa·

fa1(xa1;x−a1, p1) +
∑
n∈1+

µan ·
[
fan(xan;x−an, pn)

+
∑
m∈n+

µam ·
[
fam(xam;x−am, pm) + · · ·

]]
s.t. Gan(xa,n− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N
(1.58)
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Combing the above formulations (1.57)-(1.58) and market constraint (1.31), [56] gives
the definition for the equilibrium point of multistage stochastic MOPEC with risk-averse
players in the equilibrium reformulation format:

Definition 1.12. (x∗,p∗,µ∗) =
(

(x∗an)a∈A,n∈N , (p
∗
n)n∈N , (µ

∗
an)a∈A,n∈S̄(1)

)
is an equilibrium

point of the above multistage stochastic MOPEC with risk-averse players in equilibrium
reformulation format if and only if

x∗a· is an optimal solution of PFa (x∗−a·,p
∗,µ∗a·) for all a ∈ A

p∗n belongs to set QV I
n (x∗) for all n ∈ N

µ∗an+
is an optimal solution of Ran(x∗,p∗, µ∗

a ¯̄S(n)
) for all a ∈ A, n ∈ N\L

(1.59)

We have the following equivalence between equilibrium points between above two
formulations:

Proposition 1.13. If (x∗,p∗,µ∗) =
(

(x∗an)a∈A,n∈N , (p
∗
n)n∈N , (µ

∗
an)a∈A,n∈S̄(1)

)
is an equilibrium

point of multistage stochastic MOPEC with risk-averse players in equilibrium reformulation format
(1.59) then its paritial solution (x∗,p∗) =

(
(x∗an)a∈A,n∈N , (p

∗
n)n∈N

)
is an equilibrium point of

two-stage stochastic MOPEC with risk-averse players in format (1.56).

Proof. If (x∗,p∗,µ∗) =
(
(x∗an)a∈A,n∈N , (p

∗
n)n∈N , (µ

∗
an)a∈A,n∈S̄(1)

)
is an equilibrium point of

(1.59). For any a ∈ A, letxa· ∈ Xa(x
∗
−a·,p

∗) = {(xan)n∈N |Gan(xa,n− , xan|x∗−an, p∗n) ∈ Kan, xan ∈
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Xan,∀n ∈ N} be arbitrary. We will have

fa1(xa1;x∗−a1, p
∗
1) + max

µa1+∈Da1

{∑
m∈1+

µam ·
[
fam(xam;x∗−am, p

∗
m)

+ max
µam+∈Dam

{∑
l∈m+

µal ·
[
fal(xal;x

∗
−al, p

∗
l ) + · · ·

]}]}
≥ fa1(xa1;x∗−a1, p

∗
1) +

∑
m∈1+

µ∗am ·
[
fam(xam;x∗−am, p

∗
m)

+
∑
l∈m+

µ∗al ·
[
fal(xal;x

∗
−al, p

∗
l ) + · · ·

]]
≥ fa1(x∗a1;x∗−a1, p

∗
1) +

∑
m∈1+

µ∗am ·
[
fam(x∗am;x∗−am, p

∗
m)

+
∑
l∈m+

µ∗al ·
[
fal(x

∗
al;x

∗
−al, p

∗
l ) + · · ·

]]
= fa1(x∗a1;x∗−a1, p

∗
1) + max

µa1+∈Da1

{∑
m∈1+

µam ·
[
fam(x∗am;x∗−am, p

∗
m)

+ max
µam+∈Dam

{∑
l∈m+

µal ·
[
fal(x

∗
al;x

∗
−al, p

∗
l ) + · · ·

]}]}

(1.60)

This shows that

x∗a· ∈ arg min
xa·∈Xa(x∗−a·,p

∗)
fa1(xa1;x∗−a1, p

∗
1) + max

µa1+∈Da1

{∑
m∈1+

µam ·
[
fam(xam;x∗−am, p

∗
m)

+ max
µam+∈Dam

{∑
l∈m+

µal ·
[
fal(xal;x

∗
−al, p

∗
l ) + · · ·

]}]}
(1.61)

With the market constraints:

0 ∈ Fn(p∗n;x∗·n) +NKn(p∗n), ∀n ∈ N (1.62)

we could have (x∗,p∗) is an equilibrium point of (1.56). This completes the proof of the
proposition.



28

1.5.2 Conjuate-based reformulation

Similar to the two-stage case, let’s assume the risk sets {Dan|a ∈ A, n ∈ N} are polyhedrals
and {µkan+

|k ∈ Λan} are extreme points for risk set Dan. Thus, we will have

ρan(Z) = σDan(Z) = sup
µan+∈Dan

〈µan+ , Z〉 = max
k∈Λan

(µkan+
)TZ = max

k∈Λan

∑
m∈n+

µkamZm

Here Zm is the random outcome at scenario node m.
Let θan ∈ R denote the risk-adjusted disbenefit of all random future outcomes. We

could have the definition of {θan|a ∈ A, n ∈ N} in a recursive way:

θan =

{
0, n ∈ L
maxk∈Λan

∑
m∈n+ µ

k
am ·

(
fam(xam;x−am, pm) + θam

)
, n ∈ N\L

(1.63)

Replace ρan(·) in (1.53) by variable θan, each player’s optimization problem will be in
the following format with given x−a· and p:

PRA−CMa (x−a·,p) : min
xa·,θa·

fa1(xa1;x−a1, p1) + θa1

s.t. θan ≥
∑
m∈n+

µkam ·
(
fam(xam;x−am, pm) + θam

)
, ∀k ∈ Λan, n ∈ N\L

Gan(xan− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N

θan = 0, ∀n ∈ L
(1.64)

Based on players’ optimization problems (1.64) and market constraint (1.31), we could
have the definition for the equilibrium point of multistage stochastic MOPEC with risk-
averse players in the conjugate-based reformulation format:

Definition 1.14. (x∗,p∗,θ∗) =
(

(x∗an)a∈A,n∈N , (p
∗
n)n∈N , (θ

∗
an)a∈A,n∈N

)
is an equilibrium point

of a multistage stochastic MOPEC with risk-averse players in the conjugate-based reformula-
tion format if and only if

(x∗a·,θ
∗
a·) is an optimal solution of PRA−CMa (x∗−a·,p

∗) for all a ∈ A

p∗n belongs to set QV I
n (x∗) for all n ∈ N

(1.65)



29

1.6 Main contributions and goals

The multistage SMOPEC with risk-averse players is a topic of increasing interest in the
academic community due to its broad applications in various fields, but there is still
limited research on its theoretical properties and practical methods for solving it. The main
contributions of this thesis are as follows:

• An investigation into some theoretical properties of the multistage stochastic MOPEC
with risk-averse players based on discrete scenario trees for the problem classes intro-
duced in Chapter 2, providing a deeper understanding of this challenging problem.

• The development of three different decomposition algorithms for this problem, based
on discrete scenario trees under specific conditions:

– A player-based decomposition algorithm for the multistage stochastic PNEP
with risk-averse players in the conjugate-based reformulation on discrete scenario
trees.

– A risk-MOPEC-based decomposition algorithm for the multistage stochastic
MOPEC with risk-averse players in the equilibrium reformulation on discrete
scenario trees.

– A stage-based decomposition algorithm for the multistage stochastic MOPEC
with fixed risk probabilities players in the equilibrium reformulation based on
discrete scenario trees.

• An extension of the multistage stochastic MOPEC with risk-averse players to a general
uncertainty setting and an investigation of sample average approximation methods
for constructing an accurate approximation scenario tree for any multistage stochastic
MOPEC with risk-averse players under general uncertain stochastic process.

1.7 Outline of the thesis

The present thesis has been structured to achieve the aforementioned objectives. At the be-
ginning, three main types of test instances, namely economic dispatch, capacity expansion,
and hydroelectric examples, are introduced in Chapter 2. These instances cover a wide
range of applications of stochastic MOPECs and will be utilized in subsequent chapters
to evaluate the performance of various algorithms. Following the introduction of the test
instances, Chapters 3 to 5 present different decomposition approaches from three distinct
perspectives for solving stochastic MOPECs based on discrete scenario trees. Player-based
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decomposition approaches are initially discussed in Chapter 3 since they are the most
frequently used decomposition approaches for stochastic PNEPs with risk-averse players
using a conjugate-based reformulation. We develop a new ADMM-like player-based algo-
rithm for solving stochastic PNEPs. However, player-based algorithms are incapable of
solving general stochastic MOPECs, especially when the problem is formulated in equilib-
rium reformulation or when players have a general Nash interaction with each other. Thus,
we develop a new primal-MOPEC-dual-risk decomposition approach in Chapter 4, which is
a powerful decomposition framework capable of solving more general stochastic MOPECs
with risk-averse players. Nonetheless, when the scenario tree is of large scale, the primal-
MOPEC subproblem in the primal-MOPEC-dual-risk decomposition approach becomes
computationally intractable. Hence, in Chapter 5, we develop a stage-based decomposition
approach to further decompose the primal-MOPEC subproblem in Chapter 4 into smaller
subproblems indexed by stages. Finally, we extend our approach to stochastic MOPECs
with a general distribution setting and its approximation using discrete scenario trees in
Chapter 6. This provides us with a general framework for solving stochastic MOPECs with
general distributions. The thesis concludes with a summary of the key findings in Chapter
??. The detailed organization of the thesis is outlined and visualized in Figure 1.4.

1. Chapter 2: This chapter introduces the main test problem instances that will be used
in the computational experiments of later chapters.

2. Chapter 3: This chapter focuses on the player-based decomposition algorithm to solve
the stochastic PNEP with risk-averse players, which is based on a conjugate-based
reformulation.

3. Chapter 4: This chapter presents a risk-MOPEC-based decomposition algorithm to
solve the general stochastic MOPEC with risk-averse players, which is based on an
equilibrium reformulation.

4. Chapter 5: This chapter introduces a stage-based decomposition algorithm to solve
the subproblem involved in each iteration of the risk-MOPEC-based decomposition al-
gorithm. This algorithm is designed to handle large-scale general stochastic MOPECs
with risk-averse players.

5. Chapter 6: This chapter extends the analysis to stochastic MOPEC problems under
general probability distributions, introduces a new two-level graph representation
for the general stochastic problem, and describes the sample-average approximation
(SAA) method to fit a two stochastic MOPEC into a discrete scenario tree-based
stochastic MOPEC.
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6. Chapter 7 concludes the thesis project by summarizing its contributions and suggest-
ing future research directions.

Figure 1.4: Visualization of the organization of the thesis
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2 test instances

The aim of this chapter is to present a series of problem instances that will be utilized in the
subsequent computational experiments. The structure of these instances is contingent on
the specific market constraints and reformulation techniques utilized, particularly when the
players exhibit risk-averse behavior. Each problem instance will be thoroughly examined
to assess its classification within the problem types introduced in chapter 1, alongside an
analysis of its structural components. Furthermore, a comparative analysis of the instances
will be conducted to identify their unique characteristics and challenges.

The chapter is structured as follows: Section 2.1 provides the definition of three types
of market constraint; Sections 2.2 through 2.4 present comprehensive details of three in-
stances, including the formulations of problems under different risk-averse reformulations
and market constraints, and discuss the problem types to which each instance belongs;
Section 2.5 provides information about the scenario trees to be used in the computational
experiments.

2.1 Different types of equilibrium problems depending
on players’ interactions and the price demand function

In this chapter, we demonstrate how certain problems arising from the literature fit into
our framework. The general format of the equilibrium problem, as expressed in equations
(1.12) - (1.15), has numerous applications in various fields.

In the general economic equilibrium problems, the variables that determine the equilib-
rium can be categorized into the following categories:

p the corresponding price vector for goods

xa the player’s action on the goods

An general economic equilibrium problem could be separated into following different
categories according to its market equilibrium constraint 0 ∈ F (p;x) +NK(p):

• Supply demand variational inequality with price unrelated demand. The first type is defined
by the market constraint function F (p;x) = S(x) − D, where S(x) represents the
supply of goods from all players and D represents a given fixed demand in the
market. This constraint embodies the classical supply-demand relationship, where
the market clearing price is determined by the intersection of the upward sloping
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supply curve and the downward sloping demand curve. The market constraint
0 ∈ S(x)−D+NK(p) approximates this intersection. In particular, when the feasible
region K = Rα

+, it reduces to the complementarity constraint 0 ≤ S(x)−D ⊥ p ≥ 0,
implying that a valid price exists only when supply equals demand, in agreement
with classical economic theory.

• Supply demand variational inequality with price related demand. The second type is when
the market constraint is defined by a function F (p;x) = S(x)−D(p). Compared to
the first type, the difference is that the market demand D is not a fixed parameter but
a function of price p. This means that the demand in the second type is responsive to
the price, whereas in the first type the demand remains unchanged with the price.
Both types of market constraints have numerous applications in economics and are
dependent on the price sensitivity of the demand. However, the first type is often
used when the demand is relatively insensitive to price changes, whereas the second
type is more applicable when demand is price sensitive.

• Price decided by inverse demand function instead of market equilibrium constraint. The third
type will not have the price p variable directly and thus the corresponding market
equilibrium constraint 0 ∈ F (p;x) +NK(p) doesn’t exist. This situation is applied
when the market is an oligopoly. In this case, each player is not a price-taker anymore
but is powerful enough to change the price according to his action xa such that price
p becomes a function of the combination of all players’ actions p(x). A common
example of this is the Nash-Cournot equilibrium problem, where the objective of
player a is defined as ca(xa)− 〈p(

∑
a∈A xa), xa〉, where xa ∈ Rda for a ∈ A.

2.2 Multistage economic dispatch system

We first consider a general multistage economic dispatch equilibrium problem with mul-
tiple players. The general multistage economic dispatch equilibrium is a very general
framework that many short-term to medium-term planning problems can be fit in, such
as security constrained economic dispatch problem and planning problem in day-ahead
market. According to the notation in chapter 1, letA denote the set of all players and (N , E)

denote the scenario tree that represents the stochastic process of this problem. Additionally,
let I denote the set of different locations. The product (such as electricity or gas) is sold at
different locations i ∈ I.

For each player a at scenario node n, vain ∈ R represents the ending storage of the
product of player a at location i. There are lower and upper bounds, v̄lai and v̄uai, respectively,
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on the storage level for each node n. The product is sold by player a at location i, and the
amount of sales is represented by sain ∈ R+. The production level of the product by player
a at location i is represented by qain ∈ R+, and is subject to a fixed capacity constraint Wai.
Thus, the variable of each player a at scenario node n, xan, can be decomposed into the
following components:

xan :=
(
(vain)i∈I , (sain)i∈I , (qain)i∈I

)
(2.1)

with the corresponding feasible region:

Xan =
∏
i∈I

[v̄lai, v̄
u
ai]× R|I|+ ×

∏
i∈I

[0,Wai]

The transition constraint Gan(xan− , xan;x−an, pn) ∈ Kan corresponds to

vain − vain− + sain − qain = 0, ∀i ∈ I (2.2)

where
Gan(xan− , xan;x−an, pn) =

(
vain − vain− + sain − qain

)
i∈I

Kan = {0}|I|
(2.3)

Equation (2.2) specifies the storage transition between parent node n− and node n at
location i, where each storage level is decreased by the sales amount sain to the market and
increased by the production amount qain from player a.

In this type of problem, it is assumed that there will be a price pin ∈ R+ for each location
i ∈ I at scenario node n ∈ N . The disbenefit fan(xan;x−an, pn) of each player a at scenario
node n corresponds to ∑

i∈I

(
cain(qain, sain, vain)− pin · sain

)
(2.4)

where cain : R3 → R is a convex function that measures the cost of activity of player a
because of his action (vain, sain, qain) at location i.

∑
i∈I cain(qain, sain, vain) is the summation

of these costs at all locations. The benefit from the sales at location i is given by pin · sain.∑
i∈I pin · sain is the summation of these benefits at all locations of player a at scenario

node n. Combining the above two, the total disbenefits of player a at scenario node n is
equation (2.4).
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2.2.1 Formulation of player’s problem

According to (1.54), the risk-averse optimization problem for each player a given price
(pin)i∈I,n∈N is:

For each a ∈ A solves

min
va·,sa·,qa·

∑
i∈I

(
cai1(qai1, sai1, vai1)− pi1 · sai1

)
+ ρa1

([∑
i∈I

(
caim(qaim, saim, vaim)− pim · saim

)
+ ρam

([∑
i∈I

(
cail(qail, sail, vail)− pil · sail

)
+ρal(· · · )

]
l∈m+

)]
m∈1+

)
s.t. vain = vain− − sain + qain, ∀i ∈ I, n ∈ N

qain ≤ Wai, ∀i ∈ I, n ∈ N

v̄lai ≤ vain ≤ v̄uai, ∀i ∈ I, n ∈ N

qain, sain ≥ 0, ∀i ∈ I, n ∈ N

where va· = (vain)i∈I,n∈N is the vector consisting of all ending storages controlled by player
a, sa· = (sain)i∈I,n∈N is the vector consisting of all sales of player a, and qa· = (qain)i∈I,n∈N

is the vector consisting of all production of player a.

2.2.1.1 Players’ problem in the equilibrium reformulation

As stated in section 1.5.1, the optimal solution to the optimization problem of each player a
can be determined as a component of an equilibrium point of the following equilibrium
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problem:

min
va·,sa·,qa·

∑
i∈I

(
cai1(qai1, sai1, vai1)− pi1 · sai1

)
+
∑
n∈1+

µan ·
[∑
i∈I

(
cain(qain, sain, vain)− pin · sain

)
+
∑
m∈n+

µam ·
[∑
i∈I

(
caim(qaim, saim, vaim)− pim · saim

)
+ · · ·

]]
s.t. vain = vain− − sain + qain, ∀i ∈ I, n ∈ N

qain ≤ Wai, ∀i ∈ I, n ∈ N

v̄lai ≤ vain ≤ v̄uai, ∀i ∈ I, n ∈ N

qain, sain ≥ 0, ∀i ∈ I, n ∈ N

max
µan+∈Dan

∑
m∈n+

µam ·
[∑
i∈I

(
caim(qaim, saim, vaim)− pim · saim

)
+
∑
l∈m+

µal ·
[∑
i∈I

(
cail(qail, sail, vail)− pil · sail

)
+ · · ·

]]
∀n ∈ N\L

(2.5)

2.2.1.2 Players’ optimization problem in the conjugate-based reformulation

According to section 1.5.2, the optimal solution to the optimization problem of each player
a is equivalent to the optimal solution of the following optimization problem:

min
va·,sa·,qa·,θa·

∑
i∈I

(
cai1(qai1, sai1, vai1)− pi1 · sai1

)
+θa1

s.t. θan ≥
∑
m∈n+

µkam ·
(∑
i∈I

(
caim(qaim, saim, vaim)− pim · saim

)
+ θam

)
, ∀k ∈ Λan, n ∈ N\L

vain = vain− − sain + qain, ∀i ∈ I, n ∈ N

qain ≤ Wai, ∀i ∈ I, n ∈ N

v̄lai ≤ vain ≤ v̄uai, ∀i ∈ I, n ∈ N

qain, sain ≥ 0, ∀i ∈ I, n ∈ N

θan = 0, ∀n ∈ L
(2.6)

2.2.2 Three different types of market constraints

In this example, it is assumed that there is an individual market for each location i ∈ I at
each scenario node n ∈ N and the corresponding price is pin ∈ R. It is also assumed that
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there are three types of market constraints according to section 2.1.

2.2.2.1 Supply demand variational inequality with price unrelated demand (Type I)

If the market constraint belongs to Type I as defined in section 2.1, it is assumed that the
demand is price-insensitive and is represented by parameter Din, as there is an individual
market for each location i. The demand for each market is satisfied by the sum of the
supply from all players at that location

∑
a∈A sain. As a result, the market constraint

0 ∈ Fn(pn;x·n) +NKn(pn) at scenario node n corresponds to

0 ≤
∑
a∈A

sain −Din ⊥ pin ≥ 0, ∀i ∈ I (2.7)

where the feasible region of price pn = (pin)i∈I ∈ R|I| is

Kn = R|I|+

and the function

Fn(pn;x·n) =


∑

a∈A sa1n −D1n∑
a∈A sa2n −D2n

...∑
a∈A sa|I|n −D|I|n


The complementarity constraint, as defined in equation (2.7), embodies a fundamental
principle in economics, where

∑
a∈A sain−Din represents the classical supply and demand

relationship in economics. This constraint states that a positive price at location i and
scenario node n is valid only if the total supply from the players,

∑
a∈A sain, is equal to the

demand, Din, from the market. If the total supply exceeds the demand, no price is valid.
Moreover, the constraint also assumes that, in a feasible solution, supply must always be
greater than demand.

2.2.2.2 Supply demand variational inequality with price related demand (Type II)

If the market constraint belongs to Type II as defined in section 2.1, it is assumed that the
demand is price-sensitive and is a function parameterized by the price pin at each location
i, which can be represented by din(pin). In this case, we have the feasible region of price
pn = (pin)i∈I ∈ R|I| as

Kn = R|I|+
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and the function

Fn(pn;x·n) =


∑

a∈A sa1n − d1n(p1n)∑
a∈A sa2n − d2n(p2n)

...∑
a∈A sa|I|n − d|I|n(p|I|n))


As a result, the market constraint 0 ∈ Fn(pn;x·n) +NKn(pn) at scenario node n corresponds
to

0 ≤
∑
a∈A

sain − din(pin) ⊥ pin ≥ 0, ∀i ∈ I (2.8)

The demand is modeled as a decreasing linear function, din(pin) = Din · (1−γin · (pin− p̄in)),
with slope−Din · γin and intersecting the point (p̄in, Din). The fixed parameters (γin)i∈I,n∈N

are determined by market properties. (Din)i∈I,n∈N are the same parameters as the price-
independent demands in the previous market type, while (p̄in)i∈I,n∈N are the market prices
obtained from the previous type’s solution under demand (Din)i∈I,n∈N .

2.2.2.3 Price decided by inverse demand function instead of market equilibrium
constraint (Type III)

For this type of problem, it is assumed that there are no price variables, and thus, there
are no market constraints. Instead, the price pin is replaced by a function Pin(s·in) of all
players’ sales, where s·in = (sain)a∈A. This function is derived from the equality of supply
and demand in (2.8):∑

a∈A

sain −Din · (1− γin · (pin − p̄in)) = 0, ∀i ∈ I, (2.9)

From equation (2.9) we can derive an inverse function of pin:

pin = Pin(s·in) = p̄in +
1

γin ·Din

(Din −
∑
a∈A

sain), ∀i ∈ I, ∀n ∈ N

The equation of supply equaling demand (2.9) is equivalent to the market constraint (2.8)
when pin > 0. This type of model differs from the previous two in that the market is
an oligopoly, where each player is no longer a price-taker but instead has the ability to
influence the price through their action sain. Furthermore, it is noteworthy that in this type
of market constraint, the disbenefit fan(xan;x−an, pn) for each player a at scenario node n
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corresponds to

∑
i∈I

(
cain(qain, sain, vain)−

[
p̄in +

1

γin ·Din

(Din −
∑
a∈A

sain)
]
· sain

)
(2.10)

2.2.3 Classification of the problem in different formulations and
market constraints

As discussed, we have two types of formulation of player’s risk-averse problem:

• Equilibrium reformulation

• Conjugate-based reformulation

with three different equilibrium market constraints:

• Supply demand variational inequality with price unrelated demand (Type I)

• Supply demand variational inequality with price related demand (Type II)

• Price decided by inverse demand function instead of market equilibrium constraint (Type III)

We begin with the simple situation where all players are risk-neutral. In cases where the
market constraint is Type I or Type II, the transition constraint (vain − vain− + sain − qain)i∈I

doesn’t involve market prices or other players’ variables. As a result, market prices only
appear in the players’ objective function, leading to a price-incentive Nash equilibrium
problem (PNEP). In this case, each player’s problem will exhibit Nash behavior. However,
when the market constraint is a Type III market constraint, the objective function of each
player will include other players’ variables, resulting in the entire equilibrium problem
being a pure Nash equilibrium problem (NEP).

When considering the risk-averse players, the situation becomes more complicated.
Initially, we consider the risk-averse problem formulated in the equilibrium reformulation (2.5).
If the market constraint is a type I or type II market constraint, the feasible regions of players
will not be impacted by market prices, other players’ variables, or risk probability vector y,
as the risk probabilities will only exist in the objective function of each player’s problem.
Consequently, the whole problem is a typical MOPEC with each player exhibiting Nash
behavior under these market constraints. If the market constraint is of Type III, there will be
no market price variable p, and each player will only be affected by risk probability vector
y in the objective function. In this case ,the problem is also a NEP.

When the risk-averse formulation is based on the conjugate-based reformulation (2.6), the
situation is very different from that of the equilibrium reformulation. In case the market
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constraint is of Type I or Type II, the market price pin will apper in the constraint θan ≥∑
m∈n+ µ

k
am ·

(∑
i∈I
(
caim(qaim, saim, vaim)− pim · saim

)
+ θam

)
of each player’s optimization

problem. This means that the optimization probelm of each player will exhibit general Nash
equilibrium behavior. However, since the feasible region and the objective function will
only be affected by the market price, these problems are PNEPs. If the market constraint is
of Type III, there will be no market price variable pin, and each player will have a cost-to-go

constraint as follows: θan ≥
∑

m∈n+ µ
k
am ·

(∑
i∈I

(
caim(qaim, saim, vaim)−

[
p̄in + 1

γin·Din
(Din−∑

a∈A sain)
]
· saim

)
+ θam

)
. In this case, the problem is a GNEP.

The following Table 2.1 provides a conclusion of the type of problem to which each
part belongs:

Market constraint Type Risk-averse formulation Equilibrium problem type
Type I Conjugate-based PNEP with each player GNE
Type I Equilibrium MOPEC with each player NE
Type II Conjugate-based PNEP with each player GNE
Type II Equilibrium MOPEC with each player NE
Type III Conjugate-based GNEP
Type III Equilibrium NEP

Table 2.1: Problem types of different risk-averse formulations and market constraint types
of general dispatch equilibrium

2.3 Multistage capacity expansion equilibrium problems

In the second example we consider a multistage capacity expansion equilibrium problem.
Compared to the general dispatch problem, such a model is typically employed in the
context of long-term power system markets, including the planning of markets over several
years. In this framework, the players are denoted by a ∈ A and the locations are denoted
by i ∈ I. Additionally, the stochastic process is characterized by scenario tree (N , E).

In this example, there exists an individual market for each location, and each player
generates all their supply at a single location and sells it to different markets i. The amount
of sales made by player a to market i at scenario node n is denoted by sain ∈ R+. The total
production capacity of player a at scenario node n is denoted by the variable Can ∈ R+.
The total sales

∑
i∈I sain of each player a at scenario node n is subject to the constraint:

Can−
∑

i∈I ψn · sain ≥ 0, where ψn is the degradation coefficient from production to sales at
scenario node n. A special property of this problem is that the capacityCan can be expanded
by player from stage to stage. The capacity investment made by player a at scenario node n
to expand their generation capacity from Can to Cam, where m can be any child node of
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node n, is denoted as uan ∈ R+. The constraint that describes the capacity expansion of
each player a at scenario node n ∈ N\L corresponds to: Cam = Can + uan,∀m ∈ n+. Based
on these, the variable of each player a at scenario node n ∈ N\L, xan, can be decomposed
into the following components:

xan :=
(
(sain)i∈I , Can, uan

)
(2.11)

with the corresponding feasible region:

Xan = R|I|+2
+

The variable xan of each player a at scenario node n ∈ L can be decomposed into the
following components:

xan :=
(
(sain)i∈I , Can

)
(2.12)

with the corresponding feasible region:

Xan = R|I|+1
+

The transition constraint Gan(xan− , xan;x−an, pn) ∈ Kan corresponds to

Can − Can− − uan− = 0

Can −
∑
i∈I

ψn · sain ≥ 0
(2.13)

where

Gan(xan− , xan;x−an, pn) =

[
Can − Can− − uan−
Can −

∑
i∈I ψn · sain

]
Kan = {0} × R+

(2.14)

In this type of problem, it is assumed that there is a price pin ∈ R+ for each location i ∈ I
at scenario node n ∈ N . Gan : R|I|+1 → R is a smooth convex function that measures the
cost of player a’s activity and Gan

(
(sain)i∈I , Can) represents the cost of player a at scenario

node n. Ian : R→ R is a convex function that measures the cost of capacity expansion made
by player a at scenario node n. The benefit from sales at location i is given by pin · sain and∑

i∈I pin · sain represents the summation of these benefits from all locations of player a at
scenario node n. Define sa·n = (sain)i∈I . Combining all the disbenefits described above, the
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total disbenefit fan(xan;x−an, pn) of each player a at scenario node n ∈ N\L corresponds to

Gan(sa·n, Can) + Ian(uan)−
∑
i∈I

pin · sain (2.15)

and the disbenefit fan(xan;x−an, pn) of each player a at scenario node n ∈ L corresponds to

Gan(sa·n, Can)−
∑
i∈I

pin · sain (2.16)

2.3.1 Formulation of player’s problem

According to (1.54), the risk-averse optimization problem for each player a given price
(pin)i∈I,n∈N is:

min
ua·,sa·,Ca·

Ga1(sa·1, Ca1) + Ia1(ua1)−
∑
i∈I

pi1 · sai1

+ ρa1

([
Gan(sa·n, Can) + Ian(uan)−

∑
i∈I

pin · sain

+ ρan

([
Gam(sa·m, Cam) + Iam(uam)−

∑
i∈I

pim · saim

+ ρam(· · ·+ ρal([Gah(sa·h, Cah)−
∑
i∈I

pih · saih]h∈l+) . . . )
]
m∈n+

)]
n∈1+

)
s.t. Can = Can− + uan− , ∀n ∈ N\L

Can −
∑
i∈I

ψn · sain ≥ 0, ∀n ∈ N

uan, Can ≥ 0, ∀n ∈ N

sain ≥ 0, ∀i ∈ I, n ∈ N

where ua· = (uan)n∈N\L is the vector consisting of all capacity investment of player a,
sa· = (sain)i∈I,n∈N is the vector consisting of all production of player a, andCa· = (Can)n∈N

is the vector consisting of all production capacity of player a. Similar to the multistage
dispatch system equilibrium problem, the objective of each player is to minimize the total
disbenefits.

2.3.1.1 Players’ problem in the equilibrium reformulation

As stated in section 1.5.1, the optimal solution to the optimization problem of each player a
is equivalent to the partial component of equilibrium point of the following equilibrium
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problem:

min
ua·,sa·,Ca·

Ga1(sa·1, Ca1) + Ia1(ua1)−
∑
i∈I

pi1 · sai1

+
∑
n∈1+

µan ·

(
Gan(sa·n, Can) + Ian(uan)−

∑
i∈I

pin · sain

+
∑
m∈n+

µam ·
(
Gam(sa·m, Cam) + Iam(uam)−

∑
i∈I

pim · saim

+ · · ·+
∑
h∈l+

µah ·
(
Gah(sa·h, Cah)−

∑
i∈I

pih · saih
)))

s.t. Can = Can− + uan− , ∀n ∈ N\L

Can −
∑
i∈I

ψn · sain ≥ 0, ∀n ∈ N

uan, Can ≥ 0, ∀n ∈ N

sain ≥ 0, ∀i ∈ I, n ∈ N

max
µan+∈Dan

∑
m∈n+

µam ·
[
Gam(sa·m, Cam) + Iam(uam)−

∑
i∈I

pim · saim

+
∑
l∈m+

µal ·
[
Gal(sa·l, Cal) + Ial(ual)−

∑
i∈I

pil · sail + · · ·
]]
, ∀n ∈ N\L

(2.17)
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2.3.1.2 Players’ optimization problem in the conjugate-based reformulation

According to section 1.5.2, we will have the optimal solution of optimization problem of
each player a is equivalent to the optimal solution of the following optimization problem:

min
ua·,sa·,Ca·,θa·

Ga1(sa·1, Ca1) + Ia1(ua1)−
∑
i∈I

pi1 · sai1 + θa1

s.t. θan ≥
∑
m∈n+

µkam ·
(
Gam(sa·m, Cam) + Iam(uam)

−
∑
i∈I

pim · saim + θam
)
, ∀k ∈ Λan, n ∈ N\

(
N (T − 1) ∪N (T )

)
θan ≥

∑
m∈n+

µkam ·
(
Gam(sa·m, Cam)−

∑
i∈I

pim · saim
)
, ∀k ∈ Λan, n ∈ N (T − 1)

Can = Can− + uan− , ∀n ∈ N\L

Can −
∑
i∈I

ψn · sain ≥ 0, ∀n ∈ N

uan, Can ≥ 0, ∀n ∈ N

sain ≥ 0, ∀i ∈ I, n ∈ N
(2.18)

2.3.2 Three different types of market constraints

2.3.2.1 Supply demand variational inequality with price unrelated demand (Type I)

Similar to the dispatch example, if the demand at location i and scenario node n is price-
insensitive, it could be represented as parameterDin. The market constraint 0 ∈ Fn(pn;x·n)+

NKn(pn) at scenario node n corresponds to

0 ≤
∑
a∈A

sain −Din ⊥ pin ≥ 0, ∀i ∈ I (2.19)

The complementarity constraint (2.19) states that a positive price at location i and scenario
node n is valid only if the total supply from players, denoted by

∑
a∈A sain, is equal to the

demand Din from the market. If the total supply exceeds the demand, no price is valid.
The constraint also assumes that, if the solution is feasible, supply must always exceed
demand.
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2.3.2.2 Supply demand variational inequality with price related demand (Type II)

In Type II problem, the demand is price-sensitive and market constraint 0 ∈ Fn(pn;x·n) +

NKn(pn) at scenario node n corresponds to

0 ≤
∑
a∈A

sain − din(pin) ⊥ pin ≥ 0, ∀i ∈ I (2.20)

The demand function din(pin) is a decreasing linear function din(pin) = Din · (1− γin · (pin−
p̄in)) with slope −Din · γin and intersecting the point (p̄in, Din). The parameters (γin)i∈I,n∈N

are determined by market properties, while (Din)i∈I,n∈N are the same parameters as the
price-independent demands in the previous type. The values of (p̄in)i∈I,n∈N are the solution
market prices of the previous type under demand (Din)i∈I,n∈N .

2.3.2.3 Price decided by inverse demand function instead of market equilibrium
constraint (Type III)

In Type III, the price pin is replaced by a function Pin(s·in) of all players’ sales. This function
is also derived from the equality of supply and demand constraint (2.9). Thus, the inverse
demand function of price is:

pin = Pin(s·in) = p̄in +
1

γin ·Din

(Din −
∑
a∈A

sain), ∀i ∈ I, ∀n ∈ N

The disbenefit fan(xan;x−an, pn) of each player a at scenario node n ∈ N\L corresponds to

Gan(sa·n, Can) + Ian(uan)−
∑
i∈I

[
p̄in +

1

γin ·Din

(Din −
∑
a∈A

sain)
]
· sain (2.21)

and disbenefit fan(xan;x−an, pn) of each player a at scenario node n ∈ L corresponds to

Gan(sa·n, Can)−
∑
i∈I

[
p̄in +

1

γin ·Din

(Din −
∑
a∈A

sain)
]
· sain (2.22)

2.3.3 Classification of the problem in different formulations and
market constraints

As discussed, we have two types of formulation of player’s risk-averse problem:

• Equilibrium reformulation

• Conjugate-based reformulation
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with three different equilibrium market constraints:

• Supply demand variational inequality with price unrelated demand (Type I)

• Supply demand variational inequality with price related demand (Type II)

• Price decided by inverse demand function instead of market equilibrium constraint (Type III)

When all players are risk-neutral and the market constraint is of Type I or Type II, the
constraints Can − Can− − uan− = 0 and Can −

∑
i∈I ψn · sain ≥ 0 do not take into account

market prices or other players’ variables. Therefore, the problem can be classified a PNEP.
On the other hand, when the market constraint is of Type III, the objective of each player
includes other players’ variables, resulting in the problem being classified as NEP.

When players are risk-averse, we first consider the risk-averse problem formulated in the
equilibrium reformulation (2.5). If the market constraint is a type I or type II market constraint,
similar to the previous example, the entire problem is a typical MOPEC, with each player
exhibiting Nash behavior under these market constraints. If the market constraint is of type
III, the problem becomes a NEP, as there is no market price variable p and each player is
only impacted by risk probability vector y in the objective function.

When the risk-averse formulation is based on the conjugate-based reformulation (2.6),
the situation differs significantly from the equilibrium reformulation. In case the market
constraint is a Type I or Type II market constraint, each player’s optimization problem will
exhibit general Nash equilibrium behavior with market price pin appearing in the cost-to-go
constraint. Nevertheless, since the feasible regions and the objective functions will only be
affected by the market price, these problems are PNEPs. On the other hand, if the market
constraint is of type III, the problem becomes a GNEP, similar to the previous example, as
there is no market price.

The following Table 2.2 summarizes the type of problem for each part.

Market constraint Type Risk-averse formulation Equilibrium problem type
Type I Conjugate-based PNEP with each player GNE
Type I Equilibrium MOPEC with each player NE
Type II Conjugate-based PNEP with each player GNE
Type II Equilibrium MOPEC with each player NE
Type III Conjugate-based GNEP
Type III Equilibrium NEP

Table 2.2: Problem types of different risk-averse formulations and market constraint types
of general capacity expansion equilibrium

Remark 2.1. Upon comparing Table 2.1 and Table 2.2, it can be observed that there are no
discernible differences regarding the distinct types of equilibrium problems for the dispatch
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and capacity expansion examples. However, the feasible region of each player in the
dispatch equilibrium problem is a compact convex set, whereas the feasible region of each
player in the capacity expansion equilibrium is an unbounded convex set. This dissimilarity
in feasible region properties can give rise to distinct properties of the equilibrium points
in general equilibrium problems. Notably, the latter is considerably more challenging to
solve.

2.4 Multistage hydro electricity system with water
network

The last example that we include in this thesis is Example 1 in [38]. This example considers
a water network comprised of three hydroelectric generators and one leaving node, as
depicted in Figure 2.1. Let I = {0, 1, 2, 3} denote the set of locations of these hydroelectric
generators and leaving node 0. The electricity generation and storage at locations 1 and 3
are controlled by firm A, whereas the electricity generation and storage at locations 2 are
controlled by firm B. Let A = {A,B} denote the set of players and let Ia denote the set of
locations that are controlled by player a ∈ A. Thus, in this example, we have IA = {1, 3}
and IB = {2}. The arrows in Figure 2.1 represent the directions of water flows between
locations. Let ξi denote the set of locations with incoming water flow from location i and
let ξ̃i denote the set of locations with outgoing water flow to location i.

Figure 2.1: Water network with hydroelectric production at location 1, 2, and 3 and an
leaving node 0

At each scenario node n, the water flow travels from location i to location j is denoted by
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the variable uijn ∈ R+, and the water level at location i is denoted by the variable vin ∈ R+.
There are lower and upper bounds, v̄lai and v̄uai, respectively, on the water level for each
node n. Let ui·n := (uijn)j∈ξi denote the vector consisting of all water flows that travel out
of location i at scenario node n. Player a controls the water flows ui·n and water level vin if
i ∈ Ia. Based on these variables, the variable of each player a at scenario node n ∈ N , xan,
can be decomposed into the following components:

xan :=
(
(uijn)i∈Ia,j∈ξi , (vin)i∈Ia

)
(2.23)

with the corresponding feasible region:

Xan = R
∑

i∈Ia |ξi|
+ ×

∏
i∈Ia

[v̄lin, v̄
u
in]

At location i and scenario node n, the parameter Tij ∈ R allows for dynamic consump-
tion of the water flow between different locations, and $in denotes the random water
inflows from nature. The water level is increased by incoming water flows from other
locations

∑
j∈ξ̃i Tjiujin, as well as random inflows supplies$in, but is decreased by outgoing

water flows
∑

j∈ξi Tijuijn. This transition is represented by the constraint:

vin− +
∑
j∈ξ̃i

Tjiujin −
∑
j∈ξi

Tijuijn +$in − vin ≥ 0

The inequality in this constraint allows for the free disposal of water levels to maintain
them in a feasible range. Thus, the transition constraint Gan(xan− , xan;x−an, pn) ∈ Kan
corresponds to:

vin− +
∑
j∈ξ̃i

Tjiujin −
∑
j∈ξi

Tijuijn +$in − vin ≥ 0, ∀i ∈ Ia

where

Gan(xan− , xan;x−an, pn) =
(
vin− +

∑
j∈ξ̃i

Tjiujin −
∑
j∈ξi

Tijuijn +$in − vin
)
i∈Ia

Kan = R|Ia|+

(2.24)

The cost of electricity generation and water level at location i and scenario node n is
measureby by a continuously differetiable convex function Cin : R|ξi|+1 → R, so that the
cost at locations i and scenario node n equals to Cin(ui·n, vin). The selling benefit at location
i and scenario node n is pn · gin(ui·n), where pn ∈ R is the price determined by the market
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at scenario node n and gin(ui·n) is the amount of electricity generated from water flow
between locations. The function gin : R|ξi| → R is a concave function. Thus, the disbenefit
fan(xan;x−an, pn) of each player a at scenario node n ∈ N corresponds to∑

i∈I

(
Cin(ui·n, vin)− pn · gin(ui·n)

)
(2.25)

2.4.1 Formulation of player’s problem

According to (1.54), the risk-averse optimization problem for each player a given price
(pn)n∈N is:

min
(ui·,vi·)i∈Ia

∑
i∈Ia

(
Ci1(ui·1, vi1)− p1 · gi1(ui·1)

)
+ ρa1

([∑
i∈Ia

(
Cin(ui·n, vin)− pn · gin(ui·n)

)
+ ρan

([∑
i∈Ia

(
Cim(ui·m, vim)− pm · gim(ui·m)

)
+ρam(· · · )

]
m∈n+

)]
n∈1+

)
s.t. vin− +

∑
j∈ξ̃i

Tjiujin −
∑
j∈ξi

Tijuijn +$in − vin ≥ 0, ∀i ∈ Ia, n ∈ N

v̄lin ≤ vin ≤ v̄uin, ∀i ∈ Ia, n ∈ N

uijn ≥ 0 ∀i ∈ Ia, j ∈ ξi, n ∈ N

where ui· = (uijn)j∈ξi,n∈N is the vector consisting of all water flow originating from location
i ∈ I, vi· = (vin)n∈N is the vector consisting of all water level states at location i.

2.4.1.1 Players’ problem in the equilibrium reformulation

As stated in section 1.5.1, the optimal solution to the optimization problem of each player a
is equivalent to the partial component of equilibrium point of the following equilibrium
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problem:

min
(ui·,vi·)i∈Ia

∑
i∈Ia

(
Ci1(ui·1, vi1)− p1 · gi1(ui·1)

)
+
∑
n∈1+

µan ·
[∑
i∈Ia

(
Cin(ui·n, vin)− pn · gin(ui·n)

)
+
∑
m∈n+

µam ·
[∑
i∈Ia

(
Cim(ui·m, vim)− pm · gim(ui·m)

)
+ · · ·

]]
s.t. vin− +

∑
j∈ξ̃i

Tjiujin −
∑
j∈ξi

Tijuijn +$in − vin ≥ 0, ∀i ∈ Ia, n ∈ N

v̄lai ≤ vain ≤ v̄uai, ∀i ∈ Ia, n ∈ N

uijn ≥ 0 ∀i ∈ Ia, j ∈ ξi, n ∈ N

max
µan+∈Dan

∑
m∈n+

µam ·
[∑
i∈Ia

(
Cim(ui·m, vim)− pm · gim(ui·m)

)
+
∑
l∈m+

µal ·
[∑
i∈Ia

(
Cil(ui·l, vil)− pl · gil(ui·l)

)
+ · · ·

]]
∀n ∈ N\L

(2.26)

2.4.1.2 Players’ optimization problem in the conjugate-based reformulation

According to section 1.5.2, we will have the optimal solution of optimization problem of
each player a is equivalent to the optimal solution of the following optimization problem:

min
(ui·,vi·)i∈Ia ,θa·

∑
i∈Ia

(
Ci1(ui·1, vi1)− p1 · gi1(ui·1)

)
+ θa1

s.t. θan ≥
∑
m∈n+

µkam ·
(∑
i∈Ia

(
Cim(ui·m, vim)− pm · gim(ui·m)

)
+ θam

)
, ∀k ∈ Λan, n ∈ N\L

vin− +
∑
j∈ξ̃i

Tjiujin −
∑
j∈ξi

Tijuijn +$in − vin ≥ 0, ∀i ∈ Ia, n ∈ N

v̄lai ≤ vain ≤ v̄uai, ∀i ∈ Ia, n ∈ N

uijn ≥ 0 ∀i ∈ Ia, j ∈ ξi, n ∈ N

θan = 0, ∀n ∈ L
(2.27)

2.4.2 Three different types of market constraints

2.4.2.1 Supply demand variational inequality with price unrelated demand (Type I)

Similar to the previous two examples, for a Type I problem, denote Dn ∈ R+ be the fixed
parameter representing the demand of electricity from public market at scenario node n,
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and the feasible region of price pn ∈ R is

Kn = R+

and the function
Fn(pn;x·n) =

∑
a∈A

(∑
i∈Ia

gin(ui·n)
)
−Dn

In this case, the general market constraint is equivalent to the following market comple-
mentarity constraint for each location i ∈ I and scenario node n ∈ N :

0 ≤
∑
a∈A

(∑
i∈Ia

gin(ui·n)
)
−Dn ⊥ pn ≥ 0, ∀n ∈ N (2.28)

Dn ∈ R+ is a fixed parameter meaning that the demand is not related to the market price
pn. The term

∑
a∈A
(∑

i∈Ia gin(ui·n)
)

regards the total supply sold from all players a ∈ A
into the market. Thus,

∑
a∈A
(∑

i∈Ia gin(ui·n)
)
−Dn represents the classical supply minus

demand in economics.

2.4.2.2 Supply demand variational inequality with price related demand (Type II)

In Type II problem, we have the price-sensitive demand

dn(pn) = Dn ·
(
1− γn · (pn − p̄n)

)
for each scenario node n ∈ N . The function dn is a decreasing linear function with slope
−Dn · γn that will cross through the point (p̄n, Dn). Here {γn}n∈N are parameters that are
decided by the market property, {Dn}n∈N are the same parameters as the price unrelated
demands in previous type and {p̄n}n∈N are the solution market prices of the previous type
under demand {Dn}n∈N . In this case, the market complementarity constraint for each
location i ∈ I at scenario node n ∈ N is as follows:

0 ≤
∑
a∈A

(∑
i∈Ia

gin(ui·n)
)
−Dn · (1− γn · (pn − p̄n)) ⊥ pn ≥ 0, ∀n ∈ N (2.29)
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2.4.2.3 Price decided by inverse demand function instead of market equilibrium
constraint (Type III)

The price pn is replaced by a function Pn(u·n) of all players’ actions, where u·n = (uijn)i,j∈I .
This function is from the supply equals demand equality:∑

a∈A

(∑
i∈Ia

gin(ui·n)
)
−Dn · (1− γn · (pn − p̄n)) = 0, ∀n ∈ N , (2.30)

from which we can have an inverse function of pin:

pn = p̄n +
1

γn ·Dn

(
Dn −

∑
a∈A

(∑
i∈Ia

gin(ui·n)
))
, ∀n ∈ N

The supply equals to demand equality (2.30) is equal to the market constraint (2.29) when
pn > 0. Like before, a big difference between this type of model and the previous twos is
that the market here is an oligopolistic market.

2.4.3 Classification of the problem in different formulations and
market constraints

As discussed, we have two types of formulation of player’s risk-averse problem:

• Equilibrium reformulation

• Conjugate-based reformulation

with three different equilibrium market constraints:

• Supply demand variational inequality with price unrelated demand (Type I)

• Supply demand variational inequality with price related demand (Type II)

• Price decided by inverse demand function instead of market equilibrium constraint (Type III)

Because each player a has the constraints vin−+
∑

j∈ξ̃i Tjiujin−
∑

j∈ξi Tijuijn+$in−vin ≥ 0

that will involve other players’ variables {ujin|j ∈ ξ̃i}. Thus for any type of reformulations,
the problem with Type I or Type II market constraint is a MOPEC with general Nash
behavior, and the problem in Type III is a GNEP.

The following Table 2.3 provides a conclusion of the type of problem to which each
part belongs:
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Market constraint Type Risk-averse formulation Equilibrium problem type
Type I Conjugate-based PNEP with each player GNE
Type I Equilibrium MOPEC with each player GNE
Type II Conjugate-based PNEP with each player GNE
Type II Equilibrium MOPEC with each player GNE
Type III Conjugate-based GNEP
Type III Equilibrium GNEP

Table 2.3: Problem types of different risk-averse formulations and market constraint types
of hydro electricity system equilibrium with water network

2.5 Data for testing scenario trees

The scenario trees we used for the test instances are presented in Table 2.4. We mainly used
two scenario trees for our computational experiments in this study. Both scenario trees
will have 4 stages. The difference is that in scenario tree 1 each parent node that is not a
leaf node will have 3 children nodes, instead in scenario tree 2 each parent node that is not
a leaf node will have 5 children nodes. The conditional probabilities of children nodes are
the same if their parent nodes are located in the same time stage.

scenario tree |T | size of children node |N |
tree1 3 3 12
tree2 4 3 40
tree3 4 5 156

Table 2.4: Test scenario trees

2.6 Repository

This section elucidates the procedure for obtaining access to each test instance men-
tioned in this thesis. The entirety of the associated files can be found at the web address:
https://www.cs.wisc.edu/ ferris/stocheq. It is noteworthy that the test instances encom-
passed within this chapter pertain exclusively to problems featuring a singular market
demand type, and these instances will be utilized in subsequent chapters to evaluate the
efficacy of the various proposed algorithms. The generation of said test instances can be
accomplished through the utilization of the provided source codes. The inclusive content
of the files encompasses the following items: [add specific details of the files].

• Main file: genprob.gms

https://www.cs.wisc.edu/~ferris/stocheq
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• Three files correspond to three different instances for generating problem data and
problems.: soldispatch.gms, solcapex.gms, solhydro.gms

• Scenario tree data files: tree1.gdx, tree2.gdx, tree3.gdx

Below is a simple example of implementation:

Listing 2.1: Multiple optimizations with equilibrium constraints(MOPEC)
1 gams genprob.gms --data=tree1 --problem=dispatch --dataType =1 --

randomSeed =1 --quad=1 --demandType =1 --lambda =0.1 --varphi =0.4

Option Description Default
data the scenario tree for the stochastic problem. Candidates: tree1, tree2, tree3 tree1
problem problem type: three types of problem that could be chosen: dispatch, capex, hydro dispatch
dataType two different ways for generation of random data. Candidates: 1, 2 1
randomSeed random seeds set to generate data 1
quad ε quadratic term of player’s objective 1
demandType Type of market demand function. Candidates: 1, 2, 3 1
lambda λ value of risk measure CV aR(λ, ϕ) 0.1
varphi ϕ value of risk measure CV aR(λ, ϕ) 0.5

Table 2.5: General options

Upon execution of the aforementioned code, a singular problem instance will be gen-
erated and subsequently resolved using the default PATH solver, employing its default
configuration. As a result of this process, a gdx file will be generated, containing the output
described below.

Output Description
modelStatus model status for the problem
solverStatus solver status for the problem
problem instances data all problem data that is generated by randomseed

Table 2.6: GDX Output

The parameters in gdx file can be gained by the folloing terminal command:

Listing 2.2: gdx output
1 gdxdump %problem%_tree%data%_dT%dataType%_rs%

randomSeed%_qd%quad%_mkt%demandType%_la%lambda%

_vphi%varphi %.gdx

The primary purpose of the GDX output file is to convey the status of the model and
solver utilized by the default PATH solver. Additionally, it serves as a convenient means
to provide problem data from the model, facilitating the regeneration of the data for the
user’s convenience.



55

3 admm-based decomposition method for multistage
stochastic equilibrium with risk-averse players

The main contribution of this chapter is the development of an ADMM-based algorithm to
solve the stochastic PNEP with risk-averse players using a conjugate-based reformulation as
described in chapter 1. The algorithm decomposes the original problem into collections of
subproblems indexed by players and solves them iteratively. This decomposition approach
is motivated by the fact that in PNEP, the system can be solved by solving a series of smaller
player’s optimization problems when the market price p is given. This property allows us to
tackle the computational intractability of the entire PNEP using traditional methods like the
PATH solver. This important property still remains in the stochastic setting with risk-averse
players using a conjugate-based reformulation. However, the proposed approach cannot
handle the stochastic PNEP with risk-averse players using an equilibrium reformulation
or the more general stochastic MOPEC with risk-averse players, especially when each
player has general Nash behavior interaction with each other, because players’ problems
cannot be solved independently with given p. To address these scenarios, the risk-based
decomposition algorithm presented in chapter 4 can solve more general stochastic MOPECs
with risk-averse players, and the decomposition algorithm discussed in chapter 5 can be
applied to solve the large-scale subproblem encountered in the algorithm from chapter 4.

The chapter is organized as follows: Section 3.1 briefly recalled problem addressed in
chapter 1 and discusses its challenges when solving the entire system. Due to the hardness
of these problems when solving as a whole system, section 3.2 focuses on player-based
decomposition methods and presents three different algorithms based on this approach to
solve the stochastic PNEP with risk-averse players using a conjugate-based reformulation. The
first two algorithms are from the existing literature and are discussed in subsection 3.2.1,
while the third algorithm is the new ADMM-based algorithm proposed in this chapter. The
differences between these three algorithms are explained, highlighting the advantages of
our algorithm in addressing a broader range of problems. Section 3.3 presents the numerical
experiment results obtained using the proposed ADMM-based algorithm on the economic
dispatch and capacity expansion examples introduced in chapter 2. Finally, section 3.4
provides a conclusion for this chapter, summarizing the key findings and contributions.
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3.1 Problem statement

Solving stochastic equilibrium problems with risk-averse players in a general format poses
significant challenges. In the deterministic case, player-based decomposition approaches,
such as the Jacobi-based algorithm or Gauss-Seidel decomposition algorithm, are com-
monly employed to solve Nash equilibrium problems due to the advantageous inner
structure of such problems. However, achieving convergence in the general case can be
difficult, particularly when players exhibit general Nash behavior interactions. Therefore,
this chapter focuses on studying the stochastic PNEP, where interactions between players
are absent when the price p is given by the market constraint. Despite the lack of general
interactions, this problem formulation finds wide applications in practice and aligns natu-
rally with the concept of player-based decomposition. Notably, examples like the dispatch
example and hydroelectric example discussed in chapter 2, featuring Type I and Type II
market constraints, respectively, fall within this problem category.

Let us now recall the definition of stochastic MOPECs with risk-averse players using a
conjugate-based reformulation. The reason for focusing solely on the conjugate-based reformula-
tion rather than the equilibrium reformulation is that the latter involves the introduction of the
variable µ into each problem, rendering it no longer a PNEP even if the original problem
is a PNEP. In the case of the stochastic PNEP defined on a scenario tree (N , E), where N
represents the set of scenario nodes and E represents the set of edges, the cost function fan
and the constraint function Gan for player a at scenario node n are assumed to be indepen-
dent of other players’ actions x−an. Under this assumption, if player a is risk-averse and
the player’s problem is formulated using the conjugate-based reformulation introduced in
chapter 1, the optimization problem for player a given price p can be expressed as follows:

min
xa·,θa·

fa1(xa1; p1) + θa1

s.t. θan ≥
∑
m∈n+

µkam ·
(
fam(xam; pm) + θam

)
, ∀k ∈ Λan, n ∈ N\L

Gan(xan− , xan; pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N

θan = 0, ∀n ∈ L

(3.1)

Without loss of generality, we also assume the following assumptions hold for the rest
of this chapter.

Assumption 3.1. For each n ∈ N , constraint Gan(xan− , xan; pn) ∈ Kan corresponds to the con-
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straints
G1
an(xan− , xan; pn) = 0

G2
an(xan− , xan; pn) ≤ 0

(3.2)

where

Gan(xan− , xan; pn) =

[
G1
an(xan− , xan; pn)

G2
an(xan− , xan; pn)

]
and

Kan = {0}ψ1
an × Rψ2

an
+

Here ψ1
an and ψ2

an are positive integers and represent the dimension of constraints G1
an and G2

an and
ψ1
an + ψ2

an = ψan.

Assumption 3.2. For each n ∈ N , the market equilibrium constraint 0 ∈ Fn(pn;x·n) +NKn(pn)

corresponds to the complementarity constraint

0 ≤ Fn(pn;x·n) ⊥ pn ≥ 0 (3.3)

where
Kn = Rαn

+

The assumptions stated in (3.2) and (3.3) simply require that the coneKan andKn respec-
tively are positive orthants in their corresponding spaces. These are prevalent assumptions
in various practical applications and cover a significant portion of the equilibrium problems
encountered in different fields.

3.2 Player-based decomposition algorithms

This section introduces a player-based algorithm for solving the stochastic PNEP with
risk-averse players using a conjugate-based reformulation. Equation (3.1) demonstrates that a
stochastic PNEP with risk-averse players, when formulated using a conjugate-based reformu-
lation, belongs to a type of PNEP where players have no direct interaction with each other
once the market price p is given, as illustrated in Figure 3.1.
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Figure 3.1: Equilibrium network with a centralized market

In the player-based decomposition method, each player’s optimization problem (3.1)
is not further subdivided. As a result, we can simplify the player’s optimization problem
and present the algorithms in a more concise manner. The general form of the player’s
optimization problem in the PNEP can be expressed as follows:

P SPa (p) : min
xa,θa

fa(xa,θa;p)

s.t. ha(xa,θa;p) = 0

ga(xa,θa;p) ≤ 0

xa ∈ Xa,θa ∈ Θa

(3.4)

Here fa : Rda+|N |+α → R is a twice continuously differentiable function and fa(·;p) is
convex for each given p. ga, ha are differentiable and ga(·;p), ha(·;p) are convex with given
p.

Consider the stochastic problem (3.1), the cost function fa(xa,θa;p) in (3.4) corresponds
to

fa1(xa1; p1) + θa1 (3.5)

the equality constraint ha(xa,θa;p) = 0 corresponds to

G1
an(xan− , xan; pn) = 0, ∀n ∈ N (3.6)

and the inequality ga(xa,θa;p) ≤ 0 corresponds to

G2
an(xan− , xan; pn) ≤ 0, ∀n ∈ N∑

m∈n+

µkam ·
(
fam(xam; pm) + θam

)
−θan ≤ 0, ∀k ∈ Λan, n ∈ N\L (3.7)
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The market constraint of equilibrium problem is

0 ≤ F (p;x) ⊥ p ≥ 0 (3.8)

which corresponds to
0 ≤ Fn(pn;x·n) ⊥ pn ≥ 0, ∀n ∈ N (3.9)

The structure of the PNEP problem (3.4), (3.8) is illustrated in Figure 3.1. One key
characteristic of the PNEP is that the price directly influences each player, and when
the price p is fixed, each player’s problem becomes completely independent and can be
solved in parallel. This implies that once the market price solution is known, the actions
of other players can be obtained by solving a collection of small problems, and these
subproblems can be solved in parallel. Hence, an intuitive approach for an iterative and
decomposable algorithm is to initialize each iteration with a known market price and obtain
the corresponding players’ actions by solving each subproblem. Subsequently, the market
price is updated using the new information obtained from all players. The underlying
concept of this algorithmic approach is depicted in Figure 3.2:

Figure 3.2: Player-based Algorithm Framework

However, many decomposition approaches rely on special properties of the problem to
guarantee convergence. One of these important properties is the monotonicity and Lipschitz
continuity of the reformulated mixed complementarity problem 0 ≤ G(x) ⊥ x ≥ 0.
Unfortunately, stochastic PNEPs with risk-averse players usually lack a monotone pseudo-
gradient mapping, even if the original problem with risk-neutral players is monotone.
Thus, most convergent algorithms utilizing the framework in Figure 3.1 are not applicable
when players are risk-averse. Consequently, research on utilizing the framework in Figure
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3.1 without requiring the monotonicity assumption is very limited. In this regard, we
will illustrate two previous works that could be utilized to solve this type of problem.
Following the introduction of these methods, we will discuss the restricted assumptions
required by each approach. This discussion motivates us to develop a new ADMM-based
decomposition approach that could be applied in a more general setting, which we will
discuss in the next section.

3.2.1 Two decomposition methods to solve PNEP (3.4) with VI (3.8)

Method I: Newton-based decomposition method [11]
In this section, we present the first algorithm introduced in [11]. The authors of [11]

assume that each player’s optimization problem has a unique minimizer for any given p.
Let us define:

(
xa(p),θa(p)

)
= arg min

xa,θa

{
fa(xa,θa;p) : ha(xa,θa;p) = 0, ga(xa,θa;p) ≤ 0,xa ∈ Xa,θa ∈ Θa

}
Assume if we can get the algebraic representation of solution mapping

(
xa(p),θa(p)

)
,

we could replace x by x(p) in VI constraint (3.8) and define R(p) = F (p;x(p)) and have

0 ≤ R(p) ⊥ p ≥ 0 (3.10)

From (3.8) we could get the equilibrium price p∗ directly. However, it is usually impossible
to compute the solution mapping x(p) and R(p) in practical problem. To overcome this
difficulty, an alternative is that we could try to get the a linear approximation of R(p)

around point p̄, which can be denoted by R̂(p; p̄). Such kind of approximation can be
constructed as follows:

Assume that the solution mapping
(
xa(p),θa(p)

)
is continuously differentiable, we can

denote the gradient of xa(p) and θa(p) as∇pxa(p) and∇pθa(p), respectively. Furthermore,
let ∇pxa(p̄) = ∇pxa(p)|p=p̄ and ∇pθa(p̄) = ∇pθa(p)|p=p̄ represent the value of ∇pxa(p)

and∇pθa(p), respectively, at the point p̄. This allows us to obtain the following expression:

∇pR(p̄) = ∇px(p̄) · ∇xF (p̄; x̄) +∇pF (p̄; x̄) (3.11)

where x̄ = x(p)|p=p̄.
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We can construct a linear approximation of R(p) based on (3.11) and have

R̂(p; p̄) = R(p̄) + 〈∇pR(p̄),p− p̄〉

= F (p̄; x̄) + 〈∇px(p̄) · ∇xF (p̄; x̄) +∇pF (p̄; x̄),p− p̄〉
(3.12)

Assume the matrix ∇px(p̄) · ∇xF (p̄; x̄) + ∇pF (p̄; x̄) is invertible, the solution of 0 ≤
R̂(p; p̄) ⊥ p ≥ 0 is

p = max
{

0, p̄−
(
∇px(p̄) · ∇xF (p̄; x̄) +∇pF (p̄; x̄)

)−1
F (p̄; x̄)

}
which results in a new market price p, and the steps can be repeated iteratively to obtain
the solution. The algorithmic steps for this process are presented in Algorithm 1.

Algorithm 1 Newton-based decomposition method
1: Input and Initialization Choose p1 ∈ Rα. Set r = 1.
2: Step 1: Subproblems. For each a ∈ A solve

min
xa,θa

{
fa(xa,θa;p

r) : ha(xa,θa;p
r) = 0, ga(xa,θa;p

r) ≤ 0,xa ∈ Xa,θa ∈ Θa

}
Let (xra,θ

r
a) = (xa(p)|p=pr ,θa(p)|p=pr) denote the unique minimum in this problem

given pr. Compute the gradients ∇pxa(p)|p=pr and let ∇pxra = ∇pxa(p)|p=pr . Define

xr =

 x
r
1

...
xr|A|

 and ∇pxr =

 ∇px
r
1

...
∇pxr|A|

.

3: Step 2: Stopping Test. If stopping criteria is met, Stop.
4: Step 3: Update price. Define ∇xF (pr;xr) = ∇xF (p;x)|p=pr,x=xr and ∇pF (pr;xr) =
∇pF (p;x)|p=pr,x=xr .

pr+1 = max
{

0,pr −
(
∇pxr · ∇xF (pr;xr) +∇pF (pr;xr)

)−1
F (pr;xr)

}
5: Step 4: Loop. Set r := r + 1 and go back to Step 1.

The practical performance of Algorithm 1 in equilibrium problems is not affected by
the absence of a convergence result. However, to ensure the algorithm’s effectiveness, we
need to satisfy three primary assumptions as outlined in the above steps:

1. The solution mapping
(
xa(p),θa(p)

)
of the subproblem is a continuously differen-

tiable function with respect to p.
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2. For any p̄ and x̄ = x(p)|p=p̄, ∇px(p̄) · ∇xF (p̄; x̄) + ∇pF (p̄; x̄) must be invertible
and have nonnegative entries, otherwise we cannot guarantee a new price after this
iteration.

3. F (p;x) is continuously differentiable.

It is important to note that these three assumptions do not hold universally, and they may
not be satisfied in a wide range of equilibrium problems. For instance, if the subproblem is
a linear programming problem, the first assumption mentioned above will not be satisfied.
Therefore, the applicability of Algorithm 1 may be limited in such cases.

Method II: Smoothing decomposition of equilibrium problem [12]
The approach proposed in [12] offers a solution for cases in which the solution mapping

(xa(p),θa(p)) is not a continuously differentiable function with respect to p. Instead of solv-
ing the original optimization problem (3.4) with respect to the market price p, each player’s
optimization problem is modified by removing the inequality constraint ga(xa,θa;p) and
replacing it with a barrier term with scaling coefficient ε. Additionally, a regularization
term ε·ω

2
(‖xa‖2

2 + ‖θa‖2
2) is added to the objective function of player a. Thus, the modified

optimization problem for player a is as follows:

P ε,ω
a (p) : min

xa,θa
fa(xa,θa;p)− ε

∑
i

log{−gai(xa,θa;p)}+ IXa(xa)

+ IΘa(θa) +
ε · ω

2
(‖xa‖2

2 + ‖θa‖2
2)

s.t. ha(xa,θa;p) = 0

(3.13)

here IXa and IΘa are the indicator functions on sets Xa and Θa, respectively. The optimiza-
tion problem P ε,ω

a (p) is obtained by removing the inequality constraint ga(xa,θa;p) from
the original optimization problem (3.4) and adding a barrier term with scaling coefficient ε
and a regularization term ε·ω

2
(‖xa‖2

2 +‖θa‖2
2) to the player a’s optimization problem. The so-

lution mapping (xε,ωa (p),θε,ωa (p)) is a continuously differentiable function with the help of
the barrier term and regularization term. Let (xε,ωa (p),θε,ωa (p)) denote the solution of prob-
lem P ε,ω

a (p) with given p. Let ∇pxε,ωa (p),∇pθε,ωa (p) denote the gradient of xε,ωa (p),θε,ωa (p),
respectively, and∇pxε,ωa (p)|p=p̄,∇pθε,ωa (p)|p=p̄ denote the value of∇pxε,ωa (p),∇pθε,ωa (p) at
point p̄. The function Rε,ω(p) = F (p;xε,ω(p)) can be used to obtain the gradient of Rε,ω at
point p̄, which is given by:

∇pRε,ω(p̄) = ∇pxε,ω(p̄) · ∇xF (p̄; x̄) +∇pF (p̄; x̄) (3.14)

where x̄ = xε,ω(p)|p=p̄.
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We can construct a linear approximation of Rε,ω(p) at the point p̄. Denote this linear
approximation by R̂ε,ω(p; p̄), then we will have

R̂ε,ω(p; p̄) = Rε,ω(p̄) + 〈∇pRε,ω(p̄),p− p̄〉

= F (p̄; x̄) + 〈∇pxε,ω(p̄) · ∇xF (p̄; x̄) +∇pF (p̄; x̄),p− p̄〉
(3.15)

Assume the matrix ∇pxε,ω(p̄) · ∇xF (p̄; x̄) + ∇pF (p̄; x̄) is invertible, the solution of
0 ≤ R̂ε,ω(p; p̄) ⊥ p ≥ 0 is

p = max
{

0, p̄−
(
∇px(p̄) · ∇xF (p̄; x̄) +∇pF (p̄; x̄)

)−1
F (p̄; x̄)

}
which help us get a new market price p and we keep repeating the above steps. The above
process can be illustrated by following Algorithm 2.

Algorithm 2 Smoothing Newton-based decomposition method
1: Input and Initialization Choose p1 ∈ Rα, ε1 > 0 and ω1 ≥ 0. Set r = 1.
2: Step 1: Subproblems. For each a ∈ A solve

min
xa,θa

{
fa(xa,θa;p

r)− εr
∑
i

log{−gai(xa,θa;pr)}+ IXa(xa) + IΘa(θa) +
εr · ωr

2
(‖xa‖2

2 + ‖θa‖2
2)

: ha(xa,θa;p
r) = 0

}
Let (xra,θ

r
a) = (xε

r,ωr

a (p)|p=pr ,θ
εr,ωr

a (p)|p=pr) denote the unique minimum in this
problem given pr. Compute the gradients ∇pxε

r,ωr

a (p)|p=pr and define ∇pxra =

∇pxε
r,ωr

a (p)|p=pr . Define xr =

 x
r
1

...
xr|A|

 and ∇pxr =

 ∇px
r
1

...
∇pxr|A|

.

3: Step 2: Stopping Test. If stopping criteria is met, Stop.
4: Step 3: Update price. Define ∇xF (pr;xr) = ∇xF (p;x)|p=pr,x=xr and ∇pF (pr;xr) =
∇pF (p;x)|p=pr,x=xr .

pr+1 = max
{

0,pr −
(
∇pxr · ∇xF (pr;xr) +∇pF (pr;xr)

)−1
F (pr;xr)

}
5: Step 4: Update Smoothing Parameters. Determine εr+1 and ωr+1 such that

0 < εr+1 < εr, 0 < ωr+1 < ωr

6: Step 5: Loop. Set r := r + 1 and go back to Step 1.
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Remark
The aforementioned methods have been proposed as decomposition approaches to

solve PNEP. However, there are still cases of PNEP that may not be solved by the above
two algorithms in practice. For instance, the algorithm presented in [11] requires the
subproblem’s solution mapping x(p) to be a continuously differentiable function, which is
a really strong requirement that may not be satisfied by a linear programming subproblem
or when the subproblem is not strongly quadratic. The convergence of the outer iteration
of Algorithm 2 is also not clearly addressed in [12]. Additionally, both methods necessitate
the computation of the gradients ∇pxa(p) for each player a and the computation of the
inverse

(
∇pxr · ∇xF (pr;xr) +∇pF (pr;xr)

)−1, which is computational expansive and may
even be intractable if the problem is of large scale.

3.2.2 ADMM-based algorithm

In this section, we propose an ADMM-based decomposition algorithm designed to solve
stochastic PNEPs. We begin by presenting a mathematical reformulation of each player’s
optimization problem and demonstrating the equivalence between solving the reformu-
lated problem and the original problem. This reformulated problem allows us to develop
an ADMM-based algorithm that decomposes the large original problem into smaller sub-
problems and solves it iteratively. We also proved that if the ADMM-based algorithm
generates a series of converging points, the resulting point is the solution of the original
equilibrium problem, thereby verifying the correctness of the algorithm.

The ADMM-based algorithm decomposes the problem into smaller subproblems with
fixed prices, solves the subproblems in a Gauss-Seidel iterative manner, and uses the
players’ solutions to improve market prices. Although the ADMM method has been
extensively studied in centralized network problems, its extension to equilibrium problems
is unclear. Therefore, in this section, we present an ADMM-based algorithm to solve
multistage stochastic equilibria with risk-averse players. We first provide an overview of
the algorithm’s conceptual framework before delving into the specifics of each step and
the parameter updates.

Before discussing the algorithm, we introduce an equivalent reformulated problem for
the PNEP, where each player solves a convex optimization problem. In the reformulated
problem, an artificial variable ya ∈ Rα controlled by player a is added, and an additional
term pTya is added in the objective of player a. The reformulated optimization problem of
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player a is as follows:

P SPRa (p) : min
xa,θa,ya

fa(xa,θa;p) + pTya

s.t. ha(xa,θa;p) = 0

ga(xa,θa;p) ≤ 0

xa ∈ Xa,θa ∈ Θa,ya ≥ 0

(3.16)

The market constraint 0 ≤ F (p;x) ⊥ p ≥ 0 is also changed by y = (ya)a∈A and the new
market constraint is as follows:

F (p;x)−
∑
a∈A

ya = 0 ⊥ p free (3.17)

Theorem 3.3. (x∗,θ∗,p∗) is a solution of PNEP (3.4) and (3.8) if and only if (x∗,θ∗,y∗,p∗) is
the solution of MOEPC (3.16) and (3.17).

Proof. Since for PNEP (3.4) and (3.8), each player is solving a convex optimization problem,
fa is twice continuously differentiable and ga is continuously differentiable and satisfies
the constraint qualification, (x∗,θ∗,p∗) is a solution of PNEP if and only if it satisfies the
KKT conditions:

0 ∈ ∇xafa(x
∗
a,θ

∗
a;p

∗) +∇xaha(x
∗
a,θ

∗
a;p

∗)ν∗a +∇xaga(x
∗
a,θ

∗
a;p

∗)β∗a +NXa(x∗a), ∀a ∈ A

0 ∈ ∇θafa(x∗a,θ∗a;p∗) +∇θaha(x∗a,θ∗a;p∗)ν∗a +∇θaga(x∗a,θ∗a;p∗)β∗a +NΘa(θ∗a), ∀a ∈ A

0 = ha(x
∗
a,θ

∗
a;p

∗) ⊥ ν∗a free, ∀a ∈ A

0 ≥ ga(x
∗
a,θ

∗
a;p

∗) ⊥ β∗a ≥ 0, ∀a ∈ A

0 ≤ F (p∗;x∗) ⊥ p∗ ≥ 0

(3.18)
For the PNEP (3.16) and (3.17), (x∗,θ∗,p∗,y∗) is a solution if and only if it satisfies the
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following KKT conditions

0 ∈ ∇xafa(x
∗
a,θ

∗
a;p

∗) +∇xaha(x
∗
a,θ

∗
a;p

∗)ν∗a +∇xaga(x
∗
a,θ

∗
a;p

∗)β∗a +NXa(x∗a), ∀a ∈ A

0 ∈ ∇θafa(x∗a,θ∗a;p∗) +∇θaha(x∗a,θ∗a;p∗)ν∗a +∇θaga(x∗a,θ∗a;p∗)β∗a +NΘa(θ∗a), ∀a ∈ A

0 = ha(x
∗
a,θ

∗
a;p

∗) ⊥ ν∗a free, ∀a ∈ A

0 ≥ ga(x
∗
a,θ

∗
a;p

∗) ⊥ β∗a ≥ 0, ∀a ∈ A

0 = F (p∗;x∗)−
∑
a∈A

y∗a ⊥ p∗ free

0 ≤ p∗ ⊥ y∗a ≥ 0, ∀a ∈ A
(3.19)

Having the two KKT conditions, we start the main part of our proof.
First, we show that: (x∗,θ∗,p∗) solves (3.18) (⇒) there existy∗ ≥ 0 such that (x∗,θ∗,p∗,y∗)

satisfies (3.19).
Suppose

y∗a =
1

|A|
F (p∗;x∗).

Then with the condition 0 ≤ F (p∗;x∗) ⊥ p∗ ≥ 0 we will have

0 ≤ p∗ ⊥ y∗a ≥ 0, ∀a ∈ A

0 = F (p∗;x∗)−
∑
a∈A

y∗a,
(3.20)

which proves (x∗,θ∗,p∗,y∗) satisfies (3.19).
Next, we show that (x∗,θ∗,p∗,y∗) satisfies (3.19) (⇒) (x∗,θ∗,p∗) satisfies (3.18). This is

not difficult to show since from 0 ≤ p∗ ⊥ y∗a ≥ 0, ∀a ∈ A and 0 = F (p∗;x∗)−
∑

a∈A y
∗
a ⊥ p∗

we will have
0 ≤ F (p∗;x∗) ⊥ p∗ ≥ 0

From the above, (x∗,θ∗,p∗) is a solution of competitive MOPEC if and only if (x∗,θ∗,p∗,y∗)

is the solution of MOEPC (3.16) and (3.17)

After building the equivalence between the original problem (3.4), (3.8) and the refor-
mulated problem (3.16)-(3.17), it becomes evident that solving the reformulated problem
can yield the equilibrium point of the original problem. To achieve this, an artificial variable
ya ≥ 0 is introduced, which is controlled by each player a. The inequality market constraint

F (p;x) ≥ 0
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is transformed into an equality constraint

F (p;x)−
∑
a∈A

ya = 0

During the iteration of the player-based decomposition algorithm, when solving player
a’s optimization problem, the original problem (3.16) is replaced by a modified objective
function with an additional penalty term: ω

2
‖F (p;x)−

∑
a∈A ya‖2. Therefore, the objective

function becomes:
fa(xa,θa;p) + pTya +

ω

2
‖F (p;x)−

∑
a∈A

ya‖2
(3.21)

where ω represents the penalty parameter that controls the strength of the penalty term.
When only one player is present, and the equality constraint F (p;x)−

∑
a∈A ya = 0 is

part of the optimization problem, and the objective function has the additional Lagrange
term associated with this equality constraint, we could claim that the objective function
is the augmented Lagrangian function that associates with the equality constraint. The
augmented Lagrangian method could be applied naturally here by iteratively updating
the primal variables (xa,θa,ya), and the Lagrange multipliers for equality constraint until
convergence. However, when multiple players are present, the ADMM method could be
applied by updating the primal variables (xa,θa,ya)a∈A in a Gauss-Seidel manner, and
subsequently the Lagrange multipliers until convergence.

In the case of our problem, although we don’t have this augmented Lagrangian function,
we treat the market price p as the Lagrangian multiplier associated with the market con-
straint (3.17) and the objective function (3.21) as the augmented Lagrangian function. When
all players are risk-neutral, a large family of stochastic PNEP is equivalent to a system opti-
mization problem, such as the economic dispatch problem and capacity expansion example
with Type I or Type II market constraint in chapter 2. This equivalence has been shown in
[72]. In this situation, the market price p is the Lagrangian multiplier associated with the
market constraint in the system optimization problem with an appropriate coefficient, and
the ADMM method is perfectly suited to be applied with strong theoretical guarantees.
This motivates us to transfer the idea of the ADMM algorithm into the risk-averse case.

At iteration r with initial price pr, we solve each player a’s optimization problem in a
Gauss-Seidel manner to obtain the udpated player’s actions (xr+1

a ,θr+1a,yr+1a).Then, we
update the price variable by the projected first-order update with step size ε · ω as follows:

pr+1 = max

{
0,pr − ε · ω ·

(
F (pr;xr+1)−

∑
j∈A

yr+1
j

)}
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where 0 < ε ≤ 1 is the parameter to control the step size of the projected first-order update
on market price. The complete Algorithm for solving the reformulated problem is as
follows:

Algorithm 3 ADMM-based algorithm for problem (3.16) and (3.17)
1: set r = 0, choose a starting point (x0,θ0,p0), parameter ω > 0, 0 < ε ≤ 1.
2: while stopping criterion not met do
3: for each player a ∈ A do
4:

xr+1
a ,θr+1

a ,yr+1
a = arg min

xa,θa,ya

{
fa(xa,θa;p

r) + (pr)Tya

+
ω

2
‖F (pr;xr+1

a<j,xa,x
r
a>j)− ya −

∑
j<a

yr+1
j −

∑
j>a

yrj‖2

s.t. ha(xa,θa;pr) = 0, ga(xa,θa;p
r) ≤ 0, xa ∈ Xa, θa ∈ Θa, ya ≥ 0

}
5: end for
6:

pr+1 = max

{
0,pr − ε · ω ·

(
F (pr;xr+1)−

∑
j∈A

yr+1
j

)}
(3.22)

7: r = r + 1
8: end while

By iteratively updating the player’s actions and the price variable, the algorithm aims
to converge to the equilibrium point of the original problem (3.4) and (3.8). In practice, in
the subsequent presentation of numerical results, we aim to demonstrate the convergence
of the algorithm by examining several illustrative examples. In these examples, we choose
relatively small values for ω and ε to ensure convergence. However, it is important to note
that excessively reducing the values of ω and ε can lead to a considerable slowdown in the
algorithm’s convergence rate, thus resulting in prolonged computational time required
to reach a solution. Therefore, striking a suitable balance for these parameters becomes
essential to achieve a desirable trade-off between convergence speed and solution accuracy.

3.2.3 Optimality result for ADMM-based algorithm

Theorem 3.4. If the the points
{(
xr, θr, νr, βr, pr, yr

)}
generated by the Algorithm 3 converge

to the point
{(
x∗, θ∗, ν∗, β∗, p∗, y∗

)}
, then

(
x∗,θ∗,p∗,y∗

)
will be the equilibrium point of the

PNEP (3.16)-(3.17).
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Proof. Since {pr} converge to p∗ when r →∞, thus we must have

F (p∗;x∗)−
∑
j∈A

y∗j = 0 (3.23)

because of pr+1 = pr − ε · ω ·
(
F (pr;xr+1)−

∑
j∈A y

r+1
j

)
. From (3.22) we can have the KKT

conditions for the player a’s subproblem at iteration r + 1

0 ∈ ∇xafa(x
r+1
a ,θr+1

a ;pr) +∇xaha(x
r+1
a ,θr+1

a ;pr)νr+1
a +∇xaga(x

r+1
a ,θr+1

a ;pr)βr+1
a

+ω · ∇xaF (pr;xr+1
j≤a,x

r
j>a)

(
F (pr;xr+1

j≤a,x
r
j>a)−

∑
j≤a

yr+1
j −

∑
j>a

yrj

)
+NXa(xr+1

a )

0 ∈ ∇θafa(xr+1
a ,θr+1

a ;pr) +∇θaha(xr+1
a ,θr+1

a ;pr)νr+1
a

+∇θaga(xr+1
a ,θr+1

a ;pr)βr+1
a +NΘa(θr+1

a ),

0 = ha(x
r+1
a ,θr+1

a ;pr) ⊥ νr+1
a free

0 ≥ ga(x
r+1
a ,θr+1

a ;pr) ⊥ βr+1
a ≥ 0

0 ≤ pr − ω ·
(
F (pr;xr+1

j≤a,x
r
j>a)−

∑
j≤a

yr+1
j −

∑
j>a

yrj

)
⊥ yr+1

a ≥ 0

(3.24)

And since
{(
xr θr νr βr pr yr

)}
converge to

{(
x∗ θ∗ ν∗ β∗ p∗ y∗

)}
, and

from (3.24) and (3.23) we will have

0 ∈ ∇xafa(x
∗
a,θ

∗
a;p

∗) +∇xaha(x
∗
a,θ

∗
a;p

∗)ν∗a +∇xaga(x
∗
a,θ

∗
a;p

∗)β∗a +NXa(x∗a)

0 ∈ ∇θafa(x∗a,θ∗a;p∗) +∇θaha(x∗a,θ∗a;p∗)ν∗a +∇θaga(x∗a,θ∗a;p∗)β∗a +NΘa(θ∗a),

0 = ha(x
∗
a,θ

∗
a;p

∗) ⊥ ν∗a free

0 ≥ ga(x
∗
a,θ

∗
a;p

∗) ⊥ β∗a ≥ 0

0 ≤ p∗ ⊥ y∗a ≥ 0

(3.25)

3.2.4 Structural comparisons between algorithms

This section aims to provide a comparison between our proposed algorithm and two
existing decomposition algorithms, namely the Newton-based decomposition algorithm
(Algorithm 1) in [12] and the smoothing decomposition algorithm (Algorithm 2) [11]. All
three algorithms aim to solve the PNEP (3.4) and (3.8) in a distributed manner. However,
there exist differences among these algorithms, particularly in the major iteration of price
updating.
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• Algorithm 1 and 2 update the price by solving a linear approximation of 0 ≤ R̂(p) ⊥
p ≥ 0 directly.

• Algorithms 3 uses only first-order information to update the price p by a gradient-
based method: p = p̄− ε · ω · F (p̄;x(p̄)).

When solving the subproblem:

• With fixed p, Algorithm 1 solves the original subproblem.

• With fixed p, Algorithm 2 solves an approximated subproblem using smooth approx-
imation and regularization.

• With fixed p, in Algorithm 3, we minimize the original problem with penalization of
the market constraint via an Augmented Lagrangian in a Gauss-Seidel way.

Besides the above major differences, there are also some other differences that can be
summarized in the following Table 3.1.

penalty term penalty size require∇px(p) p update specific requirement

Algorithm 1 No No Yes Newton update
with fixed p, each
subproblem has

[11] a unique solution

Algorithm 2
ωr

2
(‖xa‖2 + ‖θa‖2) ωr ↘ 0 Yes

Using Ipopt No, but to show
and many epiconvergence, origianl

[12] points every subproblem must have a
iteration unique solution with p

This work

ωr

2
‖F (pr;

ωr constant No

first order

Noxr+1
a<j,x

r
a>j) update with

−ya −
∑

j<a y
r+1
j step size

−
∑

j>a y
r
j‖2 γωr

Table 3.1: Comparison of the difference of three main algorithms

3.3 Numerical experiments

This section presents an empirical evaluation and demonstration of the effectiveness of the
ADMM-based player decomposition algorithm in solving stochastic PNEP. The algorithm
is tested on the dispatch example and hydroelectric example in chapter 2, and computa-
tional experiments are conducted using the coherent risk measure CV aR(λ, ϕ)(Z) defined
in chapter 1. This coherent risk measure can be formulated in the dual representation
of coherent risk measure by a conjugate-reformulation, and it also has a specific primal
formulation. An analysis of the practical efficiency of the two formulations is presented,
and the ADMM-based algorithm is tested on both formulations to find out which is is
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performing better in practice. The results indicate that the conjugate-reformulation is more
efficient in practice. The numerical results also demonstrate how the parameters λ, ϕ,
and the quadratic coefficient term in players’ objective function affect the performance of
ADMM-based algorithm. Specifically, larger values of λ and the quadratic coefficient term
make the problem more difficult. The section also examines the impact of the algorithm’s
parameter ω and the optimal selection of ω on the algorithm’s performance. The numerical
results show that a too large ω causes the algorithm to converge slowly, while a too small ω
causes divergence of the algorithm. The optimal ω is a parameter that needs to be selected
in between. The experiments aim to provide insights into the practical usefulness of the
algorithm and identify possible limitations and areas for future research.

3.3.1 Computational setting

The proposed algorithm was implemented in GAMS 26.1 and all examples were run on a
single server with an Intel Xeon processor (36 cores 3.1Ghz) and 768G RAM. The CONOPT3
solver was used to solve each optimization subproblem, and each algorithm was limited
to a single thread. In the analysis of the algorithm’s performance, we will first examine
the impact of the parameters γ and ω. Next, we will investigate how the risk measure of
the original problem affects the algorithm’s performance with fixed parameters γ and ω.
Finally, we will propose a special initial point technique for dealing with the same problems
but in an increasing risk-averse setting.

3.3.2 Parameters setting of test problems

We are testing our ADMM-based algorithm on the stochastic economic dispatch and
capacity expansion examples with Type I and Type II market constraints and risk-averse
players in chapter 2. Hence, we first present more details of both examples.

In the economic dispatch example, we assume in the player’s objective function that

cain(qain, sain, vain) =
1

2

[
qain sain vain

]ε 0 0

0 ε 0

0 0 ε


qainsain

vain

+
[
cqain csain cvain

]qainsain

vain


(3.26)

The parameter ε is used to control the degree of convexity of each player’s objective function.
Its value will be varied in different experiments later. The parameters cqain, csain and cvain

are uniformly distributed over the interval [1, 10] for all a ∈ A, i ∈ I and n ∈ N . In
the supply-demand market constraint, the demand Din is uniformly distributed over the
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interval [20 · |A|, 50 · |A|], where |A| is the cardinality of setA. The production capacity Wai

is uniformly distributed over the interval [40, 75]. The lower bound of storage v̄lai is fixed at
20, and the upper bound of storage v̄uai is fixed at 100. In the Type II market constraint the
parameter γin is fixed at 10−2.

In the capacity expansion example, we assume in the player’s objective function that

Gan(sa·n, Can) =
∑
i∈I

[
1

2
· ε · s2

ain + csain · sain] +
1

2
· ε · C2

an

Ian(uan) =
1

2
· ε

10
· u2

an + cuan · uan
(3.27)

The parameter ε controls the degree of convexity in each player’s objective function, which
will be varied in different experiments later. The coefficient csain follows a uniform dis-
tribution between [1, 10], and cuan follows a uniform distribution between [5, 20]. In the
supply-demand market constraint, the demand Din follows a uniform distribution between
[7.5 · |A|, 12.5 · |A|]. Parameter ψn is uniformly distributed over the interval [0.5, 1] for each
n ∈ N . In the Type II market constraint the parameter γin is fixed at 10−2.

3.3.3 Comparisons of different formulations for coherent risk measure
CV aR(λ, ϕ)

In this subsection, we intend to assess the effectiveness of the ADMM-based algorithm
on the economic dispatch example with risk-averse players, where the risk measure
CV aR(λ, ϕ)(·) is employed. As discussed in the introduction chapter, CV aR(λ, ϕ)(·) is a
coherent risk measure that enables us to formulate the problem using a conjugate-based
reformulation. Additionally, CV aR(λ, ϕ)(·) has an unique characteristic in that it has an
alternative algebraic representation referred to as the primal formulation:

CV aR(λ, ϕ)
(

(fam(xam, x−am; pm)m∈n+)
)

= (1− λ) · E
(

(fam(xam, x−am; pm)m∈n+)
)

+ λ · CV aRϕ

(
(fam(xam, x−am; pm)m∈n+)

)
= (1− λ) ·

∑
m∈n+

φm · fam(xam, x−am; pm)

+ λ · min
κan∈R

{
κan +

1

1− ϕ
E
(
[fam(xam, x−am; pm)

− κan]+
)
m∈n+

}
(3.28)

Let us analyze the computational efficiency of the conjugate-based reformulation and
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primal formulation of the coherent risk measure CV aR(λ, ϕ)(·). The primal formulation
introduces additional variables {κan}n∈N\L, {δan}n∈N\{1}, where δan ∈ R+, and additional
constraints (δan ≥ cqain(qain)−pin ·τa ·sain+θan−κan−) in each player’s optimization problem.
These are total 2 · |N | − |L| − 1 additional variables and |N | − 1 additional constraints.
Therefore, the whole system involves an additional |A| ·

(
2 · |N | − |L| − 1

)
variables and

|A| ·
(
|N | − 1

)
constraints when using the primal formulation.

The computational complexity of the primal formulation will depend on the problem
size and the solution method used. If the problem size is small, the additional variables
and constraints introduced by the primal formulation may not have a significant impact on
the computational time. However, for large-scale problems, the additional computational
burden introduced by the primal formulation could be substantial. The solution method
used will also affect the computational efficiency of the primal formulation. If an efficient
solution method is used to solve the primal formulation, the computational time may
not increase significantly compared to the conjugate-based reformulation. However, if an
inefficient solution method is used, the additional variables and constraints introduced by
the primal formulation may lead to a substantial increase in computational time.

For the dual formulation, although no additional variables will be involved, there will
be additional

∑
n∈N\L

(
|Kan| − 1

)
constraints, where |Kan| is the cardinality of the set Kan,

which is the set of extreme points of the risk set.

Dλ,ϕan =
{
µa ∈ R|n+| : µam = (1− λ) · φm + λ · ηam, 0 ≤ ηm ≤

φm
1− ϕ

, m ∈ n+∑
m∈n+

ηam = 1
} (3.29)

In reality, the value of |Kan| is determined by the value of φm
1−ϕ for each m ∈ n+. Specifically,

if φm
1−ϕ > 1 for all m ∈ n+, then |Kan| = |n+|. However, if φm

1−ϕ ≤ 1 for all m ∈ n+, then
in the worst case scenario, |Kan| could be greater than

(|n+|
2

)
· 2. Therefore, in the worst-

case scenario, each player’s optimization problem will involve more than an additional∑
n∈N\L

(|n+|
2

)
· 2 constraints. However, in most cases, the value of ϕ is typically large

enough to avoid the worst-case scenario. From a theoretical perspective, it is challenging
to compare the computational efficiency of the primal and dual formulations. Thus, the
analysis will be conducted from a numerical perspective instead.

The effect of size ω on algorithm’s performance: Based on primal representation
and dual conjugate-based reformulation representation of the risk measure CV aR(λ, ϕ)

In this subsection, we aim to evaluate the effectiveness of the ADMM-based algorithm
on the economic dispatch example with risk-averse players, where CV aR(λ, ϕ)(·) is used
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as the risk measure. In this series of experiments, we investigate the effect of varying values
of ω on the performance of the ADMM-based algorithm, using both primal formulation
and dual conjugate-based reformulation of the risk measure CV aR(λ, ϕ) for the economic
dispatch example. The experiments were conducted on scenario tree 1 in chapter 2, with
|A| = 5 and |I| = 2, where each player uses the CV aR(λ, ϕ) risk measure with λ = 0.5

and ϕ = 0.95. The quadratic term εain = 1 for all a ∈ A, i ∈ I, n ∈ N . For each test, we set
all prices pin to 60, while all other players’ variables are set to 0. The parameter ε is fixed
at 0.5 for all experiments. The algorithms are run until the Fisher-Burmeister (FB) merit
value is smaller than 10−4. The numerical results are reported as the average/standard
deviation on 4 randomly generated data sets and are presented in Tables 3.2 and 3.3. Table
3.2 shows the results obtained using the primal formulation, while Table 3.3 presents the
results based on the dual conjugate-based reformulation.

ω Initial Merit(Mean/std) Iter # (Mean/std) Final Merit(Mean/std) t(sec) (Mean/std)
0.0005 252.690/4.7 4998.2/1031.0 9.873× 10−5/1.902× 10−6 823.7/175.4
0.001 278.058/7.3 2774.0/576.4 9.497× 10−5/6.260× 10−6 432.4/86.2
0.005 739.841/42.8 2000.8/473.2 9.921× 10−5/1.214× 10−7 276.0/71.9
0.01 1500.7/100.3 1814.8/438.0 9.942× 10−5/4.924× 10−7 249.2/65.9
0.05 7112.1/602.0 2463.8/1930.8 9.958× 10−5/1.404× 10−7 363.0/300.7
0.1 9320.6/262.8 - - 1800/0
0.5 9890.7/1077.3 - - 1800/0
1 9594.0/1400.7 - - 1800/0

Table 3.2: Comparison of algorithm performance with respect to parameter ω based on
primal representation with ε = 0.5 on scenario tree 1. ’-’ is caused by the divergence of the
algorithm.

ω Initial Merit(Mean/std) Iter # (Mean/std) Final Merit(Mean/std) t(sec) (Mean/std)
0.0005 251.1/4.6 5009.8/1038.1 9.806× 10−5/2.332× 10−6 682.1/183.2
0.001 272.2/7.1 2774.8/581.1 9.721× 10−5/2.243× 10−6 346.1/98.1
0.005 700.8/49.6 2000.5/472.1 9.873× 10−5/7.146× 10−7 269.7/65.6
0.01 1416.1/105.8 1812.5/436.8 9.923× 10−5/5.470× 10−7 241.9/60.0
0.05 6933.7/599.5 2462.8/1931.8 9.950× 10−5/1.613× 10−7 346.9/270.6
0.1 9025.1/192.5 - - 1800/0
0.5 9230.9/969.4 - - 1800/0
1 8588.4/1033.2 - - 1800/0

Table 3.3: Comparison of algorithm performance with respect to parameter ω based on
dual representation with ε = 0.5 on scenario tree 1. ’-’ is caused by the divergence of the
algorithm.

According to the results presented in Table 3.2 and Table 3.3, the choice of risk measure
formulation, either primal or dual, does not have a significant impact on the number of
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iterations required to achieve the desired accuracy. The experiments performed on both
formulations require a similar number of steps with the same parameter ω. However, the
total time required to achieve the desired accuracy differs between the two formulations,
with the dual formulation requiring less time. This is likely due to the fact that for this
particular test case, where ϕ = 0.95 and the upper tail of the risk is very small, not many
additional constraints are required in the dual formulation.

ω Initial Merit Iter # Final Merit t(sec)
0.0005 454.0 3576 6.122 3600
0.001 519.7 3877 4.381× 10−1 3600
0.005 1582.0 3906 5.700× 10−3 3600
0.01 3001.2 3907 2.400× 10−3 3600
0.05 7988.4 3899 5.224 · 10−4 3600
0.1 1176.3 3769 1.200× 10−3 3600
0.5 14120.8 3476 9.299× 10−1 3600
1 13017.3 3478 2.607 3600

Table 3.4: Comparison of different ω on algorithm performance based on primal represen-
tation with ε = 0.7 on scenario tree 2

ω Initial Merit Iter # Final Merit t(sec)
0.0005 450.0 9479 9.943× 10−5 2083.7
0.001 505.9 7422 9.708× 10−5 1534.6
0.005 1476.7 5611 9.980× 10−5 1101.2
0.01 2806.7 5241 9.998× 10−5 1025.5
0.05 7521.2 4599 9.978 · 10−5 883.7
0.1 11092.4 4471 9.987× 10−5 851.5
0.5 12695.6 13983 1.706× 10−3 3600
1 11531.3 13730 7.421× 10−2 3600

Table 3.5: Comparison of different ω on algorithm performance based on dual representa-
tion with ε = 0.7 on scenario tree 2

We also conducted experiments on a large scenario tree, tree 2, with the same parameter
settings to validate our conclusions. Tables 3.4 and 3.5 show that the dual representation-
based formulation achieves a much better result during the same restricted time compared
to the primal representation-based formulation. This is because the subproblem with
the dual representation takes less time to solve. Figure 3.3 displays the log of the Fisher-
Burmeister residual along with the iterations. We can observe that in the earlier iterations
(before the primal formulations stop), the plots of the primal and dual are almost identical.
This indicates that both formulation approaches exhibit some acceleration effects on the
major iterations. Therefore, the advantage of the dual formulation lies in the faster solution
of the subproblem in that situation.
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(a) Parameter ω = 0.0005 (b) Parameter ω = 0.0001

(c) Parameter ω = 0.005 (d) Parameter ω = 0.001

Figure 3.3: Comparison between number of iterations and FB merit in log scale on both
primal and dual formulation with changing parameter ω.

Also from Tables 3.2, 3.3, 3.4 and 3.5, it is evident that the parameter size ω has a signifi-
cant impact on the practical performance of the algorithm. The experiments demonstrate
that the algorithm can converge if ω is small enough. However, when ω is too small, the
Fisher-Burmeister residual decreases at a slow rate compared to a suitable ω. This occurs
because the update step for the price from pr to pr+1 becomes too small, which leads to a
slow convergence rate to the optimal price and results in the dual merit residual remaining
large.

The effect of size λ on algorithm’s performance: Based on dual representation of
the risk measure CV aR(λ, ϕ).

Economic dispatch example
From our numerical analysis, we have compared the primal and dual representations of

a coherent risk measure and found that the dual formulation is superior when computing
with a large value of ϕ. Furthermore, the dual formulation can represent the general case
of a coherent risk measure. As a result, in all subsequent experiments, we will use the dual
formulation. In this section, we will investigate how the properties of the risk measure
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and the classification of a player’s subproblem impact the practical performance of the
algorithm.

ω λ α Iter # Final Merit t(seconds)
0.05 0.1 0.95 5787 4.740× 10−7 4643.967
0.05 0.2 0.95 7626 3.530× 10−5 7200
0.05 0.3 0.95 7601 2.043× 10−3 7200
0.05 0.4 0.95 7593 2.441× 10−2 7200
0.05 0.5 0.95 7585 1.170× 10−1 7200
0.05 0.6 0.95 6487 3.707× 10−1 7200
0.05 0.7 0.95 7846 3.621× 10−1 7200
0.05 0.8 0.95 7879 6.819× 10−1 7200
0.05 0.9 0.95 7833 4.345× 10−1 7200

Table 3.6: Comparison of different risk measure on algorithm performance based on
economic dispatch example with ε = 0 and ε = 1 on scenario tree 3.

ω λ ϕ Iter # Final Merit t(seconds)
0.05 0.1 0.95 6971 9.251× 10−6 7200
0.05 0.2 0.95 7624 3.471× 10−4 7200
0.05 0.3 0.95 7376 1.356× 10−2 7200
0.05 0.4 0.95 7593 - 7200
0.05 0.5 0.95 6858 5.170× 10−1 7200
0.05 0.6 0.95 7116 9.568× 10−1 7200
0.05 0.7 0.95 6036 1.3618 7200
0.05 0.8 0.95 6021 1.719 7200
0.05 0.9 0.95 6079 9.045× 10−1 7200

Table 3.7: Comparison of different risk measure on algorithm performance based on
economic dispatch example with ε = 1 and ε = 1 on scenario tree 3. ”-’ is caused by the
failure of the solver to solve the subproblem.

Tables 3.6, 3.7 present the numerical results of the ADMM-based Algorithm 3 applied
to the economic dispatch example with the dual representation formulation, with varying
values of the parameter εain, as previously discussed.

The tables demonstrate that as the value of λ increases in CV aR(λ, ϕ), the algorithm
requires more major iterations to attain the desired FB-merit residual value. Notably, when
λ ≥ 0.5, it becomes challenging for the algorithm to force the FB-merit residual value below
10−1.

Capacity expansion example
In the second example, we still test how risk measure itself will affect the performance

of the algorithm. In Table 3.8, we fix ϕ = 0.95 and change λ = 0.1, 0.2, . . . , 0.9. In Tables 3.9
and 3.10, we fix αan = 0.6 and change λ = 0.1, 0.5, 0.9. Here Tables 3.8 and 3.9 are for linear
subproblem and Table 3.10 is for quadratic subproblem.
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ω λ ϕ Iter # Final Merit t(seconds)
0.05 0.1 0.95 746 9.888× 10−5 185.9
0.05 0.2 0.95 398 9.992× 10−5 115.3
0.05 0.3 0.95 280 9.904× 10−5 81.4
0.05 0.4 0.95 429 9.863× 10−5 111.8
0.05 0.5 0.95 799 9.865× 10−5 196.1
0.05 0.6 0.95 1741 9.946× 10−5 421.5
0.05 0.7 0.95 4790 9.989× 10−5 1207.9
0.05 0.8 0.95 12692 1.460× 10−3 3600
0.05 0.9 0.95 12395 2.228× 10−2 3600

Table 3.8: Comparison of different risk measure on algorithm performance based on second
example with ε = 0 and ε = 1 on scenario tree 2

ω λ ϕ Iter # Final Merit t(seconds)
0.05 0.1 0.6 2183 4.776× 10−3 3600
0.05 0.5 0.6 - - 3600
0.05 0.9 0.6 2222 5.531× 10−2 3600

Table 3.9: Comparison of different risk measure on algorithm performance based on second
example with ε = 0 and ε = 1 on scenario tree 2. ’-’ is caused by the failure of the solver to
solve the subproblem.

ω λ ϕ Iter # Final Merit t(seconds)
0.05 0.1 0.6 1248 6.483× 10−7 1952
0.05 0.5 0.6 1708 7.493× 10−7 535.3
0.05 0.9 0.6 2072 9541× 10−6 3600

Table 3.10: Comparison of different risk measures on algorithm performance based on the
second example with ε = 1 and ε = 1 on scenario tree 2.

Remark 3.5. We can see although from these three tables that when λ is increasing in
CV aR(λ, ϕ), the major iterations it takes is not in a strictly increasing trend, we can still
see that in all three cases when λ is near 1 the problem is the hardest. It is difficult for the
algorithm to force the FB-merit residual value small when λ = 0.5.

Initial point selection approach
To address the slow convergence issue that arises when λ is close to 1, we propose an

initial point selection approach. The rationale behind this is that the slow convergence
rate of the algorithm stems from the slow updates of price variables towards the optimal
solution position. Specifically, the price update only utilizes first-order information, which
is suitable for large-scale problems but suffers from a slow convergence rate. To tackle this
issue, we propose an approach to select a good initial point for the price variables that
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reduces the algorithm’s running time in practice. Specifically, we suggest setting the initial
point as the solution of the case when λ0 is close to 0. Our experiments show that using
this approach, the algorithm’s running time is significantly reduced.

We perform experiments on the problems presented in Tables 3.6 and 3.7. For each
problem, we solve the case when λ = k · 0.1 for k = 1, . . . , 0.9, using the solution of the case
λ0 = (k − 1) · 0.1 as the initial point. The numerical results are reported in the following
tables.

ω λ ϕ Iter # Final Merit t(seconds)
0.05 0.1 0.95 1679 8.891× 10−7 992.740
0.05 0.2 0.95 1685 9.934× 10−7 870.236
0.05 0.3 0.95 6905 9.998× 10−7 6471.4
0.05 0.4 0.95 6536 9.984× 10−7 5554.3
0.05 0.5 0.95 7284 1.740× 10−6 7200
0.05 0.6 0.95 2677 9.893× 10−7 2324.8
0.05 0.7 0.95 4756 5.545× 10−6 7200
0.05 0.8 0.95 6942 4.190× 10−2 7200
0.05 0.9 0.95 7452 5.201× 10−3 7200

Table 3.11: Comparison of different risk measure on sequentail initial point algorithm
performance with ε = 0 and ε = 1 on scenario tree 3.

ω λ ϕ Iter # Final Merit t(seconds)
0.05 0.1 0.95 4855 9.521× 10−7 2458.4
0.05 0.2 0.95 5477 7.738× 10−7 2779.3
0.05 0.3 0.95 5589 4.520× 10−6 7200
0.05 0.4 0.95 7411 3.773× 10−6 7200
0.05 0.5 0.95 2543 9.805× 10−6 1696.7
0.05 0.6 0.95 1908 9.420× 10−7 999.2
0.05 0.7 0.95 2681 9.359× 10−6 3697.7
0.05 0.8 0.95 4750 9.850× 10−7 4114.9
0.05 0.9 0.95 7301 3.143× 10−4 7200

Table 3.12: Comparison of different risk measure on sequentail initial point algorithm
performance with ε = 1 and ε = 1 on scenario tree 3.

It should be noted that there is a clear difference between the results reported in Tables
3.6 and 3.11, as well as the difference between Tables 3.7 and 3.12. When the algorithm
was initialized with an arbitrary starting point, it exhibited a slow convergence rate to the
solution. However, in the case of solving the problem with a risk measure parameterized by
λ andϕ, if we start from a solution of the stochastic equilibrium with risk measure parameter
λ̄ < λ, we can observe a faster convergence rate and achieve a good approximation of the
solution point.



80

3.4 Conclusion

In this chapter, we proposed a new ADMM-based algorithm to solve the PNEP (3.4) with
VI (3.8). The convergence of the algorithm was observed in all numerical tests on two
multistage stochastic equilibrium problems with risk-averse players. It is observed that
with all other conditions fixed, it will take longer for the algorithm to solve the problem if
the players become more risk-averse. Although the convergence can be achieved from an
arbitrary initial point, the numerical results show that the computational performance can
be improved by choosing an initial point as the solution of the case with less risk-averse
players. This suggests generating a homotopy approach for more reliable solution finding.

Overall, these results are somewhat disappointing. While they allow decomposition,
they do not converge quickly and the choice of algorithmic parameters is problematirc. We
believe subsequent methods are superior for solution of even these PNEP problems.
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4 risk decomposition method for multistage stochastic
equilibrium with risk-averse players

The main contribution of this chapter is the development of a primal-MOPEC-dual-risk
algorithm to solve the stochastic MOPEC with risk-averse players using an equilibrium
reformulation as discussed in chapter 1. The algorithm decomposes the original problem into
two subproblems and solves them iteratively. This decomposition approach is motivated
by the fact that the additional probability vector µ introduces nonlinearity to the multistage
problem, resulting in a highly nonlinear complementarity problem if solved by the PATH
solver. By fixing the probability vector µ, the problem becomes simpler, and in the case of
quadratic player objective functions, it can even be formulated as a linear complementarity
problem. The other subproblem can be efficiently solved by solving a series of linear
programming problems. Compared to the ADMM-based algorithm discussed in chapter 3,
the proposed primal-MOPEC-dual-risk algorithm enables the solution of more general
stochastic MOPECs with risk-averse players, especially in scenarios where players exhibit
general Nash behavior interaction with each other. However, one challenge arises when the
scenario tree has a large size, leading to a significant increase in the size of primal-MOPEC
subproblem. To address this issue, a stage-based decomposition method is developed. This
method decomposes the large-scale subproblem into smaller subproblems indexed by time
stages. By dividing the problem in this way, computational efficiency is improved, making
it more manageable to solve large-scale stochastic MOPECs with risk-averse players. The
details of this stage-based decomposition approach will be further discussed in subsequent
chapter 5.

The aim of this chapter is to address the challenging problem of solving multistage
stochastic MOPEC with risk-averse players by proposing a new scheme based on risk
decomposition and its variants (incorporating proximal terms). The first contribution
of this chapter is to demonstrate the utilization of the risk decomposition algorithm in
achieving the solution to the problem under certain specific conditions, as well as its
variant incorporating proximal terms in solving the general case. Additionally, this chapter
investigates and presents new theoretical properties of the problem. The third contribution
is the demonstration of using the risk decomposition as an effective initial point setting
strategy for the PATH solver when solving multistage stochastic MOPEC with risk-averse
players. The proposed methods are tested on the problem instances presented in chapter 2
and the results indicate their effectiveness and superiority over the performance of the
PATH solver.
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The chapter is organized as follows: Section 4.1 provides a brief literature review of
the progress made in solving stochastic MOPECs with risk-averse players in past decade.
Section 4.2 recalls the problem using equilibrium reformulation addressed in chapter 1 and
discusses its advantages over conjugate-based reformulation. However, it also highlights
the drawbacks of solving the problem as a whole system. Due to the inadequacy of
traditional methods attempting to solve the problem as a whole, a new primal-MOPEC-
dual-risk algorithm is developed in section 4.3, which exploits the inherent structure in
the problem using the equilibrium reformulation and decomposes it into two smaller and
more manageable subproblems that can be solved separately and iteratively. Building
upon the main framework of the primal-MOPEC-dual-risk algorithm, section 4.4 explores
various enhancement techniques aimed at improving the practical performance of the
algorithm. In section 4.3.2 and 4.4.3, a comparative analysis is conducted, evaluating the
success rates of different algorithms from section 4.3 and 4.4 on problem instances from
chapter 2. The statistical analysis investigates the properties of the solution under changing
risk measure and the quadratic terms in objective functions. Finally, section 4.5 provides a
comprehensive conclusion for this chapter, highlighting the advantages of our algorithm
in solving such problems compared to traditional methods.

4.1 Literature review

In this chapter, a risk decomposition algorithm and its variants are presented to solve the
multistage stochastic MOPEC with risk-averse players using an equilibrium reformulation.
The algorithm focuses on multistage stochastic MOPEC problems with risk-averse players
and complements the player-based decomposition algorithm and its variant presented in
the previous chapter, which solves a specific type of problem: the price-incentive Nash
equilibrium problem (PNEP) with risk-averse players. However, that approach is not
capable of handling the more general stochastic MOPEC with risk-averse players, which
has numerous applications in fields such as power system [40], electricity market [63],
economics [23] and transportation [2].

There has been significant effort to find an efficient algorithm to solve the multistage
stochastic MOPEC with risk-averse players. The PATH solver [25], which is a powerful tool
for solving deterministic MOPEC and stochastic MOPEC with risk-neutral players, has
been found unreliable in solving stochastic MOPEC with risk-averse players. A sequential
approximation approach [60] has been proposed, but it requires solving a problem of
the same size as the original problem in each iteration. Decomposition methods have
gained increasing interest due to the large scale of the scenario tree in multistage problems.



83

In general, there are four types of decomposition algorithms: player-based, time-stage-
based, scenario-based, and risk-based. Player-based decomposition has been extensively
studied in many literatures and shown to be efficient for potential games in the deterministic
setting, but it cannot lead to an equilibrium point for non-potential games. Scenario-based
decomposition [76] has been shown to be an efficient method for large-scale multistage
stochastic MOPEC, but it can only handle problems with a global monotonicity property
and risk-neutral players. To the best of our knowledge, there are no time-stage-based or
risk-based decomposition methods for this type of problem.

4.2 Model and structure

This chapter presents a risk-based decomposition algorithm called primal-MOPEC-dual-
risk decomposition algorithm. The algorithm is specifically designed to address the multi-
stage stochastic MOPEC with risk-averse players by employing an equilibrium reformulation.
To establish a contextual understanding, it is important to recall the fundamental defini-
tions outlined in section 1.5.1 of chapter 1. By revisiting these definitions, we can establish
a comprehensive perspective on the problem at hand and its associated challenges.

Each player a ∈ A is trying to solve the following optimization problem with given
(x−a·,p,µa·), where µa· = (µan)n∈S̄(1):

PFa (x−a·,p,µa·) : min
xa·

fa1(xa1;x−a1, p1) +
∑
n∈1+

µan ·
[
fan(xan;x−an, pn)

+
∑
m∈n+

µam ·
[
fam(xam;x−am, pm) + · · ·

]]
s.t. Gan(xa,n− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N
(4.1)

For each player a ∈ A and scenario node n, there exists one addtional player who is
controlling the vector µan+ = (µam)m∈n+ and trying to solve the following optimization
problem:

Ran(x,p, µa ¯̄S(n)) : max
µan+∈Dan

∑
m∈n+

µam ·
[
fam(xam;x−am, pm) +

∑
l∈m+

µal ·
[
fal(xal;x−al, pl) + · · ·

]]
(4.2)

with given x, p and µa ¯̄S(n) := (µal)l∈ ¯̄S(n).
The market price at node n is pn, taking all players’ strategies at node x·n = (xan)a∈A as
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given, satisfies the equilibrium constraint:

0 ∈ Fn(pn;x·n) +NKn(pn) (4.3)

QV I
n (x) := {pn|pn ∈ Kn, pn solves (4.3)} denotes the set of market price pn that safisfies the

equilibrium contraint at scenario node n.
From definition 1.12, (x∗,p∗,µ∗) =

(
(x∗an)a∈A,n∈N , (p

∗
n)n∈N , (µ

∗
an)a∈A,n∈S̄(1)

)
is an equi-

librium point of the above multistage stochastic MOPEC with risk-averse players using an
equilibrium reformulation if and only if

x∗a· is an optimal solution of PFa (x∗−a·,p
∗,µ∗a·) for all a ∈ A

p∗n belongs to set QV I
n (x∗) for all n ∈ N

µ∗an+
is an optimal solution of Ran(x∗,p∗, µ∗

a, ¯̄S(n)
) for all a ∈ A, n ∈ N\L

(4.4)

4.3 Primal-MOPEC-dual-risk decomposition algorithm

The integration of the multistage stochastic MOPEC with risk-averse players, through the
utilization of an equilibrium reformulation, introduces numerous challenges. To effectively
address these challenges, we propose a decomposition method. The primary objective of
this method is to compute the risk measure probability vector, denoted as µ, independently
from the stochastic MOPEC. The solution process entails iteratively solving the stochastic
MOPEC with a fixed risk measure probability vector µ, followed by the resolution of the
worst-case model, which relies on the fixed strategies of the players and the prevailing mar-
ket prices. Notably, when µ is held fixed, the stochastic MOPEC can often be approached
as a comparatively simpler problem, amenable to solution techniques such as the PATH
solver. In essence, the primal-MOPEC-dual-risk decomposition algorithm facilitates the
partitioning of the original problem (4.4) into two distinct subproblems:

• Primal-MOPEC F(µ∗):

With given µ∗, find (x∗,p∗) such that

x∗a· is an optimal solution of PFa (x∗−a·,p
∗,µ∗) for all a ∈ A.

p∗n belongs to set QV I
n (x∗) for all n ∈ N .

(4.5)
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• Dual-risk problem B(x∗,p∗):

With given (x∗,p∗), find µ∗ such that

µ∗an+
is an optimal solution of Ran(x∗,p∗, µ∗

a, ¯̄S(n)
)

for all a ∈ A, n ∈ N\L

(4.6)

Starting at iteration r ≥ 1 with an initial point (xr−1,pr−1,µr−1), the primal-MOPEC is
first solved using the given risk measure probability vector µr−1. This yields the updated
vectors of players’ actions xr and price pr, resulting in a simpler MOPEC problem with a
reduced problem size compared to the original comprehensive problem. Typically, this
type of problem can be effectively addressed by employing the PATH solver. Subsequently,
the updated risk measure probability vector µr is determined by solving the dual-risk,
considering the obtained (xr,pr). This iterative process is repeated until a point (xr,pr,µr)

is attained, satisfying the predetermined stopping criterion.
The utilization of such a decomposition approach offers two principal advantages over

directly solving the entire system. Firstly, in the primal-MOPEC phase, the fixation of µ
results in a reduction of the problem’s complexity. Specifically, it transforms the highly
nonlinear complementarity problem into a more manageable nonlinear complementarity
problem, and in certain cases, it may even simplify the problem to a linear complementarity
problem, particularly when the objective function of each player is quadratic and the
functions G and F exhibit linearity. This reduction in complexity enables more efficient and
tractable solution procedures. The second advantage lies in the separability of the dual-risk
calculation. The risk-averse problem Ran(x∗,p∗, µ∗

a, ¯̄S(n)
) can be solved by focusing solely

on the value of µ for player a and the nodes within the set ¯̄S(n). This feature provides the
flexibility to calculate the value of µ in a reverse manner, following the reverse order of the
time stage T . Consequently, an algorithmic approach can be devised to obtain the values
of the entire risk measure probability vector µ, leveraging the known values of x and p.

By capitalizing on these advantages, the proposed algorithm facilitates an efficient and
effective solution process for the multistage stochastic MOPEC with risk-averse players.
The iterative nature of the algorithm, along with the partitioning of the problem and the
utilization of suitable solvers, enhances computational efficiency and enables the attainment
of viable solutions within a reasonable timeframe. We could have the following algorithm
to get value of the entire µwith given x and p.
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Algorithm 4 Algorithm for the dual-risk B(x∗,p∗)

1: Input and Initialization Players’ strategies x∗ and market prices p∗.
2: Solving dual-risk
3: for t = |T | − 1, . . . , 1 do
4: for a ∈ A do
5: for n ∈ N (t) do
6: Compute µ∗an+

that is the solution of risk-averse problem Ran(x∗,p∗, µ∗
a, ¯̄S(n)

).
7: end for
8: end for
9: end for

Based on the use of Algorithm 4 to calculate µ, the complete primal-MOPEC-dual-risk
decomposition iterative algorithm is as follows:

Algorithm 5 Primal-MOPEC-dual-risk decomposition algorithm
1: Input and Initialization Choose µ1 = P, where P is vector for risk-neutral probabilities

for each scenario node n ∈ N and Pn =
∏

m∈P(n) φm. Set r = 1.
2: Step 1: Primal-step Solve the primal-MOPEC F(µr), get (xr,pr) such that

xra is an optimal solution of PFa (xr−a,p
r,µr) for all a ∈ A

pr belongs to set QM(xr)
(4.7)

3: Step 2: Dual-step.
4: for t = |T | − 1, . . . , 1 do
5: for a ∈ A do
6: for n ∈ N (t) do
7: Compute µr+1

an+
that is the solution of risk-averse problem Ran(xr,pr, µr+1

a, ¯̄S(n)
).

8: end for
9: end for

10: end for
11: Step 3: Stopping Test. If stopping criteria is met, stop and go to step 5.
12: Step 4: Loop. Set r := r + 1 and go back to Step 1.
13: Step 5: PATH solve (optional). Use the PATH solver to solve the whole problem with

initial point (xr,pr,µr+1). Get the solution (x∗,p∗,µ∗) if the solution is found.

4.3.1 Stopping criteria

The selection of an appropriate stopping criterion in step 3 of the primal-MOPEC-dual-risk
Algorithm 5 holds significant importance in practical applications, as it can significantly
impact the algorithm’s overall performance. The choice of a stopping criterion is highly de-
pendent on the specific requirements and constraints present in real-world scenarios. Given
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the flexibility in choosing the stopping criterion, multiple approaches can be adopted. One
commonly employed stopping criterion is based on the Fischer Burmeister (FB) function Ψ,
introduced in subsection 1.2.1, serving as a merit function for evaluating the convergence
of the point (xr,pr,µr+1). This merit function enables the assessment of the solution’s
quality by quantifying the distance between the obtained solution and the ideal equilib-
rium solution. In practice, the algorithm is halted when the merit value Ψ(xr,pr,µr+1)

falls below a predefined threshold value. This threshold value serves as an indicator of
the desired level of convergence, allowing the algorithm to terminate once an acceptable
solution is achieved.

Although the primal-MOPEC-dual-risk decomposition Algorithm 5 provides a sys-
tematic approach for decomposing the problem into more manageable subproblems, its
convergence to the equilibrium point of the problem is not guaranteed. As detailed in
Chapter 2, it is possible to construct examples where the sequence (xr,pr,µr)∞r=1 fails to
converge. Despite this limitation, empirical results presented later illustrate that the Risk
decomposition Algorithm 5 is effective in solving a majority of instances when compared
to the PATH solver.

In the numerical experiments, even in cases where the Algorithm 5 does not yield a
convergent series, it is still possible to obtain (xr,pr,µr+1) for a certain iteration r, which
can serve as a promising initial point for the PATH solver. In such situations, a modified
termination criterion can be employed. The algorithm can be stopped at iteration r if
Ψ(xr,pr,µr+1) ≥ Ψ(xr−1,pr−1,µr), and (xr−1,pr−1,µr) can be chosen as the initial point
for the PATH solver to solve the entire system. By leveraging this approach, empirical
results in later sections will demonstrate how this technique enhances the success rate of
the PATH solver in solving problem (4.4).

While convergence to the equilibrium point cannot be guaranteed in all cases, the
empirical findings indicate the effectiveness of the Risk decomposition Algorithm 5 in
addressing a wide range of instances. Moreover, by incorporating the PATH solver and
leveraging the obtained intermediate points, the algorithm provides a practical strategy
for improving the convergence and success rate of the overall solution process. These
empirical results serve as valuable insights, shedding light on the algorithm’s performance
characteristics and its ability to tackle the complexities of the multistage stochastic MOPEC
with risk-averse players.
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4.3.2 Numerical Experiments

In order to assess the effectiveness of the primal-MOPEC-dual-risk decomposition approach
and its variants, as proposed in section 4.3 and 4.4, a comprehensive series of computational
experiments was conducted. The objective of these experiments was to rigorously evaluate
the performance and efficacy of the proposed algorithms in addressing the complexities of
the stochastic MOPEC with risk-averse players.

The proposed algorithms were implemented using the GAMS modeling software. The
experiments were carried out on a single Intel Xeon server, which was equipped with 36
cores and boasted a processing power of 3.1 GHz, accompanied by a substantial 768 GB of
RAM.

Throughout the experiments, a standardized FB residual tolerance of 10−6 was employed
as a benchmark for determining the successful solution of the problem. This tolerance
criterion served as a reliable metric for evaluating the convergence and solution quality, en-
abling consistent comparisons and objective assessments across different problem instances
and algorithmic approaches.

By adopting this rigorous experimental framework, the aim was to provide a compre-
hensive and unbiased evaluation of the proposed primal-MOPEC-dual-risk decomposition
approach and its variants. The experimental results, which will be presented in subse-
quent sections, reflect the performance characteristics and effectiveness of the algorithms
in addressing the challenges posed by the multistage stochastic MOPEC with risk-averse
players.

4.3.2.1 Problem parameters setting

To ensure a thorough evaluation, the impact of these approaches was tested across all three
problem instance classes, encompassing a diverse set of scenarios characterized by the three
types of market constraints defined in chapter 2. However, to focus on the important parts,
we will mainly show the numerical results on the economic dispatch examples, which have
the most represtative results and are already enough for us to get the main conclusions.
For the other two examples, we will show the summary results and put the detail results in
the appendix. To introduce variability and account for different problem settings, varying
problem parameters were randomly generated. This systematic testing methodology
allowed for a comprehensive exploration of the algorithms’ performance across a wide
range of problem configurations. Hence, we first present more details of these examples.
In the economic dispatch example, we assume that the objective functions of players have
the same algebraic representation as described in section 3.3.2. Specifically, the objective
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function of player a in the economic dispatch example follows the format (3.26) and the
objective function of player a in the capacity expansion example follows the format (3.27).

For the economic dispatch example, the parameters cqain are uniformly distributed
over the interval [10, 20]. Additionally, the parameters csain and cvain are set to zero for all
a ∈ A, i ∈ I, and n ∈ N . The demand Din and production capacity Wai follow the same
distribution as specified in section 3.3.2. The lower bound of storage v̄lai and upper bound
of storage v̄uai remain constant, as described in section 3.3.2. For the Type II and Type III
market constraints, the parameter γin is fixed at 10−2 for each i ∈ I and n ∈ N .

In the context of the capacity expansion example, it is worth noting that the coefficient
csain is subject to a uniform distribution ranging between the values of 10 and 20. Similarly,
the coefficient cuan is uniformly distributed within the range of 35 to 45. Pertaining to
the supply-demand market constraint, the demand variable Din is uniformly distributed
between the intervals of 40 multiplied by the cardinality of set A, and 80 multiplied by the
cardinality of set A. It is important to mention that the parameter ψn is consistently set to
the value of 1 for each node n ∈ N . As for the Type II and Type III market constraints, the
parameter γin remains fixed at a value of 10−2.

In both the economic dispatch example and the capacity expansion example, it is
assumed that the number of players, denoted by |A|, is fixed at 2. Furthermore, the
scenario involves a single location, represented by |I|, which is also equal to 1.

In the hydroelectricity example, it is important to highlight that the objective function
associated with player a follows a specific form. The details pertaining to this specific form
will be elaborated upon in subsequent sections.

Cin(ui·n, vin) =
∑
j∈ξi

(
1

2
· ε · u2

ijn + cuijn · uijn)

gin(ui·n) =
∑
j∈ξi

cgijn · uijn
(4.8)

For the hydroelectricity example, the coefficient cuijn is uniformly distributed between
[10, 20]. Similarly, the coefficient cgijn follows a uniform distribution between [0.85, 1]. In
the supply-demand market constraint, the demand Din is uniformly distributed between
[50, 150], reflecting the variability in the electricity demand. The parameter $in is also
uniformly distributed between [50, 90], representing the variability in the water inflow for
hydroelectric power generation. Furthermore, the parameter Tijn is fixed at 1. In the Type II
and Type III market constraints, the parameter γin is fixed at 10−2, implying a predetermined
level of risk tolerance.
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4.3.2.2 Numerical results

In these sections, we are testing the performance of following methods:

• PATH: Solving the problem by utilizing the PATH solver with an arbitrary initial
point and the default setting.

• PATH-RN: Solving the problem by employing the PATH solver, utilizing the solution
obtained from the risk-neutral case and the default setting.

• PD: Solving the problem by utilizing the primal-MOPEC-dual-risk decomposition
algorithm.

• PD-PATH: Solving the problem by employing the primal-MOPEC-dual-risk decom-
position algorithm, followed by empolying the PATH solver.

The subsequent experiments are designed to evaluate the performance of the aforemen-
tioned four methods in three distinct examples with varying market constraints. These
evaluations utilize the risk measureCV aR(λ, ϕ)(·). To systematically investigate the impact
of two key parameters, namely ε and λ, on the success rate of the algorithms, controlled
variations of these parameters are employed in the experiments. Specifically, for each fixed
value of ε and λ, the experiments are conducted using two different values of the parameter
ϕ and employing 16 distinct random seeds.

Before we talk more about the numerical results. We want to first give the defintion
of a mixed solution of a stochastic MOPEC with risk-averse players using an equilibrium
reformulation.

Definition 4.1. The solution of the stochastic MOPEC with risk-averse players using an
equilibrium reformulation (4.4) with polyhedron risk sets {Dan|n ∈ N\L} is called a mixed
solution if for some a ∈ A and n ∈ N\L the probability vector µan+ is not an extreme point
of the polyhedral risk set Dan.

Tables 4.1 to 4.3 present the performance of the four methods across the economic dis-
patch example, which exhibits diverse market constraints. Additionally, these tables depict
the relationship between problem difficulty and the percentage of solutions containing
a probability vector µan+

that is not an extreme point of the corresponding risk set Dan
for certain values of a ∈ A and n ∈ N . In the tables, the first two columns represent the
fixed values of ε and λ utilized in the numerical experiments. Subsequently, the third to
eighth columns display the successful rates (SR) and worst elapse time (seconds) of each
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approach across a total of 32 experiments. Finally, the last column indicates the percentage
of solutions that are not a mixed solution.

Let’s first focus on the performances of the PATH and PATH-RN approaches, which are
shown in the column 3 to column 6 in Tables 4.1. The analysis of this table reveals that both
the PATH and PATH-RN approaches exhibit poor performance across all the problems
considered. Additionally, for both approaches, the difficulty of the problem generally
increases as the parameter λ becomes larger while keeping ε constant. This observation
aligns with expectations, as larger values of λ result in larger risk sets Dan and greater
risk aversion among the players, consequently rendering the problem more challenging.
It is also observed that when λ is fixed, the problem will be harder for the PATH and
PATH-RN when ε becomes smaller and closer to 0. Especially when ε = 0, each player’s
optimization problem will be a linear programming problem, which doesn’t guarantee an
unique solution and thus makes the problem more difficult.

The performance of PD approach shows a very different trend compared to the perfor-
mance of the PATH and PATH-RN approaches on these experiments. Although the PD
approach doesn’t have a good performance when ε ≤ 10−2 and performs worse than PATH
and PATH-RN when ε = 10−1 and λ ≤ 0.3, it outperforms the PATH and PATH-RN in most
cases when ε ≥ 1, even if λ is really large and both PATH and PATH-RN performs really
poorly, which shows the PD approach has very different approach compared to the PATH
solver.

In fact, we observed that the performance of the PD approach is really connected to
one special property of the problem, which is the percentage of solutions in which all
probability vectors µan+

are extreme points of the corresponding risk set Dan for certain
values of a ∈ A and n ∈ N . It is observed that when ε ≥ 10−2, then the succesful rate of
PD is equivalent to the percentage of solutions in which all probability vectors µan+

are
extreme points of the corresponding risk set Dan for certain values of a ∈ A and n ∈ N .
According to this phenomenon we can see that it is highly possible that the PD approach
could find the solution if the solution isn’t a mixed one. It is reasonable to explain why it
is difficult for the PD approach to find a none mixed one. Since in the dual-risk problem,
we are solving a series of linear programming problem, the simplex solver like CPLEX or
others will only give an extreme point solution even if the solution set is not a singleton in
linear programming. Thus it is impossible for the PD approach to find the solution in this
situation.

However, the PD approach not only solves the majority of problems when all the
included probability vectors µan+

are extreme points of the corresponding risk sets Dan,
but it also provides an excellent initial point for the PATH solver. This is evident from the
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results presented in Table 4.1, where the PD-PATH approach consistently exhibits the best
performance among the four approaches. Furthermore, the numerical results demonstrate
that the PD-PATH approach solves all problem instances in economic dispatch problem
with Type III market constraint. The column of time shows that the PD-PATH approach
although takes more time to solve the problem but the elapsed time is not a big increase
compared to the PATH solver.

ε λ
PATH PATH-RN PD PD-PATH No mixed solution

percentage(%)SR(%) Time(s) SR(%) Time(s) SR(%) SR(%) Time(s)
0 0.1 100.0 1.4 100.0 0.3 0.0 96.9 7.8 12.5
0 0.3 37.5 1.9 68.8 1.9 0.0 78.1 8.6 6.2
0 0.5 0.0 1.9 9.4 2.2 3.1 59.4 7.6 6.5
0 0.7 0.0 1.8 0.0 2.1 0.0 18.8 6.4 0.0
0 0.9 0.0 2.4 0.0 2.4 0.0 3.1 9.0 0.0

1e-2 0.1 100.0 0.4 100.0 0.9 34.4 100.0 6.8 34.4
1e-2 0.3 68.8 1.5 96.9 2.1 6.2 100.0 7.5 6.2
1e-2 0.5 9.4 1.9 68.8 3.7 3.1 90.6 7.6 3.1
1e-2 0.7 3.1 2.7 3.1 2.3 0.0 71.9 6.7 0.0
1e-2 0.9 0.0 2.4 0.0 2.3 0.0 37.5 6.8 0.0
1e-1 0.1 100.0 1.0 100.0 0.6 78.1 100.0 6.6 78.1
1e-1 0.3 71.9 0.4 100.0 1.9 68.8 100.0 6.8 68.8
1e-1 0.5 31.2 1.9 90.6 2.0 46.9 100.0 6.9 46.9
1e-1 0.7 9.4 2.2 87.5 2.2 37.5 100.0 7.2 37.5
1e-1 0.9 0.0 2.5 18.8 2.2 34.4 100.0 6.7 34.4

1 0.1 100.0 0.3 100.0 0.7 100.0 100.0 4.0 100.0
1 0.3 100.0 0.3 100.0 0.8 100.0 100.0 3.7 100.0
1 0.5 50.0 0.5 100.0 2.0 100.0 100.0 4.1 100.0
1 0.7 25.0 2.5 46.9 2.3 96.9 100.0 6.8 96.9
1 0.9 3.1 2.4 9.4 2.4 100.0 100.0 4.0 100.0

10 0.1 100.0 0.4 100.0 0.7 100.0 100.0 3.1 100.0
10 0.3 100.0 1.7 28.1 0.8 100.0 100.0 3.9 100.0
10 0.5 100.0 2.2 18.8 0.9 96.9 100.0 6.2 96.9
10 0.7 56.2 2.5 3.1 2.8 100.0 100.0 3.8 100.0
10 0.9 3.1 2.4 0.0 2.6 96.9 100.0 6.2 96.9

Table 4.1: Performance of PATH, PATH-RN, PD and PD-PATH over economic dispatch
example with Type I market constraint on scenario tree 2

Table 4.2 shows the results of the above four algorithms when solving the problems
with Type II market constraints. When the problem has Type II market constraints, the
above conclusions achieved from the results of Type I market constraints also hold. It could
be observed that in most cases the above four methods have higher successful rates when
solving problems with Type II market constraints compared to problems with Type I market
constraints.
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ε λ
PATH PATH-RN PD PD-PATH No mixed solution

percentage(%)SR(%) Time(s) SR(%) Time(s) SR(%) SR(%) Time(s)
0 0.1 100.0 0.5 100.0 0.3 0.0 96.9 9.2 9.4
0 0.3 75.0 1.8 87.5 1.7 0.0 84.4 9.3 6.2
0 0.5 9.4 2.3 15.6 2.1 0.0 62.5 8.0 3.1
0 0.7 0.0 2.2 0.0 2.3 0.0 25.0 7.5 0.0
0 0.9 0.0 2.0 0.0 2.1 0.0 3.1 6.1 0.0

1e-2 0.1 100.0 0.4 100.0 0.3 28.1 100.0 7.0 28.1
1e-2 0.3 100.0 0.8 100.0 0.8 6.2 100.0 7.5 6.2
1e-2 0.5 65.6 1.8 78.1 2.4 3.1 96.9 7.7 3.1
1e-2 0.7 6.2 2.3 15.6 2.8 0.0 84.4 6.7 0.0
1e-2 0.9 0.0 2.1 0.0 2.8 0.0 43.8 8.6 0.0
1e-1 0.1 100.0 0.4 100.0 0.4 78.1 100.0 6.7 78.1
1e-1 0.3 100.0 0.4 100.0 1.6 68.8 100.0 6.7 68.8
1e-1 0.5 87.5 0.8 100.0 1.8 46.9 100.0 6.8 46.9
1e-1 0.7 59.4 1.5 96.9 2.3 34.4 100.0 6.5 34.4
1e-1 0.9 9.4 2.6 46.9 2.8 34.4 100.0 6.6 34.4

1 0.1 100.0 0.4 100.0 0.7 100.0 100.0 2.9 100.0
1 0.3 100.0 0.3 100.0 0.9 100.0 100.0 3.0 100.0
1 0.5 96.9 0.4 100.0 1.7 100.0 100.0 3.9 100.0
1 0.7 78.1 2.0 84.4 2.1 96.9 100.0 6.1 96.9
1 0.9 25.0 2.4 68.8 2.4 100.0 100.0 3.0 100.0

10 0.1 100.0 0.3 100.0 0.9 100.0 100.0 3.0 100.0
10 0.3 100.0 2.0 6.2 1.0 100.0 100.0 3.1 100.0
10 0.5 100.0 2.0 6.2 1.0 90.6 100.0 5.9 90.6
10 0.7 96.9 2.2 0.0 2.1 100.0 100.0 2.9 100.0
10 0.9 59.4 2.4 3.1 2.8 96.9 100.0 6.1 96.9

Table 4.2: Performance of PATH, PATH-RN, PD and PD-PATH over economic dispatch
example with Type II market constraint on scenario tree 2

Table 4.3 shows the results of the above four algorithms when solving the problems
with Type III market constraints. When the problem has Type III market constraints, not
only the above conclusions achieved from the previous market constraints hold, but also
the all four approaches have better results compared to the results when having Type I
and Type II market constraints. In fact, the PD-PATH approach is able to solve all problem
instances with Type III market constraints.
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ε λ
PATH PATH-RN PD PD-PATH No mixed solution

percentage(%)SR(%) Time(s) SR(%) Time(s) SR(%) SR(%) Time(s)
0 0.1 100.0 0.5 100.0 0.2 87.5 100.0 6.3 87.5
0 0.3 100.0 0.4 100.0 0.2 78.1 100.0 6.4 78.1
0 0.5 100.0 1.4 96.9 0.8 59.4 100.0 6.9 59.4
0 0.7 53.1 1.7 78.1 3.0 56.2 100.0 6.6 56.2
0 0.9 0.0 2.5 21.9 3.0 28.1 100.0 7.5 31.2

1e-2 0.1 100.0 0.3 100.0 0.5 96.9 100.0 6.4 96.9
1e-2 0.3 100.0 0.3 100.0 0.4 81.2 100.0 6.7 81.2
1e-2 0.5 100.0 0.5 100.0 1.0 56.2 100.0 6.6 56.2
1e-2 0.7 65.6 1.7 90.6 4.5 40.6 100.0 6.8 40.6
1e-2 0.9 6.2 2.3 43.8 3.4 31.2 100.0 7.5 31.2
1e-1 0.1 100.0 0.4 100.0 0.2 96.9 100.0 5.4 96.9
1e-1 0.3 100.0 0.3 100.0 0.4 87.5 100.0 6.7 87.5
1e-1 0.5 100.0 0.8 100.0 0.5 84.4 100.0 6.6 84.4
1e-1 0.7 100.0 2.1 90.6 1.0 84.4 100.0 7.0 84.4
1e-1 0.9 31.2 2.3 78.1 3.8 78.1 100.0 6.5 78.1

1 0.1 100.0 0.3 100.0 0.7 100.0 100.0 3.2 100.0
1 0.3 100.0 0.4 100.0 0.7 100.0 100.0 3.1 100.0
1 0.5 100.0 0.3 100.0 0.7 100.0 100.0 3.1 100.0
1 0.7 93.8 1.6 90.6 1.9 100.0 100.0 3.0 100.0
1 0.9 50.0 2.3 68.8 2.5 96.9 100.0 5.5 96.9

10 0.1 100.0 0.3 100.0 0.2 100.0 100.0 3.0 100.0
10 0.3 100.0 1.5 21.9 0.6 96.9 100.0 5.2 96.9
10 0.5 100.0 1.8 15.6 0.8 93.8 100.0 5.6 93.8
10 0.7 100.0 2.0 34.4 0.9 100.0 100.0 3.0 100.0
10 0.9 96.9 2.1 6.2 1.9 100.0 100.0 3.0 100.0

Table 4.3: Performance of PATH, PATH-RN, PD and PD-PATH over economic dispatch
example with Type III market constraint on scenario tree 2

For the capacity expansion and hydroelectricity example, we are also running 32 in-
dependent results for each ε ∈ {0, 10−2, 10−1, 1, 10} and λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The
detailed results are included in the appendix chapter 8. Here we only show the summary
tables 4.4 to 4.5 for all experiments. For each market type there are all together 32×25 = 800

independent experiments.
The examination of tables 4.4 through 4.5 reveals consistent patterns in the numerical

outcomes for the capacity expansion example and hydroelectricity example, akin to those
observed in the economic dispatch example. Both the PD approach and PD-PATH approach
exhibit significantly superior results compared to the PATH and PATH-RN approaches.
Furthermore, it is worth noting that the efficacy of the PD approach exhibits a strong
correlation with the absence of mixed solutions. Moreover, there is a high likelihood
that the PD approach can successfully ascertain a solution for a stochastic MOPEC with
risk-averse participants by employing an equilibrium reformulation.
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Market
Type

PATH PATH-RN PD PD-PATH No mixed solution
percentage(%)SR(%) SR(%) SR(%) SR(%)

Type I 56.4 78.0 98.2 100.0 98.4
Type II 64.8 82.4 97.9 100.0 97.9
Type III 89.9 93.2 77.4 100.0 78.0

Table 4.4: Summary table of performance of PATH, PATH-RN, PD and PD-PATH over
capacity expansion example on scenario tree 2

Market
Type

PATH PATH-RN PD PD-PATH No mixed solution
percentage(%)SR(%) SR(%) SR(%) SR(%)

Type I 50.9 42.1 95.5 99.5 96.8
Type II 77.9 43.5 95.1 99.8 99.9
Type III 58.9 26.6 97.5 100.0 97.9

Table 4.5: Summary table of performance of PATH, PATH-RN, PD and PD-PATH over
hydroelectricity example on scenario tree 2

4.4 Computational Enhancements

4.4.1 Primal-MOPEC-dual-risk decomposition algorithm with
proximal-term

The preceding section highlights the observation that the primal-MOPEC-dual-risk de-
composition Algorithm 5 may exhibit a cyclic behavior, thereby lacking an assurance of
producing a series of convergent points. This limitation arises due to the Algorithm 5
employing an excessively aggressive strategy during the resolution of subproblems (4.5)
and (4.6). To address this issue effectively, a viable approach involves incorporating the
proximal operator while solving these subproblems, thereby facilitating a constrained
movement.

Definition 4.2. Let f : Rn → R ∪ {+∞} be a closed proper convex function, the proximal
operator proxf : Rn → Rn of f is defined by

proxf (v) = arg min
x

(f(x) +
1

2
‖x− v‖2

2) (4.9)

where ‖ · ‖2 is the usual Euclidean norm.

It is noteworthy that the function minimized on the right-hand side of equation (4.9)
exhibits strong convexity, and for every x ∈ dom(f) ⊆ Rn, the inequality f(x)+ 1

2
‖x−v‖2

2 <
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+∞ holds, ensuring the existence of a unique minimizer for each v ∈ Rn. Consequently,
proxf (v) invariably comprises a solitary point. The definition explicitly states that proxf (v)

represents a point that strikes a balance between minimizing f and maintaining proximity
to v. This point proxf (v) is also referred to as a proximal point of v with respect to f .

Moreover, the proximal term can be equivalently expressed in a scaled form with ω > 0,
adhering to the subsequent representation:

proxωf (v) = arg min
x

(f(x) +
1

2ω
‖x− v‖2

2)

The parameter ω can be interpreted as a relative weight or trade-off parameter governing
the balance between the objective function f and the least norm term 1

2ω
|| · −v||22 in the

minimization of f(x) + 1
2ω
||x− v||22. Notably, the choice of ω influences the emphasis placed

on 1
2ω
||x−v||22 during the minimization process. Specifically, when ω assumes a small value,

greater significance is attributed to the term 1
2ω
||x − v||22. Conversely, a larger value of ω

results in a shift of emphasis.
Example (f as the Indicator function) When f is the indicator function

IC(x) =

{
0 x ∈ C
+∞ x /∈ C,

where C is a closed nonempty convex set, the proximal operator of f is equivalent to
Euclidean projection onto set C, which we denote

proxIC(v) = ΠC(v) = arg min
x∈C
||x− c||2

The proximal operators have been used commonly in optimization since there is a
close connection between proximal operators and gradient methods. In fact, the proximal
operator associated with function f can be seen as a form of gradient step specific to f .
Consequently, it is possible to obtain

proxωf (v) ≈ v − ω∇f(v)

when f is continuously differentiable and ω is small. It also indicates that ω plays a role
similar to that of a step size in a gradient method.

Given the significance of the proximal term 1
2ω
||x− v||22 when ω assumes a small value,

we have incorporated the proximal term into the Risk decomposition algorithm. Specifically,
we augment the objective function of the problemRan(xr,pr, µr+1a, ¯̄S(n)) with the proximal



97

term
∑

m∈n+

1
2ωam
||·−µram||22. By introducing this additional term, the problems encountered

during the backward step can be formulated in the following manner:

RPan(xr,pr, µr+1

a, ¯̄S(n)
, µran+

, ωan+) : max
µan+∈Dan

∑
m∈n+

µam ·
[
fam(xram;xr−am, p

r
m)

+
∑
l∈m+

µr+1
al ·

[
· · ·
]]

+
∑
m∈n+

1

2ωam
||µam − µram||22

(4.10)
where ωan+ = (ωam)m∈n+ . It is apparent that the inclusion of such a proximal term, with
each component representing a small positive real number, enables us to enforce proximity
between µr+1

an and µran for all a ∈ A and n ∈ N . This particular mechanism significantly
enhances the stability of the algorithm. Notably, we refrain from incorporating proximal
terms on players’ strategies x and market price p. This decision stems from the fact
that including such proximal terms would impede the convergence speed of the primal-
MOPEC-dual-risk decomposition Algorithm 5 in practical scenarios, particularly when the
risk-measure sets Dan are polyhedrons.
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Figure 4.1: Proximal term on probability µr

Figure (4.1) illustrates the reason behind exclusively introducing a proximal term to the
risk probabilities µ. In this context, let us consider addressing the following risk-averse
problem while given x and p:

max
µ∈D

µT c(x,p), (4.11)

where c(x,p) is the cost vector and c(·, ·) is continuously differentiable. We also assume
that the risk set D is a polyhedron, which is a reasonable assumption since both the risk
sets of CV aR and mean-deviation risk-measures are polydedrons. At iteration r, we denote
(xr,pr) as the solution of the primal-MOPEC with risk probability µr, and the cost vector
c(xr,pr) ∈ relintND(µr), where relintND(µr) represents the relative interior of ND(µr).
If we introduce proximal terms to the objective of the primal-MOPEC, we obtain a new
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solution (xr+1,pr+1) that is very close to the previous iterate solution (xr,pr). As a result,
the cost vector c(xr+1,pr+1) is also very close to the cost vector c(xr,pr) and lies within the
relative interior of ND(µr). In this situation, the new risk probability µr+1 will be equal to
the previous risk probability µr. Futhermore, if each component of the proximal scale ωan+

is chosen to be too small, the risk probability will remain stuck at one extreme point for
many iterations, which will significantly slow down the convergence speed of the algorithm
in practice. Based on this phenomenon, we choose to utilize the proximal terms only on
the dual-risk. The modified algorithm is as follows:
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Algorithm 6 Primal-MOPEC-dual-risk decomposition algorithm with proximal term on
dual-risk problem

1: Input and Initialization Choose µ1 = P, where P is vector for risk-neutral probabilities
for each scenario node n ∈ N and Pn =

∏
m∈P(n) φm, positive integers J and M , and

the proximal parameters {ωan}a∈A,n∈N . Set r = 1.
2: while r ≤ J do
3: Step 1: Primal-step Solve the primal-MOPEC F(µr), get (xr,pr) such that

xra is an optimal solution of PFa (xr−a,p
r,µr) for all a ∈ A

pr belongs to set QM(xr)
(4.12)

4: Step 2: Dual-step.
5: for t = |T | − 1, . . . , 1 do
6: for a ∈ A do
7: for n ∈ N (t) do
8: Compute µr+1

an+
that is the solution of risk-averse problem Ran(xr,pr, µr+1

a, ¯̄S(n)
).

9: end for
10: end for
11: end for
12: Step 3: Stopping Test. If stopping criteria is met, break and go to Step 5.
13: Step 4: Loop. Set r := r + 1.
14: end while
15: Step 5: PATH solve. Use the PATH solver to solve the whole problem with initial

point (xr,pr,µr+1). Stop the algorithm and get the solution (x∗,p∗,µ∗) if the solution
is found, else continue.

16: Step 6. Set µ1 = µr+1 and r = 1.
17: while r ≤M do
18: Step 7: Primal-step Solve the primal-MOPEC F(µr), get (xr,pr) such that

xra is an optimal solution of PFa (xr−a,p
r,µr) for all a ∈ A

pr belongs to set QM(xr)
(4.13)

19: Step 8: Dual-step.
20: for t = |T | − 1, . . . , 1 do
21: for a ∈ A do
22: for n ∈ N (t) do
23: Compute µr+1

an+
that is the solution of risk-averse problem

RPan(xr,pr, µr+1

a, ¯̄S(n)
, µran+

, ωan+).
24: end for
25: end for
26: end for
27: Step 9: Stopping Test. If stopping criteria is met, break and go to Step 11.
28: Step 10: Loop. Set r := r + 1.
29: end while
30: Step 11: PATH solve. Use the PATH solver to solve the whole problem with initial

point (xr,pr,µr+1). Stop the algorithm and get the solution (x∗,p∗,µ∗) if the solution
is found.
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Although Algorithm 5 demonstrates excellent practical performance in most problems
of this type, its convergence cannot be guaranteed. To address this issue, we have developed
a modified version of the algorithm, referred to as Algorithm 6, which incorporates classical
proximal terms. These terms help ensure that the risk probability vector µ takes a more
controlled step at each iteration, preventing overly aggressive updates.

The proximal parameters ωan are employed to regulate the step size of the probability
vector. A larger value of ωan forces a smaller step size, while a smaller value of ωan encour-
ages a larger step size. However, this introduces a new question: how do we determine an
appropriate value for ωan to achieve the best practical performance? In reality, the answer
depends on various specific properties of each problem, making it unrealistic to find a
universally optimal value for each ωan. If the value of ωan is too small, the step size becomes
too large, leading to algorithm divergence. Conversely, if the value of ωan is too large, the
convergence speed slows down due to excessively small step sizes at each iteration.

In fact, we have also tested the primal-MOPEC-dual-risk decomposition algorithm
with proximal term on dual-risk problem and also got improved results compared to PD
approach or PD-PATH approach. However, just like mentioned before, it is very difficult to
choose an appropriate parameter ω in practice. Thus, we mainly focus on the PD-CC-PATH
approach when doing the numerical experiments. The results of primal-MOPEC-dual-risk
decomposition algorithm with proximal term on dual-risk problem is attached in the
appendix chapter 8.

4.4.2 Primal-MOPEC-dual-risk decomposition algorithm with convex
combination heuristics

To address the issue of slow convergence while maintaining the convergence properties of
the algorithm, we propose a heuristic approach that relies on a convex combination of risk
probabilities generated during the iteration process of Algorithm 5. The underlying idea is
as follows: in Algorithm 5, if the algorithm fails to converge, we repeat the algorithm and
generate a series of risk probability vectors µ1,µ2, . . . ,µr, . . .. Suppose we have completed
r iterations, including the primal step and dual step, and obtained a set of risk probability
vectorsµ1,µ2, . . . ,µr+1. Instead of usingµr+1 as the given parameter in the primal-MOPEC
at the start of iteration r+ 1, we generate a new risk probability vector µ̂r+1. This vector is a
convex combination of the previous v risk probability vectors, specifically µr+2−v, . . . ,µr+1,
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and can be computed as follows:

µ̂r+1 =
v−1∑
q=0

wq · µr−v+q (4.14)

where
∑v−1

q=0 wq = 1 and wq ≥ 0 for each q represent fixed parameters that can be chosen by
the user. In essence, this convex combination trick can be viewed as an averaging strategy
applied to the previous risk probability vectors. The purpose of this strategy is to address
the issue of the algorithm generating a divergent series of risk probability vectors, which
occurs when the µmoves too aggressively during iterations. By employing the averaging
trick, we constrain the step sizes taken by the risk probability vector and utilize more
information from the previous steps, particularly if we select a parameter v ≥ 3.

After obtaining the average risk probability vector µ̂r+1, we follow the same framework
as in Algorithm 5 to generate (xr+1,pr+1) through a primal-step. Subsequently, we generate
µr+2 through a dual-step. As previously mentioned, this type of algorithm can achieve
good practical performance with the assistance of the PATH solver. There are two ways to
combine the PATH solver with the average steps plus primal-MOPEC-dual-risk iterations.
The first option is to repeat the average steps plus primal-MOPEC-dual-risk iterations and
use the solution achieved as the initial point for the PATH solver to solve. The second
option is to incorporate a PATH solve after the dual-step in Algorithm 5.
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Algorithm 7 Primal-MOPEC-dual-risk decomposition algorithm with convex combination
on risk probability vector

1: Input and Initialization Choose µ1 = P, where P is vector for risk-neutral probabilities
for each scenario node n ∈ N and Pn =

∏
m∈P(n) φm, positive integer v, positive integer

J ≥ v and positive integer M ≥ J . Set r = 1.
2: while r ≤ J do
3: Step 1: Primal-step Solve the primal-MOPEC F(µr), get (xr,pr) such that

xra is an optimal solution of PFa (xr−a,p
r,µr) for all a ∈ A

pr belongs to set QM(xr)
(4.15)

4: Step 2: Dual-step.
5: for t = |T | − 1, . . . , 1 do
6: for a ∈ A do
7: for n ∈ N (t) do
8: Compute µr+1

an+
that is the solution of risk-averse problem Ran(xr,pr, µr+1

a, ¯̄S(n)
).

9: end for
10: end for
11: end for
12: Step 3: Stopping Test. If stopping criteria is met, break and go to Step 5.
13: Step 4: Loop. Set r := r + 1.
14: end while
15: Step 5: PATH solve. Use the PATH solver to solve the whole problem with initial

point (xr,pr,µr+1). Stop the algorithm and get the solution (x∗,p∗,µ∗) if the solution
is found, else continue.

16: while r ≤M do
17: Set µ̂r =

∑v−1
q=0 wq · µr+1−v+q.

18: Step 6: Primal-step Solve the primal-MOPEC F(µ̂r), get (xr,pr) such that

xra is an optimal solution of PFa (xr−a,p
r, µ̂r) for all a ∈ A

pr belongs to set QM(xr)
(4.16)

19: Step 7: Dual-step.
20: for t = |T | − 1, . . . , 1 do
21: for a ∈ A do
22: for n ∈ N (t) do
23: Compute µr+1

an+
that is the solution of risk-averse problem Ran(xr,pr, µr+1

a, ¯̄S(n)
).

24: end for
25: end for
26: end for
27: Step 8: Stopping Test. If stopping criteria is met, break and go to Step 10.
28: Step 9: Loop. Set r := r + 1.
29: end while
30: Step 10: PATH solve. Use the PATH solver to solve the whole problem with initial

point (xr,pr,µr+1). Stop the algorithm and get the solution (x∗,p∗,µ∗) if the solution
is found.
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4.4.3 Numerical experiments

We are conducting a series of computational experiments in order to evaluate the ef-
fectiveness of the variants of primal-MOPEC-dual-risk decompositionn approach. The
experiments are implemented in the same computational setting in section 4.3.2.

4.4.3.1 Problem parameter setting

In the following experiments, we are using the same parameters setting as in subsec-
tion 4.3.2.1. The only difference is that we will also testing our algorithms on these type of
problems on scenario tree 3 defined in chapter 2. The Table lists the problem size of the
reformulated mixed complementarity problem of all of these problems based on scenario
tree 3.

4.4.3.2 Numerical results

In this subsection, we are testing the performance of following methods:

• PD-CC-PATH: Solving the problem using primal-MOPEC-dual-risk decomposition
algorithm with convex combination on risk probability vector.

In the following experiments, we first show the results of the PD-CC-PATH approach
on all the previous problem instances on scenario tree 2 that cannot be solved by all the
previous four methods. Table 4.6 shows that the PD-CC-PATH appraoch have better
performance compared to PD-PATH, especially this approach achieves 100% succesful rate
when ε ≥ 10−2, which helps to solve more cases for this type of problem. The PD-CC-PATH
also improves the succesful rates a lot compared to PD-PATH when ε = 0. It is also shown in
this table that the computational time of PD-CC-PATH is just increased a little bit compared
to PD-PATH.



105

ε λ
Type I market Type II market

PD-PATH PD-CC-PATH PD-PATH PD-CC-PATH
SR(%) Time(s) SR(%) Time(s) SR(%) Time(s) SR(%) Time(s)

0 0.1 96.9 7.8 100.0 8.9 96.9 9.2 100.0 10.2
0 0.3 78.1 8.6 100.0 12.8 84.4 9.3 100.0 10.7
0 0.5 59.4 7.6 96.9 15.2 62.5 8.0 100.0 12.8
0 0.7 18.8 6.4 96.9 30.9 25.0 7.5 100.0 35.6
0 0.9 3.1 9.0 65.6 32.6 3.1 6.1 68.8 33.6

1e-2 0.1 100.0 6.8 100.0 7.6 100.0 7.0 100.0 7.4
1e-2 0.3 100.0 7.5 100.0 8.6 100.0 7.5 100.0 8.5
1e-2 0.5 90.6 7.6 100.0 9.0 96.9 7.7 100.0 8.7
1e-2 0.7 71.9 6.7 100.0 9.8 84.4 6.7 100.0 10.0
1e-2 0.9 37.5 6.8 100.0 18.7 43.8 8.6 100.0 10.1

Table 4.6: Performance of PD-PATH and PD-CC-PATH over economic dispatch example
with Type I and Type II market constraints on scenario tree 2

Following the presentation of results for the five aforementioned approaches on all
problem instances associated with scenario tree 2, we extend the analysis by including the
results obtained from these methods on scenario tree 3, which features a larger number of
scenarios. Tables 4.7 to 4.9 present a comparison of the performance of PATH, PATH-RN,
PD, PD-PATH, and PD-CC-PATH on an economic dispatch example with three distinct
types of market constraints, using scenario tree 3.

From the findings in Table 4.7, it is evident that the difficulty of the problem increases
as the value of λ grows and the quadratic coefficient ε diminishes. This observation aligns
with the numerical results obtained from scenario tree 2. Notably, due to the larger size of
the tree, PATH and PATH-RN exhibit inferior performance compared to their performance
on scenario tree 2. When the quadratic coefficient ε is less than or equal to 10−2, PATH and
PATH-RN can only solve a subset of problems with λ = 0.1 and fail to solve any cases with
λ > 0.1. When ε exceeds 10−1, PATH and PATH-RN cannot solve any cases.

Conversely, the performance of the PD approach remains relatively stable as the sce-
nario tree expands, particularly when ε ≥ 1. This stability highlights the robustness of our
algorithm when confronted with an increasing tree size. The PD-PATH approach consis-
tently outperforms the previous three methods, indicating consistent results even with
smaller scenario trees. However, the performance of the PD-PATH approach is influenced
by the size of the scenario tree, with a lower success rate observed when ε is small. The
novel heuristic approach, PD-CC-PATH, demonstrates superior performance compared
to PD-PATH, providing evidence of the effectiveness of the proposed heuristics. We have
tried many different implementation methods and found that the best option is choosing
v = 3 and w1 = 0.1, w2 = 0.3, w3 = 0.6.
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 0.0 37.5 0.0 59.4 100.0
0 0.3 0.0 0.0 0.0 12.5 96.9
0 0.5 0.0 0.0 0.0 9.4 71.9
0 0.7 0.0 0.0 0.0 3.1 18.8
0 0.9 0.0 0.0 0.0 0.0 9.4

1e-2 0.1 28.1 90.6 15.6 100.0 100.0
1e-2 0.3 0.0 0.0 0.0 90.6 100.0
1e-2 0.5 0.0 0.0 0.0 40.6 100.0
1e-2 0.7 0.0 0.0 0.0 21.9 84.4
1e-2 0.9 0.0 0.0 0.0 6.2 53.1
1e-1 0.1 0.0 100.0 59.4 100.0 100.0
1e-1 0.3 0.0 68.8 43.8 100.0 100.0
1e-1 0.5 0.0 3.1 18.8 96.9 100.0
1e-1 0.7 0.0 0.0 12.5 100.0 100.0
1e-1 0.9 0.0 0.0 15.6 93.8 100.0

1 0.1 71.9 100.0 100.0 100.0 100.0
1 0.3 12.5 100.0 100.0 100.0 100.0
1 0.5 3.1 15.6 93.8 100.0 100.0
1 0.7 0.0 0.0 93.8 100.0 100.0
1 0.9 0.0 0.0 96.9 100.0 100.0

10 0.1 100.0 100.0 100.0 100.0 100.0
10 0.3 96.9 96.9 93.8 100.0 100.0
10 0.5 65.6 56.2 100.0 100.0 100.0
10 0.7 0.0 3.1 93.8 100.0 100.0
10 0.9 0.0 0.0 100.0 100.0 100.0

Table 4.7: Performance of PATH, PATH-RN, PD, PD-PATH and PD-CC-PATH over economic
dispatch example with Type I market constraint on scenario tree 3

Table 4.8 shows similar result as Table 4.7. The difference is that from the numerical
results the Type II problem is easier than Type I problem.
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 62.5 71.9 0.0 96.9 100.0
0 0.3 0.0 0.0 0.0 43.8 100.0
0 0.5 0.0 0.0 0.0 9.4 71.9
0 0.7 0.0 0.0 0.0 0.0 31.2
0 0.9 0.0 0.0 0.0 0.0 9.4

1e-2 0.1 96.9 100.0 15.6 100.0 100.0
1e-2 0.3 9.4 31.2 0.0 96.9 100.0
1e-2 0.5 0.0 0.0 0.0 71.9 100.0
1e-2 0.7 0.0 0.0 0.0 40.6 96.9
1e-2 0.9 0.0 0.0 0.0 9.4 65.6
1e-1 0.1 96.9 100.0 53.1 100.0 100.0
1e-1 0.3 40.6 100.0 46.9 100.0 100.0
1e-1 0.5 3.1 46.9 21.9 100.0 100.0
1e-1 0.7 0.0 0.0 18.8 100.0 100.0
1e-1 0.9 0.0 0.0 15.6 93.8 100.0

1 0.1 100.0 100.0 100.0 100.0 100.0
1 0.3 90.6 100.0 96.9 100.0 100.0
1 0.5 71.9 96.9 90.6 100.0 100.0
1 0.7 18.8 56.2 90.6 100.0 100.0
1 0.9 0.0 15.6 93.8 100.0 100.0

10 0.1 100.0 100.0 100.0 100.0 100.0
10 0.3 100.0 96.9 96.9 100.0 100.0
10 0.5 90.6 59.4 96.9 100.0 100.0
10 0.7 62.5 12.5 100.0 100.0 100.0
10 0.9 21.9 6.2 96.9 100.0 100.0

Table 4.8: Performance of PATH, PATH-RN, PD, PD-PATH and PD-CC-PATH over economic
dispatch example with Type II market constraint on scenario tree 3

Numerical results for the economic dispatch problem with Type III market constraints
on scenario tree 3 are presented in Table 4.9. The findings indicate that problems with Type
III market constraints are considerably easier compared to those with Type I and Type II
constraints. However, PATH and PATH-RN still exhibit a very low success rate when ε is
small and λ is large. In contrast, the PD-PATH approach demonstrates a near-complete
success rate in solving instances of problems with Type III market constraints. Furthermore,
the PD-CC-PATH approach successfully solves every single instance of this problem type.
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 100.0 100.0 81.2 100.0 100.0
0 0.3 100.0 100.0 50.0 100.0 100.0
0 0.5 50.0 93.8 15.6 100.0 100.0
0 0.7 3.1 15.6 21.9 100.0 100.0
0 0.9 0.0 0.0 18.8 90.6 100.0

1e-2 0.1 100.0 100.0 65.6 100.0 100.0
1e-2 0.3 100.0 100.0 46.9 100.0 100.0
1e-2 0.5 59.4 93.8 18.8 100.0 100.0
1e-2 0.7 9.4 28.1 9.4 96.9 100.0
1e-2 0.9 0.0 0.0 6.2 96.9 100.0
1e-1 0.1 100.0 100.0 81.2 100.0 100.0
1e-1 0.3 93.8 100.0 53.1 100.0 100.0
1e-1 0.5 62.5 100.0 46.9 100.0 100.0
1e-1 0.7 9.4 90.6 40.6 100.0 100.0
1e-1 0.9 12.5 37.5 25.0 100.0 100.0

1 0.1 100.0 100.0 96.9 100.0 100.0
1 0.3 100.0 100.0 100.0 100.0 100.0
1 0.5 100.0 100.0 96.9 100.0 100.0
1 0.7 87.5 100.0 90.6 100.0 100.0
1 0.9 46.9 90.6 93.8 100.0 100.0

10 0.1 100.0 100.0 96.9 100.0 100.0
10 0.3 100.0 100.0 100.0 100.0 100.0
10 0.5 100.0 100.0 100.0 100.0 100.0
10 0.7 100.0 100.0 100.0 100.0 100.0
10 0.9 71.9 96.9 93.8 100.0 100.0

Table 4.9: Performance of PATH, PATH-RN, PD, PD-PATH and PD-CC-PATH over economic
dispatch example with Type III market constraint on scenario tree 3

4.4.4 Homotopy approach

Building upon the introduced convex-combination approach, we can enhance its effec-
tiveness by incorporating a homotopy approach. In Algorithm 7, which employs primal-
MOPEC-dual-risk decomposition, we always initiate the process with µ1 = P, generating
(x1,p1) based on the primal-MOPEC F(µ1) even for risk measures such as CV aR(λ, ϕ)

with significantly large values of λ. Notably, the risk-neutral case can be considered as a
problem with the risk measure CV aR(0, ϕ). Therefore, the original Algorithm 7 can be
treated as a homotopy method with ∆λ = λ − 0 = λ. Given the continuity of the risk
measure operator CV aR(λ, ϕ) with respect to λ, our objective is to reduce the magnitude
of ∆λ.
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The underlying concept of the devised homotopy approach is as follows: when ad-
dressing a problem with the risk measure CV aR(λ, ϕ), rather than commencing from a
solution in the risk-neutral case, we assume that an equilibrium point (x∗(λ−∆λ),p∗(λ−
∆λ),µ∗(λ − ∆λ)) already exists, representing the solution to the problem with the risk
measure CV aR(λ − ∆λ, ϕ). Since the risk set undergoes changes as λ increases, while
considering the solution (x∗(λ),p∗(λ)) as a continuous solution mapping with respect
to λ, we initiate the process with the solution (x∗(λ − ∆λ),p∗(λ − ∆λ)) and obtain an
updated risk probability vector p∗ that satisfies B(x∗(λ−∆λ),p∗(λ−∆λ)). Subsequently,
we apply the primal-MOPEC-dual-risk decomposition algorithm, incorporating a convex
combination on the risk probability vector until we attain a satisfactory solution or reach
the initial point. The complete algorithm is outlined as follows:
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Algorithm 8 Homotopy primal-MOPEC-dual-risk decomposition algorithm with convex
combination on risk probability vector to solve risk averse problem with risk measure
CV aR(λ, ϕ)

1: Input and Initialization Assume at the beginning we have the equilibrium point (x∗∗,p∗∗,µ∗∗), which is the solu-
tion of risk-averse problem with risk measure CV aR(λ−∆λ, ϕ). Choose positive integer v, positive integer J ≥ v
and positive integer M ≥ J .. Set r = 1.

2: Initial Dual-step.
3: for t = |T | − 1, . . . , 1 do
4: for a ∈ A do
5: for n ∈ N (t) do
6: Compute µ1

an+
that is the solution of risk-averse problem Ran(x∗∗−a,p

∗, µ1
a, ¯̄S(n)

).
7: end for
8: end for
9: end for

10: while r ≤ J do
11: Step 1: Primal-step Solve the primal-MOPEC F(µr), get (xr,pr) such that

xr
a is an optimal solution of PFa (xr

−a,p
r,µr) for all a ∈ A

pr belongs to set QM(xr)
(4.17)

12: Step 2: Dual-step.
13: for t = |T | − 1, . . . , 1 do
14: for a ∈ A do
15: for n ∈ N (t) do
16: Compute µr+1

an+
that is the solution of risk-averse problem Ran(xr,pr, µr+1

a, ¯̄S(n)
).

17: end for
18: end for
19: end for
20: Step 3: Stopping Test. If stopping criteria is met, break and go to Step 5.
21: Step 4: Loop. Set r := r + 1.
22: end while
23: Step 5: PATH solve. Use the PATH solver to solve the whole problem with initial point (xr,pr,µr+1). Stop the

algorithm and get the solution (x∗,p∗,µ∗) if the solution is found, else continue.
24: while r ≤M do
25: Set µ̂r =

∑v−1
q=0 wq · µr+1−v+q .

26: Step 6: Primal-step Solve the primal-MOPEC F(µ̂r), get (xr,pr) such that

xr
a is an optimal solution of PFa (xr

−a,p
r, µ̂r) for all a ∈ A

pr belongs to set QM(xr)
(4.18)

27: Step 7: Dual-step.
28: for t = |T | − 1, . . . , 1 do
29: for a ∈ A do
30: for n ∈ N (t) do
31: Compute µr+1

an+
that is the solution of risk-averse problem Ran(xr,pr, µr+1

a, ¯̄S(n)
).

32: end for
33: end for
34: end for
35: Step 8: Stopping Test. If stopping criteria is met, break and go to Step 11.
36: Step 9: Loop. Set r := r + 1.
37: end while
38: Step 10: PATH solve. Use the PATH solver to solve the whole problem with initial point (xr,pr,µr+1). Stop the

algorithm and get the solution (x∗,p∗,µ∗) if the solution is found.
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4.4.5 Numerical experiments

We are conducting a series of computational experiments in order to evaluate the effective-
ness of the variants of primal-MOPEC-dual-risk decomposition approach. The experiments
are implemented in the same computational setting as section 4.3.2.

4.4.5.1 Problem parameter setting

In the following experiments, we are using the same parameters setting as in subsec-
tion 4.3.2.1. The only difference is that we will also testing our algorithms on these type of
problems on scenario tree 3 defined in chapter 2.

4.4.5.2 Numerical results

In this subsection, we are testing the performance of following method:

• Homot: Solving the problem using homotopy primal-MOPEC-dual-risk decomposi-
tion algorithm with convex combination on risk probability vector to solve risk averse
problem with risk measure CV aR(λ, ϕ)

It is observed that in table 4.10 the Homotopy approach performs much better than all
the previous results.

ε λ
Type I market Type II market

successful rate (%)
PD-CC-PATH Homot PD-CC-PATH Homot

0 0.1 100.0 100.0 100.0 100.0
0 0.3 96.9 100.0 100.0 100.0
0 0.5 71.9 90.6 71.9 87.5
0 0.7 18.8 53.1 31.2 50.0
0 0.9 9.4 21.9 9.4 12.5

1e-2 0.1 100.0 100.0 100.0 100.0
1e-2 0.3 100.0 100.0 100.0 100.0
1e-2 0.5 100.0 100.0 100.0 100.0
1e-2 0.7 84.4 93.8 96.9 100.0
1e-2 0.9 53.1 68.8 65.6 81.2

Table 4.10: Performance of PD-CC-PATH and Homot on economic dispatch example with
Type I and Type II market constraints on scenario tree 3
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4.5 Conclusion

This chapter primarily focused on addressing the challenge of solving the general stochastic
MOPEC with risk-averse players by employing an "equilibrium reformulation" approach.
Our main contribution involves the introduction of a novel primal-MOPEC-dual-risk de-
composition algorithm, which leverages the inherent structure of the problem. Additionally,
we propose several variants of computational enhancement techniques, including those
based on proximal term manipulation, convex combination strategies, and homotopy
methods. To assess the efficacy of the proposed algorithms, we conducted performance
evaluations on all three problem instances described in chapter 2. These instances encom-
pass various types of market constraints, with the classical CV aR(λ, ϕ)(·) risk measure.
Similar results are obtained also for the K-Deviance coherent risk measure defined in
chapter 1.

Through the computational experiments, we observe that the difficulty of solving the
stochastic MOPEC with risk-averse players escalates as the parameter λ increases and the
quadratic coefficient ε diminishes. We note that the primal-MOPEC-dual-risk algorithm
exhibits a high likelihood of obtaining a solution for the problem when the solution is a
non-mixed one, as per our defined criteria. Moreover, we find that the primal-MOPEC-
dual-risk algorithm, when combined with the PATH solver, demonstrates notably improved
performance in tackling such problem instances compared to the original PATH solver.
Furthermore, we continually enhance the algorithms by incorporating proximal terms,
convex combination approaches, and homotopy techniques. These enhancements con-
tribute to effectively addressing a broader range of problem instances that were previously
unsolvable.
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5 time stage decomposition method for multistage
stochastic equilibrium with fixed risk probability

This chapter is dedicated to the study of the stage decomposition method that aims to solve
the stochastic MOPEC with risk-averse players using an equilibrium reformulation but with a
fixed risk probability vectorµ. In the previous chapter 4, we introduced the primal-MOPEC-
dual-risk algorithm that decomposes the entire system into two subproblems and solves
the stochastic MOPEC with risk-averse players using the equilibrium reformulation iteratively.
However, it has been observed that the primal-MOPEC subproblem becomes large-scale
and computationally intractable when the number of time stages is large. This is due to
the exponential growth of the scenario tree size with the number of stages. The motivation
behind this chapter is to present a new stage-based decomposition algorithm that further
decomposes the primal-MOPEC subproblem into a collection of smaller subproblems
indexed by stages, which helps to solve this type of problem more effectively when the
original subproblem size becomes too large to handle. The smaller subproblems can then
be solved iteratively, contributing to the solution of the primal-MOPEC subproblem even
in cases where the computational challenges arise from the large size of the scenario tree
resulting from multiple stages.

The chapter is organized as follows: Section 5.1 briefly recalls the problem introduced
in chapter 1. Furthermore, this section establishes the satisfaction of the time consistency
property by the problem, which serves as the foundation for the stage decomposition
algorithm proposed in this chapter. In section 5.2, a new stage-based decomposition
algorithm is proposed, which is based on the time consistency property in section 5.1 and
is a Gauss-Seidel iterative method on the equivalent KKT system of the original problem.
Building upon the main framework of the stage-based algorithm, the section 5.3 aims to
demonstrate the practical effectiveness of the stage decomposition algorithm and effect
of algorithimic enhancements based on examples from chapter 2. The final section 5.4
will present the main findings and conclusions drawn from the research conducted in this
chapter.

5.1 Model and structure

This chapter presents a stage-based algorithm designed to address the multistage stochastic
MOPEC, which has been reformulated as an equilibrium problem and characterized by
fixed risk probabilities denoted as µ = (µan)a∈A,n∈N . In this context, the set A represents
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the collection of all players involved, while N denotes the set of scenario nodes. For each
player a ∈ A and scenario tree node n ∈ N , the strategy employed by player a is denoted
by the vector xan ∈ Rdan , where dan signifies the dimensionality of the strategy and is
considered a positive integer. The complete set of strategies for player a is represented
by xa = (xan)n∈N . Moreover, the vector x−an ∈ Rdn−dan captures the strategies of all other
players, excluding player a, at node n, where dn corresponds to the sum of dan over all
players inA. Collectively, these vectors are represented as xa = (xan)n∈N , x−a = (x−an)n∈N ,
and p = (pn)n∈N . The market price at node n is denoted by the vector pn ∈ Rαn , where αn
represents a positive integer. Given the fixed risk probability µ, each player a ∈ A solves
an optimization problem using the variables (x−a,p,µ).

PFa (x−a,p,µ) : min
(xam)m∈N

fa1(xa1;x−a1, p1) +
∑
m∈1+

µam ·
[
fam(xam;x−am, pm)

+
∑
l∈m+

µal ·
[
fal(xal;x−al, pl) + · · ·

]]
s.t. Gan(xa,n− , xan;x−an, pn) ∈ Kan, ∀n ∈ N

xan ∈ Xan, ∀n ∈ N
(5.1)

where Xan ⊆ Rdan is a closed, convex set and Kan ⊆ Rman is a closed, convex cone for each
n ∈ N , fan : Rdn+αn+βn → Rman ,Gan : Rdan−+dn+αn → Rman are continuously differentiable
functions and fan(·;x−an, pn),Gan(·;x−an, pn) are convex functions with fixed (x−an, pn) for
each player a ∈ A and n ∈ N .

For each scenario node n ∈ N , there is a market constraint:

0 ∈ Fn(pn;xn) +NKn(pn), (5.2)

where Kn ⊆ Rαn is a closed, convex set, NKn : Rαn → Rαn is a normal cone mapping of the
set Kn and Fn : Rαn+dn → Rαn is a smooth function for each n ∈ N .

Let us define the set QV I
n (x) := {pn|pn ∈ Kn, pn satisfies (5.2)}. With the aforemen-

tioned formulations as a foundation, we can proceed to define the multistage stochastic
mathematical program with equilibrium constraints (SMOPEC) under the assumption of a
fixed risk probability vector µ.

Definition 5.1. (F(µ)) (x∗,p∗) =
(

(x∗an)a∈A,n∈N , (p
∗
n)n∈N

)
is an equilibrium point of the
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multistage stochastic MOPEC with fixed µ if and only if

x∗a is an optimal solution of PFa (x∗−a,p
∗,µ) for all a ∈ A,

p∗n belongs to set QV I
n (x∗)

(5.3)

5.1.1 Time consistency property

The stagewise decomposition approach employed for the solution of the stochastic MOPEC
is founded upon the principle of time consistency. This inherent property stipulates that
in the case of a truncated stochastic process, the solution to the corresponding truncated
SMOPEC must constitute an equilibrium point. Specifically, when the stochastic variables
assume discrete values from a countable set, this implies that at each node within the
scenario tree, the solution to the stochastic MOPEC pertaining to the subtree rooted at that
node, with the initial value determined by the decision variable from the preceding stage,
must be an equilibrium.

To elaborate further, consider an optimization problem commencing at node n, where
the variables are provided as (xa,n− , (x−am)m∈S(n), (pm)m∈S(n), (µam)a∈A,m∈S̄(n)), where the
successor trees S(n) and S̄(n) are defined in chapter 1. With this premise, we define the
subsequent problem that each player a ∈ Amust address when initiating from scenario
node n:

P SFa (n, xa,n− , µa,S(n)) : min
(xam)m∈S(n)

fan(xan;x−an, pn) +
∑
m∈n+

µam ·
[
fam(xam;x−am, pm)

+
∑
l∈m+

µal ·
[
fal(xal;x−al, pl) + · · ·

]]
s.t. Gam(xa,m− , xam;x−am, pm) ∈ Kam, ∀m ∈ S(n)

xam ∈ Xam, ∀m ∈ S(n)

(5.4)
Here µa,S(n) represents the vector (µam)m∈S(n). Combining the subsequent optimization

problem of each player a ∈ A and all equilibrium constraints starting at scenario node
n, we could have the definition of the conditional multistage stochastic MOPEC given
µS̄(n) = (µam)a∈A,m∈S̄(n) and initial state xn− = (xa,n−)a∈A:

Definition 5.2. (SF(n,xn− ,µS̄(n))
(

(x∗am)a∈A,m∈S(n), (p
∗
m)m∈S(n)

)
is an equilibrium point of
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the conditional multistage SMOPEC given µS̄(n) and initial state xn− if and only if

(x∗am)m∈S(n) is an optimal solution of P SFa (n, xa,n− , µa,S(n))

for all a ∈ A

p∗m belongs to set QV I
m (x∗) for any m ∈ S(n)

(5.5)

Definition 5.3. The SMOPECF(µ) with givenµ based on a scenario tree is called time con-
sistent, if for each its equilibrium point (x∗,p∗), the subset vector

(
(x∗am)a∈A,m∈S(n), (p

∗
m)m∈S(n)

)
is an equilibrium point of the conditional problem SF(n,xn− , µa,S(n)) for any n ∈ N .

Theorem 5.4. Assume Xan ⊆ Rdan is a closed, convex set and Kan ⊆ Rman is a closed, convex
cone for each n ∈ N . fan : Rdn+αn+βn → Rman ,Gan : Rdan−+dn+αn → Rman are continuously dif-
ferentiable functions and fan(·;x−an, pn),Gan(·;x−an, pn) are convex function with fixed (x−an, pn)

for each player a ∈ A and n ∈ N . Kn ⊆ Rαn is a closed, convex set,NKn : Rαn → Rαn is a normal
cone mapping of set Kn and Fn : Rαn+dn → Rαn is a smooth function for each n ∈ N , then (x∗,p∗)

is the equilibrium point of the SMOPEC (5.1)-(5.2) with fixed µ (F(µ)) if and only if it satisfies
the KKT condition:

0 ∈ (
∏

m∈P(n)

µam)∇xanfan(x∗an;x∗−an, p
∗
n) +∇xanGan(x∗a,n− , x

∗
an;x∗−an, p

∗
n)λ∗an

+
∑
m∈n+

∇xanGam(x∗an, x
∗
am;x∗−am, p

∗
m)λ∗am +NXan(x∗an), ∀n ∈ N

0 ∈ Fn(p∗n;x∗n) +NKn(p∗n), ∀n ∈ N

Kan 3 Gan(x∗a,n− , x
∗
an;x∗−an, p

∗
n) ⊥ λ∗an ∈ K∗an, ∀n ∈ N

(5.6)
Here λ∗an is the dual multipliers of the constraint Gan(x∗a,n− , x

∗
an;x∗−an, p

∗
n) ∈ Kan for any n ∈ N .

Proof. This can be proved using the first-order conditions that are necessary and sufficient
in this case.

Theorem 5.5. Assume Xan ⊆ Rdan is a closed, convex set and Kan ⊆ Rman is a closed, convex
cone for each n ∈ N . fan : Rdn+αn+βn → Rman ,Gan : Rdan−+dn+αn → Rman are continuously dif-
ferentiable functions and fan(·;x−an, pn),Gan(·;x−an, pn) are convex function with fixed (x−an, pn)

for each player a ∈ A and n ∈ N . Kn ⊆ Rαn is a closed, convex set,NKn : Rαn → Rαn is a normal
cone mapping of set Kn and Fn : Rαn+dn → Rαn is a smooth function for each n ∈ N , then the
SMOPEC (5.1)-(5.2) with fixed µ (F(µ)) satisfies the time consistent property.

Proof. If (x∗,p∗) is an equilibrium point of the forward SMOPEC F(µ), then it satisfies the
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KKT condition:

0 ∈ (
∏

m∈P(n)

µam)∇xanfan(x∗an;x∗−an, p
∗
n) +∇xanGan(x∗a,n− , x

∗
an;x∗−an, p

∗
n)λ∗an

+
∑
m∈n+

∇xanGam(x∗an, x
∗
am;x∗−am, p

∗
m)λ∗am +NXan(x∗an), ∀n ∈ N

(5.7)

0 ∈ Fn(p∗n;x∗n) +NKn(p∗n), ∀n ∈ N
(5.8)

Kan 3 Gan(x∗a,n− , x
∗
an;x∗−an, p

∗
n) ⊥ λ∗an ∈ K∗an, ∀n ∈ N

(5.9)

Here λ∗an is the dual multipliers of the constraint Gan(x∗a,n− , x
∗
an;x∗−an, p

∗
n) ∈ Kan for any

n ∈ N .
Since the solution (x∗,p∗, λ∗) satisfies the KKT condition (5.6), with any fixed n and any

m ∈ S(n), we would have

0 ∈ (
∏

l∈P(m)

µal)∇xamfam(x∗am;x∗−am, p
∗
m) +∇xamGam(x∗a,m− , x

∗
am;x∗−am, p

∗
m)λ∗am

+
∑
l∈m+

∇xamGal(x∗am, x∗al;x∗−al, p∗l )λ∗al +NXam(x∗am) (5.10)

(⇒) 0 ∈ (
∏

j∈P(n)

µaj)(
∏

l∈P(n,m)

µal)∇xamfam(x∗am;x∗−am, p
∗
m) (5.11)

+∇xamGam(x∗a,m− , x
∗
am;x∗−am, p

∗
m)λ∗am

+
∑
l∈m+

∇xamGal(x∗am, x∗al;x∗−al, p∗l )λ∗al +NXam(x∗am) (5.12)

(⇒) 0 ∈ (
∏

l∈P(n,m)

µal)∇xamfam(x∗am;x∗−am, p
∗
m) (5.13)

+∇xamGam(x∗a,m− , x
∗
am;x∗−am, p

∗
m)
(
λ∗am/(

∏
j∈P(n)

µaj)
)

+
∑
l∈m+

∇xamGal(x∗am, x∗al;x∗−al, p∗l )
(
λ∗al/(

∏
j∈P(n)

µaj)
)

+NXam(x∗am) (5.14)

Denote λ̄am = λ∗am/(
∏

j∈P(n) µaj) for any m ∈ S(n). Then we can establish the equivalence
of (5.14) with the following generalized equation. This equivalence is achieved by dividing
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both sides of (5.14) by
∏

j∈P(n) µaj :

0 ∈ (
∏

l∈P(n,m)

µal)∇xamfam(x∗am;x∗−am, p
∗
m) +∇xamGam(x∗a,m− , x

∗
am;x∗−am, p

∗
m)λ̄am

+
∑
l∈m+

∇xamGal(x∗am, x∗al;x∗−al, p∗l )λ̄al +NXam(x∗am)

(5.15)
We can also divide term

∏
l∈S(n) µ

∗
al on both sides of equations (5.9) and get

Kan 3 Gan(x∗a,n− , x
∗
an;x∗−an, p

∗
n) ⊥ λ̄an ∈ K∗an, ∀n ∈ N (5.16)

The new generalized equations (5.8), (5.15) - (5.2) shows that the point(
(x∗am)a∈A,m∈S(n), (p

∗
m)m∈S(n), (λ̄am)a∈A,m∈S(n)

)
is satisfying the KKT condition of conditional forward problem SF(n,xn− , (µam)a∈A,m∈S̄(n)).

The above analysis demonstrates that the SMOPEC (5.1)-(5.2), with a fixed risk proba-
bility vector denoted as µ or F(µ), satisfies the property of time consistency.

5.2 Stagewise decomposition algorithm

In Chapter 1, we established the existence of an equivalent variational formulation for
any equilibrium problem. Building upon this foundation, the current chapter aims to
derive the corresponding variational format for the problemF(µ∗) and develop a stagewise
decomposition algorithm based on it.

In Theorem 5.4, we have already demonstrated that if (x∗,p∗) represents an equilibrium
point of the problemF(µ∗), then there exists a set of variables {λ∗an|a ∈ A, n ∈ N} such that
the vector (x∗,p∗, λ∗) serves as a solution to the subsequent variational inequality problem.

0 ∈ (
∏

m∈P(n)

µam)∇xanfan(xan;x−an, pn) +∇xanGan(xa,n− , xan;x−an, pn)λan

+
∑
m∈n+

∇xanGam(xan, xam;x−am, pm)λam +NXan(xan), ∀n ∈ N

0 ∈ Fn(pn;xn) +NKn(pn), ∀n ∈ N

Kan 3 Gan(xa,n− , xan;x−an, pn) ⊥ λan ∈ K∗an, ∀n ∈ N
(5.17)

Here λan are the dual multipliers of the constraint Gan for any n ∈ N .
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The key to our approach is to solve these conditions iteratively via decomposition.
Two-stage decomposition
To begin, we shall focus on the two-stage case. In this particular scenario, the set N

representing the scenario tree is defined as {1} ∪ L, where L denotes the set of leaf nodes.
The original variational inequality problem (5.17) can be decomposed into the following
constituent parts.

For n ∈ L, The algorithm starts by fixomg x1 and having the sub variational inequality
problem given x1 as follows:

ST (n,x1) : 0 ∈
∏

m∈P(n)

µam · ∇xanfan(xan;x−an, pn)

+∇xanGan(xa1, xan;x−an, pn)λan +NXan(xan), ∀a ∈ A

0 ∈ Fn(pn;xn) +NKn(pn),

Kan 3 Gan(xa1, xan;x−an, pn) ⊥ λan ∈ K∗an, ∀a ∈ A

(5.18)

As we can see, the second stage problem is decomposed into subproblems for each
node n ∈ L once the first stage variable x1 is fixed.

Then by fixing the values of x and λ at all nodes j ∈ 1+ = L, consequently, for node 1,
we can define the following sub variational inequality problem given

(
x1+ , λ1+

)
as follows:

ST (1,x1+ , λ1+) : 0 ∈ ∇xa1fa1(xa1;x−a1, p1) +∇xa1Ga1(xa0, xa1;x−a1, p1)λa1

+
∑
m∈1+

∇xa1Gam(xa1, xam;x−am, pm)λam +NXa1(xa1), ∀a ∈ A

0 ∈ F1(p1;x1) +NK1(p1),

Ka1 3 Ga1(xa0, xa1;x−a1, p1) ⊥ λa1 ∈ K∗a1, ∀a ∈ A
(5.19)

and solve this to generate new values for x1,p1, (andλ1) .
Thus, like previously, the main framework of the decomposition algorithm can be

depicted by the following Figure 5.1.
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Figure 5.1: Stagewise decomposition for two-stage primal-MOPEC F(µ)

Note that problems ST are all MOPEC problems involving all players. The decomposi-
tion is not by player but by tree.

The main flow of the algorithm can be thought as iterating between the first-stage node
problem and second-stage children node problems. At iteration r, we first go through a
backward step: we solve the second-stage node problems as parameterized by given first-
stage variable xr1 to get an updated second-stage solution

(
(xr+1

an )a∈A, p
r+1
n , (λr+1

an )a∈A
)
. Then

we go through a forward step: we solve the first-stage node problem as parameterized by
given second-stage variable (xr+1

1+
, λr+1

1+
) to get updated first-stage solution

(
(xr+1

a1 )a∈A, p
r+1
1

)
.

Repeat the above steps until the stopping criteria is achieved.
Following the above idea, we could have the detailed algorithm as follows:

Algorithm 9 Stagewise decomposition for two-stage primal-MOPEC F(µ)

1: Input and Initialization Set r = 0. Choose initial x0
1 in the solution space.

2: while not satisfying the stopping criterion do
3: Backward step: For n ∈ 1+, solve each second stage problem ST (n, xr1) to get the

solutions
(
(xr+1

an )a∈A, p
r+1
n , (λr+1

an )a∈A
)
.

4: Forward step: Solve the first stage approximated equilibrium problem
ST (1,xr+1

1+
, λr+1

1+
) to get

(
(xr+1

a1 )a∈A, p
r+1
1

)
.

5: Set r = r + 1.
6: end while
7: Get the solution (x∗,p∗) =

(
(xran)a∈A,n∈N , (p

r
n)n∈N

)
.

Example
To illustrate the basic idea behind the approach, we consider a 2-stage dynamic NEP

with 2 players. In this example A = {1, 2},N = {1, 2},L = {2}, 1+ = {2}. Note that x12 is
the first players variable in the second node for example. The equilibrium problem is as
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follows:

(Player 1) min
x11,x12≥x11

7

2
(x11)2 − 6x11 +

1

2
(x12)2 + 3x12x22 − 4x12 (5.20)

(Player 2) min
x21=0,x22

1

2
(x22)2 + x12x22 − 3x22 (5.21)

The above problem has the following equivalent reformulated KKT system (see (5.17)):

0 = 7x11 − 6 + λ12

0 = x12 + 3x22 − 4− λ12

0 ≤ λ12 ⊥ x12 − x11 ≥ 0

0 = x22 + x12 − 3

(5.22)

For this problem, we will have

ST (1,x1+ , λ1+) :Find x11 s.t.

0 = 7x11 − 6 + λ12

(5.23)

and
ST (2,x1) :Find x11, x22, λ12 s.t.

0 = x12 + 3x22 − 4− λ12

0 ≤ λ12 ⊥ x12 − x11 ≥ 0

0 = x22 + x12 − 3

(5.24)

In the Algorithm 9, at iteration r given incoming state xr11, we could compute the solution
to the NEP at stage 2. With the conditions

0 = xr+1
12 + 3xr+1

22 − 4− λr+1
12

0 = xr+1
22 + xr+1

12 − 3
(5.25)

we could have
λr+1

12 = 1− 2xr+1
22

• Case 1: λr+1
12 = 0. We could have xr+1

22 = 1
2
. xr+1

12 = 5
2

and xr+1
11 = 7

6
. In this case we get

the solution (x∗11, x
∗
12, x

∗
22) = (7

6
, 5

2
, 1

2
).

• Case 2: λr+1
12 > 0. We could have xr+1

12 = xr11. xr+1
22 = 3 − xr+1

12 = 3 − xr11 and
λr+1

12 = xr+1
12 + 3xr+1

22 − 4 = 2xr11 − 5. In this case, we continue solve the problem
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ST (1, xr+1
1+

, λr+1
1+

) and could get

xr+1
11 =

6− λr+1
12

7
=

11− 2xr11

7

This equation shows the series {xr11}r=1,...,∞ is a convergent series and the limit of xr11

is x∗11 = limr→∞ x
r
11 = 11

9
. In this case we get the solution (x∗11, x

∗
12, x

∗
22) = (11

9
, 11

9
, 16

9
).

Note the non-uniqueness of the solution.
This could also be extended to more stable version based on proximal terms. Let’s

introduce the sub variational inequality problem with proximal terms. For node 1, we
can define the following sub variational inequality problem given

(
x1+ , λ1+

)
, previous

variables’ values
(
xr1, λ

r
1

)
and proximal parameters (ωxan)a∈A,n∈N :

ST ρ(1,x1+ , λ1+ ,x
r
1) : 0 ∈ ∇xa1fa1(xa1;x−a1, p1) +∇xa1Ga1(xa0, xa1;x−a1, p1)λa1

+
∑
m∈1+

∇xa1Gam(xa1, xam;x−am, pm)λam

+ ωxa1 · (xa1 − xra1) +NXan(xan), ∀a ∈ A

0 ∈ F1(p1;x1) +NK1(p1),

Ka1 3 Ga1(xa0, xa1;x−a1, p1) ⊥ λa1 ∈ K∗a1, ∀a ∈ A
(5.26)

For n ∈ L, we will have the sub variational inequality problem given x1, previous variables’
values

(
xrn, λ

r
n

)
, and proximal parameters

(
(ωxan)a∈A,n∈N , (ω

λ
an)a∈A,n∈N

)
:

ST ρ(n,x1,x
r
n, λ

r
n) : 0 ∈

∏
m∈P(n)

µam · ∇xanfan(xan;x−an, pn) +∇xanGan(xa1, xan;x−an, pn)λan

+ ωxan · (xan − xran) +NXan(xan), ∀a ∈ A

0 ∈ Fn(pn;xn) +NKn(pn),

Kan 3 Gan(xa1, xan;x−an, pn) + ωλan · (λan − λran) ⊥ λan ∈ K∗an, ∀a ∈ A
(5.27)

The modified algorithm with proximal terms will be following:
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Algorithm 10 Stagewise decomposition for two-stage primal-MOPEC F(µ) with proximal
terms

1: Input and Initialization Set r = 0. Choose initial x0
1 in the solution space and the

appropriate proximal parameters
(
(ωxan)a∈A,n∈N , (ω

λ
an)a∈A,n∈N

)
.

2: while not satisfying the stopping criterion do
3: Backward step: For n ∈ 1+, solve each second stage problem ST ρ(n,xr1,x

r
n, λ

r
n) to get

the solutions
(
(xr+1

an )a∈A, p
r+1
n , (λr+1

an )a∈A
)
.

4: Forward step: Solve the first stage approximated equilibrium problem
ST ρ(1,x1+ , λ1+ ,x

r
1) to get

(
(xr+1

a1 )a∈A, p
r+1
1

)
.

5: Set r = r + 1.
6: end while
7: Get the solution (x∗,p∗) =

(
(xran)a∈A,n∈N , (p

r
n)n∈N

)
.

In the multistage problem, for the scenario node n ∈ N\({1} ∪ L), we define the
following sub variational inequality problem given

(
xn− ,xn+ , λn+

)
, previous variables’

values
(
xrn, λ

r
n

)
:

ST (n,xn− ,xn+ , λn+) : 0 ∈
∏

m∈P(n)

µam · ∇xanfan(xan;x−an, pn) +∇xanGan(xan− , xan;x−an, pn)λan

+
∑
m∈n+

∇xanGam(xan, xam;x−am, pm)λam +NXan(xan), ∀a ∈ A

0 ∈ Fn(pn;xn) +NKn(pn),

Kan 3 Gan(xan− , xan;x−an, pn) + ωλan · (λan − λran) ⊥ λan ∈ K∗an, ∀a ∈ A
(5.28)

Thus at node n we fix all variables except those associated with the node specifically.
The multistage decomposition follows the same idea as the two stage decomposition and
could be interpreted as Figure 5.2.

Figure 5.2: Stagewise decomposition for multistage primal-MOPEC F(µ)

The underlying concept illustrated in Figure 5.2 can be summarized as follows: Com-
mencing at iteration r ≥ 1 with an initial point xrn for all n ∈ N\L, the process ini-



124

tially traverses through the various stage problems in a backward manner. This en-
tails solving the subproblem ST (n,xrn−) for all n ∈ N (|T |), yielding the updated so-
lution

(
(x̂ran)a∈A, p̂

r
n, (λ̂

r
an)a∈A

)
. Subsequently, the subproblems ST (n,xrn− , x̂

r
n+
, λ̂rn+

) are

addressed to obtain the updated values of
(

(x̂ran)a∈A, p̂
r
n, (λ̂

r
an)a∈A

)
for each n ∈ N (t), t =

|T | − 1, whereby the time stage t is visited in a reverse order based on the sequence of time
stages. Following the resolution of the root node problem, the procedure then advances in
a forward direction over t to derive the updated solution

(
(xr+1

an )a∈A,n∈N , (p
r+1
n )n∈N

)
. Note

that this exploits the time and tree structure of our problem, specifically via the use of
multipliers if G.

The detailed algorithm is as follows:

Algorithm 11 Stagewise decomposition for multistage primal-MOPEC F(µ)

1: Input and Initialization Set r = 0. Choose initial x0
n− in the solution space for any

n ∈ N\{1}.
2: while not satisfying the stopping criterion do
3: Backward step:
4: for n ∈ L do
5: Solve each last stage problem ST (n,xrn−) to get the solutions

(
(x̂ran)a∈A, p̂

r
n, (λ̂

r
an)a∈A

)
.

6: end for
7: for t = T − 1, . . . , 2 do
8: for n ∈ N (t) do
9: Solve each problem ST (n,xrn− , x̂

r
n+
, λ̂rn+

) to get the solutions(
(x̂ran)a∈A, p̂

r
n, (λ̂

r
an)a∈A

)
.

10: end for
11: end for
12: Forward step:
13: Solve the first stage approximated equilibrium problem ST (1, x̂r1+

, λ̂r1+
) to get(

(xr+1
a1 )a∈A, p

r+1
1

)
.

14: for t = 2, . . . , T − 1 do
15: for n ∈ N (t) do
16: Solve each problem ST (n,xr+1

n− , x̂
r
n+
, λ̂rn+

) to get
(

(xr+1
an )a∈A, p

r+1
n , (λr+1

an )a∈A

)
.

17: end for
18: end for
19: for n ∈ L do
20: Set

(
(xr+1

an )a∈A, p
r+1
n

)
=
(

(x̂ran)a∈A, p̂
r
n

)
.

21: end for
22: Set r = r + 1.
23: end while
24: Get the solution (x∗,p∗) =

(
(xran)a∈A,n∈N , (p

r
n)n∈N

)
.



125

To enhance the stability of the algorithm within a multistage setting, the utilization of
proximal terms becomes advantageous. In the context of the multistage problem, when
considering the scenario node n ∈ N\({1} ∪ L), we define a corresponding sub-problem
involving the subsequent variational inequality. This sub-problem takes into account
various elements, such as

(
xn− ,xn+ , λn+

)
(representing the current values of the variables),

previous variables’ values
(
xrn, λ

r
n

)
, and proximal parameters

(
(ωxan)a∈A,n∈N , (ω

λ
an)a∈A,n∈N

)
:

ST ρ(n,xn− ,xn+ , λn+ ,x
r
n, λ

r
n) : 0 ∈

∏
m∈P(n)

µam · ∇xanfan(xan;x−an, pn) +∇xanGan(xan− , xan;x−an, pn)λan

+
∑
m∈n+

∇xanGam(xan, xam;x−am, pm)λam

+ ωxan · (xan − xran) +NXan(xan), ∀a ∈ A

0 ∈ Fn(pn;xn) +NKn(pn),

Kan 3 Gan(xan− , xan;x−an, pn) + ωλan · (λan − λran) ⊥ λan ∈ K∗an, ∀a ∈ A
(5.29)
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Algorithm 12 Stagewise decomposition for multistage primal-MOPECF(µ) with proximal
terms

1: Input and Initialization Set r = 0. Choose initial x0
n− in the solution space for any

n ∈ N\{1}.
2: while not satisfying the stopping criterion do
3: Backward step:
4: for n ∈ L do
5: Solve each last stage problem ST ρ(n,xrn− ,x

r
n, λ

r
n) to get the solutions(

(x̂ran)a∈A, p̂
r
n, (λ̂

r
an)a∈A

)
.

6: end for
7: for t = T − 1, . . . , 2 do
8: for n ∈ N (t) do
9: Solve each problem ST ρ(n,xrn− , x̂

r
n+
, λ̂rn+

,xrn, λ
r
n) to get the solutions(

(x̂ran)a∈A, p̂
r
n, (λ̂

r
an)a∈A

)
.

10: end for
11: end for
12: Forward step:
13: Solve the first stage approximated equilibrium problem ST ρ(1, x̂r1+

, λ̂r1+
,xr1) to get(

(xr+1
a1 )a∈A, p

r+1
1

)
.

14: for t = 2, . . . , T − 1 do
15: for n ∈ N (t) do
16: Solve each problem ST ρ(n,xr+1

n− , x̂
r
n+
, λ̂rn+

, x̂rn, λ̂
r
n) to get(

(xr+1
an )a∈A, p

r+1
n , (λr+1

an )a∈A

)
.

17: end for
18: end for
19: for n ∈ L do
20: Set

(
(xr+1

an )a∈A, p
r+1
n

)
=
(

(x̂ran)a∈A, p̂
r
n

)
.

21: end for
22: Set r = r + 1.
23: end while
24: Get the solution (x∗,p∗) =

(
(xran)a∈A,n∈N , (p

r
n)n∈N

)
.

This algorithm is identical to the previous one except the subproblems involve proximal
terms.

5.3 Numerical experiments

This section presents numerical results to demonstrate the algorithm’s performance, utiliz-
ing the identical parameter setting employed in the numerical experiments described in
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chapter 4. The experiments are conducted on the primal-MOPEC F(µ) of an economic
dispatch example, incorporating Type II market constraint and employing a risk proba-
bility vector µ based on scenario tree 2. The objective is to assess the effectiveness of this
algorithm and examine the influence of the proximal term size ωan on its performance.

Throughout the experiments, a uniform value is assigned to each ωan, denoted as ω for
simplicity. Figure 5.3 illustrates the impact of the proximal term size on the algorithm’s
performance. The x-axis represents the iteration number, while the y-axis represents
the logarithm (base 10) of the FB residual at each iteration of Algorithm 12. In these
experiments, the algorithm’s performance is tested for various values of ω, specifically
ω = 0, 0.1, 0.5, 1, 1.5, 5, 10. The results indicate that the algorithm fails to converge to
an equilibrium point in the absence of proximal terms. Conversely, excessively large
proximal term sizes yield an overly conservative algorithm that exhibits slower convergence.
Furthermore, Figure 5.3 reveals that Algorithm 12 exhibits a linear convergence rate.

Figure 5.3: Plot of FB-Residual vs iteration # based on different size of ω

5.4 Conclusion

In this chapter, we introduce a novel stage-based decomposition algorithm designed to
solve the primal-MOPEC problem under a risk probability vector. Additionally, we propose
a computational enhancement technique by incorporating proximal terms. To evaluate the
effectiveness of these algorithms, we conduct a performance analysis using the economic
dispatch problem with a Type II market constraint.

The computational experiments provide valuable insights into the impact of proximal
terms on algorithm convergence. Specifically, we observe that the inclusion of proximal
terms can facilitate convergence in cases where the algorithm would otherwise diverge.
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Moreover, the convergence speed is significantly influenced by the size of the proximal
terms, with larger sizes resulting in slower convergence rates. Furthermore, the experiments
reveal a distinct linear convergence rate exhibited by the algorithm.

These experimental findings demonstrate the efficacy of the proposed stage-decomposition
algorithm in addressing the primal-MOPEC problem. This approach offers a significant
improvement over the primal-MOPEC-dual-risk decomposition algorithm presented in
chapter 4, particularly when faced with computational intractability due to the exponential
growth in problem size as a function of the number of stages.

However, tuning of the approach is important since while the subproblems are much
smaller MOPECs, we must endeavor to limit the number of these that must be processed
in order to have a fast overall algorithm.
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6 multistage stochastic equilibrium problem in general
format

This chapter is devoted to investigating stochastic MOPECs with stochastic processes that
follow general random distributions. Previous chapters have provided a formal discussion
on the formulation of a general stochastic MOPEC with risk-averse players based on a
discrete scenario tree, as outlined in chapter 1. Various approaches to solving this problem
in the discrete setting have been introduced in preceding chapters, including chapters 3, 4,
and 5. However, these approaches are not directly applicable to scenarios where stochastic
processes follow general random distributions. To address this limitation, we present a
sample average approximation method in this chapter. This method allows us to approx-
imate a general problem using an appropriate problem based on a scenario tree, which
aids in achieving a relatively good equilibrium point of the original problem. Furthermore,
we develop a two-level graph representation of the stochastic MOPEC problem, offering a
concise representation of stochastic information and avoiding the need to input the entire
scenario tree when defining the stochastic problem.

The chapter is structured as follows: We begin with section 6.1 to first introduce a
mathematical definition of the dynamic MOPEC, as presented in chapter 1. With certain
parameters of the dynamic MOPEC following a general stochastic process, we naturally
introduce the mathematical formulation of the stochastic version of the problem. In sec-
tion 6.3, we present a practical framework for representing any general stochastic process
through a one-level graph representation. This framework allows researchers to input in-
formation from each stage instead of the entire scenario tree. Expanding on the framework
introduced in section 6.3, section 6.4 presents a two-level graph representation framework
for the entire stochastic MOPEC with general stochastic processes. This framework facili-
tates the input of information for the entire stochastic MOPEC from each stage, eliminating
the need to provide the entire scenario tree. Finally, section 6.6 provides the main findings
and conclusions derived from the research conducted in this chapter.

6.1 Multistage stochastic equilibrium problem with
general random distributions

This chapter presents the mathematical concepts of general stochastic MOPEC with risk-
averse players and a new framework called two-level graph representation for the general
stochastic problem.
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6.1.1 Preliminaries using dynamic equilibrium

In this section, we want to show how to generate a stochastic MOPEC under general
uncertainty process from a deterministic MOPEC in the two stage setting. Let’s first show a
Walras barter dynamic equilibrium model with two stages t = 1, 2 and a set of players a ∈ A
trading a finite number (L) of goods in each stage at the prices p1, p2 ∈ RL. These goods
can be used in activities that depend on the input-output technologies (Sa, Ra) available to
them. ea1, ea2 ∈ RL are the endowments for each player a at stage 1 and 2. ca1, ca2 ∈ RL are
the consumptions by each player a in stage 1 and 2. ya1, ya2 ∈ Rma

+ represents the transfer
activity levels. Let xa1 = (ca1, ya1), xa2 = (ca2, ya2), Xa1 = RL

+ × Rma
+ and Xa2 ∈ RL

+ × Rma
+ .

The dynamic optimization problem for each player a ∈ Awith fixed price p = (p1, p2)

is:
min

ca1,ca2,ya1,ya2

ua1(ca1) + ua2(ca2)

s.t. (p1)T ca1 + (p1)TSaya1 ≤ (p1)T ea1

(p2)T ca2 − (p2)TRaya2 ≤ (p2)T ea2,

ya1 = ya2,

ca1, ca2 ∈ RL
+, ya1, ya2 ∈ Rma

+

(6.1)

For each player, constraints (p1)T ca1 +(p1)TSaya1 ≤ (p1)T ea1 and (p2)T ca2− (p2)TRaya2 ≤
(p2)T ea2 restrict each player to limit its market value of consumptions to its market value
of endowments in both stages. ya1 = ya2 are the goods transformed from stage 1 to stage
2. uat(·), t = 1, 2 are the cost function and the total cost is the summation of them. Also
one thing to be noticed is that Sa and ea1 will be available to the players before they make
decisions (ca1, ya1). But Ra and ea2 are not available to the player at that time until he make
decisions (ca2, ya2).

The market constraint in this problem is that in each time stage the total demand doesn’t
exceed total supply, i.e.

0 ≤
∑
a∈A

(ea1 − ca1 − Saya1) ⊥ p1 ≥ 0

0 ≤
∑
a∈A

(ea2 +Raya2 − ca2) ⊥ p2 ≥ 0
(6.2)

equivalently, this is
0 ∈

∑
a∈A

(ea1 − ca1 − Saya1) +NRL
+

(p1)

0 ∈
∑
a∈A

(ea2 +Raya2 − ca2) +NRL
+

(p2)
(6.3)
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Here we can see in this problem

F1(p1;x1) =
∑
a∈A

(ea1 − ca1 − Saya1)

F2(p2;x2) =
∑
a∈A

(ea2 +Raya2 − ca2)

K1 = RL
+

K2 = RL
+

(6.4)

As we can see, if all the parameters in the problem are just deterministic parameters,
we can use the methods for solving equilibrium problem to solve the dynamic equilibrium
problem. However, if the parameters involve uncertainty and are stochastic processes,
the equilibrium problem will become a stochastic equilibrium problem and needs more
specific methods to formulate it.

In this example we have already shown that the strategy of each player is following a
sequential pattern: although ca1, ya1, ca2, ya2 all belong to the strategy of player a, player
will first decide the optimal value for ca1 and ya1 at stage 1, then he will decide the optimal
value for ca2 and ya2 until stage 2. Now consider the case when the output technology Ra

and second-stage endowments ea2 follow known distributions. In practical situation the
distribution of this random vector can be estimated, say from historical data. Then, the
players will decide their strategy (ca2, ya2)a∈A as a recourse action corresponding to the
realization of (Ra, ea2)a∈A.

Suppose for the moment the random vector (Ra, ea2)a∈A has a finitely supported distri-
bution, i.e., it takes values (R1

a, e
1
a2), (R2

a, e
2
a2), . . . , (RK

a , e
K
a2) (called scenarios) with respective

probabilities π1, . . . , πK . For each scenario (Rk
a, e

k
a2), k = 1, . . . , K, each player would have

a corresponding second stage strategy (cka2, y
k
a2)a∈A, then the second stage market will also

have a recourse action pk2 for each scenario k = 1, . . . , K. Thus, we would have different
feasible regions of each player under scenario k = 1, . . . , K, which is

(pk2)T cka2 − (pk2)TRk
ay

k
a2 ≤ (pk2)T eka2, for k = 1, . . . , K

yka2 = ya1, for k = 1, . . . , K
(6.5)

and will have different market constraint

0 ≤
∑
a∈A

(eka2 +Rk
ay

k
a2 − cka2) ⊥ pk2 ≥ 0, for k = 1, . . . , K (6.6)

Now let’s transfer our focus on the first stage. At first stage, even the players know
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the distribution of random vector (Ra, ea2)a∈A, they still don’t know which scenario will
happen. To make a reasonable decision about which actions should be taken at first stage,
they need to find a way to measure the effect of all possible scenarios that could happen.
A natural way here is to consider the expected value, denote E[ua2(ca2)] in the first stage.
In the case of finitely many scenarios we could write the expected value E[ua2(ca2)] as the
weighted sum:

E[ua2(ca2)] =
K∑
k=1

φk · ua2(cka2) (6.7)

In this way it is possible to model the two-stage stochastic equilibrium problem as a
deterministic equilibrium problem:

min
ca1,(cka2)Kk=1,ya1,(yka2)Kk=1

ua1(ca1) +
K∑
k=1

φk · ua2(cka2)

s.t. (p1)T ca1 + (p1)TSaya1 ≤ (p1)T ea1

(pk2)T cka2 − (pk2)TRk
ay

k
a2 ≤ (pk2)T eka2, for k = 1, . . . , K

yka2 = ya1, for k = 1, . . . , K

ca1 ∈ RL
+, ya1 ∈ Rma

+

cka2 ∈ RL
+, yka2 ∈ Rma

+ , for k = 1, . . . , K

(6.8)

with the mixed complementarity constraints

0 ≤
∑
a∈A

(ea1 − ca1 − Saya1) ⊥ p1 ≥ 0,

0 ≤
∑
a∈A

(eka2 +Rk
ay

k
a2 − cka2) ⊥ pk2 ≥ 0, for k = 1, . . . , K

(6.9)

Based on the formulations of finitely many scenarios, we could extend and achieve the
formulations of general situations. Denote ξ : Ω→ Rd be a random vector in probability
space (Ω,F ,P) with support set Ξ ⊂ Rd. For any ξ ∈ Ω there is a realization (Ra(ξ))a∈A

and (ea2(ξ))a∈A. Each player a ∈ A will have stratety (ca2(ξ), ya2(ξ)). The market at second
stage will also have a corresponding price p2(ξ). On the contrary, the player’s first stage
strategy (ca1, ya1) and first stage market price p1 will not be affected by the random vector
ξ. In another words, we know that the actions, prices and uncertainty are revealed in a
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sequential way as follows:

ξ

↓

({ca1, ya1}a∈A, p1)→ ({ca2(ξ), ya2(ξ)}a∈A, p2(ξ))

(6.10)

And at the second stage, just like in discrete situation, the player needs to adjust their
second stage strategy. So only the second stage actions and prices will be affected by ξ2.
Let ca2(ξi2), p2(ξi2) be the actions and prices under realization ξi2, i = 1, 2, 3. To be a feasible
action, under realization ξi2, i = 1, 2, 3, they must all satisfy the player’s feasible constraint

p2(ξi2)T ca2(ξi2)− p2(ξi2)TRa(ξ
i
2)ya ≤ p2(ξi2)T ea2(ξi2)

and the market constraint

0 ≤
∑
a∈A

(ea2(ξi2) +Ra(ξ
i
2)ya − ca2(ξi2)) ⊥ p2(ξi2) ≥ 0

Also, under realization ξi2, i = 1, 2, 3, the cost of player a at stage 2 is ua2(ca2(ξi2), ξi2). The
above derivation from a dynamic equilibrium to a stochastic equilibrium can also be
shown by Figure 6.1, where each node in the right hand side of the Figure 6.1 represents a
realization of ξ2. Each realization of ξ2 generates the arrow between node from two nodes.

Figure 6.1: Transformation from a two stage dynamic equilibrium to a two stage stochastic
equilibrium

Assume φ(ξi2), i = 1, 2, 3 are the probabilities of realization ξ2. The stochastic equilibrium
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problem will be

min
xa·

ua1(ca1) +
3∑
i=1

φ(ξi2)
[
ua2(ca2(ξi2), ξi2)

]
s.t. (p1)T ca1 + (p1)TSaya ≤ (p1)T ea1,

p2(ξi2)T ca2(ξi2)− p2(ξi2)TRa(ξ
i
2)ya ≤ p2(ξi2)T ea2(ξi2), ∀i = 1, 2, 3

ca1 ∈ RL
+, ya ∈ Rma

+ ,

ca2(ξi2) ∈ RL
+, i = 1, 2, 3

(6.11)

with market constraint:

0 ≤
∑
a∈A

(ea1 − ca1 − Saya) ⊥ p1 ≥ 0

0 ≤
∑
a∈A

(
ea2(ξi2) +Ra(ξ

i
2)ya − ca2(ξi2)

)
⊥ p2(ξi2) ≥ 0, ∀i = 1, 2, 3

(6.12)

Here
∑3

i=1 φ(ξi2)
[
ua2(ca2(ξi2), ξi2)

]
is the expectation of the cost in second stage, and note

that prices clear in each stage and each realization.
Based on the above example, we will introduce the general two stage stochastic equilib-

rium problem. Consider the dynamic equilibrium (1.35) with T = {1, 2}. In this situation,
we will only have ξ1, ξ2. We always assume ξ1 is constant and ξ2 is a random vector in
the probability space (Ξ2,F ,P). Like (6.10), the elements of the stochastic equilibrium are
revealed in a sequential way as follows:

ξ2

↓

({xa1}a∈A, p1)→ ({xa2}a∈A, p2)

(6.13)

Therefore, for any ξ2 ∈ Ξ2, the players’ actions and the market price at second stage will be
affected by it. Generally, we can build the mapping of player actions xa and market price p
of any scenario in ξ2 ∈ Ξ2:

xa(·) : ξ2 → xa(ξ2) = (xa1, xa2(ξ2)), ∀a ∈ A

p(·) : ξ2 → p(ξ2) = (p1, p2(ξ2))
(6.14)

In fact, in the two stage problem, the property of xa(·), p(·) that only ({xa2}a∈A, p2) will
depend on ξ2 is called nonanticipativity. The property is also equivalent to the measurability
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of ({xa2}a∈A, p2) with respect to the σ−field F2 ⊆ F , which is generated by ξ2. At t = 1 the
input is known, we just assume that F1 = {∅,Ξ2}. Clearly, we will have F1 ⊆ F2.

The two-stage stochastic equilibrium problem with risk-neutral players then will be of
the following form:

min
xa·

fa1(xa1;x−a1, p1, ξ1) + EP

[
fa2(xa2(ξ2);x−a2(ξ2), p2(ξ2), ξ2)

]
s.t. Ga1(xa0, xa1;x−a1, p1, ξ1) ∈ Ka1,

Ga2(xa1, xa2(ξ2);x−a2(ξ2), p2(ξ2), ξ2) ∈ Ka2, ∀ξ2 ∈ Ξ2

xa1 ∈ Xa1, xa2(ξ2) ∈ Xa2, ∀ξ2 ∈ Ξ2

(6.15)

with equilibrium constraint:

0 ∈ F1(p1;x1, ξ1) +NK1(p1),

0 ∈ F2(p2(ξ2);x2(ξ2), ξ2) +NK2(p2(ξ2)), ∀ξ2 ∈ Ξ2

(6.16)

HereEP(·) is the expectation operator on the random variable fa2(xa2(ξ2);x−a2(ξ2), p2(ξ2), ξ2)

with corresponding probability P, which is the most commonly used risk measure in the
literature. We could replace expectation by coherent risk measure ρa1 to have the following
risk-averse problem for each player:

min
xa·

fa1(xa1;x−a1, p1, ξ1) + ρa1

[
fa2(xa2(ξ2);x−a2(ξ2), p2(ξ2), ξ2)

]
s.t. Ga1(xa0, xa1;x−a1, p1, ξ1) ∈ Ka1,

Ga2(xa1, xa2(ξ2);x−a2(ξ2), p2(ξ2), ξ2) ∈ Ka2, ∀ξ2 ∈ Ξ2

xa1 ∈ Xa1, xa2(ξ2) ∈ Xa2, ∀ξ2 ∈ Ξ2

(6.17)

6.2 Multistage stochastic equilibrium problem

6.2.1 Preliminaries using dynamic equilibrium

In this section, we extend our derivation of stochastic equilibrium from two stages to |T |
stages. To do this we consider the multistage dynamic equilibrium first. We defined a
mathematical formulation of a dynamic equilibrium (1.35) over |T | stages parameterized
with fixed parameter {ξt}t∈T .

A concrete example of a dynamic multistage equilibrium problem is the multistage
dynamic Walras barter model with activities. Suppose T = {1, 2, . . . , |T |}, where |T | can
be any positive number. There are player a ∈ A and there are a finite number (L) of goods
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in each stage, which causes pt ∈ RL for any t ∈ T . eat ∈ RL
+ is the endowment for each

player a ∈ A at stage t ∈ T .There is an input-output process in each time stage described
by the sequence of matrices {(St−1

a , Rt
a), t ∈ T \{1}}. Here St−1

a , Rt
a ∈ Rma×L. The sequence

of decisions for player a is
xa =

(
xa1, xa2, . . . , xa|T |

)
where

xat =

{
(cat, yat), if t ∈ T \{|T |}
cat, if t = |T |

cat ∈ RL is the consumption of each player in stage t. yat ∈ Rma
+ is the transfer activity level

of each player. This is used to define Gat as follows:

Gat(xat−1, xat; pt, ξt) :=


pT1 ca1 + pT1 S

1
a(ξ1)ya1 ≤ pT1 ea1, if t = 1

pTt cat − pTt Rt
a(ξt)ya,t−1 + pTt S

t
a(ξt)yat ≤ pTt eat(ξt), if t ∈ T \{1, |T |}

pTt cat − pTt Rt
a(ξt)ya,t−1 ≤ pTt eat(ξt), if t = |T |

(6.18)
The market clearing is defined as follows:

Fat(pt;xat, ξt) :=


∑

a∈A(ea1 − ca1 − S1
aya1), if t = 1∑

a∈A(eat +Rt
ayat−1 − cat − Stayat), if t ∈ T \{1, |T |}∑

a∈A(eat +Rt
aya,t−1 − cat), if t = |T |

(6.19)

For simplicity here, we just write Sta(ξt) = Sta, R
t
a(ξt) = Rt

a, eat(ξt) = eat, uat(·, ξt) = uat,
then the dynamic optimization problem (defined using x,G and F in our general form
(1.35) for each player a ∈ Awith fixed price p = (p1, . . . , p|T |) becomes:

min
xa·

∑
t∈T

uat(cat)

s.t. pT1 ca1 + pT1 S
1
aya1 ≤ pT1 ea1,

pTt cat − pTt Rt
ayat−1 + pTt S

t
ayat ≤ pTt eat, ∀t ∈ T \{1, |T |}

pT|T |ca|T | − pT|T |R|T |a ya|T |−1 ≤ pT|T |ea|T |,

cat ∈ RL
+, yat ∈ Rma

+

(6.20)
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with the market clearing constraints:

0 ≤
∑
a∈A

(ea1 − ca1 − S1
aya1) ⊥ p1 ≥ 0

0 ≤
∑
a∈A

(eat +Rt
ayat−1 − cat − Stayat) ⊥ pt ≥ 0, ∀t ∈ T \{1, |T |}

0 ≤
∑
a∈A

(ea|T | +R|T |a ya|T |−1 − ca|T |) ⊥ p|T | ≥ 0

(6.21)

6.2.2 Extension to stochastic equilibrium

Define
ξ = (ξ1, . . . , ξt, . . . , ξ|T |) (6.22)

The player is making decisions in a sequential way:

ξ1 ξ2 ξ|T |−1 ξ|T |

↓ ↓ ↓ ↓

({xa0}a∈A)→ ({xa1}a∈A, p1)→ · · · · · · · · · → ({xa|T |−1}a∈A, p|T |−1) → ({xa|T |}a∈A, p|T |)
(6.23)

To satisfy (6.23), xt(ξ) and pt(ξ) at stage t must be nonanticipative, which means players’
actions xt(ξ) and market price pt(ξ) depends only on a portion (ξ1, . . . , ξt). Denote ξ[t] =

(ξ2, . . . , ξt), ∀t ∈ T \{0},

xa(·) : ξ → xa(ξ) = (xa1, xa2(ξ2), xa3(ξ3), . . . , xa|T |(ξ|T |)), ∀a ∈ A

p(·) : ξ → p(ξ) = (p1, p2(ξ2), p3(ξ3), . . . , p|T |(ξ|T |))
(6.24)

Note that {ξt}t∈T is a stochastic process, where ξt lies in sets Ξt and Ξ is the proba-
bility space of the stochastic process ξ. There exists a probability measure P{ξ ∈ Ξ} =

P{(ξ2, ξ3, . . . , ξ|T |) ∈ Ξ} = 1. Let Ξ[t] = {(ξ1, ξ2, . . . , ξt)|ξ = (ξ2, . . . , ξt) ∈ Ξ} be the probabil-
ity space for (ξ2, . . . , ξt) for t ∈ [2, |T |] ∩ N. Then there will be uncertainty in the dynamic
equilibrium problem (1.35), transforming the problem into the stochastic equilibrium prob-
lem. In another words, xat(·) is the player a’s decision process and is Ft− measurable,
and

p(ξ) = (p1, p2(ξ2), p3(ξ3), . . . , p|T |(ξ|T |)) (6.25)

is the price process determined by the market and pt(·) is Ft−measurable. Based on this, a
stochastic equilibrium based on risk neutral players is defined in the following:

Definition 6.1. Multistage stochastic equilibrium problem with risk-neutral players:
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min
xa·

fa1(xa1;x−a1, p1, ξ1) + EP

[ ∑
t∈T \{1}

fat(xat(ξt);x−at(ξt), pt(ξt), ξt)
]

s.t. Ga1(xa0, xa1;x−a1, p1, ξ1) ∈ Ka1,

Gat(xat−1(ξt−1), xat(ξt);x−at(ξt), pt(ξt), ξt) ∈ Kat, ∀ξt ∈ Ξt,∀t ∈ T \{1}

xa1 ∈ Xa1, xat(ξt) ∈ Xat, ∀ξt ∈ Ξt, ∀t ∈ T \{1}
(6.26)

with equilibrium constraint:

0 ∈ F1(p1;x1, ξ1) +NK1(p1),

0 ∈ Ft(pt(ξt);xt(ξt), ξt) +NKt(pt(ξt)), ∀ξt ∈ Ξt, ∀t ∈ T \{1}
(6.27)

For concreteness we can now extend the previous multistage dynamic Walras barter
model with activities into a multistage stochastic Walras barter model with activities.
Involving the uncertainty ξ = {ξ2, ξ3, . . . , ξ|T |}, the parameters Rt

a(ξt), S
t
a(ξt), eat(ξt) and the

function uat(·, ξt) will also be uncertain. We will use the notational equivalences defined
above for x,G and F . The stochastic version of the problem will be

min
ca·,ya·

ua1(ca1) + EP

[ ∑
t∈T \{1}

uat(cat(ξt), ξt)
]

s.t. pT1 ca1 + pT1 S
1
aya1 ≤ pT1 ea1,

(pt(ξt))
T cat(ξt)− (pt(ξt))

TRt
a(ξt)yat−1(ξt−1)

+ (pt(ξt))
TSta(ξt)yat(ξt) ≤ (pt(ξt))

T eat(ξt), ∀ξt ∈ Ξt

∀t ∈ T \{1, |T |}

(pt(ξt))
T cat(ξt)− (pt(ξt))

TRt
a(ξt)yat−1(ξt−1)

≤ (pt(ξt))
T eat(ξt), ∀ξt ∈ Ξt, t = |T |

ca1 ∈ RL
+, ya1 ∈ Rma

+ , ca|T |
(
ξ|T |
)
∈ RL

+,

cat(ξt) ∈ RL
+, yat(ξt) ∈ Rma

+ ∀t ∈ T \{1, |T |}

(6.28)
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with a market constraint for each t ∈ T , ξt ∈ Ξt:

0 ≤
∑
a∈A

(ea1 − ca1 − S1
aya1) ⊥ p1 ≥ 0

0 ≤
∑
a∈A

(
eat
(
ξt
)

+Rt
a

(
ξt
)
yat−1

(
ξt−1

)
− cat

(
ξt
)
− Sta

(
ξt
)
yat
(
ξt
))

⊥ pt
(
ξt
)
≥ 0, ∀ξt ∈ Ξt,∀t ∈ T \{1, |T |}

0 ≤
∑
a∈A

(
eat
(
ξt
)

+Rt
a

(
ξt
)
yat−1

(
ξt−1

)
− cat

(
ξt
))

⊥ pt
(
ξt
)
≥ 0, ∀ξt ∈ Ξt, t = |T |

(6.29)

6.3 One-level graph representation for stochastic process

The new graph representation framework can be expressed by the following Figure 6.2

Figure 6.2: Stochastic process one-level graph representation

ωt = ζt|Φt(ωt−1)

ξt = ϕt|ωt

(6.30)

where the random variable ξt : Ξt → Rn is the uncertainty that will come into the op-
timization problem, , ωt : Ωt → Rm is the state uncertainty, ζt|ωt−1 is a random vector
that its distribution will depend on Φt(ωt−1), ϕt|ωt is a random vector whose distribution
depending on ωt, Φt(·) is a mapping function that describes how random variable ωt and ξt
is dependent on the past state uncertainty ωt−1.

In fact, our new graph representation and its corresponding mathematical representa-
tion is very similar to the well-known state-space equation in the control theory. Here we
use the uncertainty ωt to denote the state in our graph representation, which is linked by
the line in the graph and has the dependence structure between stages. The uncertainty ξt
will follow another distribution that depends on ωt, which is the realization of the state
uncertainty ω in stage t.

Among all the previous work, almost all of them just focus on the stagewise independent
uncertainty, so what they need is just the basic information of the uncertainty ξt of every
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stage t and the relationship between uncertainties in different stages have been overlooked.
The policy graph structure introduced by [26] although doesn’t ignore such important
information, but its framework is still limited and can just represent a limited number of
stochastic process, and for some type of stochastic process it will not have a very succinct
way to represent, which will cause troubles for the user to input a problem.

After presenting the general graphical representation framework, we will introduce
how several commonly used stochastic processes can be represented in our framework in
the following section to show the breadth and applicability of our graph representation
framework. These commonly used stochastic processes are:

• stagewise independent stochastic process

• time series

• discrete index markov chain stochastic process

6.3.1 Stagewise independent stochastic process

The stagewise independent stochastic process can be represented by (6.30) in the following
format:

ωt = ωt−1

ξt = ϕt
(6.31)

In this representation, we assume that ωt always equals to ωt−1, which means the state ωt is
always the same throughout the entire stage. So in this case, ϕt = ϕt|ωt will have the same
distribution in all t. Therefore ξt = ϕt is stagewise independent across t.

6.3.2 Time Series

The general time series can be represented by (6.30) in the following format:

ωt = Φt(ωt−1) + ζt

ξt = ϕt|ωt

(6.32)

In this representation, Φt(·) is a function that will only use information from the past
ωt−1, ζ is a independent random variable for each time stage t. Here, we list several
most commonly used time series and see how they can be represented in our framework.
The commonly used time series are: (1) Autoregressive model(AR), (2) Moving-average
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model(MA). (3) Autoregressive moving-average model(ARMA). (4) Autoregressive con-
ditional heteroskedasticity model(ARCH) (5) Generalized autoregressive conditional het-
eroskedasticity (GARCH).

6.3.2.1 Different types of time series

The autoregressive model of order p can be represented by simplified notation AR(p), and
its mathematical representation is:

ξt = µ+ θ1ξt−1 + · · ·+ θpξt−p + ϑt (6.33)

here {θi}i=1,...,p, µ are the constant parameters and ϑt is a stagewise independent random
noise. In this case, we can assume

ωt−1 =


ξt−p

...
ξt−1

 , Φt(ωt−1) = A · ωt−1, ζt =


0
...
0

µ+ ϑt

 , (6.34)

where

A =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

0 0 0 0
. . . 0

0 0 0 0 . . . 1

θp θp−1 . . . . . . . . . θ1


The moving-average model of order q can be represented by simplified notation MA(q),

and its mathematical representation is:

ξt = µ+ θ1ϑt−1 + · · ·+ θpϑt−p + ϑt (6.35)

here {θi}i=1,...,p, µ are the constant parameters and ϑt is a stagewise independent random
noise. In this case, we can assume

ωt−1 =


ϑt−p

...
ϑt−1

 , Φt(ωt−1) = A · ωt−1, ζt =


0
...
0

µ+ ϑt

 , (6.36)



142

where

A =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

0 0 0 0
. . . 0

0 0 0 0 . . . 1

θp θp−1 . . . . . . . . . θ1


The autoregressive moving-average model of order p and q can be represented by

simplified notation ARMA(p, q), and its mathematical representation is:

ξt = µ+

p∑
i=1

κiξt−i +

q∑
j=1

θjϑt−j + ϑt (6.37)

Here {θi}i=1,...,p, {κi}i=1,...,p, µ are the constant parameters and ϑt is a stagewise independent
random noise. Then we will have

ωt−1 =



ϑt−q
...

ϑt−1

ξt−p
...

ξt−1


, Φt(ωt−1) = A · ωt−1, ζt =


0
...
0

µ+ ϑt

 , (6.38)

where

A =



0 1 0 0 . . . 0 0 . . . . . . . . . . . . 0

0 0 1 0 . . . 0 0 . . . . . . . . . . . . 0

0 0 0 1 . . . 0 0 . . . . . . . . . . . . 0

0 0 0 0
. . . 0 0 . . . . . . . . . . . . 0

0 0 0 0 . . . 1 0 . . . . . . . . . . . . 0

0 0 0 0 . . . 0 0 . . . . . . . . . . . . 0

0 0 . . . . . . . . . 0 0 1 0 0 . . . 0

0 0 . . . . . . . . . 0 0 0 1 0 . . . 0

0 0 . . . . . . . . . 0 0 0 0 1 . . . 0

0 0 . . . . . . . . . 0 0 0 0 0
. . . 0

0 0 . . . . . . . . . 0 0 0 0 0 . . . 1

θq θq−1 . . . . . . . . . θ1 κp κp−1 κp−2 . . . . . . κ1





143

6.3.3 Markov Chain

The Markov chain stochastic process can be represented by (6.30) in the following format:

ωt = ζt|ωt−1

ξt = ωt
(6.39)

here the uncertainty ζt|ωt−1 will be identical at every stage if the Markov chain is stationary.

6.3.4 Example

After introducing our new framework structure on several commonly used stochastic
processes, in this section we will give an example to show how our framework is easy to
use when we deal with a complicated stochastic process.

In our example, we will need to deal with a stochastic process where the uncertainty
is the amount of daily rainfall {ξt}t∈T . As we all know, the amount of daily rainfall will
be related to the weather condition on that day. So it is natural not to use a stagewise
independent stochastic process to model it. Previously, time series models like AR, MA,
and ARMA are commonly used tools to model this process. And in our paper, we present a
Markov chain-based model and illustrate how it can be represented succinctly and efficiently
in our framework and how this structure fails to be represented in other frameworks.

In the example, the uncertainty {ξt}t∈T will be the amount of daily rainfall, and the state
uncertainty {ωt}t∈T will be in one of three weather conditions: rainy, cloudy, sunny. And
the relationship of the transition between weather condition is assumed to be described by
a Markov chain matrix:

sunny cloudy rainy
sunny 0.4 0.4 0.2
cloudy 0.3 0.2 0.5
rainy 0.1 0.4 0.5

Here the matrix element pij is the probability transferring from state i to state j. For
example, the element p12 = 0.4 means that the probability transferring from sunny today
to cloudy tomorrow is 0.4.

We assume that the amount of daily rainfall follows different distributions based on
different weather conditions. Assume the rainfall will have five states of amount: 0, 100,
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200, 400, 600, 1000. When the weather of the day is sunny, the ϕt follows the distribution:

ϕt =


0 w.p. 0.7

100 w.p. 0.2

200 w.p. 0.1

When the weather of the day is cloudy, the ϕt follows the distribution:

ϕt =



0 w.p. 0.2

100 w.p. 0.3

200 w.p. 0.3

400 w.p. 0.2

When the weather of the day is rainy, the ϕt follows the distribution:

ϕt =



200 w.p. 0.2

400 w.p. 0.2

600 w.p. 0.4

1000 w.p. 0.2

This process can be represented by the following figure:
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Figure 6.3: Stochastic process

To model this stochastic process in our framework, we define ωt = 1 when the weather
is sunny, ωt = 0 when the weather is cloudy, and ωt = −1 when the weather is rainy. Let
Φt(·) be identity and the distribution of random variable ζt|ωt−1 be defined by the following
Markov chain matrix:

ωt−1

ζt 1 0 -1

1 0.4 0.4 0.2
0 0.3 0.2 0.5
-1 0.1 0.4 0.5

and let ϕt|ωt be defined by the following probability transition matrix:

ωt

ϕt 0 100 200 400 600 1000

1 0.7 0.2 0.1 0 0 0
0 0.2 0.3 0.3 0.2 0 0
-1 0 0 0.2 0.2 0.4 0.2
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Remark 6.2. For the above example, SMPS, GAMS EMPSP, and PySP fail to have an input
format to load this kind of stochastic process directly. The Policy graph invented by [26]
can have a way to load this stochastic process, but the problem is that it must have a data
structure called node for each realization of the ωt. In each node a stagewise subproblem
needs to be defined, which will cause redundancy if ωt has many realizations but has the
same subproblems in each node. Our framework here will solve this kind of problem by
separating the stochastic process and the optimization problem.

6.4 Two-level graph representation for stochastic
programming and stochastic equilibrium problems

Based on our previous one-level graph representation for the stochastic process, in this
section, we propose a framework for representing the stochastic programming problem,
which is designed as a succinct way to input the optimization model into the solver. The
two-level graph representation can be represented in the following figure:

Figure 6.4: Two level graph representation for stochastic optimization/equilibrium prob-
lems

From the picture, we can see that our two-level representation consists of two main
parts:

• an upper-level stochastic process

• a lower-level multistage optimization problem (or lower-level multistage equilibrium
problem)
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The upper-level is the stochastic process defined by our new one-level graph representation
and new state transition equation representation. The lower part is a deterministic dynamic
programming problem or a deterministic dynamic equilibrium problem.

6.4.1 Modeling two-level graph representation stochastic equilibrium
problems using the existing EMP framework

Previously, how to specify stochastic optimization problems and equilibrium problems in
the EMP framework has been outlined. In this section, we describe how to specify stochastic
equilibrium problems in modeling languages using the EMP framework.

Based on the EMP framework of stochastic programming problems and equilibrium
problems in the previous section, we have already known that: (1) In the equilibrium
problems we need to assign each variable and each constraint into the players that it
belongs to (2) In the stochastic programming problems we need to assign each variable into
the time stage it belongs to. Then a very natural thought is that in the stochastic equilibrium
problems, we just need to combine what we already have in the previous two works. The
specification of a stochastic equilibrium problem needs to assign each variable into the
corresponding player and stage, and to assign each constraint into the corresponding player.
This specification process can be visualized by the following Figure 6.5.

Figure 6.5: Discrete-time dynamic optimization model transformation
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6.5 Sample average approximation method for multistage
MOPEC

While the format described above is general, it is important to see how that might interact
with the approaches outlined in the rest of this thesis. As such, we suggest a sample average
approximation (SAA) approach.

6.5.1 Sample average approximation method for multistage MOPEC
with risk-neutral players

We demonstrate our process for SAA using a forward tree sampling approach. To that end
we iteratively define notation to specify a staged model for approximation.

If we denote by Qa2(x1,x2(ξ2), p2(ξ2), ξ2) the optimal value of player a of (|T | − 1)-stage
MOPEC:

min
xa·

fa2(xa2(ξ2);x−a2(ξ2), p2(ξ2), ξ2)

+ EP

[ ∑
t∈T \{1,2}

fat(xat(ξt);x−at(ξt), pt(ξt), ξt)
]

s.t. Gat(xat−1(ξt−1), xat(ξt);x−at(ξt), pt(ξt), ξt) ∈ Kat, ∀ξt ∈ Ξt,∀t ∈ T \{1}

xat(ξt) ∈ Xat, ∀ξt ∈ Ξt,∀t ∈ T \{1}

(6.40)

with equilibrium constraint:

0 ∈ Ft(pt(ξt);xt(ξt), ξt) +NKt(pt(ξt)), ∀ξt ∈ Ξt,∀t ∈ T \{1} (6.41)

then we can write the |T |-stage problem in the following form of a two-stage MOPEC:

min
xa·

fa1(xa1;x−a1, p1) + EP

[
Qa2(x1,x2(ξ2), p2(ξ2), ξ2)

]
s.t. Ga1(xa0, xa1;x−a1, p1, ξ1) ∈ Ka1,

xa1 ∈ Xa1

(6.42)

with equilibrium constraint:

0 ∈ F1(p1;x1, ξ1) +NK1(p1) (6.43)

To facilitate the analysis, we restrict our derivations to the three-stage problem, where
T = 1, 2, 3 (it should be noted that the obtained results can be readily extended to scenarios
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with |T | > 3). In this particular case, the quantity Qa2(x1,x2(ξ2), p2(ξ2), ξ2) represents the
optimal value attained by player a in the MOPEC:

min
xa·

fa2(xa2(ξ2);x−a2(ξ2), p2(ξ2), ξ2)

+ EP

[
Qa3(x2(ξ2),x3(ξ3), p3(ξ3), ξ3)|ξ2

]
s.t. Ga2(xa1, xa2(ξ2);x−a2(ξ2), p2(ξ2), ξ2) ∈ Ka2,

xa2(ξ2) ∈ Xa2

(6.44)

with equilibrium constraint:

0 ∈ F2(p2(ξ2);x2(ξ2), ξ2) +NK2(p2(ξ2)) (6.45)

where the expectation of each player a is taken with respect to the conditional distribution
of ξ3 given ξ2.

Consider a set of random samples ξi2, i = 1, . . . , N2, which are independent realizations
of the random vector ξ2. In order to approximate the optimization problem (6.42) for each
player a, we can formulate the following Sample Average Approximation (SAA) problem:

min
xa·

fa1(xa1;x−a1, p1) +
1

N2

N2∑
i=1

Qa2(x1,x2(ξi2), p2(ξi2), ξi2)

s.t. Ga1(xa0, xa1;x−a1, p1, ξ1) ∈ Ka1,

xa1 ∈ Xa1

(6.46)

Given that the values Qa2(x1,x2(ξi2), p2(ξi2), ξi2) are not explicitly provided, it becomes
necessary to estimate these quantities using a method known as conditional sampling. This
involves generating a random sample ξij3 , j = 1, . . . , N3i, consisting of N3i independent
realizations from the conditional distribution of ξ3 given ξi2, i = 1, . . . , N2. As a result, we
can approximate Q̂a2(x1,x2(ξi2), p2(ξi2), ξi2) by determining the optimal value attained by
player a in the following approximate MOPEC:

min
xa·

fa2(xa2(ξi2);x−a2(ξi2), p2(ξi2), ξi2)

+
1

N3

N3∑
j=1

Qa3(x2(ξi2),x3(ξij3 ), p3(ξij3 ), ξij3 )

s.t. Ga2(xa1, xa2(ξi2);x−a2(ξi2), p2(ξi2), ξi2) ∈ Ka2,

xa2(ξi2) ∈ Xa2

(6.47)
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with equilibrium constraint:

0 ∈ F2(p2(ξi2);x2(ξi2), ξi2) +NK2(p2(ξi2)) (6.48)

where Qa3(x2(ξi2),x3(ξij3 ), p3(ξij3 ), ξij3 ) is the optimal value of player a in the following
MOPEC:

min
xa·

fa3(xa3(ξij3 );x−a3(ξij3 ), p3(ξij3 ), ξij3 )

s.t. Ga3(xa2(ξi2), xa3(ξij3 );x−a3(ξij3 ), p3(ξij3 ), ξij3 ) ∈ Ka3,

xa3(ξij3 ) ∈ Xa3

(6.49)

with equilibrium constraint:

0 ∈ F3(p3(ξij3 );x3(ξij3 ), ξij3 ) +NK3(p3(ξij3 )) (6.50)

This process leads to an approximate scenario tree for the problem, specificed by the
sampling structure (e.g., N2, N3i) and the realization data generated.

6.5.2 Sample average approximation method for the multistage
MOPEC with risk-averse players employing the CV aR(λ, ϕ)

measure

This section focuses on the utilization of the sample average approximation method for an-
alyzing the multistage MOPEC with risk-averse players, utilizing the CV aR(λ, ϕ) measure.
Specifically, the application of the sample average approximation method to the multistage
MOPEC with risk-averse players employing the coherent risk measure can be divided into
two primary tasks:

• Constructing the approximated scenario tree

• Building the corresponding risk set Dan for each player a and each scenario node
n ∈ N\L

The construction of the approximated scenario tree (N , E) can be achieved using a
similar approach as described in section 6.5.1. Subsequently, the approximated risk set
Dan can be constructed based on this approximated scenario tree. Assuming that each
player a ∈ A and each scenario node n ∈ N\L adopts the CV aR(λan, ϕan) risk profile, the
corresponding dual representation can be established:

CV aR(λan, ϕan)(·) = σDan(·) = σ(1−λan){φ}+λanD(ϕan)(·) (6.51)
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where φn+ = (φm)m∈n+ is the vector of children node conditional probability and

D(ϕan) =
{
µ ∈ 1

1− ϕan

∏
m∈n+

[0, φm]|
∑
m∈n+

µm = 1
}

(6.52)

Utilizing the aforementioned definition, the construction of the corresponding risk set Dan
can be accomplished through a series of calculations involving φn+ as well as the parameters
λan and ϕan.

With this in mind, three distinct types of input formats can be designed to accommodate
the loading of the coherent risk measure:

•
(
CV aR, λ, ϕ

)
: For this input format it is assumed that all players at different scenario

node n will employ the same coherent risk measure CV aR, which means λan =

λ, ϕan = ϕ for each a ∈ A, n ∈ N\L.

•
(
CV aR, (λa, ϕa)a∈A

)
: For this input format it is assumed that each player a will

employ the same coherent risk measure CV aR, which means λan = λa, ϕan = ϕ for
each a ∈ A, n ∈ N\L.

•
(
CV aR, (λan, ϕan)a∈A,n∈N

)
: For this input format it is assumed that for each player a

and each scenario node will have individual coherent risk measure CV aR.

6.6 Conclusion

This chapter first introduced the one-level stochastic graph representation and two-level
framework for stochastic programming problems and stochastic equilibrium problems. For
the one-level stochastic graph representation, it’s a new way to introduce the state-space
equation from control theory into the representation of the stochastic process. Several
commonly used stochastic processes were shown to be successfully represented by the new
framework, and some of them were found hard to be represented by previous methods.
This chapter also discussed the two-level graph representation for stochastic programming
and stochastic equilibrium problems, and also presented a way to represent the multistage
stochastic equilibrium problems efficiently in the EMP framework.
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7 conclusion

The stochastic MOPEC with risk-averse players has garnered increasing significance within
the domains of game theory and equilibrium analysis. This prominence is primarily
attributed to its extensive practical applications in various real-world scenarios, including
power system markets and modern economics. The advancement in addressing this
particular problem has consequently spurred advancements in policy frameworks and
operational standards within the power industry and economics community. Drawing
upon meticulous analyses, concrete illustrations, and comprehensive numerical findings,
this doctoral thesis has made contributions by proposing several original ideas and solution
methodologies for tackling stochastic MOPECs with risk-averse players.

In summary, this dissertation has the following main contributions: This thesis ex-
amines the formulation of stochastic MOPECs involving risk-averse players through the
utilization of scenario trees, with an emphasis on exploiting the inherent problem structures.
The research focuses on designing various decomposition algorithms based on different
problem structures. Firstly, a player-based decomposition approach is explored, aiming
to enhance the successful rate of stochastic PENP; however, its practical effectiveness is
limited. Secondly, the Primal-MOPEC-dual-risk decomposition technique, in conjunction
with PATH, demonstrates promising practical performance and proves capable of solv-
ing the majority of problems through several enhancements. Additionally, stage-based
enhancement strategies are investigated to facilitate the creation of an inner loop, enabling
the resolution of large-scale primal-MOPEC problems. Lastly, sample-based extension
and large-scale implementation are considered to further extend the applicability of the
proposed framework.

This dissertation also presents conclusive responses to the following inquiry.

• What is a standard mathematical definition of stochastic MOPEC with risk-averse
players based on scenario tree and how to formulate this type of problem? Chapter 1
provides a overview of the stochastic MOPECs with risk-averse players, encompassing
a comprehensive exposition of the fundamental mathematical constructs pertinent to
this domain. The mathematical essence of the Nash equilibrium problem, variational
inequality problem, stochastic problem utilizing a scenario tree, and the adoption of
a coherent risk measure are expounded upon in detail. Additionally, diverse formu-
lations of stochastic MOPECs with risk-averse players are outlined, thereby offering a
comprehensive understanding of the various approaches adopted in addressing this
class of problems.
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• What are the representative numerical test instances for the stochastic MOPEC with
risk-averse players? Within Chapter 2, three practical problem exemplifications,
namely the economic dispatch example, capacity expansion example, and hydroelec-
tricity example, are comprehensively presented as the most commonly employed
scenarios. Each example is accompanied by an intricate algebraic formulation, meticu-
lously delineating the mathematical representation of the respective problem instance.
Furthermore, this chapter examines three distinct categories of market constraints,
each holding paramount significance within the realm of modern economics and
possessing substantial application domains. The inclusion of these three diverse prob-
lem types and the consideration of various market constraints collectively facilitate
an extensive coverage of the prevailing and representative stochastic MOPECs with
risk-averse players encountered in real-world problem.

• Can we solve the problem by the decomposition approach depending on the inner
structure of the problem? How is the performance of these algorithms compared to
the classical PATH solver? We tried to develop three decomposition approaches that
depend on different properties of the problem.

– Decomposition by players: Chapter 3 investigated the player-based inner stuc-
ture of the problem and mainly focused on the stochastic PNEP with risk-averse
players using a conjugate-based reformulation, which will make each players’ sub-
problem independent if the market price p is fixed. Based on this property,
many existing player-based algorithms have been designed to solve this type of
problem. However, most of them cannot be applied to stochastic MOPECs with
risk-averse players. Chapter 3 first discussed two existing methods and then
proposed an ADMM-based algorithm to solve the stochastic PNEP with risk-
averse players, and showed its advantages over previous two methods. Chapter 3
also used numerical results to show various properties of the ADMM-based
algorithm and how the performance of this algorithm will be changed by the
algorithmic parameters.

– Decomposition by primal-MOPEC-dual-risk structure: In Chapter 4, a novel
primal-MOPEC-dual-risk algorithm was introduced, presenting an equilibrium
reformulation as a means to solve the stochastic MOPEC with risk-averse players.
This approach utilized a decomposition strategy, which is motivated by the
inherent nonlinearity introduced by the additional probability vector µ within
the multistage problem. Consequently, when tackled by the PATH solver, the
problem manifests as a highly nonlinear complementarity problem. However,
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by fixing the probability vector µ, the problem undergoes simplification, and in
the case of quadratic player objective functions, it can even be formulated as a
linear complementarity problem. The remaining subproblem can be efficiently
addressed through a series of linear programming problems. Compared to the
ADMM-based algorithm discussed in Chapter 3, the proposed primal-MOPEC-
dual-risk algorithm offers enhanced versatility in addressing general stochastic
MOPECs with risk-averse players, particularly in scenarios where players exhibit
diverse Nash behavior during their interactions. We are using all three examples
with all three market constraints to test the efficiency of the algorithm and
showed its advantage compared to the classical PATH solver.

– Decomposition by stage structure: In Chapter 4 we proposed a primal-MOPEC-
dual-risk decomposition algorithm. Nonetheless, a significant challenge emerges
when confronted with large-sized scenario trees, resulting in a considerable
increase in the dimensions of the primal-MOPEC subproblem. To overcome
this challenge, a stage-based decomposition method is developed, enabling
the subdivision of the extensive problem into smaller subproblems indexed by
time stages. This division enhances computational efficiency and enables the
effective resolution of large-scale stochastic MOPECs with risk-averse players.
The subsequent Chapter 5 provides comprehensive details on the intricacies and
implementation of this stage-based decomposition approach.

• What is the mathematical formulation of stochastic MOPECs with risk-averse players
under general uncertainty process? Is there a simplied representation of stochastic
problem such that the size of input of these problems could avoid exponential growth?
Chapter 6 introduces how the multistage stochastic MOPEC with risk-averse player
is formulated in mathematics and presents a new two-level graph representation for
the general stochastic problem. Moreover, a sample average approximation (SAA)
method is given to approximate any general stochastic MOPEC based a scenario tree,
which then can be solved by the previous decomposition methods introduced.
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8 appendix

8.1 Numerical results of primal-MOPEC-dual-risk
decomposition approach with proximal-terms on
economic dispatch example

Tables 8.1 - 8.5 present the numerical outcomes obtained from Algorithm 6, along with a
comparison to the original PD+PATH approach, concerning an economic dispatch example
on scenario tree 2. The parameter configuration employed in this algorithm corresponds to
that discussed in chapter 4. Within the algorithm, the proximal parameters ωan are set to
unity for all a ∈ A and n ∈ N . Furthermore, a maximum iteration count is specified for
the proximal steps.

The first two columns of the tables denote the values of the parameters ε and λ, respec-
tively. For each fixed value of these parameters, a series of experiments is conducted using
two distinct values of ϕ and 16 independent random seeds to generate random parameters.
Consequently, each row represents a collection of 32 independent experiments.

The third to fifth columns of the tables provide the success rates of the PD+PATH
and PD+PATH+proximal approaches, with a maximum of 20 and 50 iterations, respec-
tively. Finally, the last two columns illustrate the enhancements observed in the algorithms
following the inclusion of the proximal terms.
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ε λ
successful rate (%) Improvement on PD+PATH (%)

PD+PATH PD+PATH+proximal(20) PD+PATH+proximal(50) PD+PATH+proximal(20) PD+PATH+proximal(50)
0 0.1 96.9 100.0 100.0 3.2 3.2
0 0.3 78.1 90.6 100.0 16.0 28.0
0 0.5 59.4 84.4 96.9 42.1 63.2
0 0.7 18.8 37.5 50.0 100.0 166.7
0 0.9 3.1 15.6 34.4 400.0 1000.0

1e-2 0.1 100.0 100.0 100.0 0.0 0.0
1e-2 0.3 100.0 100.0 100.0 0.0 0.0
1e-2 0.5 90.6 100.0 100.0 10.3 10.3
1e-2 0.7 71.9 93.8 100.0 30.4 39.1
1e-2 0.9 37.5 62.5 78.1 66.7 108.3
1e-1 0.1 100.0 100.0 100.0 0.0 0.0
1e-1 0.3 100.0 100.0 100.0 0.0 0.0
1e-1 0.5 100.0 100.0 100.0 0.0 0.0
1e-1 0.7 100.0 100.0 100.0 0.0 0.0
1e-1 0.9 100.0 100.0 100.0 0.0 0.0

1 0.1 100.0 100.0 100.0 0.0 0.0
1 0.3 100.0 100.0 100.0 0.0 0.0
1 0.5 100.0 100.0 100.0 0.0 0.0
1 0.7 100.0 100.0 100.0 0.0 0.0
1 0.9 100.0 100.0 100.0 0.0 0.0

10 0.1 100.0 100.0 100.0 0.0 0.0
10 0.3 100.0 100.0 100.0 0.0 0.0
10 0.5 100.0 100.0 100.0 0.0 0.0
10 0.7 100.0 100.0 100.0 0.0 0.0
10 0.9 100.0 100.0 100.0 0.0 0.0

Table 8.1: Improvement of PD+PATH with proximal terms over Type I problems on scenario
tree 2

ε λ
successful rate (%) Improvement on PD+PATH (%)

PD+PATH PD+PATH+proximal(20) PD+PATH+proximal(50) PD+PATH+proximal(20) PD+PATH+proximal(50)
0 0.1 96.9 100.0 100.0 3.2 3.2
0 0.3 84.4 100.0 100.0 18.5 18.5
0 0.5 56.2 78.1 90.6 38.9 61.1
0 0.7 25.0 43.8 59.4 75.0 137.5
0 0.9 3.1 28.1 40.6 800.0 1200.0

1e-2 0.1 100.0 100.0 100.0 0.0 0.0
1e-2 0.3 100.0 100.0 100.0 0.0 0.0
1e-2 0.5 96.9 100.0 100.0 3.2 3.2
1e-2 0.7 84.4 96.9 96.9 14.8 14.8
1e-2 0.9 43.8 71.9 78.1 64.3 78.6
1e-1 0.1 100.0 100.0 100.0 0.0 0.0
1e-1 0.3 100.0 100.0 100.0 0.0 0.0
1e-1 0.5 100.0 100.0 100.0 0.0 0.0
1e-1 0.7 100.0 100.0 100.0 0.0 0.0
1e-1 0.9 100.0 100.0 100.0 0.0 0.0

1 0.1 100.0 100.0 100.0 0.0 0.0
1 0.3 100.0 100.0 100.0 0.0 0.0
1 0.5 100.0 100.0 100.0 0.0 0.0
1 0.7 100.0 100.0 100.0 0.0 0.0
1 0.9 100.0 100.0 100.0 0.0 0.0

10 0.1 100.0 100.0 100.0 0.0 0.0
10 0.3 100.0 100.0 100.0 0.0 0.0
10 0.5 100.0 100.0 100.0 0.0 0.0
10 0.7 100.0 100.0 100.0 0.0 0.0
10 0.9 100.0 100.0 100.0 0.0 0.0

Table 8.2: Improvement of PD+PATH with proximal terms over Type II problems on
scenario tree 2
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ε λ
successful rate (%) Improvement on PD+PATH (%)

PD+PATH PD+PATH+proximal(20) PD+PATH+proximal(50) PD+PATH+proximal(20) PD+PATH+proximal(50)
0 0.1 59.4 84.4 87.5 42.1 47.4
0 0.3 12.5 31.2 40.6 150.0 225.0
0 0.5 9.4 18.8 18.8 100.0 100.0
0 0.7 3.1 6.2 18.8 100.0 500.0
0 0.9 0.0 0.0 6.2 - -

1e-2 0.1 100.0 100.0 100.0 0.0 0.0
1e-2 0.3 90.6 93.8 93.8 3.4 3.4
1e-2 0.5 40.6 59.4 75.0 46.2 84.6
1e-2 0.7 21.9 40.6 53.1 85.7 142.9
1e-2 0.9 6.2 12.5 21.9 100.0 250.0
1e-1 0.1 100.0 100.0 100.0 0.0 0.0
1e-1 0.3 100.0 100.0 100.0 0.0 0.0
1e-1 0.5 96.9 100.0 100.0 3.2 3.2
1e-1 0.7 100.0 100.0 100.0 0.0 0.0
1e-1 0.9 93.8 93.8 93.8 0.0 0.0

1 0.1 100.0 100.0 100.0 0.0 0.0
1 0.3 100.0 100.0 100.0 0.0 0.0
1 0.5 100.0 100.0 100.0 0.0 0.0
1 0.7 100.0 100.0 100.0 0.0 0.0
1 0.9 100.0 100.0 100.0 0.0 0.0

10 0.1 100.0 100.0 100.0 0.0 0.0
10 0.3 100.0 100.0 100.0 0.0 0.0
10 0.5 100.0 100.0 100.0 0.0 0.0
10 0.7 100.0 100.0 100.0 0.0 0.0
10 0.9 100.0 100.0 100.0 0.0 0.0

Table 8.3: Improvement of PD+PATH with proximal terms over Type I problems on scenario
tree 3

ε λ
successful rate (%) Improvement on PD+PATH (%)

PD+PATH PD+PATH+proximal(20) PD+PATH+proximal(50) PD+PATH+proximal(20) PD+PATH+proximal(50)
0 0.1 96.9 96.9 96.9 0.0 0.0
0 0.3 40.6 62.5 71.9 53.8 76.9
0 0.5 12.5 18.8 28.1 50.0 125.0
0 0.7 3.1 6.2 3.1 100.0 0.0
0 0.9 0.0 0.0 6.2 - -

1e-2 0.1 100.0 100.0 100.0 0.0 0.0
1e-2 0.3 96.9 100.0 100.0 3.2 3.2
1e-2 0.5 71.9 75.0 93.8 4.3 30.4
1e-2 0.7 40.6 46.9 59.4 15.4 46.2
1e-2 0.9 9.4 15.6 31.2 66.7 233.3
1e-1 0.1 100.0 100.0 100.0 0.0 0.0
1e-1 0.3 100.0 100.0 100.0 0.0 0.0
1e-1 0.5 100.0 100.0 100.0 0.0 0.0
1e-1 0.7 100.0 100.0 100.0 0.0 0.0
1e-1 0.9 93.8 100.0 96.9 6.7 3.3

1 0.1 100.0 100.0 100.0 0.0 0.0
1 0.3 100.0 100.0 100.0 0.0 0.0
1 0.5 100.0 100.0 100.0 0.0 0.0
1 0.7 100.0 100.0 100.0 0.0 0.0
1 0.9 100.0 100.0 100.0 0.0 0.0

10 0.1 100.0 100.0 100.0 0.0 0.0
10 0.3 100.0 100.0 100.0 0.0 0.0
10 0.5 100.0 100.0 100.0 0.0 0.0
10 0.7 100.0 100.0 100.0 0.0 0.0
10 0.9 100.0 100.0 100.0 0.0 0.0

Table 8.4: Improvement of PD+PATH with proximal terms over Type II problems on
scenario tree 3
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ε λ
successful rate (%) Improvement on PD+PATH (%)

PD+PATH PD+PATH+proximal(20) PD+PATH+proximal(50) PD+PATH+proximal(20) PD+PATH+proximal(50)
0 0.1 100.0 100.0 100.0 0.0 0.0
0 0.3 100.0 100.0 100.0 0.0 0.0
0 0.5 100.0 100.0 100.0 0.0 0.0
0 0.7 100.0 100.0 100.0 0.0 0.0
0 0.9 90.6 100.0 100.0 10.3 10.3

1e-2 0.1 100.0 100.0 100.0 0.0 0.0
1e-2 0.3 100.0 100.0 100.0 0.0 0.0
1e-2 0.5 100.0 100.0 100.0 0.0 0.0
1e-2 0.7 96.9 96.9 100.0 0.0 3.2
1e-2 0.9 96.9 100.0 100.0 3.2 3.2
1e-1 0.1 100.0 100.0 100.0 0.0 0.0
1e-1 0.3 100.0 100.0 100.0 0.0 0.0
1e-1 0.5 100.0 100.0 100.0 0.0 0.0
1e-1 0.7 100.0 100.0 100.0 0.0 0.0
1e-1 0.9 100.0 100.0 100.0 0.0 0.0

1 0.1 100.0 100.0 100.0 0.0 0.0
1 0.3 100.0 100.0 100.0 0.0 0.0
1 0.5 100.0 100.0 100.0 0.0 0.0
1 0.7 100.0 100.0 100.0 0.0 0.0
1 0.9 100.0 100.0 100.0 0.0 0.0

10 0.1 100.0 100.0 100.0 0.0 0.0
10 0.3 100.0 100.0 100.0 0.0 0.0
10 0.5 100.0 100.0 100.0 0.0 0.0
10 0.7 100.0 100.0 100.0 0.0 0.0
10 0.9 100.0 100.0 100.0 0.0 0.0

Table 8.5: Improvement of PD+PATH with proximal terms over Type III problems on
scenario tree 3

8.2 Numerical results of primal-MOPEC-dual-risk
decomposition approach on capacity expansion
example and hydroelectricity example

Tables 8.6 - 8.19 present the numerical outcomes from capacity expansion problem and
hydroelectricity problem on scenario 2 and scenario tree 3.

The first two columns of the tables denote the values of the parameters ε and λ, respec-
tively. For each fixed value of these parameters, a series of experiments is conducted using
two distinct values of ϕ and 16 independent random seeds to generate random parameters.
Consequently, each row represents a collection of 32 independent experiments.

The third to fifth columns of the tables provide the success rates of the PD+PATH
and PD+PATH+proximal approaches, with a maximum of 20 and 50 iterations, respec-
tively. Finally, the last two columns illustrate the enhancements observed in the algorithms
following the inclusion of the proximal terms.
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ε λ
successful rate (%) No mixed solution

percentage (%)PATH PATH-RN PD PD-PATH
0 0.1 100.0 100.0 100.0 100.0 100.0%
0 0.3 34.4 100.0 100.0 100.0 100.0%
0 0.5 3.1 90.6 100.0 100.0 100.0%
0 0.7 0.0 53.1 100.0 100.0 100.0%
0 0.9 0.0 6.2 96.9 100.0 100.0%

1e-2 0.1 100.0 100.0 100.0 100.0 100.0%
1e-2 0.3 90.6 100.0 100.0 100.0 100.0%
1e-2 0.5 6.2 100.0 100.0 100.0 100.0%
1e-2 0.7 9.4 96.9 100.0 100.0 100.0%
1e-2 0.9 0.0 65.6 100.0 100.0 100.0%
1e-1 0.1 100.0 100.0 100.0 100.0 100.0%
1e-1 0.3 100.0 100.0 100.0 100.0 100.0%
1e-1 0.5 78.1 100.0 100.0 100.0 100.0%
1e-1 0.7 15.6 100.0 93.8 100.0 93.8%
1e-1 0.9 15.6 71.9 100.0 100.0 100.0%

1 0.1 100.0 100.0 100.0 100.0 100.0%
1 0.3 100.0 100.0 100.0 100.0 100.0%
1 0.5 90.6 100.0 100.0 100.0 100.0%
1 0.7 56.2 65.6 90.6 100.0 90.6%
1 0.9 0.0 34.4 93.8 100.0 93.8%

10 0.1 100.0 96.9 100.0 100.0 100.0%
10 0.3 100.0 75.0 100.0 100.0 100.0%
10 0.5 100.0 53.1 96.9 100.0 96.9%
10 0.7 87.5 31.2 90.6 100.0 90.6%
10 0.9 21.9 9.4 93.8 100.0 93.8%

Table 8.6: Performance of PATH, PATH-RN, PD and PD-PATH over hydroelectricity example
with Type I market constraint on scenario tree 2
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ε λ
successful rate (%) No mixed solution

percentage (%)PATH PATH-RN PD PD-PATH
0 0.1 100.0 100.0 100.0 100.0 100.0%
0 0.3 59.4 100.0 100.0 100.0 100.0%
0 0.5 3.1 87.5 100.0 100.0 100.0%
0 0.7 0.0 40.6 100.0 100.0 100.0%
0 0.9 0.0 0.0 100.0 100.0 100.0%

1e-2 0.1 100.0 100.0 100.0 100.0 100.0%
1e-2 0.3 96.9 100.0 100.0 100.0 100.0%
1e-2 0.5 21.9 100.0 100.0 100.0 100.0%
1e-2 0.7 3.1 100.0 100.0 100.0 100.0%
1e-2 0.9 0.0 56.2 100.0 100.0 100.0%
1e-1 0.1 100.0 100.0 100.0 100.0 100.0%
1e-1 0.3 100.0 100.0 96.9 100.0 96.9%
1e-1 0.5 87.5 100.0 100.0 100.0 100.0%
1e-1 0.7 31.2 96.9 100.0 100.0 100.0%
1e-1 0.9 9.4 71.9 100.0 100.0 100.0%

1 0.1 100.0 100.0 100.0 100.0 100.0%
1 0.3 100.0 100.0 93.8 100.0 93.8%
1 0.5 96.9 100.0 93.8 100.0 93.8%
1 0.7 84.4 96.9 96.9 100.0 96.9%
1 0.9 31.2 71.9 96.9 100.0 96.9%

10 0.1 100.0 100.0 96.9 100.0 96.9%
10 0.3 100.0 84.4 96.9 100.0 96.9%
10 0.5 100.0 53.1 93.8 100.0 93.8%
10 0.7 100.0 56.2 93.8 100.0 93.8%
10 0.9 93.8 43.8 87.5 100.0 87.5%

Table 8.7: Performance of PATH, PATH-RN, PD and PD-PATH over hydroelectricity example
with Type II market constraint on scenario tree 2
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ε λ
successful rate (%) No mixed solution

percentage (%)PATH PATH-RN PD PD-PATH
0 0.1 100.0 100.0 81.2 100.0 81.2%
0 0.3 100.0 100.0 78.1 100.0 81.2%
0 0.5 100.0 100.0 56.2 100.0 62.5%
0 0.7 87.5 96.9 37.5 100.0 40.6%
0 0.9 28.1 87.5 28.1 96.9 34.4%

1e-2 0.1 100.0 100.0 90.6 100.0 90.6%
1e-2 0.3 100.0 100.0 81.2 100.0 81.2%
1e-2 0.5 100.0 100.0 65.6 100.0 65.6%
1e-2 0.7 81.2 100.0 50.0 100.0 50.0%
1e-2 0.9 25.0 87.5 31.2 100.0 31.2%
1e-1 0.1 100.0 100.0 84.4 100.0 84.4%
1e-1 0.3 100.0 100.0 75.0 100.0 75.0%
1e-1 0.5 100.0 100.0 71.9 100.0 71.9%
1e-1 0.7 93.8 100.0 68.8 100.0 68.8%
1e-1 0.9 43.8 90.6 68.8 100.0 68.8%

1 0.1 100.0 100.0 100.0 100.0 100.0%
1 0.3 100.0 100.0 100.0 100.0 100.0%
1 0.5 100.0 100.0 93.8 100.0 93.8%
1 0.7 100.0 100.0 93.8 100.0 93.8%
1 0.9 87.5 100.0 93.8 100.0 93.8%

10 0.1 100.0 100.0 100.0 100.0 100.0%
10 0.3 100.0 87.5 100.0 100.0 100.0%
10 0.5 100.0 62.5 100.0 100.0 100.0%
10 0.7 100.0 68.8 93.8 100.0 93.8%
10 0.9 100.0 50.0 90.6 100.0 90.6%

Table 8.8: Performance of PATH, PATH-RN, PD and PD-PATH over hydroelectricity example
with Type III market constraint on scenario tree 2
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ε λ
successful rate (%) No mixed solution

percentage (%)PATH PATH-RN PD PD-PATH
0 0.1 96.9 90.6 100.0 100.0 100.0
0 0.3 53.1 90.6 100.0 100.0 100.0
0 0.5 6.2 28.1 100.0 100.0 100.0
0 0.7 0.0 0.0 100.0 100.0 100.0
0 0.9 0.0 0.0 90.6 96.9 100.0

1e-2 0.1 100.0 100.0 100.0 100.0 100.0
1e-2 0.3 100.0 100.0 100.0 100.0 100.0
1e-2 0.5 100.0 90.6 100.0 100.0 100.0
1e-2 0.7 100.0 96.9 100.0 100.0 100.0
1e-2 0.9 93.8 90.6 100.0 100.0 100.0
1e-1 0.1 100.0 100.0 100.0 100.0 100.0
1e-1 0.3 100.0 84.4 100.0 100.0 100.0
1e-1 0.5 81.2 84.4 100.0 100.0 100.0
1e-1 0.7 100.0 50.0 100.0 100.0 100.0
1e-1 0.9 75.0 46.9 100.0 100.0 100.0

1 0.1 40.6 0.0 100.0 100.0 100.0
1 0.3 43.8 0.0 100.0 100.0 100.0
1 0.5 34.4 0.0 96.9 100.0 100.0
1 0.7 34.4 0.0 96.9 100.0 100.0
1 0.9 12.5 0.0 100.0 100.0 100.0

10 0.1 0.0 0.0 87.5 96.9 100.0
10 0.3 0.0 0.0 84.4 100.0 100.0
10 0.5 0.0 0.0 78.1 96.9 100.0
10 0.7 0.0 0.0 75.0 100.0 100.0
10 0.9 0.0 0.0 78.1 96.9 100.0

Table 8.9: Performance of PATH, PATH-RN, PD and PD-PATH over capacity expansion
example with Type I market constraint on scenario tree 2
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ε λ
successful rate (%) No mixed solution

percentage (%)PATH PATH-RN PD PD-PATH
0 0.1 96.9 100.0 100.0 100.0 100.0
0 0.3 59.4 93.8 93.8 100.0 100.0
0 0.5 28.1 43.8 100.0 100.0 100.0
0 0.7 3.1 9.4 90.6 100.0 100.0
0 0.9 0.0 0.0 96.9 100.0 100.0

1e-2 0.1 100.0 100.0 100.0 100.0 100.0
1e-2 0.3 100.0 100.0 100.0 100.0 100.0
1e-2 0.5 100.0 93.8 100.0 100.0 100.0
1e-2 0.7 100.0 93.8 100.0 100.0 100.0
1e-2 0.9 100.0 81.2 100.0 100.0 100.0
1e-1 0.1 100.0 100.0 100.0 100.0 100.0
1e-1 0.3 100.0 84.4 100.0 100.0 100.0
1e-1 0.5 100.0 84.4 100.0 100.0 100.0
1e-1 0.7 100.0 50.0 100.0 100.0 100.0
1e-1 0.9 100.0 50.0 100.0 100.0 100.0

1 0.1 100.0 3.1 100.0 100.0 100.0
1 0.3 96.9 0.0 100.0 100.0 100.0
1 0.5 78.1 0.0 96.9 100.0 100.0
1 0.7 90.6 0.0 96.9 100.0 100.0
1 0.9 87.5 0.0 100.0 100.0 100.0

10 0.1 100.0 0.0 87.5 96.9 100.0
10 0.3 87.5 0.0 84.4 100.0 100.0
10 0.5 65.6 0.0 78.1 96.9 100.0
10 0.7 50.0 0.0 75.0 100.0 100.0
10 0.9 3.1 0.0 78.1 100.0 100.0

Table 8.10: Performance of PATH, PATH-RN, PD and PD-PATH over capacity expansion
example with Type II market constraint on scenario tree 2
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ε λ
successful rate (%) No mixed solution

percentage (%)PATH PATH-RN PD PD-PATH
0 0.1 100.0 100.0 96.9 100.0 100.0
0 0.3 100.0 100.0 87.5 100.0 100.0
0 0.5 100.0 100.0 93.8 100.0 100.0
0 0.7 96.9 84.4 96.9 100.0 100.0
0 0.9 62.5 50.0 96.9 100.0 100.0

1e-2 0.1 100.0 100.0 100.0 100.0 100.0
1e-2 0.3 100.0 46.9 100.0 100.0 100.0
1e-2 0.5 93.8 34.4 96.9 100.0 100.0
1e-2 0.7 62.5 18.8 100.0 100.0 100.0
1e-2 0.9 25.0 3.1 96.9 100.0 100.0
1e-1 0.1 78.1 28.1 100.0 100.0 100.0
1e-1 0.3 71.9 0.0 96.9 100.0 100.0
1e-1 0.5 43.8 0.0 90.6 100.0 100.0
1e-1 0.7 25.0 0.0 93.8 100.0 100.0
1e-1 0.9 9.4 0.0 93.8 100.0 100.0

1 0.1 62.5 0.0 100.0 100.0 100.0
1 0.3 53.1 0.0 100.0 100.0 100.0
1 0.5 62.5 0.0 100.0 100.0 100.0
1 0.7 43.8 0.0 100.0 100.0 100.0
1 0.9 31.2 0.0 100.0 100.0 100.0

10 0.1 15.6 0.0 100.0 100.0 100.0
10 0.3 3.1 0.0 96.9 100.0 100.0
10 0.5 18.8 0.0 100.0 100.0 100.0
10 0.7 62.5 0.0 100.0 100.0 100.0
10 0.9 50.0 0.0 100.0 100.0 100.0

Table 8.11: Performance of PATH, PATH-RN, PD and PD-PATH over capacity expansion
example with Type III market constraint on scenario tree 2
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 100.0 100.0 81.2 100.0 100.0
0 0.3 100.0 100.0 78.1 100.0 100.0
0 0.5 100.0 100.0 56.2 100.0 100.0
0 0.7 87.5 96.9 37.5 100.0 100.0
0 0.9 28.1 87.5 28.1 96.9 100.0

1e-2 0.1 100.0 100.0 90.6 100.0 100.0
1e-2 0.3 100.0 100.0 81.2 100.0 100.0
1e-2 0.5 100.0 100.0 65.6 100.0 100.0
1e-2 0.7 81.2 100.0 50.0 100.0 100.0
1e-2 0.9 25.0 87.5 31.2 100.0 100.0
1e-1 0.1 100.0 100.0 84.4 100.0 100.0
1e-1 0.3 100.0 100.0 75.0 100.0 100.0
1e-1 0.5 100.0 100.0 71.9 100.0 100.0
1e-1 0.7 93.8 100.0 68.8 100.0 100.0
1e-1 0.9 43.8 90.6 68.8 100.0 100.0

1 0.1 100.0 100.0 100.0 100.0 100.0
1 0.3 100.0 100.0 100.0 100.0 100.0
1 0.5 100.0 100.0 93.8 100.0 100.0
1 0.7 100.0 100.0 93.8 100.0 100.0
1 0.9 87.5 100.0 93.8 100.0 100.0

10 0.1 100.0 100.0 100.0 100.0 100.0
10 0.3 100.0 87.5 100.0 100.0 100.0
10 0.5 100.0 62.5 100.0 100.0 100.0
10 0.7 100.0 68.8 93.8 100.0 100.0
10 0.9 100.0 50.0 90.6 100.0 100.0

Table 8.12: Performance of PATH, PATH-RN, PD, PD-PATH and PD-CC-PATH over hydro-
electricity example with Type III market constraint on scenario tree 2
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 96.9 90.6 100.0 100.0 100.0
0 0.3 53.1 90.6 100.0 100.0 100.0
0 0.5 6.2 28.1 100.0 100.0 100.0
0 0.7 0.0 0.0 100.0 100.0 100.0
0 0.9 0.0 0.0 90.6 96.9 100.0

1e-2 0.1 100.0 100.0 100.0 100.0 100.0
1e-2 0.3 100.0 100.0 100.0 100.0 100.0
1e-2 0.5 100.0 90.6 100.0 100.0 100.0
1e-2 0.7 100.0 96.9 100.0 100.0 100.0
1e-2 0.9 93.8 90.6 100.0 100.0 100.0
1e-1 0.1 100.0 100.0 100.0 100.0 100.0
1e-1 0.3 100.0 84.4 100.0 100.0 100.0
1e-1 0.5 81.2 84.4 100.0 100.0 100.0
1e-1 0.7 100.0 50.0 100.0 100.0 100.0
1e-1 0.9 75.0 46.9 100.0 100.0 100.0

1 0.1 40.6 0.0 100.0 100.0 100.0
1 0.3 43.8 0.0 100.0 100.0 100.0
1 0.5 34.4 0.0 96.9 100.0 100.0
1 0.7 34.4 0.0 96.9 100.0 100.0
1 0.9 12.5 0.0 100.0 100.0 100.0

10 0.1 0.0 0.0 87.5 96.9 100.0
10 0.3 0.0 0.0 84.4 100.0 100.0
10 0.5 0.0 0.0 78.1 96.9 100.0
10 0.7 0.0 0.0 75.0 100.0 100.0
10 0.9 0.0 0.0 78.1 96.9 100.0

Table 8.13: Performance of PATH, PATH-RN, PD, PD-PATH and PD-CC-PATH over capacity
expansion example with Type I market constraint on scenario tree 2
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 6.2 100.0 96.9 100.0 100.0
0 0.3 0.0 71.9 96.9 100.0 100.0
0 0.5 0.0 9.4 93.8 93.8 100.0
0 0.7 0.0 0.0 93.8 100.0 100.0
0 0.9 0.0 0.0 34.4 56.2 100.0

1e-2 0.1 71.9 100.0 100.0 100.0 100.0
1e-2 0.3 18.8 100.0 100.0 100.0 100.0
1e-2 0.5 0.0 59.4 100.0 100.0 100.0
1e-2 0.7 0.0 12.5 100.0 100.0 100.0
1e-2 0.9 0.0 0.0 96.9 100.0 100.0
1e-1 0.1 100.0 100.0 100.0 100.0 100.0
1e-1 0.3 34.4 100.0 100.0 100.0 100.0
1e-1 0.5 12.5 90.6 100.0 100.0 100.0
1e-1 0.7 0.0 62.5 96.9 100.0 100.0
1e-1 0.9 0.0 0.0 96.9 100.0 100.0

1 0.1 100.0 100.0 96.9 100.0 100.0
1 0.3 93.8 100.0 96.9 100.0 100.0
1 0.5 71.9 84.4 96.9 100.0 100.0
1 0.7 0.0 40.6 96.9 100.0 100.0
1 0.9 0.0 0.0 87.5 100.0 100.0

10 0.1 100.0 100.0 96.9 100.0 100.0
10 0.3 100.0 81.2 96.9 100.0 100.0
10 0.5 81.2 75.0 96.9 100.0 100.0
10 0.7 56.2 43.8 93.8 100.0 100.0
10 0.9 0.0 0.0 90.6 100.0 100.0

Table 8.14: Performance of PATH and Primal-dual+PATH over Hydroeletricity example
with Type I market constraint on scenario tree 3
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 15.6 100.0 96.9 100.0 100.0
0 0.3 0.0 65.6 100.0 100.0 100.0
0 0.5 0.0 9.4 100.0 100.0 100.0
0 0.7 0.0 3.1 96.9 96.9 100.0
0 0.9 0.0 0.0 78.1 90.6 100.0

1e-2 0.1 78.1 100.0 100.0 100.0 100.0
1e-2 0.3 12.5 100.0 100.0 100.0 100.0
1e-2 0.5 0.0 62.5 96.9 100.0 100.0
1e-2 0.7 0.0 15.6 96.9 100.0 100.0
1e-2 0.9 0.0 0.0 96.9 100.0 100.0
1e-1 0.1 100.0 100.0 100.0 100.0 100.0
1e-1 0.3 59.4 100.0 96.9 100.0 100.0
1e-1 0.5 31.2 93.8 90.6 100.0 100.0
1e-1 0.7 9.4 75.0 93.8 100.0 100.0
1e-1 0.9 0.0 40.6 93.8 100.0 100.0

1 0.1 100.0 100.0 100.0 100.0 100.0
1 0.3 100.0 100.0 100.0 100.0 100.0
1 0.5 87.5 100.0 100.0 100.0 100.0
1 0.7 46.9 90.6 96.9 100.0 100.0
1 0.9 3.1 56.2 87.5 100.0 100.0

10 0.1 100.0 100.0 100.0 100.0 100.0
10 0.3 100.0 84.4 100.0 100.0 100.0
10 0.5 100.0 75.0 96.9 100.0 100.0
10 0.7 93.8 65.6 93.8 100.0 100.0
10 0.9 59.4 37.5 93.8 100.0 100.0

Table 8.15: Performance of PATH and Primal-dual+PATH over Hydroeletricity example
with Type II market constraint on scenario tree 3
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 100.0 100.0 81.2 100.0 100.0
0 0.3 100.0 100.0 59.4 100.0 100.0
0 0.5 81.2 100.0 50.0 100.0 100.0
0 0.7 12.5 96.9 25.0 100.0 100.0
0 0.9 0.0 65.6 9.4 100.0 100.0

1e-2 0.1 100.0 100.0 78.1 100.0 100.0
1e-2 0.3 100.0 100.0 65.6 100.0 100.0
1e-2 0.5 78.1 100.0 40.6 100.0 100.0
1e-2 0.7 59.4 96.9 25.0 100.0 100.0
1e-2 0.9 6.2 68.8 9.4 100.0 100.0
1e-1 0.1 96.9 100.0 84.4 96.9 100.0
1e-1 0.3 100.0 100.0 43.8 100.0 100.0
1e-1 0.5 90.6 100.0 37.5 100.0 100.0
1e-1 0.7 71.9 96.9 15.6 100.0 100.0
1e-1 0.9 18.8 78.1 18.8 96.9 100.0

1 0.1 100.0 100.0 100.0 100.0 100.0
1 0.3 100.0 100.0 93.8 100.0 100.0
1 0.5 100.0 100.0 87.5 100.0 100.0
1 0.7 93.8 100.0 90.6 100.0 100.0
1 0.9 43.8 78.1 93.8 100.0 100.0

10 0.1 100.0 100.0 100.0 100.0 100.0
10 0.3 100.0 84.4 96.9 100.0 100.0
10 0.5 100.0 81.2 100.0 100.0 100.0
10 0.7 100.0 75.0 93.8 100.0 100.0
10 0.9 93.8 65.6 93.8 100.0 100.0

Table 8.16: Performance of PATH and Primal-dual+PATH over Hydroeletricity example
with Type III market constraint on scenario tree 3
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 18.8 75.0 68.8 68.8 100.0
0 0.3 0.0 3.1 68.8 68.8 100.0
0 0.5 0.0 0.0 65.6 65.6 100.0
0 0.7 0.0 0.0 53.1 56.2 96.9
0 0.9 0.0 0.0 46.9 56.2 90.6

1e-2 0.1 31.2 46.9 25.0 37.5 100.0
1e-2 0.3 0.0 6.2 21.9 25.0 100.0
1e-2 0.5 0.0 0.0 21.9 25.0 100.0
1e-2 0.7 0.0 0.0 18.8 25.0 100.0
1e-2 0.9 0.0 0.0 12.5 21.9 100.0
1e-1 0.1 56.2 84.4 43.8 75.0 100.0
1e-1 0.3 0.0 21.9 43.8 43.8 100.0
1e-1 0.5 0.0 0.0 37.5 43.8 100.0
1e-1 0.7 0.0 0.0 40.6 43.8 100.0
1e-1 0.9 0.0 0.0 31.2 43.8 100.0

1 0.1 93.8 100.0 59.4 84.4 100.0
1 0.3 50.0 84.4 62.5 81.2 100.0
1 0.5 0.0 46.9 59.4 62.5 100.0
1 0.7 0.0 0.0 56.2 62.5 100.0
1 0.9 0.0 0.0 59.4 62.5 100.0

10 0.1 100.0 100.0 50.0 100.0 100.0
10 0.3 100.0 62.5 50.0 96.9 100.0
10 0.5 96.9 87.5 50.0 100.0 100.0
10 0.7 37.5 12.5 46.9 59.4 100.0
10 0.9 0.0 0.0 46.9 50.0 100.0

Table 8.17: Performance of PATH and Primal-dual+PATH over capacity expansion example
with Type I market constraint on scenario tree 3
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 62.5 81.2 84.4 100.0 100.0
0 0.3 6.2 0.0 81.2 96.9 100.0
0 0.5 0.0 0.0 78.1 93.8 100.0
0 0.7 0.0 0.0 53.1 71.9 100.0
0 0.9 0.0 0.0 59.4 75.0 96.9

1e-2 0.1 84.4 100.0 90.6 100.0 100.0
1e-2 0.3 6.2 3.1 81.2 100.0 100.0
1e-2 0.5 0.0 0.0 71.9 90.6 100.0
1e-2 0.7 0.0 0.0 65.6 78.1 100.0
1e-2 0.9 0.0 0.0 56.2 84.4 100.0
1e-1 0.1 100.0 100.0 90.6 100.0 100.0
1e-1 0.3 43.8 40.6 81.2 100.0 100.0
1e-1 0.5 9.4 6.2 81.2 100.0 100.0
1e-1 0.7 0.0 0.0 78.1 100.0 100.0
1e-1 0.9 0.0 0.0 78.1 93.8 100.0

1 0.1 100.0 100.0 90.6 100.0 100.0
1 0.3 100.0 96.9 93.8 100.0 100.0
1 0.5 40.6 18.8 93.8 100.0 100.0
1 0.7 3.1 0.0 93.8 100.0 100.0
1 0.9 0.0 0.0 71.9 96.9 100.0

10 0.1 100.0 100.0 100.0 100.0 100.0
10 0.3 100.0 100.0 100.0 100.0 100.0
10 0.5 100.0 65.6 100.0 100.0 100.0
10 0.7 65.6 0.0 96.9 100.0 100.0
10 0.9 3.1 0.0 93.8 100.0 100.0

Table 8.18: Performance of PATH and Primal-dual+PATH over Capacity example with Type
II market constraint on scenario tree 3
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ε λ
successful rate (%)

PATH PATH-RN PD PD-PATH PD-CC-PATH
0 0.1 100.0 100.0 90.6 100.0 100.0
0 0.3 100.0 100.0 71.9 100.0 100.0
0 0.5 75.0 71.9 56.2 100.0 100.0
0 0.7 18.8 9.4 68.8 100.0 100.0
0 0.9 0.0 0.0 90.6 100.0 100.0

1e-2 0.1 100.0 100.0 96.9 100.0 100.0
1e-2 0.3 100.0 100.0 84.4 100.0 100.0
1e-2 0.5 65.6 59.4 68.8 100.0 100.0
1e-2 0.7 15.6 6.2 65.6 100.0 100.0
1e-2 0.9 0.0 0.0 53.1 100.0 100.0
1e-1 0.1 100.0 100.0 84.4 100.0 100.0
1e-1 0.3 96.9 96.9 75.0 100.0 100.0
1e-1 0.5 59.4 68.8 53.1 100.0 100.0
1e-1 0.7 6.2 6.2 56.2 96.9 100.0
1e-1 0.9 0.0 0.0 78.1 100.0 100.0

1 0.1 100.0 100.0 100.0 100.0 100.0
1 0.3 100.0 100.0 93.8 100.0 100.0
1 0.5 90.6 96.9 78.1 100.0 100.0
1 0.7 40.6 18.8 59.4 100.0 100.0
1 0.9 3.1 0.0 81.2 100.0 100.0

10 0.1 100.0 100.0 100.0 100.0 100.0
10 0.3 100.0 100.0 100.0 100.0 100.0
10 0.5 100.0 75.0 100.0 100.0 100.0
10 0.7 50.0 3.1 100.0 100.0 100.0
10 0.9 12.5 0.0 90.6 100.0 100.0

Table 8.19: Performance of PATH and Primal-dual+PATH over Capacity example with Type
III market constraint on scenario tree 3
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