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Abstract

The main topic of this thesis is solving simulation optimizations using a deterministic

nonlinear solver based on the sample-path optimization concept. The simulation function

is considered as a black box that deterministically returns the exact output for the same

input value. The gradient-based nonlinear solver finds a local optimal based on the

function and gradient evaluation of the sample path simulation function. The simulation

output is used for the function evaluation while the derivative of a quadratic model

is returned for the gradient evaluation. We locally build a quadratic model from the

surrounding simulation points using a least squares approximation. This scheme does

not require the modification of the original simulation source code and can be carried

out automatically.

Due to the large number of simulation runs, the high-throughput computing environ-

ment, CONDOR, is used. Simulation computations are then distributed over heteroge-

neous machines which can be executed on entirely different computer architectures within

the network. Additionally, a resource failure is automatically handled using the check-

point and migration feature in this CONDOR environment. We implement a Master-

Worker condor PVM server to avoid CONDOR scheduler waiting period overhead.

At the end of the thesis, we show how to solve a nonlinear programming problem

using a primal-dual formulation. The first and second order derivative models of the

Lagrangian function are built using an automatic differentiation that is supplied by a

modeling language. In addition, the original nonlinear objective function is incorporated

into a Fischer-Burmeister merit function to guide the mixed complementarity solver to

find the optimal solution of a nonlinear program.
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Chapter 1

Introduction

1.1 Introduction

Many practical engineering problems give rise to intractable mathematical formulations.

The complex nature of the system or the real-world process motivates researchers to em-

ploy simulation modeling as an alternative method to draw a conclusion about the system

behavior. A simulation model is used to describe and analyze both the existing and the

conceptual system, sometimes helping in the design of improvements for the real system.

Good summaries on simulation components and the advantages and disadvantages of

using simulation models can be found in [75, 8]. Many usages of a simulation model can

be found in [50] for manufacturing applications, in [85] for the aviation industry, in [57]

for chemical analyses, and in [80] for the health care industry.

The popularity of simulation models comes from their use as decision making aids for

determining possible outputs under various assumptions. The common use of simulation

models is in goal-driven analyses which determine values of the decision variables to allow

the model to achieve specific goals. This goal-driven simulation is used in many fields of

economics, business and engineering. Moreover, the decision variables are typically con-

strained by other relationships, for example, budgetary or feasibility restrictions. These

constraints together with a goal give rise to an optimization model using the goal as an

objective function.
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There are two classes of goal-driven simulation optimization. The first class is the

level crossing which tries to identify the decision variables of a simulation that produces

the simulation output with the specified value, d. We can cast the optimization of this

class of problems as min||Sr(x) − d||p where Sr(x) is the simulation function, d is the

target value and || · ||p is the p-norm measure function, usually the Euclidean norm. The

second class is straightforward optimization which tries to determine the optimizer of the

decision variables from the simulation. This problem can easily be cast as a mathematical

programming problem.

From the optimization perspective, the simulation model or function is simply a

function that takes input values and derives one or more output values. In reality, most

optimization algorithms also rely on the first order or second order derivative of the

simulation function. Due to random effects and the stochastic nature of the simulation,

the exactness of the gradient of the simulation function may misguide the optimization

algorithm to search an entirely wrong direction. More reliable methods to estimate

derivatives must be used.

In addition to the noise of the simulation, the long running time of a simulation

model is also an unfavorable situation. Even though the use of the simulation model

is cheaper than building the real system, it is very time-consuming to run and analyze.

One simulation run may consume hours of execution time on a single computer. Further-

more, multiple simulation runs are required in order to reliably estimate a steady state

simulation function or estimate its gradient. Many methods have been used to reduce

the execution time of this problem, such as infinitesimal perturbation analysis which ap-

proximates the gradient evaluation using one simulation run [31, 42, 60, 61] or the score

function method (also called Likelihood Ratio method) [69, 68].

The correctness of the simulation model [72, 70] is an important ingredient for an
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optimization problem involving simulation. The verification of the simulation program

ensures that the computerized simulation program is performed accurately, and a valida-

tion of the simulation model determines if a simulation model is an acceptable represen-

tation of a real system. See [47] for testing the validity of the model using a statistical

method. We will assume throughout that the simulation model is correct before we start

optimizing it.

1.2 Simulation Optimization

The optimization of simulations is a challenging optimization problem that researchers

have attacked for many years from the 1950’s until the present day [46, 78, 2, 73, 6, 9,

33, 5, 40, 60, 7, 74, 66, 61, 48, 76, 77, 58, 32, 71, 55, 79, 59, 39, 41]. We can categorize

the methods for solving the simulation optimization into two categories.

The first category is comprised of methods which optimize a deterministic simulation

model. These methods include a meta-model optimization [71, 59], or a sample-path

optimization [66, 39, 60, 61, 26] (that we will use in this thesis based on a different gradi-

ent evaluation procedure). A meta-model method considers the steady state simulation

model as a complicated formula that is approximated by a nonlinear function. Then

the optimization process is applied to this nonlinear function to find the best optimum

solution. The simulation model assumes a mathematical formula as

y = Sr(x)

where y is a vector of a system response, x is a vector of decision variables and Sr is a

simulation model. The meta-model approximation of this simulation is then defined as

y = f(x, θ) + ǫ
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where x is a decision variable, θ is a parameter vector to be estimated from the algorithm

and ǫ is the error. Santos and Porta Nova [71] use the least squares method to estimate

this meta-model and validate the model using regression analysis. The correctness of this

method relies on the exactness of the meta-model approximation and the optimization

algorithm. Another method is a goal-driven simulation algorithm [59] which solves the

special form of this meta-model. By considering a simulation model as one of the non-

linear constraints, Morito et al. [55] suggest an iterative method that uses a variation

of the cutting-plane method to find the optimal solution of the simulation model under

constraints. They apply a deterministic optimization method to an objective function

and nonlinear constraints except a simulation model. They treat a simulation model as

an oracle to verify the feasibility. So if a simulation returns an unacceptable result, they

reduce the searching domain by adding mathematical constraints. However, this method

is hard to generalize and is likely to be poorly behaving for a standard simulation opti-

mization problem.

In this thesis, we use the sample-path optimization method which is described in

section 1.3 that relies on a deterministic optimization algorithm solving the long simula-

tion model based on the sample-path optimization assumption. There are two different

approaches that can apply to this scheme. The first approach is a derivative-free opti-

mization [14, 17, 83, 84, 51] which does not rely on the derivative of the actual simulation

run. Conn and Toint [14] apply the derivative-free technique by using an interpolation

set that defines a (quadratic) polynomial model and retrieve a gradient direction from

this polynomial model. They integrate their method with a trust region algorithm and

solve problems from the CUTE [11] and Hock and Schittkowski [43] test sets with suc-

cess. We do not use this technique because it does not integrate well with constrained

optimization techniques and existing mathematical algorithms such as CONOPT. Dennis
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and Torczon [17] apply the pattern search algorithm which totally avoids computation of

the derivative of the objective function and explores a lattice around the current point.

Under a regularity assumption that the objective function is continuously differentiable,

they show that their method converges [83, 84] to a first-order point. In addition, if all

constraints are linear [51], then a variation of this method is guaranteed to converge to

the Karush-Kuhn-Tucker (KKT) solution. However, this method may take many func-

tion evaluations to converge. The second approach is a gradient based algorithm of the

sample path optimization [37, 38, 61, 35, 36, 26] that relies on the derivative computation

of a simulation function. We will use this method in the thesis which will be discussed

in in section 1.3 in detail.

The second category is comprised of methods that optimize the stochastic simulation

model directly or the simulation model with noise. These methods include stochastic

optimization [63, 33, 79, 74], or heuristic optimization approaches such as Genetic al-

gorithms [7, 41], Simulated annealing [40], Nested Partitions [77, 76, 58], or the Tabu

search method [32]. Even though these methods converge to the solution in the presence

of noise, they are usually slower than deterministic mathematical programming methods.

Stochastic approaches estimate the optimal solution by generating a sequences {xn}

where

xn+1 = xn + ang(xn, θ)

for all n ≥ 1, where g(xn, θ) is an estimate of the gradient of the simulation function at

xn. The sequence an has infinite sum with a finite second moment. Under appropriate

conditions, the sequence {xn} is guaranteed to converge to the optimizer with probability

one.

Heuristic approaches use the simulation output to define a merit function that de-

termines the goodness of that point. They use some randomness to select a group of
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candidate points and apply operations on those points. If the selected points do not

improve the objective function of the problem, then backtracking or drawing of new can-

didate points will be used. There is no guarantee of the convergence of these methods

except in the discrete case [76, 58] which is equivalent to generating all possible outputs.

For a good coverage of the stochastic optimization method, see [16].

1.3 Sample-path optimization

Suppose we are given an extended-real-valued stochastic process {Sn} that is a function

of a decision variable x ∈ IRp with the property that it almost surely converges to an

extended-real-valued function S∞. For example, S∞ is the steady-state function of a

simulation while {Sn} is a simulation of length n. Assume that Sn and S∞ are defined

on a common probability space (Ω,F , P ). A sample path for these stochastic processes

obtained by fixing a particular ω and is defined by {Sn(ω, ·)} and S∞(ω, ·), respectively.

Note that each of these functions is deterministic, so we can compute the value of Sn

based on this sample. Since S∞ may be intractable and hard to compute, we aim to find

a minimizer of S∞(ω, x) using Sn(ω, x). Generally, the minimizer of Sn(ω, x) may not

converge to a minimizer of S∞(ω, x) unless the sample-path assumption [66] that we now

define is satisfied.

Before stating the sample-path assumption, we need to introduce the definition of a

lower semi-continuous and proper function and the concept of epiconvergence [4, 44].

An extended-real-valued function defined on IRp is said to be proper if and only if −∞

does not belong to its range and its value is not equal to +∞ everywhere. The extended-

real-valued function, S is said to be lower semi-continuous at x̂ ∈ IRp if and only if for

any sequence {xn} in IRp converging to x̂, S(x̂) ≤ limn→∞S(xn) if limn→∞S(xn) exists.



7

We say that a sequence of extended-real-valued functions, Sn, epiconverge to a function

S if

1. For every {xn} in IRp that converges to x̂, S(x̂) ≤ lim infn→∞Sn(xn)

2. There exists a sequence {yn} in IRp converging to x̂ such that S(x̂) ≥ lim supn→∞Sn(yn)

Theorem 1 (Robinson, 1996) Suppose

1. The functions {Sn(ω, ·)} are proper, lower semi-continuous and epiconverge to

S∞(ω, ·) with probability one

2. S∞(ω, ·) is proper with a nonempty compact set of minimizers.

Then for large n, a set of minimizer of {Sn(ω, ·)} is nonempty and compact and a point

in this set is within a small distance from some point in the set of minimizers of S∞(ω, ·)

with probability one.

Our main usage of the sample-path optimization is to apply a deterministic optimiza-

tion algorithm to the simulation program for a fixed simulation length based on the same

stream of random numbers. Since most simulation implementations use pseudo random

number generators from a fixed seed, the simulation function with the same random seed

will generate the same output values. Hence, the simulation is deterministic and we can

apply a deterministic optimization algorithm to find the minimizer of this function which

is close to some minimizer of the steady-state function. In the next section, we will show

how to estimate gradient of the simulation function based on the local quadratic model

that can be used in the gradient-based deterministic optimization algorithm.
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1.4 Gradient evaluations for a simulation function

To guide gradient based optimization to solve a simulation optimization problem, dif-

ferent methods for gradient computation have been used; finite differences, infinitesimal

perturbation analysis [42], automatic differentiation [35, 36], or the derivative of a simple

polynomial fitting model as in this thesis.
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Figure 1: Noisy simulation function and the its derivative at 5.0 using a finite differences.

The first method, finite differences, is very general and easy to implement. For n

decision variables, the method relies on the simulation computation of at least n+1 sim-

ulation points. The numerical accuracy of the derivative results from the small distance

between these points. This causes difficulty in handling the derivative accuracy. The

method is not suitable to deal with noisy functions because the estimation of a noisy
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function could return derivatives that are completely erroneous. Figure 1 shows an ex-

ample of the derivative computation at 5.0 based on the finite difference method. This

is a graph of the service rate of the first operator against the percentage of customers

lost in a telemarketing simulation. From this figure, the derivative approximation at 5.0

shows an increasing trend of the function to the right. However, the obvious minimal

solution lies on the right side of the graph. The final optimal solution using this method

is highly dependent on the starting point chosen.

The second method, infinitesimal perturbation analysis (IPA), uses a sample path

simulation run to collect the gradient evaluation of a simulation output. This method

requires a modification of the simulation source code to incorporate the gradient com-

putation. Even though the method is more efficient than finite differences, it inherits

the same problem regarding noisy functions because the derivative result from the IPA

method is equivalent to the finite difference method.

FORTRAN
if(x .lt. y) then

z = x

else

z = y

endif

Figure 2: FORTRAN code example for z = min(x,y) using branching.

The third method, automatic differentiation uses the evaluation of the underlying func-

tion to compute the derivative code. The method constructs and modifies the evaluation

function tree. For analytical functions, this method can compute derivatives of a long and

complex function expression faster than a symbolic differentiation because of repeated

algebraic formulae occurring in the expression. Due to complex nature of a simulation

model, it is implemented using a typical programming language such as FORTRAN or
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C which contain some discrete variables and branching conditions, as shown in Figure 2.

The problem in using automatic differentiation stems from these two components. The

first component is that the derivatives of any discrete variables are not mathematically

well defined. For example in M/M/1 queue, an average waiting time, w, is computed as

the total waiting time tw divided by m customers. Clearly the derivative of ∂w
∂m

is not

defined when m is finite and integer. The second component, the branching conditions,

causes the evaluation tree to return different values from small changes that trigger the

branching condition. This leads the automatic differentiation to produce a sharp deriva-

tive change. Figure 2 shows the sample FORTRAN code that computes the value of

z. Note that the gradient of z = min(x,y) with respect to x or y is not well defined.

Additionally, this method requires the simulation source code which we try to avoid in

this thesis.
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Figure 3: Noisy simulation function using a local quadratic model for gradient approxi-
mation at 5.0.
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Unlike the second and the third methods that require access to the simulation source

code, our method relies solely on executing the simulations of surrounding points and

building up a (small-scale) quadratic model which is smooth and differentiable similar

to the derivative free method. While this approach may be inefficient because of large

computation of the simulation runs, the derivative approximation is more reliable and

the computation can be carried out entirely automatically. Figure 3 shows the same

example as figure 1 using the locally fit quadratic model. The gradient approximation

at 5.0 shows a negative slope which guides the optimization algorithm to search for the

minimal point to the right of the graph.

1.5 Overview of the quadratic simulation optimiza-

tion algorithm

Figure 4 shows our scheme to solve a simulation optimization. A practitioner supplies a

nonlinear model written in the GAMS modeling language [12] and a simulation module

written in traditional programming language such as FORTRAN or C as an external

routine. A nonlinear solver is selected using the modeling language statements. The sim-

ulation optimization problem is solved by executing the model in the modeling language

system. The modeling system first constructs an internal nonlinear model and passes

the information to the nonlinear solver. Except for the function and gradient of the

external equation, all function and derivative evaluations are supplied by the modeling

language using its internal evaluation and automatic differentiation as appropriate. For

the evaluation of the external function call, the modeling language system gives control
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to the quadratic simulation module which calls the simulation module for function com-

putation. However, the derivative computation is different. The module constructs the

quadratic model using surrounding simulation points computed by the simulation mod-

ule. It refines the quadratic model using a statistical test. If the first-order condition is

satisfied or the termination criteria is met, then the nonlinear solver returns the result

to the modeling language system. The modeling language system then reports the final

result to the modeler.

A user model

A modeling
language system

A nonlinear solver

The Quadratic Simulation
Module

The simulation module

Figure 4: Overview of the simulation optimization solver.

1.5.1 Quadratic model

In this thesis, we address a practical approach for solving the simulation optimization of

continuous decision variables based on sample-path optimization. We allow the optimiza-

tion model to be formulated as the nonlinear program in the GAMS modeling system

[12]. The simulation function is provided essentially as a black-box module to the GAMS
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model as an external equation. Our approach exploits state-of-the-art (gradient based)

optimization solvers, rather than stochastic or heuristic ones.

Our approach is modular because it can easily apply a new state-of-the-art nonlinear

programming solver without recoding additional information nor programming. This is

accomplished by a solver link and the dynamic linked library routines within a model-

ing language system. To deal with a stochastic function such as a simulation, we use a

model building technique that relies on the surrounding points which are randomly and

independently generated. For a linear model of n independent variables, this technique

requires at least n + 1 sampling points which is the same requirement as the finite dif-

ference method. For the quadratic model of n independent variables, it requires at least

n(n+ 1)/2 + n+ 1 for a symmetric quadratic model and n2 + n+ 1 for a non-symmetric

quadratic model. For higher order polynomial models of n independent variables, its

requirement of sampling points grows in the order of n3. We use a quadratic model

because of its nonlinear nature and its smaller requirement for the number of sampling

points. In addition, a higher order polynomial model can cause the over-fitting problem

which captures simulation noise in the model.

1.5.2 Statistical test of quadratic model

After the simulation runs are complete, we build a small-scale quadratic model using

least squares approximation. The aim is to find the best quadratic fitting model of the

simulation points that exhibits a similar derivative to the gradient of the simulation func-

tion. The least squares approximation of finding the quadratic fitting model is equivalent

to performing a linear regression model on the coefficients of the quadratic model using

the simulation points as the regression data. The analysis of regression can then be used



14

to determine the best quadratic fitting model.

We use the coefficient of determination, R2, to test the fitness of our quadratic model

to the simulation data. This R2 can be interpreted as the ratio of the regression variation

and the total variation in the data points where the regression variation is the difference

between the total variation and the error variation.

If R2 is close to 1, then the regression variation is approximately equal to the total

variation. In another words, the error variation is close to zero. We can use the quadratic

model to predict all simulation points so that the derivative of this quadratic model is

close to the gradient of the simulation function within that neighborhood. If R2 is close

to 0, then the total variation is close to the error variation. That means the quadratic

model could not be used to predict any of the data points within that neighborhood.

Because of the stochastic behavior of the simulation, the quadratic model always has

error variation even though it perfectly fits the trend of the simulation function. Instead

of rejecting the model, we derive an additional statistical test to be able to accept this

type of quadratic model.

In this thesis, we propose that the acceptable quadratic model in the neighborhood of

the point can be 1) a quadratic model that shows acceptable fitness, i.e. the R2 is close

to 1, or 2) a quadratic model with white noise error. The white noise error is defined as

the error distribution that is normal with unknown mean and unknown variance. This

can be determined using goodness-of-fit test statistics.

Goodness-of-fit test statistics[81] relate to the problem of determining whether the

samples x1, x2, ..., xn are extracted from a population with known distribution F (x).

Generally, the Chi-square test is used because it can be easily adapted to any distribu-

tion, both discrete and continuous. Because we are interested in the goodness-of-fit test
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statistics with the normal distribution F (x), a more powerful test such as the Cramér-

von Mises statistic[82] (herein termed the W 2 statistic), can be used. The W 2 statistic

is designed to test the null hypothesis that the distribution of data fits a general distri-

bution such as a normal or an exponential. When the null hypothesis is rejected, then

with high probability the error distribution reveals that some simulation points (extreme

points) do not fit with the current quadratic model. In this case, the quadratic model is

not acceptable. Since we do not plan to fit the simulation using a higher order polyno-

mial model, we re-fit the quadratic model based on smaller radius which excludes those

extreme points.

1.5.3 Identifying outliers

For noisy functions, the quadratic model using the least squares approximation does not

always fit the function. The error distribution of the fit may exhibit a non-symmetric

distribution that is caused by some extreme values. In order to fit the quadratic model

with this noisy function, we want to exclude these points from our quadratic model

building.

To determine extreme points or outliers from the simulation data, we use a skewness

measure of the distribution shape. If there are outliers or extreme points in the sample,

then the shape of the distribution is not symmetric with respect to the mean or the

distribution skews. A distribution is said to be skewed to the right if the mean is larger

than the median and it is said to be skewed to the left if the mean is smaller than the

median. The coefficient of skewness [1] can be used to determine the lack of the symmetry

in data. It is computed as
∑

n

i=1
(xi−x̄)3

(n−1)×s3
e

, the ratio of the expectation of the third power

of the sample from its means to the third power of the standard deviation. If the data
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is distributed symmetrically from the left and the right of the center point, then the

skewness is zero. For example, the normal and uniform distribution have zero skewness.

If the distribution is skewed to the left, the skewness is negative. The positive skewness

indicates that the distribution is skewed to the right.

The skewness can be used to determine the group of extreme points or outliers that

we need to exclude from our model building. By reducing the radius, we can exclude

some undesirable point from our model. The strategy is to obtain the largest radius so

the model building can use as many points as possible.

We sort all points according to their values and group them in the fixed number of

blocks. Therefore, we partition our points into blocks of data which are corresponding the

block of histogram. If the coefficient of skewness is negative or the distribution is skewed

to the left, the highest block is discarded because it contains extreme points. However,

if the derivative point is in this block, we rebuild the quadratic model within this block.

Otherwise, we discard the block by computing the largest radius that all points in that

block are excluded.

1.5.4 Parallel computation of quadratic model

The quadratic model still requires large amounts of computational power for the sim-

ulation computations. Nevertheless, the simulation points can be computed in parallel

using a high-throughput computing environment, such as CONDOR [54, 21].

CONDOR is a resource management system that utilizes the computational resources

within the network using a ClassAd design. The ClassAd design is made up of the

resource agents who advertise their resource in a resource offer ad, the customer agent

who requests the machine to run a task, and the matchmaker who identifies the resource
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matching between the resource agents and the customer agent. After the match has

been made, the customer agent needs to send the description of the task to the resource

agent which is done using the file system. CONDOR also supports efficient mechanisms to

access data files of the customer agent from the resource agents and attempts to optimize

the processing time of executing jobs within the network. Because of the flexible design

of CONDOR, the customer agent can request multiple architecture resources to execute

the task.

To take advantage of the heterogeneous machines within the CONDOR pool, we

compile our simulation module on different operating systems on different machines. The

simulation code is re-linked to the CONDOR library to be able to utilize the checkpoint

and migration facilities. Internally, this maintains a trace of the execution of the task so

that another machine can restart the execution of the program when the task has been

interrupted. Each simulation run may execute on entirely different machine architecture

within the network.

We also use a Master-Worker paradigm to alleviate this computational problem. The

Master-Worker server runs as a separate process along with the optimization solver. Both

use the file system to exchange information. This significantly reduces the overhead of

waiting and rescheduling time that occurs within the CONDOR environment.

1.6 Nonlinear programming solver

In this thesis, we also use a model building technique to solve nonlinear programs based

on the primal-dual formulation [20] of the Lagrangian function using second order in-

formation. The first-order conditions of the original NLP model are cast as a mixed

complementarity model which is solved using the Newton type complementarity solver,
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PATH[18].

The first order derivatives of the original nonlinear model are required for constructing

the mixed complementarity model while the second order derivatives are employed by the

mixed complementarity solver. In this situation, nonlinear functions are defined within

the modeling language system that provides the the first and higher order derivative using

automatic differentiation. Because the computation of the automatic differentiation uses

the function evaluation tree, the numerical results are guaranteed to be accurate up to

the machine precision.

The mixed complementarity solver, PATH, uses a merit function to guide and identify

the solution point. To guide the mixed complementarity solver to find the desired optimal

solution, we implement a new merit function as a weighted sum of a residual function

for error in the first-order conditions and the nonlinear objective function.

1.7 Scope of the thesis

The objective of this thesis is to develop a general and practical simulation optimization

solver that requires no modification of the simulation source code and easily adapts to new

state-of-the-art nonlinear programming solvers. The program could be used to explore

and extend a variety of simulation optimizations based on the same simulation module.

In addition, the technique of model building can be applied to solve a nonlinear program

using a state-of-the-art mixed complementarity solver. The major contributions of this

research are

1. Development of the gradient based simulation optimization using the quadratic

fitting model;

2. Development of the parallel computation of quadratic simulation approximation
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solver using the resource management system, CONDOR;

3. Development of adaptable simulation optimization model in the modeling language

that reuses the same simulation module without modifying the simulation source

code.

4. Combination of different programming environments using a dynamic linked library

in the WINDOWS environment and shared libraries in the UNIX environment and

the distributed resource management system to enhance the program capabilities

for solving a simulation optimization problem.

5. Development of a Master-Worker server via a file system that solve the simulation

optimization.

6. Development of an alternative nonlinear programming solver that uses the mixed

complementarity solver.

7. Assembly of the mixed complementarity solver, automatic differentiation and merit

function to solve a nonlinear program.

The remainder of this thesis is organized as follows. In chapter 2, we describe the

quadratic simulation optimization and its implementation. In chapter 3, we detail the

parallel implementation of the quadratic simulation optimization using CONDOR and a

Master-Worker server. In chapter 4, we describe the nonlinear programming solver using

the mixed complementarity engine and automatic differentiation. Chapter 5 gives con-

clusions and outlines future research for both simulation optimization and the alternative

nonlinear programming solver.
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Chapter 2

Simulation optimization using

quadratic models

2.1 Simulation optimization model

The aim of our work is to use pre-existing algorithms available via a modeling language

to determine an optimal solution of a sample path simulation model. We regard the

simulation function, Sr : IRn → IRm as a mapping from a decision variable, x ∈ IRn, to a

simulation response, y ∈ IRm. The goal-driven simulation problem can be cast as

min f(x, y)

s.t. y = Sr(x)

(x, y) ∈ B

(1)

where f : IRn+m → IR is an objective function, y is a variable that holds the simulation

output and B specifies additional constraints imposed on the variables. As a simple

motivating example, consider an M/M/1 queue with exponentially distributed inter-

arrival and service times. We might want to improve the service rate by providing

additional training to a server, for example an employee, resulting in a decrease in the

amount of time customers have to spend waiting in the queue. An optimization problem

might be to determine the amount of training that minimizes the total cost; that is, the

cost for training and an additional penalty for lost customer goodwill. For concreteness,
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assume the penalty is a linear cost of the waiting time, resulting in the following model:

min (µ− c)2 + w

s.t. w = Sr(µ)

λ ≤ µ

(2)

where λ is an inter-arrival rate, w denotes an average waiting time of a customer, µ is a

service rate variable, c is a constant factor and Sr is an external equation that maps to

the external simulation module.
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Figure 5: Plot of the simulation function (waiting time) for the fixed random seed.

Figure 5 shows five simulation functions, S10, S100, S1000, S10000 and S∞ for a fixed

random seed. As the simulation length increases, the simulation function becomes close

to the steady-state simulation function. Therefore, in this case, the minimizer of the

long-run simulation function is close to the minimizer of the steady-state simulation
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function.

Analytically, the average waiting time of the S∞ can be computed as w = 1
µ−λ

for

an inter-arrival rate λ. We fix the inter-arrival rate at 3. Thus, our M/M/1 simulation

optimization approaching the steady state is equivalent to the problem

min (µ− 4)2 + w

s.t. w = 1
µ−3

µ ≥ 3

(3)

The optimal solution is at µ = 4.297 with an objective value of 0.859.
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Figure 6: Plot of the objective function of M/M/1 model for the fixed random seed.

Figure 6 plots the objective function for the same sequence of simulation functions.

For S10000, the optimum value of this function is very close to the minimizer of S∞.

For most practical simulation problems, Sr is not available analytically; the simulation
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function is provided as an oracle that is given the decision variable’s choices and produces

the outputs or simulation results. To include the non-algebraic function within a modeling

language system, we have to use an external equation that links to the simulation module

as described in section 2.2. Furthermore, standard nonlinear programming algorithms

require an estimate of the derivative of Sr. We show how to achieve this in section 2.3.

2.2 External equations in GAMS

A modeling language system is supposed to facilitate the communication between a prac-

titioner, who wants an answer to an optimization problem, and a mathematical researcher

who develops and implements an optimization algorithm. It provides a high-level lan-

guage that represents optimization problems (such as a linear program, an integer pro-

gram, a nonlinear program or a mixed complementarity program) and manipulates the

results of the solution. A practitioner models a problem using algebraic formulae with-

out worrying about the mechanics of finding the solution. Conversely, a mathematical

programmer concentrates on applying a mathematical technique to a standard problem

interface that is supplied by the modeling language without worrying about collecting

data, writing constraints, or producing a report.

Generally, a model in a modeling language is comprised of four components; data,

variables, equations (both equalities and inequalities) and modeling commands. The first

component, data, defines a particular instance of the optimization problem that is given

by a practitioner, for example, the arrival rate of the M/M/1 queue. Data is also used

to define the domain or the set of variables in the problem. For an M/M/c queue, a set

of decision variables may be identified as 1, ..., c for each server. Therefore, each service

rate variable is referred to as s(1), ..., s(c). The second component, variables or decision
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variables, define the changeable quantities of the optimization problem that a mathemat-

ical solver can vary in order to reach the solution. For example, the M/M/1 model in (2)

has a service rate as a variable. The third component, equations or constraints, defines

the relationship between variables and data that are derived from the problem instance

such as bound constraints, budgetary constraints, etc. The last component, modeling

commands, is different from the other three components. It is not used to describe the

optimization model itself but rather specifies the interaction between a practitioner and

the modeling language; examples of these commands are ‘model’, ‘display’, ‘solve’, etc.

Even though a modeling language offers all the benefits of expressing a relationship

among variables using mathematical formulae, there is still a limitation on represent-

ing some relations, such as a simulation model which requires the use of an external

computation outside of the modeling language system. The simulation module is often

implemented using a traditional programming language such as C, FORTRAN, C++,

Java, etc and is very complex. In practice, it would often be impossible to rewrite the

simulation code in the modeling language. In addition, source codes of several simulations

may not be available because they have been lost after years of use.

We are interested in using the GAMS modeling language, which extends its applica-

bility by communicating with an external module using a dynamic linked library as in

the WINDOWS environment or a shared library as in the UNIX environment. Internally,

GAMS defines an external equation as a special mapping that takes an index of the co-

efficient of the decision variables in the modeling language to the index of the variables

in the external module. It also maps the integer value in the equation right-hand-side of

the modeling language to an index of the simulation output.

Typically, GAMS has no control over the return values from a simulation module

which can be negative, positive or zero depending on the particular simulation run.
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GAMS suggests incorporating an external function by using a binding variable and an

equation. A binding variable is a regular GAMS variable that will take on the same value

as the external function (simulation output) when the equation is satisfied at level zero.

The value of this binding variable is automatically set during the optimization process

and should not be set by the external module. Thus, a practitioner is required to write

an external module that returns the difference of the simulation output and the corre-

sponding binding variable. When the external equation is satisfied, the corresponding

binding variable takes on the value of the external function at the given input.

Consider an external function that takes two inputs x(1) and x(2) and provides an

output f(1).

exteqn.. 1 ∗mu+ 2 ∗ w =x= 1; (4)

In GAMS, the external equation (4) shows an input variable mu and a binding variable w

that passed to the external module as the first and second variables. The number 1 on the

right-hand-side of =x= indicates the index in the output vector from the external module.

The left hand side declares that x(1) corresponding to mu and x(2) corresponding to w,

respectively. The external module returns f(1) − x(2) as its output which is forced to

zero by the nonlinear solver resulting in x(2) = f(1). Therefore, x(2) will hold the output

simulation of the M/M/1 simulation when mu = x(1).

The general GAMS syntax of an external function is

exteqn.. 1 ∗ var1 + 2 ∗ var2 + ...+ k ∗ vark =x= m; (5)

where m is the mth index of the output vector and k is the total number of variables

in the simulation module. The integer coefficient of each variable i identifies a mapping

between the GAMS internal variable, vari, with the ith decision variable of the external

module. Note that m of these decision variables are binding to the m outputs of the
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simulation value. If n is the total number of decision variables and m is the dimension

of a simulation output, then k = n+m.

FORTRAN

Integer Function GEFUNC (icntr, x, f, d, msgcb)

C Control Buffer:

Integer icntr(*)

C Numerical Input and Output:

Double Precision x(*), f, d(*)

C Message Callback Routine:

External msgcb

C

GE_API int GE_CALLCONV

gefunc (int *icntr, double *x, double *f, double *d, msgcb_t msgcb)

Figure 7: Interfaces for external function call in GAMS.

There are two available interfaces for communicating with an external equation in

GAMS; FORTRAN and C. The interfaces are used to pass values of variables, a simula-

tion function and a gradient evaluation between GAMS and the external module. Figure

7 shows both interfaces in FORTRAN and C programming language where x is a vector

of decision variables including any binding variables, f is an output vector, d is a deriva-

tive evaluation at x and msgcg is a buffer in which external module reports a message

back to GAMS.

Additionally, GAMS passes a problem description via an integer vector icntr, which

contains problem information such as the number of external equations, the number of

external variables, the operational mode such as initialization mode, termination mode or

evaluation mode. The interface function returns 0 if it succeeds, 1 if there is a recoverable

error, or 2 if there is a fatal error and the program should not continue.
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During the initialization mode, icntr[I Mode] = 1, an external module allocates

memory, reads initial data from a file or a database, and initializes all program variables.

For the termination mode, icntr[I Mode]=2, an external module deallocates memory,

reports statistics, closes files, or does other clean-up tasks.

The major mode is the evaluation mode, icntr[I Mode] = 3. In this mode, the

external module computes a function if the icntr[I Dofunc] is set to 1 and computes

a derivative if the icntr[I Dodrv] is set to 1. The function value of the external mod-

ule must return the difference between the binding variable and the simulation output.

Therefore, it returns zero when the binding variable contains the output of the simu-

lation. For complete details of the GAMS external function interface see the GAMS

documentation available at http://www.gams.com/docs/extfunc.htm.

Consider the following nonlinear program example,

min x+ y

s.t. x2 + y2 ≥ 1

(x, y) ∈ IR2

(6)

Variables obj, x, y;

Equations objective ’The objective function’,

circle ’The circular relation between x and y’;

objective.. obj =e= x + y;

circle.. sqr(x) + sqr(y) =g= 1;

model plane /objective,circle/;

solve plane using nlp minimizing obj;

Figure 8: Regular GAMS model for (6) .

This can be written as the nonlinear program in GAMS as in figure 8. Figure 9 illustrates

the use of the external function. In this formulation, the circle equation identifies the
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original circular relationship between x and y which states that the point (x,y) must

lie on or outside of the circle of radius 1. An additional binding variable r2 is added to

capture the circular relation that x2 + y2 = r2 as in excircle.

Variables obj, x, y, r2;

Equations objective ’The objective function’,

excircle ’The external circular relation’;

circle ’Radius equation’;

objective.. obj =e= x + y;

excircle.. 1*x + 2*y + 3*r2 =x= 1;

circle.. r2 =g= 1;

model plane /objective,circle/;

option nlp=conopt2;

solve plane using nlp minimizing obj;

Figure 9: GAMS model for the model (6) using the external equation feature..

We also have to implement the external module that corresponds to the external

equation in GAMS.
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include ’geheader.inc’

include ’geindex.inc’

Integer Function GEFUNC(Icntr, X, F, D, MSGCB)

Implicit none

Integer Icntr(*), i, neq, nvar, nz

double precision X(*), F, D(*), realF

SAVE neq, nvar, nz

GEFUNC = 0

if(icntr(I_Mode) .eq. 1) then

neq = 1

nvar = 3

nz = neq * nvar

elseif(Icntr(I_Mode) .eq. 2) then

elseif (Icntr(I_Mode) .eq. 3) then

if(Icntr(I_Eqno) .le. neq) then

C Function and Derivative Evaluation Mode

if(Icntr(I_Dofunc) .ne. 0) then

C Compute function value

realF = X(1)*X(1) + X(2)*X(2)

F = realF - X(3)

endif

if(Icntr(I_Dodrv) .ne. 0) then

C Compute derivative value

D(1) = 2*X(1)

D(2) = 2*X(2)

D(3) = -1

endif

else

Call GEstat(Icntr,’**** Unexpected index of F’)

GEFUNC = 2

endif

else

Call GEstat(Icntr,’**** Unexpected mode value’)

GEFUNC = 2

endif

return

End

The FORTRAN code given above computes a value of x2 + y2 and puts it in the

realF variable. However this function returns the value of realF - X(3) where X(3) is

a binding variable that corresponds to r2. For the derivative computation, the program
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computes and returns 2x and 2y for X(1) and X(2), respectively. It also returns -1 for

the derivative of the binding variable X(3) because it appears in the external module as

realF - X(3).

This FORTRAN program needs to be compiled as a dynamic linked library in the

WINDOWS NT environment (‘plane.dll’) and as a shared library in the UNIX environ-

ment (‘plane.so’) and put it in the same directory as the GAMS model. The model can

then be run in the normal fashion.

2.3 Gradient approximation using the quadratic model

Standard nonlinear programming software typically requires that a user provide at least

first order derivatives for each function appearing in the model (1). GAMS uses auto-

matic differentiation to compute a derivative of all algebraic equations written in GAMS.

However, the simulation function S is not defined analytically and only available as an

oracle. We therefore construct a meaningful derivative using only function evaluations.

Instead of using finite differences, we advocate fitting a low order polynomial to observed

simulation output. The reasons for this choice were outlined in Chapter 2.

When the solver requests a function evaluation of an external equation, control is

passed to the external module with the appropriate arguments. If evaluation at this

point has never been requested before, then the simulation run is made and the result is

stored. It then returns the simulation value to the solver. For a derivative evaluation, the

point is checked against the previously computed points. If there are enough points to fit

the quadratic model, the program applies a least squares fitting method to determine the

best quadratic model. For example, our implementation evaluates the simulation at a

number of random points chosen in a neighborhood of x0 ∈ IRn, and then fits a quadratic

model, A(x0) := xT
0Qx0 + cTx0 + d, in the least squares sense, to the observed simulation
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function values. Since the quadratic model is symmetric, the program determines only

n(n+1)
2

+ n+ 1 sampling points. The derivative is passed back to the nonlinear solver as

dA
dx

(x0) := 2xT
0Q + cT . Clearly, the appropriateness of the model depends on the error

in the simulation and the size of the neighborhood. We use a statistical test to check

the validity of the model allowing for white noise error. If the approximation is deemed

poor, we reduce the size of the neighborhood and construct a new model.

Note that while the evaluation of the simulation function S(x0) may be noisy, we

always return this as the function value of the simulation, rather than the value of the

quadratic model at x0. The principal reason is that regardless of the path of the algo-

rithm, this value will always be the same by the deterministic assumption of the sample

path approach. However, if we were to choose different random points in the neighbor-

hood of x0, the quadratic model could change. Thus, A(x0) might have a different value

depending upon this choice of points.

One problem with this approach is that, by assumption, the simulation evaluations

are expensive. Therefore, the code collects (and stores) all previously computed values

for points in the neighborhood of x0 to reduce the number of simulation evaluations

performed. If the total number of points is not enough to fit the quadratic function, then

an appropriate number of uniformly distributed random points in the neighborhood of

x0 within a radius r are generated. The simulation module is called to compute each of

the function values at the newly generated points.

2.3.1 Least Squares approximation

Once all of the simulation evaluations have been collected, we fit the quadratic model in

a least squares sense. Let S be the simulation function from IRn → IRm and Sl be the

lth component of the simulation function. The quadratic approximation of S for each
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component l = 1, . . . ,m is

Sl(x) ≈ Al(x) := xTQlx+ cl
T
x+ dl.

Let x1, x2, x3, . . . , xnp be the sampling points used to approximate Sl, where np is greater

than the number of unknown coefficients. The least squares problem we solve is

min
Q,c,d

np
∑

k=1

(

(xk)TQxk + cTxk + d− Sl(x
k)

)2
,

The coefficients, Q, c and d, are the variables of the problem and that xk is given data.

Since Q is symmetric, only the upper triangular elements of Q are needed. We then have

np ≥ n(n+1)
2

+ n+ 1. Therefore, we minimize

np
∑

k=1





n
∑

i=1



Qi,i(x
k
i )

2 + 2
n

∑

j>i

Qi,jx
k
i x

k
j + cix

k
i



 + d− bk





2

,

where bk = Sl(x
k) for k = 1, . . . , np.
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Let z = (Q11, Q12, . . . , Qnn, c1, . . . , cn, d) with p = n(n+1)
2

+ n+ 1 and define CT by
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The optimality conditions of the least squares problem are the normal equations

CTCz = CT b. (7)

We form the matrix CTC explicitly, and use the LAPACK library [3] to factor and solve

this symmetric (positive-definite) system of linear equations. When m > 1, the system

is repeatedly solved, once for each different value of b.

2.3.2 Statistical Tests

We determine the suitability of our quadratic model using a statistical test. The first

test is the coefficient of determination, R2 [1], that determines how well the quadratic

model predicts values for the simulation function. The second test is the the Cramér-von



34

Mises statistic, W 2 [81, 82], that determines the goodness-of-fit of the error distribution

to some known empirical distribution functions such as normal distribution. The last

test is the coefficient of skewness [1] that determines the lack of the symmetry of the

error distribution in order to identify a group of extreme values.

Coefficient of determination

After the coefficients of the quadratic model have been determined, the model can be

used to predict the simulation value within that neighborhood. From a statistical point

of view, this is considered as a linear regression on the coefficients of the quadratic model

to the simulation data.

Denote bk as the simulation value at xk and b̄ as a sample mean of bk’s. The coefficient

of determination, R2, is the ratio of the regression variation over the total variation that

determines the predictive power of the quadratic model. It is computed as

R2 =
SSR

SST
= 1 −

SSE

SST

where SSR is the regression sum of squares defined as

SSR =
np
∑

k=1

(

(xk)TQxk + cTxk + d− b̄
)2

and SST is the total sum of squares defined as

SST =
np
∑

k=1

(bk − b̄)2

and SSE is the error sum of squares defined as

SSE =
np
∑

k=1

(

(xk)TQxk + cTxk + d− bk
)2
.

It is clear that R2 lies between 0 and 1 because SSR and SST are positive and SSR is

less than SST . If the error sum of squares is close to zero or R2 is close to one, then the
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quadratic model can be used to predict the simulation values. A gradient evaluation from

the accepted quadratic model using R2 will be very close to other gradient approximation

methods such as the finite differences or infinitesimal perturbation analysis method.

Even when R2 is small, we would like to accept the quadratic model if the model

exhibits white noise error distribution. In the next section, we show how to use the W 2

statistic to accept the quadratic model based on the goodness-of-fit test. This shows a

distinction of our gradient computation from the others.

Cramér-von Mises Statistic

The Cramér-von Mises Statistic was developed by Cramér in his book [15] to test for

a distribution of data with the continuous and completely specified distribution such as

the normal distribution. We apply this test under assumption that the quadratic model

returns an appropriate derivative if the error has a normal distribution. Given e1, . . . , en

from a continuous population distribution G(·), let Fn(·) be the empirical distribution

function of ei. The null hypothesis test is

H0 : G(e) = F (e; θ)

where F (·; θ) is a given distribution (typically normal or exponential) with parameter θ.

The Cramér-von Mises statistic is

W 2 = n

+∞
∫

−∞

{Fn(e) − F (e; θ)}2dF (e; θ).

For the normal distribution with unknown mean and variance, we have F (·; θ) = N(·; ē, se)

where ē is the sample mean and se is the sample standard deviation. We test the distri-

bution of the difference between the simulation run and the quadratic model to determine

if the error has a normal distribution.

During the testing step we perform the following:
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1. Sort the data (errors between the simulation and quadratic prediction model) as

e1 ≤ e2 ≤ . . . ≤ en.

2. Compute the sample mean ē and sample standard deviation se.

3. Calculate wi = (ei − ē)/se.

4. Compute zi = CDF (wi) where CDF (·) is the cumulative probability of a standard

normal distribution.

5. Calculate the W 2 statistic from these (sorted) z-values where

W 2 =
n

∑

i=1

(zi −
2i− 1

2n
)2 +

1

12n

6. Update W 2 to reflect the assumption of unknown mean and unknown variance,

W 2 = W 2(1 + 0.5
n

).

7. Compare this value against the T ∗ statistical table (see [81]). We use T ∗
0.15 = 0.091,

T ∗
0.10 = 0.104, T ∗

0.05 = 0.126, T ∗
0.025 = 0.148, and T ∗

0.01 = 0.178.

If W 2 is larger than T ∗
α, then we reject the null hypothesis H0 at the significance level α.

In our procedure, we fix the significance level α = 0.05, then computeW 2 and compare

it with T ∗
0.05. If the null hypothesis is accepted, the error is due to white noise, the trend in

the approximation is deemed to coincide with the actual trend of the simulation function.

The quadratic approximation is then used.

If we reject this null hypothesis, i.e. W 2 > T ∗
0.05, then we re-fit the quadratic model by

removing the extreme values using a smaller radius that is determined by the coefficient

of skewness.
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Coefficient of Skewness

The coefficient of skewness [1] is a measure of the lack of symmetry in data. If data

is distributed symmetrically from the left and the right of the center point, then the

skewness is zero. For example, the normal distribution and uniform distribution have

skewness equal to zero. When the skewness is negative, the distribution of data is more

weighted to larger values than smaller values. For positive skewness, data with smaller

values are more prominent than data with larger values. The Chi-square distribution is

an example of positive skewness.

The skewness sk is computed from x0, . . . , xn by

sk =

∑n
i=1(xi − x̄)3

(n− 1) × s3
e

where se is the sample standard deviation and x̄ is the mean of x0, . . . , xn.

We use the skewness to identify outliers or extreme values and partition data into

small groups according to their skewness value. We then eliminate an undesirable group

from our model building by determining a new reduced radius. If the skewness is inside

the range of [-0.5, 0.5], then the algorithm updates the radius using a predefined value.

If the skewness is less than -0.5, most of the simulation values have larger values. The

algorithm aims to discard the smallest block of data values which contains extreme values.

The new radius is computed as the largest radius from x0 to other points excluding points

in the removed block. The algorithm performs similarly for the skewness that is greater

than 0.5.

In the case that x0 is one of the points in the extreme block, the new radius is

determined by the largest radius from x0 to all points in the block because we want to

locally fit the quadratic model to this x0. This procedure is repeated at most MAX I

number of times. If no quadratic model has been accepted then the algorithm returns
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the derivative of the recent quadratic model and marks this point x0 as having a poor

derivative approximation. The next time, the derivative information is request at this

point, then the algorithm will start using the smaller radius to build the quadratic model.

2.4 Detailed implementation of QSO solver

The quadratic simulation optimization solver, called QSO, uses the existing nonlinear

optimization solver, CONOPT, to find its solution point. The function call is returned

using a simulation run to the QSO algorithm, while the derivative call is returned as the

derivative of the quadratic model built from surrounding points and evaluation requests

from the simulation module as necessary.

2.4.1 Function computation of QSO

Function request

Previously computed? Yes

f (x0) is returned from
previously available point

Return  f (x0)

Call simulation module
S(x0) and set f (x0) = S(x0)

No

Figure 10: A flow chart for computing simulation function at a point x0.

Figure 10 shows the computation of the simulation function at point x0. The algo-

rithm starts by comparing the current evaluation point with all stored points. If the
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point is not close to the previously computed points, then it makes a system call to the

simulation module of the form

sim_run input_file output_file

where sim run is the binary executable simulation program, input file contains the

current point for function evaluation. After the execution is completed, the output file

contains the output simulation values. The QSO program then reads the simulation

result from the output file and returns it to GAMS. To reduce the number of simulation

calls, the algorithm keeps track of all previous computed simulation points in a global

array which will be rotated when the array is full. Nevertheless, the call to a function

is guaranteed to return the same result either from this global array or making the

simulation run with the same random number sequence.

2.4.2 Derivative computation of QSO

A detailed flow chart of the complete implementation of a derivative evaluation is given

in figure 11. This chart summarizes the information contained in section 2.3.

The algorithm collects all previously computed points surrounding x0 using the start-

ing radius, r. If the number of collected points is not sufficient to fit the quadratic

model, then it uniformly generates random points within the radius r. To compute all

these new points, the simulation module is called. If the quadratic model is rejected due

to R2, then it reduces the radius to avoid any extreme points or outliers. It uses the

coefficient of skewness to determine the block of data to ignore for the next quadratic

approximation using points in this neighborhood of x0. If the current quadratic function

does not exhibit an appropriate fit, then it removes outliers or extreme points using the

skew index and updating the radius. In the case that x0 is among the extreme points, the

algorithm uses the current quadratic function to compute the derivative at x0 and return
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Derivative request

Collect points in B(x0,r)

Enough points for
Quadratic fit?

Compute the Quadratic
coefficients

Yes

Satisfies R2 or W2?

f(x0) = 2 xT Q + cT

Yes

Return     f(x0)

Generate more pointsNo

Exceed iteration
limit?

Remove outliers

No

No

Reduce r

Yes

Figure 11: A flow chart for computing derivative at a point x0.

it. In addition, the point is marked as an unfavorable differentiable value, so it will try to

find a better quadratic model the next time that CONOPT requests a derivative at this

point. If the quadratic function exhibits a good fit, the algorithm records the radius and

returns the derivative by computing 2Qx0 + cT . We also limit the number of iterations in

this routine. If we exceed the iteration limit, then we use the last quadratic estimation

to compute the derivative at x0.
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2.5 Examples and results

The semantics for using external functions in GAMS dictate that the user writes a func-

tion and compiles it in such a manner that the code can be linked dynamically with the

solver executable. We have implemented the quadratic approximation code as outlined

in this chapter for this purpose. The remaining piece is the simulation routine which

is incorporated into the quadratic approximation code. As the syntax for calling the

simulation routine varies, we only require that a user writes a small interfacing function

that calls their simulation for a given input and returns the outputs. The function can

simply call the simulation if it is available in C or FORTRAN, or it can use system calls

to run it as an external program, as we outlined previously.

We have written such routines for three different simulations. We have incorporated

these simulations into optimization problems that are formulated within GAMS. The

remainder of this chapter details the simulation optimizations and the results obtained

on them.

2.5.1 M/M/1 Queue

The first problem optimizes a stable M/M/1 queue from (2) to minimize average waiting

time. This problem can be solved analytically, providing us with a mechanism to check

the validity of our optimization approach. Analytically, the average waiting time is

w = 1
µ−λ

for an inter-arrival rate λ. For our testing, we fix the inter-arrival rate at 3.

Thus, our M/M/1 simulation optimization approaching the steady state is equivalent to

the problem

min (µ− 4)2 + w

s.t. w = 1
µ−3

µ ≥ 3

(8)
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The optimal solution is at µ = 4.297 with an objective value of 0.859.

To test our optimization approach, we used simulations with 10000, 100000, and

1000000 customers. The first 1% of customers were ignored to avoid initial bias. Tables

1 and 2 show details of the output from the M/M/1 simulation optimization problem

based on different numbers of sampling points. For all runs, a starting value of µ = 3.0

was used with an initial radius of 1.0 for the quadratic model neighborhood and R2 =

0.99999. We ran these results on a Pentium III 600 MHz machine running WINNT.

Table 1: Comparison of M/M/1 optimization parameterized by length of simulation run
and number of points sampled in quadratic model without the W 2 statistic

Simulation Sampling Runs Time Obj.
length pts. (np) (sim.) (sec.) value

10000 7 195 3 0.9015
8 194 3 0.9015
9 214 3 0.9015
14 211 3 0.9015
19 213 3 0.9015
24 411 6 0.9015

100000 7 186 25 0.8536
8 194 25 0.8536
9 205 26 0.8536
14 241 31 0.8536
19 324 42 0.8536
24 326 42 0.8536

1000000 7 134 170 0.8586
8 179 226 0.8586
9 208 263 0.8587
14 220 278 0.8586
19 237 507 0.8586
24 241 553 0.8586

Infinity 0.8592

For the same simulation length, our algorithm achieves the same optimal solution

independent of the number of sampling points. As the length of the simulation increases,
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Table 2: Comparison of M/M/1 optimization parameterized by length of simulation run
and number of points sampled in quadratic model with the W 2 statistic

Simulation Sampling Runs Time Obj.
length pts. (np) (sim.) (sec.) value

10000 7 175 3 0.9015
8 153 2 0.9015
9 81 1 0.9016
14 200 3 0.9015
19 205 3 0.9015
24 447 7 0.9015

100000 7 205 35 0.8536
8 165 41 0.8536
9 205 54 0.8536
14 212 53 0.8536
19 337 66 0.8536
24 335 81 0.8536

1000000 7 221 514 0.8586
8 180 405 0.8586
9 226 524 0.8586
14 305 702 0.8586
19 392 900 0.8586
24 466 1059 0.8586

the sample-path optimization solution obtained by our method converges to the correct

solution as predicted by the theory. The overall solution time depends heavily on the

length of the simulation run. However, these tables give no indication that the use of the

W 2 statistic is beneficial. The simulation runs are long enough that the function values

perceived by the optimization code are not noisy and the overall simulation function S(µ)

is smooth and well-behaved. The remainder of the examples use more realistic simulation

codes that indicate more benefits of the W 2 statistic.
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2.5.2 Telemarketing system example

A more interesting example comes from simulating a telemarketing system where we have

a fixed number of operators answering calls. The number of customers on hold (waiting

for service) is fixed. If a customer is denied entry into the queue, they are given a busy

signal and there is a probability p that they will call back after waiting an exponentially

distributed amount of time. Those that do not call back result in a lost sale. We want

to choose the service rate on the operators to minimize some weighted sum of operator

training costs and lost sales. A schematic overview of the simulation is given in Figure

12.

Queue

S1

S2

S3

S4
Wait

M

p 1-p

Figure 12: Telemarketing Simulation Structure.

We will assume the system contains 4 operators and a fixed queue size of M = 100.

Initially, the operators have a service rate of µi = 0.5. The inter-arrival times of customers

first entering the system is exponentially distributed with an inter-arrival rate of λ = 3.

The probability that a user will call back is p = 0.1 with an exponentially distributed

waiting time of 0.4. The variables in the optimization are the service rates which are
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bounded below by 0.5 and the outputs from the simulation are the the percentage of

customers lost and the average waiting time.

4.9 4.92 4.94 4.96 4.98 5 5.02 5.04 5.06 5.08 5.1
0.7485

0.749

0.7495

0.75

0.7505

0.751

0.7515

0.752

Figure 13: Telemarketing Simulation Structure.

This simulation model is very noisy due to the probability of customers leaving the

system without being served. Since the simulation is coded with a single random input

stream, this can lead to significant changes in simulation outputs for small variations in

the input parameters. Figure 13 shows how the percentage of calls lost change as the

service rate for the first operator is increased. Note the output varies dramatically for

small variations in inputs, but the overall shape of the function is clear. We expect the

W 2 statistic to be beneficial in solving the optimization problem, since it attempts to

reduce the effects of noise by generating quadratic models of the overall trend in the
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simulation functions.

Table 3: Comparison of call-waiting simulation optimization parameterized by length
of simulation run and number of points sampled in quadratic model without the W 2

statistic

Simulation Sampling Runs Time Obj.
length pts. (np) (sim.) (sec.) value

10000 35 582 54 1.4663
50 887 45 1.0282
65 885 71 1.2933
80 1888 141 1.0277
95 2144 160 1.0280
110 1590 117 1.0279

100000 35 999 727 1.1303
50 744 536 1.4641
65 746 536 1.3358
80 1013 722 1.1172
95 1679 1181 1.1187
110 1673 1201 1.1249

1000000 35 343 2993 1.5324
50 533 4475 1.5331
65 785 5009 1.1783
80 501 2945 1.1707
95 735 3940 1.1809
110 1279 6337 1.2117

The goal for optimizing this call-waiting simulation is to achieve the minimum number

of customers lost due to the busy signal of the servers. Since the servers behave identically

in the system, there are many solutions that satisfy our goal. To specify a reasonable

optimization problem, we define an objective function as

obj =
4

∑

i=1

wi(µi − l) + 100 × lost

where l is the lower bound for all service rates, lost is the percentage lost of customers

in the system, µi is the service rates of ith server and wi is the weight on the ith server.
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Different weights on each server correspond to different costs for training. For the runs

presented w1 = 1, w2 = 5, w3 = 10 and w4 = 15, respectively.

Table 4: Comparison of call-waiting simulation optimization parameterized by length of
simulation run and number of points sampled in quadratic model with the W 2 statistic

Simulation Sampling Runs Time Obj.
length pts. (np) (sim.) (sec.) value

10000 35 556 45 1.0281
50 760 58 1.0280
65 1224 93 1.0278
80 1775 134 1.0277
95 2517 192 1.0276
110 1773 138 1.0278

100000 35 958 698 1.1191
50 978 705 1.1186
65 993 712 1.1354
80 1013 722 1.1431
95 1049 745 1.1214
110 2127 1524 1.1216

1000000 35 881 7168 1.1760
50 1696 12908 1.1655
65 848 4698 1.2480
80 1511 10478 1.1666
95 1031 5580 1.1636
110 2261 13293 1.2301

Tables 3 and 4 show the details of our results based on different numbers of sampling

points. Again the benefit of using additional sampling points to fit the quadratic model

is unclear - the results with small values of np are similar to those with large values

(except the smaller values execute more quickly). It appears that the results using the

W 2 statistic are significantly more robust than those without. This robustness comes at

some cost in terms of computing and time. While the precise solution is unknown, the

optimization of the longer length simulation appears to give more accurate values for the

objective value under independent simulation runs of even greater length.
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2.5.3 Tandem Production Line

S1 Buffer Buffer Sm

Figure 14: Tandem Production Line Simulation Structure

The final simulation we attempted to optimize in this chapter is a tandem production

line composed of m machines and m− 1 buffers which hold the excess product between

machines arranged in series. The product arrives from an external source to the first

machine and is then processed by each machine. Progress is blocked when the number of

products in a buffer equals the maximum buffer size. The machine then waits until there

is an available slot in the buffer. There is also a probability that a machine may fail at an

exponentially distributed time. The time to repair a failed machine is also exponentially

distributed. The input parameters to the simulation are the machine processing rates,

the probability of machine failure, and the rate of repair for each failed machine. The

output parameter is the reciprocal of throughput where the throughput is the average

processing rate for the entire line. Figure 14 gives a diagram of the tandem production

system with m machines.

The actual simulation code that we use was provided by Erica L. Plambeck and

is based on tandem production problems from [60]. We use this paper as a basis for

comparison here, and hence fix the probability of machine failure and the rate of repair

to the values given in that paper. The paper contains 7 cases each with two different

starting points for a total of 14 problems. There are two machines in problems 1 and 2,

four machines in problem 3, six machines in problems 4 and 5, five machines in problem 6
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and fifteen machines in problem 7. Two methods were used to obtain the results reported

in the paper. The first method is Bundle-based stochastic optimization (BSO) which is

applicable to all of the problems. The second method, single run optimization (SRO),

only applies to cases 1 through 5. We obtained the simulation code from the author

and used it with our optimization methodology. We use the label QSO to indicate our

method.

Table 5: Objective value comparisons between the SRO, BSO, and QSO methods

Case Var. SRO BSO QSO
without W 2 with W 2

1a 2 7.6899 7.6895 7.6899 7.6899
1b 2 7.7010 7.7008 7.7008 7.7008
2a 2 0.9638 0.9638 0.9637 0.9637
2b 2 1.0070 1.0070 1.0070 1.0070
3a 4 0.7404 0.7404 0.7404 0.7404
3b 4 0.7358 0.7404 0.7356 0.7357
4a 6 0.3956 0.3957 0.3955 0.3955
4b 6 0.3960 0.3960 0.3960 0.3960
5a 6 0.3485 0.3482 0.3465 0.3465
5b 6 0.3450 0.3446 0.3413 0.3413
6a 5 3.3956 3.3950 3.3951
6b 5 3.3977 3.3928 3.3928
7a 15 3.4065 3.4107 3.4107
7b 15 3.4061 3.4043 3.4054

Each simulation run uses 49500 units with 500 units to remove bias, except that

7a and 7b use 90000 units. The starting radius for fitting the quadratic was set to be

equal to the total number of machines and R2 was set to 0.99999. Table 5 compares the

optimal solutions found among three methods, BSO, SRO and QSO. We can see that the

solutions found by QSO with or without the W 2 statistic are virtually indistinguishable

and are all comparable to those found by SRO and BSO. In fact, on problems 5a, 5b, 6a,

6b and 7b, QSO seems to provide the best solutions of all codes. On problem 7a, QSO
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Table 6: Tandem production line comparison for the QSO method with and without the
W 2 statistic

Case Without W 2 statistics With W 2 statistics
Runs Time Runs Time

(sim.) (sec.) (sim.) (sec.)

1a 223 87 235 91
1b 240 94 351 140
2a 129 5 130 5
2b 40 2 73 3
3a 570 411 495 361
3b 737 521 666 461
4a 3074 4476 2524 3641
4b 3322 4879 1870 2733
5a 2778 244 2151 184
5b 3481 304 1962 166
6a 1827 106 2430 140
6b 1610 92 906 53
7a **** 50000 **** 50000
7b 24210 28468 14443 17636

had more difficulties and we terminated it after it hit a time limit at a slightly worse

objective value. By adding an extra constraint that constrains the sum of all the machine

rates, we were able to solve 7a to optimality as well. Table 6 shows the total simulation

runs and the total time used by our algorithm, with and without the W 2 statistic. These

results seem to indicate that for the larger dimension problems the use of the W 2 statistic

is preferable.
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From Plambeck 1996 [61], she revised the problem and resolve 1a, 1b, 2a, 2b using

the inverse of flow rates as the decision variables.

Table 7: Objective value comparisons for the new tandem production line for SRO, BSO,
(from the Table 2 page 151 of [61]) and QSO methods

Case SRO BSO QSO
without W 2 with W 2

1a 0.6896 0.6896 0.6851 (718) 0.6850 (700)
1b 0.6897 0.6896 0.6944 (572) 0.6944 (396)
2a 0.5375 0.5374 0.5363 (806) 0.5363 (280)
2b 0.5374 0.5374 0.5386 (220) 0.5386 (1006)

where the number in the parenthesis represents the number of simulation runs.

The results of SRO and BSO from table 7 are extracted from Plambeck 1996 paper

[61]. Our QSO results are found using the same settings which are published in her

paper. However, the stream of random numbers are not the same because there are no

seeds available in the paper. All solutions from SRO, BSO and QSO are the same at

(0.5, 0.5) for case 1 and (0.497, 0.503) for case 2. The total number of simulation budget

that she used is 1,000,000 units for both cases. We run our algorithm based on the same

simulation length. Our method uses a total simulation budget varying from 22,000,000

to 100,600,000 units. We expect to use more simulations than BSO because we do not

modify the simulation source code at all. However, as we now show, we do not need long

simulation lengths for QSO to be effective.

From table 8, we apply our algorithm with smaller simulation budgets. As this table

shows, the optimal solution from our QSO algorithm with 5,000 simulation length is

within 3 significant digits of the optimum solution. If we calculate the number of units

required for the results in table 8, we see that significantly fewer units are needed, namely,

the total simulation budgets for case 1a, 1b, 2a and 2b are about 3.48, 2.89, 3.64, 3.69
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Table 8: Objective value comparisons for the new tandem production line based on
different simulation length of the QSO method with and without the W 2 statistic

Length Case Without W 2 statistics With W 2 statistics
Objective Runs Solution Objective Runs Solution

1000 1a 0.5761 976 (0.500, 0.500) 0.5761 920 (0.500, 0.500)
1b 0.6403 342 (0.509, 0.492) 0.6403 1602 (0.509, 0.491)
2a 0.5283 658 (0.498, 0.502) 0.5283 848 (0.498, 0.502)
2b 0.5205 1302 (0.501, 0.499) 0.5205 1384 (0.501, 0.499)

2000 1a 0.6440 608 (0.500, 0.500) 0.6440 1068 (0.500, 0.500)
1b 0.6431 598 (0.500, 0.500) 0.6431 1080 (0.500, 0.500)
2a 0.5403 924 (0.498, 0.502) 0.5406 826 (0.497, 0.503)
2b 0.5237 702 (0.498, 0.502) 0.5237 1384 (0.498, 0.502)

3000 1a 0.6769 612 (0.500, 0.500) 0.6769 1310 (0.500, 0.500)
1b 0.6328 1116 (0.500, 0.500) 0.6328 624 (0.500, 0.500)
2a 0.5406 638 (0.495, 0.505) 0.5406 1080 (0.495, 0.505)
2b 0.5352 1074 (0.498, 0.502) 0.5352 700 (0.498, 0.502)

4000 1a 0.6953 692 (0.500, 0.500) 0.6953 892 (0.500, 0.500)
1b 0.6722 678 (0.500, 0.500) 0.6722 590 (0.500, 0.500)
2a 0.5381 634 (0.497, 0.503) 0.5381 738 (0.498, 0.502)
2b 0.5322 1034 (0.497, 0.503) 0.5322 586 (0.497, 0.503)

5000 1a 0.7082 696 (0.500, 0.500) 0.7082 626 (0.500, 0.500)
1b 0.6944 578 (0.500, 0.500) 0.6944 630 (0.500, 0.500)
2a 0.5391 728 (0.497, 0.503) 0.5391 734 (0.497, 0.503)
2b 0.5328 738 (0.497, 0.503) 0.5328 772 (0.497, 0.503)

(million) for QSO without W 2 statistic and 3.13, 3.15, 3.76, 3.86 (million) for QSO

with W 2 statistic, respectively. Therefore, we could reduce the total simulation budget

of our method by solving the simulation optimization of the initial starting point with

small simulation runs and then verifying this optimal solution based on longer simulation

length.
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Chapter 3

Computation in a distributed
environment

3.1 CONDOR and its requirements

An increasing need for large amount of computational power to solve real-life problems

causes researchers to search for a robust computational tool that supplies massive com-

putational power with ease of expandability. The use of one centralized supercomputer

machine is limited and somewhat obsolete because of the cost of buying and maintain-

ing the machine. CONDOR [54, 21, 53] is a meta-computing environment [34] that is

developed to exploit the computational resources of idle heterogeneous machines within

a network. It is an efficient and reliable high-throughput computer system that manages

the dynamic and heterogeneous resources in a computer network environment. CON-

DOR uses a ClassAd implementation that works by matching a resource request from

a client (which defines the resource requirements needed to run a job) to a resource of-

fer from a machine in the network (which advertises its resources such as an available

memory, computer type, etc.) See figure 15 for a graphical presentation of ClassAd. To

preserve the computational work that has been performed on each machine, CONDOR

offers a checkpointing and migration feature [52]. CONDOR periodically checkpoints a

job during the execution of the program to protect the computational results in the event

of an owner of the machine returning or a system failure such as a machine crashing or

a power outrage.
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Figure 15: ClassAd diagram that represents the CONDOR resource management.

In section 2.3, we explained how our gradient approximation based on a quadratic

model fits in this framework. This quadratic model requires at least n(n+1)
2

+n+1 sampling

simulation runs. These work loads can take an enormously long time to compute serially.

Because these points are randomly and independently generated, it is a perfect fit for the

master-worker paradigm of parallel computation. In this paradigm, the master generates

the work for each worker (in this case simulation runs at different point) and waits for

the results from each worker. The master will wait for a preset amount of time. If some

workers do not finish the jobs within this time period, then the master will cancel the

current running jobs and resubmit the incomplete job to the workers again. After all

workers have completed their tasks, the master then reports the simulation results and

stops.

The master-worker implementation [34] as shown in figure 16 can be easily adapted
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Figure 16: The Relationship between the MWDriver, Condor, and PVM , excerpt from
[34]

to our situation. We have implemented a Master-Worker Condor-PVM server based

on the available MW libraries written at University of Wisconsin-Madison that will be

described in section 3.4. However, we first detail a more straightforward approach to

utilize a collection of workstations in parallel.

3.2 Job parallel simulation optimization

Our initial master-worker implementation makes use of CONDOR directly to distribute

the computation throughout the heterogeneous of network machines. For computing one

derivative, simulation runs are carried out in parallel using a single CONDOR submit file.

The master implementation creates input files which contain the simulation points and

submits them as separate jobs. The master then checks the completion of all simulation
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runs and collects them via output files. In order to take advantage of executing the sim-

ulations on different types of machines based on their availabilities within the CONDOR

environment, we have to supply a different binary executable simulation program based

on each architecture and operating system type as a batch-ready program that accepts

an input file and generates an output file after it is complete. This process does not

require any simulation source code and it can be compiled using an appropriate compiler

on a specific architecture and operating system. However, during the linking process, we

need to re-link the binary executable program using the ‘condor compile’ statement.

For example, the simulation object file, ‘simulation.o’, can be compiled from Fortran

77, but it must be re-linked as

condor_compile f77 -o qso_INTEL_LINUX.exe simulation.o

Our standard CONDOR submit file will request this program to be executed as

qso_INTEL_LINUX.exe conqso_0.ifn conqso_0.ofn

where ‘conqso 0.ifn’ is the simulation input file and ‘conqso 0.ofn’ is the simulation output

file.

NUMRUNS = 7

universe = standard

requirements = ((ARCH == "SUN4u" && OPSYS == "SOLARIS26") \

|| (ARCH == "INTEL" && OPSYS == "SOLARIS26") \

|| (ARCH == "INTEL" && OPSYS == "LINUX"))

executable = qso_$$(ARCH)_$$(OPSYS).exe

transfer_input_files = qso.cfn, conqso_$(Process).ifn

transfer_output_files = conqso_$(Process).ofn

arguments = conqso_$(Process).ifn conqso_$(Process).ofn

log = condor_qso.log

notification = Error

queue $(NUMRUNS)

An example of a CONDOR submit file containing 7 simulation runs is shown above. Each

simulation run must put the parameters and decision variables in the input files of the
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CONDOR poolINTEL/SOLARIS26
machines

INTEL/LINUX
machines

SUN4u/SOLARIS26
machines

CURRENT DIRECTORY: condor_qso.sub, qso.exe,
qso_INTEL_LINUX.exe, qso_SUN4u_SOLARIS26.exe,
qso_INTEL_SOLARIS26.exe

INPUT: conqso_0.ifn .. conqso_6.ifn
OUTPUT: conqso_0.ofn ... conqso_6.ofn

Figure 17: CONDOR multiple architectures diagram.

form conqso $(Process).ifn where $(Process) represents a number from 0 to 6. After

all jobs are complete, the output files of the form conqso $(Process).ofn will contain

the output of each simulation run from 0 to 6. We submit all the jobs in one cluster under

the ‘standard’ universe to take advantage of the checkpointing and migration features.

Note that if the job is interrupted during its execution, then it will continue executing

from the last checkpoint on the next machine having the same architecture. Furthermore,

once a job is started on one machine type, the checkpointing and migration must maintain

the computer architecture type.

For this submit file to be executed properly, the current directory must contain three

binary executable files; qso SUN4u SOLARIS26.exe, qso INTEL SOLARIS26.exe and

qso INTEL LINUX.exe, see figure 17.
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Figure 18: Derivative computation flow chart.

The program computes simulation values as follows:

• It creates all input files. Each file contains fixed parameters and values of decision

variables for a single simulation point.

• It generates a submit file which contains the number of simulation computation

requests for the CONDOR pool as described above.
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• It makes a system call to ‘condor submit’ to submit to the CONDOR pool.

• It waits until jobs are completed or jobs are removed from the CONDOR pool.

• It continues the gradient approximation using available computed simulation points.

After all simulation results are returned from CONDOR, our program applies the

least squares approximation to construct the quadratic model. The rest of the process

is similar to the serial version in section 2.4.2. The graphical implementation is given in

Figure 18.

3.3 Parallel computational results from CONDOR

Simulation Model

GAMS

CONOPT2
Quadratic Simulation

Optimization

CONDOR pool
binary executable
simulation code

Figure 19: The CONDOR simulation optimization overview

Figure 19 shows our schema of the QSO program which takes advantage of parallelism

using CONDOR. in this diagram, GAMS is a mediator that communicates between

a practitioner model, a nonlinear programming solver, and our parallel QSO module.

After a pracitioner submits the model to GAMS, GAMS interactively calls the nonlinear

programming solver and supplies function and derivative computations. GAMS will
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interact with the QSO module only when the function or derivative request of an external

equation is called from the nonlinear programming solver.

When the nonlinear programming solver requests a value of the function written using

GAMS syntax, GAMS internally evaluates the function and passes it to the nonlinear

programming solver. If the request is for the external function, then GAMS calls the

QSO module via a dynamic link library or a shared library. The QSO module checks if

the function has been called before and makes a system call to a simulation module as

necessary. The result is then returned to the QSO module and reports back to GAMS.

The computation of the derivative is different from the function computation. For the

derivative evaluation of an equation written in GAMS, automatic differentiation is carried

out. This gives a reliable derivative and it is applicable because the equation source code is

available. However, if the derivative evaluation is called for an external equation, GAMS

calls the QSO module and passes variable values using the mapping that is described

in section 2.2 via the dynamic link library or the shared library. The QSO module

generates random sampling points around the requested point using the current radius.

It generates a simulation option file, a simulation configuration file and the simulation

input files. Then it submits a CONDOR file to the CONDOR scheduler for the parallel

computation using heterogeneous machines. After all computations are completed, it

applies the least squares approximation to fit the quadratic model. If the quadratic

model shows an acceptable fit for these simulation points, then it returns the derivative

of the quadratic model. Otherwise, it reduces the current radius around that point,

resampling additional points if necessary and fits the quadratic model again.

We solve the same tandem production line problems appeared in section 2.5.3 based

on longer simulation length. Each simulation collects data from a 100,000 products with

initial warm-up of 1,000 products. Based on the same random seed, we rerun the solution
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Table 9: Objective comparisons between the SRO, BSO, serial QSO, and CONDOR QSO

Case SRO BSO QSO
serial CONDOR

1a 7.7132 7.7128 7.7132 7.7132
1b 7.7232 7.7231 7.7231 7.7231
2a 0.9729 0.9729 0.9729 0.9729
2b 0.9983 0.9983 0.9983 0.9983
3a 0.7318 0.7319 0.7318 0.7318
3b 0.7336 0.7383 0.7335 0.7335
4a 0.3956 0.3956 0.3956 0.3956
4b 0.3962 0.3962 0.3962 0.3963
5a 0.3496 0.3497 0.3487 0.3487
5b 0.3475 0.3474 0.3457 0.3457

results from Plambeck paper [60] both SRO and BSO. Table 9 shows the comparable

results from QSO and CONDOR QSO with the SRO and BSO method.

Table 10: Timing comparison of the serial QSO and CONDOR QSO method

Case Serial QSO CONDOR QSO
Total runs Usage time Total runs Master time CONDOR time

(sim.) (sec.) (sim.) (sec.) (sec.)

1a 239 515 239 118 2527
1b 256 581 256 106 2315
2a 176 51 176 13 2742
2b 149 43 281 30 3910
3a 801 4251 749 1552 2618
3b 955 5168 910 1009 13061
4a 3648 46824 6528 28555 38612
4b 10988 154400 1641 1126 22904
5a 4355 4312 4092 1137 29150
5b 11408 15514 6397 3496 32943

Table 10 shows comparisons between the serial program and the parallel program

using CONDOR. Unfortunately, these computational results are disappointing since each

time a derivative evaluation is requested, the matching algorithm requests new machines.
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These requests can take a long time to be satisfied resulting in the poor results show in

table 10. To alleviate this problem we have developed a Master-Worker server that we

describe in 3.4.

3.4 Master-Worker condor-PVM server

Due to the additional overhead of the CONDOR scheduling server, the wall clock time

for solving a simulation optimization is dominated by the total waiting time for resource

provision from CONDOR. To remedy this situation, we use a Master-Worker server

paradigm which is adopted from [34]. The key idea in this approach is to maintain hold

over a cluster of machines throughout the complete optimization process, rather than

requesting new computational resources ‘on-the-fly’.

Typical use of the Master-Worker framework generates either an initial list of tasks to

perform, or generates new tasks based on the solution of previous tasks (eg. branch and

bound procedures). Once the task list is empty, the program terminates. In contrast,

our server is assumed to be persistent, only terminating when a particular flag is set in

the file system. In order to effect this, we have implemented a “idlewait” task that just

spins for a certain amount of time. Thus whenever the server has no work (simulations)

to perform, it just waits idling. Whenever new work is generated, the server already has

enough computational resources to perform many tasks in parallel.

Figure 20 shows how the Master-Worker Condor-PVM server communicates with the

GAMS system. The Master-Worker server runs as a separate program that monitors

a request of computations from the file system. A practitioner executes a model in

GAMS which passes the control to the nonlinear solver. If the nonlinear solver requests a

function or derivative evaluation of the external equation, then it passes a request to QSO

module. The QSO module writes an input file that contains all simulation points, then
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Figure 20: Master-Worker server and GAMS.

updates the status file to trigger the Master-Worker server. After the Master-Worker

server receives a request, it reads the input file and assigns all points to the Tasks To-Do

List. It takes care of requesting workers from the CONDOR pool, assigning tasks to

workers, and reassigning tasks if workers fail. Upon completing the last task in the Tasks

To-Do List, the Master-Worker server writes the output to a file and then updates the

status file to inform the QSO module, which has been waiting for the output simulations.

The QSO module passes the result back to the nonlinear solver.

Table 11 shows a comparison of the total running time between the serial version of

QSO and the MW-server version of QSO. The Excess column shows the number of sim-

ulation calls for the gradient computation that can be saved if the parallel computations

are used. The Parallel saving column is computed from the average saving time of the

Excess simulation by multiplying the Excess column with the Runs column and divid-

ing by the Time column. Note that we gain larger saving using the MW-server rather

than regular parallel computations because we allow the more powerful computational

machines to execute the simulation runs.

Figure 21 shows that we gain more than 100% saving on problems 1a, 1b, 2a, and 2b

which are distributed to the faster simulation runs on the more powerful machines. For
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Table 11: Timing comparison of the serial QSO and QSO with MW server.

Case Serial QSO MW QSO
Runs Grad. Time Excess Parallel Runs Grad. Time Saving

(sim.) (sec.) (sim.) saving (sim.) (sec.) (sec.)

1a 432 20 589 138 188.15 432 20 314 275
1b 424 20 584 165 227.26 424 20 275 309
2a 248 16 36 77 11.18 248 16 20 16
2b 316 23 48 101 15.34 316 23 24 24
3a 796 45 2983 280 1049.30 862 55 2626 357
3b 1490 238 4963 497 1655.44 1504 45 3583 1380
4a 4016 204 32075 1718 13721.33 5772 402 19885 12190
4b 4840 214 40641 1942 16306.78 6650 309 17856 22785
5a 10712 435 5630 4736 2489.14 12904 209 3888 1742
5b 8170 429 4500 3306 1820.93 7824 188 2875 1625

problem 3a, 3b, 4a, 4b, 5a and 5b, the CONOPT computation show different path to the

optimal solution because of the heterogeneous computation of different machine architec-

tures. Nevertheless, we still gain the total running time for all these cases. Problem 3a,

4a and 4b, the MW-server QSO uses more derivative computations than the serial QSO.

However, it achieves the better running time due to the fact that more powerful machines

are used for these runs which are requested by the MW-server routine. Problem 3b, 5a

and 5b, the MW-server QSO uses less derivative computations so that we would expect

the faster running time.

As table 11 shows, we gain a maximum of 50% total running time because the sim-

ulation runs that can be saved are about 50% of the total simulation runs. In order for

our MW-server algorithm to be more effective, the nonlinear programming solver that

it uses should request more gradient evaluations during the solving process. Even for a

nonlinear programming solver that does not require derivative computation, we can gain

the faster running time due to the availability of faster machines in the CONDOR pool.
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Figure 21: Percentage of timing saving of the MW-server QSO comparing to the maxi-
mum saving time for parallel computations of the same machine.

In all these cases, we would not expect the running time of MW-server QSO to be shorter

than the running time of the serial QSO because one machine is always available at any

time.
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Chapter 4

Nonlinear programming via MCP

4.1 Mathematical formulation

In this chapter, we solve the following constrained nonlinear program (NLP)

minimize f(x)

subject to g(x) ≤ 0, h(x) = 0, x ∈ B,
(9)

where f : IRn 7→ IR, g : IRn 7→ IRm and h : IRn 7→ IRp are twice continuously differentiable,

and B := {x ∈ IRn|r ≤ x ≤ s} with ri ∈ [−∞,∞] and si ∈ [ri,∞]. Let S := {x ∈

B|g(x) ≤ 0, h(x) = 0} denote the feasible region. We will focus on finding a point that

satisfies the first-order conditions of (9).

4.1.1 The first-order conditions of NLP

The concept of the Lagrangian function and the Lagrange multipliers play a crucial role

in defining a first-order point of NLP. The Lagrangian function is a weighted summation

of the objective function and the constraint functions, defined as follows

L(x, λ, ν) := f(x) − λTg(x) − νTh(x), (10)

where λ and ν denote the Lagrange multipliers (dual variables) corresponding to the

inequality and equality constraints, respectively.

The first-order necessary conditions for NLP are
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0 ∈ ∇xL(x, λ, ν) +NB(x)

0 ≥ λ ⊥ g(x) ≤ 0

h(x) = 0,

(11)

where NB(x) = {z ∈ IRn|(y − x)T z ≤ 0,∀y ∈ B} is the normal cone [67] to B at x.

In the case that ri or si is finite, the definition of the normal cone allows the first

equation of (11) to be rewritten in the following manner. If xi = ri, then

(∇xL(x, λ, ν))i ≥ 0,

while if xi = si, then

(∇xL(x, λ, ν))i ≤ 0

and for any values of ri and si, if ri < xi < si, then

(∇xL(x, λ, ν))i = 0.

These conditions coupled with a regularity condition on the point x establish the

necessary conditions for NLP which are normally called the Karush-Kuhn-Tucker (KKT)

conditions [45, 49]. Whenever the Hessian matrix of the Lagrangian function is positive

definite at (x∗, λ∗, ν∗), the first-order conditions are also sufficient for x∗ to be a strict

local minimizer of NLP.

4.1.2 Primal-dual formulation of NLP

The standard Mixed Complementarity Problem (MCP) is defined as the problem of

finding a point z ∈ IRn inside the box B = {z| − ∞ ≤ l < z < u ≤ ∞} that is

complementary to a nonlinear function F : IRn → IRn. We assume without loss of

generality that li < ui for all i = 1, 2, . . . , n.

The point z is complementarity to F (z) when
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either zi = li and Fi(z) ≥ 0

or zi = ui and Fi(z) ≤ 0 for i = 1, . . . , n

or li < zi < ui and Fi(z) = 0.

If l ≡ −∞ and u ≡ +∞, MCP becomes the problem of finding a zero of a system

of nonlinear equations, that is to find z ∈ IRn such that F (z) = 0, while if l = 0 and

u ≡ +∞, the problem is the Nonlinear Complementarity Problem (NCP) of finding

z ∈ IRn such that zi ≥ 0, Fi(z) ≥ 0 and ziFi(z) = 0, for all i = 1, . . . , n. The latter

property ziFi(z) = 0 is often called complementarity between zi and Fi(z).

Let z be composed of the primal variable x and the dual variables λ and ν of NLP. The

nonlinear MCP function can be written as a vector function of the first-order derivative

evaluation of the Lagrangian function with respect to the corresponding primal and dual

variables, that is

F (z) :=

















∇xL(z)

−∇λL(z)

−∇νL(z)

















.

The nonlinear MCP model is to find z = (x, λ, ν) ∈ IRq where q = n + m + p that

is complementary to the nonlinear vector function F from IRq 7→ IRq given above along

with lower bounds l and upper bounds u
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Here ∇xL(z) = ∇xf(x) − λT∇xg(x) − νT∇xh(x)

= ∇xf(x) −
∑m

i=1 λi∇xgi(x) −
∑p

j=1 νj∇xhj(x).
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By comparing MCP to KKT, we can see that this formulation is equivalent to the

first-order conditions of our original NLP program. This allows us to solve the NLP

problem using an MCP solver, which is the subject of section 4.3.

4.2 The PATH solver and the merit function

The PATH solver [18] is a nonsmooth Newton type algorithm [65] which finds a zero of

the normal map [64]

F+(x) := F (π(x)) + x− π(x),

where π(x) is the closest point in B to the variable x in the Euclidean norm. It is

well known [64] that finding a zero of this normal map is equivalent to solving MCP. In

particular if x is a zero of the normal map, then π(x) solves MCP, while if z solves MCP

then z − F (z) is a zero of the normal map.

4.2.1 Overview of the PATHNLP algorithm

The essential idea of the code is to linearize the normal map F+(x) about the current

iterate to obtain a piecewise linear map whose zero is sought using a homotopy approach

[19]. To monitor progress in the nonlinear model, a nonmonotone path-search is used [62].

Recent extensions [23] have introduced a new merit function Ψ to be used in conjunction

with the code.

The following pseudo code shows the main algorithm steps of the PATH solver to find

a KKT point:
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Loop until Ψ(x) is less than convergence tolerance {

Solve the linearization of the MCP problem to

obtain the Newton point;

Search the path between the current point and

the Newton point.

If the new point gives rise to a better merit func-

tion value then accept this new point.

Otherwise use the merit function to find a de-

scent direction and search along this direction

for a new point.

}

Details on the solution of linearization and the path-search mechanism can be found

in [25, 18]. In this chapter, we just indicate the changes specific to solving NLP’s. The

Newton-type PATH solver uses the Jacobian matrix of the MCP function to find its path-

searching direction. In the above context, the Jacobian matrix is computed by finding

the derivative of the MCP function. It uses the first and second order derivatives of the

original NLP objective function and constraints as

∇zF (z) :=

















∇2
xxL(x, λ, ν) −∇T

x g(x) −∇T
xh(x)

∇xg(x) 0 0

∇xh(x) 0 0

















, (12)
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where ∇2
xxL(x, λ, ν) = ∇2

xxf(x) −
∑m

i=1 λi∇
2
xxgi(x) −

∑p
j=1 νj∇

2
xxhj(x).

4.2.2 The merit function for the PATH solver

The most recent version of the PATH solver [23] does not use the residual of the normal

map for a merit function. Instead, it utilizes the Fischer-Burmeister function [27] defined

as the mapping φ : IR2 → IR,

φ(p, q) :=
√

p2 + q2 − p− q,

where p and q are scalar variables. This function exhibits the complementarity property

when the function value is zero, that is

φ(p, q) = 0 if and only if p ≥ 0, q ≥ 0 and pq = 0.

For the MCP problem, the merit function used is Ψ : IRn → IR,

Ψ(x) :=
1

2
ψ(x)Tψ(x),

where ψ(x) is the Fischer operator defined in [10] from IRn to IRn that maps xi and Fi(x)

as parameters to the Fischer-Burmeister function component-wise as follows:

ψi(x) :=



















































φ(xi − li, Fi(x)) if −∞ < li ≤ xi < +∞,

−φ(ui − xi,−Fi(x)) if −∞ < xi ≤ ui < +∞,

φ(xi − li, φ(ui − xi,−Fi(x))) if −∞ < li ≤ xi ≤ ui < +∞,

−Fi(x) if −∞ < xi < +∞.

(13)

This merit function is nonnegative and is zero at the solution point. A key feature

of this merit function is its continuously differentiability. It allows gradient steps to be

used when the path-searching direction does not lead to a descent direction.

The nonlinear MCP function contains only the first-order derivatives of the objective

function and constraints as in section 4.1.2. The formulation exhibits the deficiency of
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finding KKT points for NLP. To try to avoid this deficiency, we introduce a new merit

function for the PATH solver that explicitly incorporates the objective function. We

now describe the implementation of the new merit function and give some computational

results in section 4.4.

The PATH solver uses a merit function to find a gradient descent direction when its

Newton direction fails to find a descent direction. It uses the residual function Ψ(x)

to identify the stopping criteria. We define a new merit function for the PATH solver

applied to NLP’s which is a weighted average of the residual function Ψ and the objective

function f as

ϕ(x) = (1 − γ)Ψ(x) + γf(x), (14)

where γ ∈ [0, 1].

When γ is equal to zero, ϕ(x) = Ψ(x) which is the original PATH solver that finds

the first-order conditions of the NLP problem. For γ > 0, the objective function affects

the search direction. However, if the weight on the objective function is 1, then the

merit function is simply the objective function so a solution is not guaranteed to satisfy

the first-order conditions. With appropriate choice of γ, our new merit function guides

the path-searching algorithm to escape KKT points that are not local minimizers of the

original NLP. After our experimentation with the value of γ, we decided to take a fixed

value of γ = 0.3 for the purposes of the results given in section 4.4.

In the next section, we show how the NLP model in AMPL is automatically modi-

fied and transformed into the MCP formulation. The MCP function evaluation and its

Jacobian evaluation are specified in more detail.
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4.3 NLP solver via AMPL

To solve the NLP problem in AMPL, a user can specify the complementarity formulations

directly using the AMPL language [22]. This requires a modeler to write down explicitly

the first-order conditions as detailed in section 4.1.2. This is very cumbersome and prone

to error. In this chapter, we propose to use the AMPL solver library to take an NLP

specified directly in AMPL and form the required F and its Jacobian matrix for the

PATH solver within the solver link. This means that a modeler simply has to change the

solver name in order to use the approach outlined in this chapter.

4.3.1 MCP formulation from AMPL

The NLP problem passed to a solver from the AMPL environment is defined as

minimize f(x)

subject to a ≤ c(x) ≤ b

r ≤ x ≤ s,

(15)

where f : IRn 7→ IR, c : IRn 7→ IRm with a, b ∈ IRm and x, r, s ∈ IRn.

We now show how to recover the NLP format as described in section 4.1 from the

data given above. We define five mutually exclusive index subsets of an index set I =

{1, 2, . . . ,m} of the constraint function c as

L := {i ∈ I| −∞ < ai and bi ≡ +∞}

U := {i ∈ I|ai ≡ −∞ and bi < +∞}

E := {i ∈ I| −∞ < ai = bi < +∞}

R := {i ∈ I| −∞ < ai < bi < +∞}

F := {i ∈ I|ai ≡ −∞ and bi ≡ +∞},

(16)

where L is the index set of lower bound constraints, U is the index set of upper bound con-

straints, E is the index set of equality constraints, R is the index set of range constraints,
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and F is the index set of free constraints.

The NLP model from AMPL is therefore rewritten as

minimize f(x)

subject to ai ≤ ci(x) i ∈ L

ci(x) ≤ bi i ∈ U

ci(x) = ai i ∈ E

ai ≤ ci(x) ≤ bi i ∈ R

ci(x) is free i ∈ F

r ≤ x ≤ s.

(17)

Define y ∈ IR|R| as artificial variables for each range constraint, where |R| is the num-

ber of range constraints. Then by dropping the free constraints, the model is equivalent

to

minimize f(x)

subject to ai − ci(x) ≤ 0 i ∈ L

ci(x) − bi ≤ 0 i ∈ U

ci(x) − ai = 0 i ∈ E

ci(x) − yji
= 0 i ∈ R

ai ≤ yji
≤ bi i ∈ R

r ≤ x ≤ s,

(18)

where ji is the index from 1 to |R|, corresponding to the order of index i ∈ R.

We write the constraint function g and h of NLP as

g(x) =















ai − ci(x) if i ∈ L

ci(x) − bi if i ∈ U
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and

h(x) =















ci(x) − ai if i ∈ E

ci(x) − yji
if i ∈ R.

The new Lagrangian function for this model is

L(x, λ, ν, y) = f(x) − λT
L(aL − cL(x)) − λT

U(cU(x) − bU)−

νT
E (cE(x) − aE) − νT

R(cR(x) − y).

Defining λ = (λL, λU) and ν = (νE , νR), the corresponding MCP model is to find z =

(x, λ, ν, y) ∈ IRq ( where q = n +m + |R|) that is complementary to a nonlinear vector

function F from IRq → IRq defined as

F (z) :=











































∇xL(z)

aL − cL(x)

cU(x) − bU

cE(x) − aE

cR(x) − y

νR











































,

where ∇xL(z) = ∇xf(x) − λT∇xg(x) − νT∇xh(x), and
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.

4.3.2 Solver links in AMPL

AMPL executes the NLP solver as a separate program and communicates with it using

the file system. Files with extension .nl contain a description of the model whereas files

with extension .sol contain a termination message and the final solution written by the
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solver. The AMPL system uses information from these files to allocate space, set its ASL

structure and set global variable values. These values are used to identify the problem

dimension, the value of objective function at the current point, the gradient evaluation,

the constraint evaluation and its Jacobian and Hessian sparse matrices.

Useful global variables are

n_var as the total number of variables,

n_obj as the total number of objective functions,

n_con as the total number of constraints,

nzc as the number of nonzeros in the Jacobian matrix and

nzo as the number of nonzeros of the objective gradient.

The ASL structure is made up of two main components, Edagpars and Edaginfo. The

Edagpars contains information to evaluate the objective function, constraint functions

and their first and second order derivatives. The Edaginfo contains the upper and lower

bounds, the initial point, the compressed column structure of the Jacobian matrix of the

constraint functions, the pointer structure of the first order derivatives of the objective

function and constraints, and information about the NLP problem. For a complete listing

of all global variables and the ASL structure, the reader should consult the AMPL manual

[28].

A detailed description of our implementation, called pathnlp, now follows. After the

solve command is invoked in AMPL, the AMPL system generates associated NLP prob-

lem files and communicates to the pathnlp solver. This solver, written in the C language,

automatically constructs the primal-dual formulation of the original NLP problem. It

calls the PATH solver with additional options if necessary. The PATH solver runs and
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returns the status of the solution point via the Path_Solved variable and the final solu-

tion z using the Path_FinalZ(p) routine. The link returns these results to the AMPL

system by calling write_sol. AMPL reports the solution back to the user who further

analyzes and manipulates the model.

We now give details of how F and ∇zF are evaluated in the link.

• Our program allocates the ASL structure by calling ASL_alloc with parameter

ASL_read_pfgh which requests the AMPL to generate all first-order and second

order derivatives of the objective function and constraints. In addition, the flag,

want_xpi0 = 1 is set to 1 to request the initial point. The flag, want_deriv = 1

is set to 1 to request Jacobian evaluations and Hessian evaluations.

• Our program initializes all NLP variables by calling getstub. It calls jacdim to

obtain information about the Jacobian and Hessian of the objective function and

constraints.

• Our program defines the MCP variable z as (x, λ, ν, y) and sets up the lower bound

as (r,−∞,−∞, aR) and the upper bound as (s, 0,+∞, bR).

• The function evaluation of the MCP model is defined as

F (z) :=











































∇xL(z)

aL − cL(x)

cU(x) − bU

cE(x) − aE

cR(x) − y

νR











































. (19)

The value of this function at the current point is kept in the vector F . To compute

∇xL(z) = ∇xf(x)− λT∇xg(x)− νT∇xh(x), the program first evaluates ∇xf(x) at
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the current point by calling objgrd. It retrieves the sparse Jacobian matrix of c

by calling jacval and uses Cgrad as the sparse matrix structures. This produces

values of c(x). Then it multiplies the sparse Jacobian matrix with the corresponding

Lagrange multipliers and subtracts these to ∇xf(x). The rest of the vector is

computed by calling conval and using the appropriate multipliers of 1, -1 or 0 to

generate the vector F . Then it copies the values of νR for the last |R| elements.

• The Jacobian evaluation of this MCP is given as











































∇2
xxL(z) +∇xcL(x) −∇xcU(x) −∇xcE(x) −∇xcR(x) 0

−∇xcL(x) 0 0 0 0 0

+∇xcU(x) 0 0 0 0 0

+∇xcE(x) 0 0 0 0 0

+∇xcR(x) 0 0 0 0 −I

0 0 0 I 0 0











































. (20)

This computation uses the Hessian of the Lagrangian evaluation implemented in

AMPL using the following form

∇2
xxL(x) = ∇2

xx





n obj−1
∑

i=0

OW [i]oi(x) + σ
n con−1

∑

i=0

Y [i]ci(x)



 ,

where oi is the objective function, ci is the constraint function, σ is a scaling factor

commonly set to +1 or -1, OW [i] is a scaling factor for objective function oi, and

Y [i] is Lagrange multiplier for each ci and equals zero when ci is a free constraint.

In our situation, we deal with a scalar objective function so i = 1 and f = oi.

To call this routine, our program sets up the scale multiplier to be 1, OW [0] = 1,

and the scale multiplier for the sum of constraints to be negative one, σ = −1.

It copies the appropriate Lagrange multipliers to Y and calls the function sphes.
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The result returns in the structure variable named sputinfo which is already in

the compressed column vector format used by PATH. The matrix is stored as the

top left corner of the MCP Jacobian matrix. The rest of the matrix is constructed

using jacval and put it in an appropriate place in the MCP Jacobian matrix. Note

that our program uses FORTRAN indices, which is a requirement for the PATH

solver.

4.4 Results of the NLP solver

We assume that a user has created a nonlinear problem using the AMPL syntax and

solves it by issuing the following commands:

option solver pathnlp;

solve;

Optionally, a user can guide the PATH solver using the option file, path.opt identified

by

options pathnlp_options "optfile=path.opt";

Alternatively, a user can specify the options directly using the following syntax

options pathnlp_options "option_name=option_value";

Note that option_name must be a valid option of the PATH solver (see [25]). For example,

to see the warning messages and current option settings of the PATH solver, a user can

specify the following:

options pathnlp_options "output_warnings=yes output_options=yes";

To increase the number of iterations, a user can specify

options pathnlp_options

"major_iteration_limit=1000 minor_iteration_limit=10000";
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To decrease the convergence tolerance from 1 × 10−6 to 1 × 10−8, a user can specify

options pathnlp_options "convergence_tolerance=1E-8";

Consult [25, 24] for more details.

4.4.1 Results of the Hock/Schittkowski test suite.

We tested pathnlp with and without the new merit function using AMPL models of

the Hock/Schittkowski test suite. This test used 115 NLP problems, two of which are

incomplete. All problems are retrieved from the collection of AMPL test problems web

site, http://www.ampl.com/ampl. This Hock/Schittkowski test suite was implemented

by Professor Robert Vanderbei.

From the 113 NLP problems, 59 problems are unconstrained nonlinear programs, 48

problems have only equality constraints, while 3 problems contain range constraints and

3 problems have both equality and range constraints. We compare our results with four

different NLP solvers available in AMPL, LANCELOT [13], MINOS [56], NPSOL [30]

and SNOPT [29]. All solvers run using their default options. The PATH solver with the

new merit function uses the weight γ = 0.30.

Table 12 shows details of these test runs on the Hock/Schittkowski test suite.

Table 12: Number of final solutions reported from 5 nonlinear solvers
Solver Fail Infea No prog Iter Local Optimal KKT

LANCELOT 1 2 9 8 2 91 93
MINOS 0 1 0 7 11 94 105
NPSOL 7 0 2 0 8 96 104
PATH 0 0 10 0 21 82 103

PATH (merit) 0 0 5 0 20 88 108
SNOPT 0 0 2 12 4 95 99

Total 8 3 28 27 66 546

Here Fail identifies the number of errors that occur because of an unexpected break from
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the solver, Infea identifies the number of solutions that are termed by the solver to be

infeasible, No prog identifies the number of solutions that cannot be improved upon the

current point by the solver, Iter identifies the number of times that the solver reached

its default iteration limits, Local indicates the number of solutions that the solver found

solutions that are different from reported global solutions, Optimal identifies the number

of optimal solutions that are the same as reported optimal solutions, and KKT identifies

the sum of Local and Optimal, which are KKT solutions.

The PATHNLP solver with the new merit function is very effective for solving this

problem suite, solving 108 out of 113 problems. It is certainly comparable to the other

NLP solvers listed here. Furthermore, the new merit function improves the robustness

of the PATH code over the default version.

The test suite provides an indication of the global solution for each of the problems.

Comparing these values to those found by our algorithms, the columns labeled Local and

Optimal can be generated. As one can see from the local solution column, the PATHNLP

solver is more likely to find first-order points that are not globally optimal for this given

test problems. A more complete breakdown of the failures is given in Table 13.

Table 13: Number of nonoptimal solutions reported from 5 nonlinear solvers
Solver Unconstrained Equalities Ranges Both Total

LANCELOT 19 3 0 0 22
MINOS 9 10 0 0 19
NPSOL 11 5 0 0 16
PATH 23 8 0 0 31

PATH (merit) 16 6 3 0 25
SNOPT 15 3 0 0 18

Total 59 48 3 3

It is clear that for finding globally optimal solutions, the NPSOL solver is the most

effective solver, failing only 16 times.
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Table 14 reports the total timing of nonoptimal and optimal solutions from each solver

in seconds. Results were tested on the 330 MHz Ultra Sparc machine with 64 MB RAM

running SunOS version 5.6.

Table 14: Total timing of nonoptimal and optimal solutions from 5 nonlinear solvers

Solver Nonoptimal Optimal Total

LANCELOT 127.52 123.24 250.76
MINOS 352.47 39.66 392.13
NPSOL 130.91 60.10 191.01
PATH 107.15 100.30 207.45

PATH (merit) 63.43 78.95 142.38
SNOPT 9.23 34.83 44.06

Total 790.71 437.08 1227.79

From table 14, SNOPT uses less time to solve this problem suite. It spends only

20.95% of the total time on nonoptimal solutions or failures. MINOS consumes the largest

times to find nonoptimal solutions but is comparable to SNOPT for finding globally

optimal solutions. Our PATHNLP solver with the merit function reduces the total time

by 31.36% from the default version of PATH. Clearly, these problems are too small to

derive many definitive conclusions on speed.

4.4.2 Results of large problem test suites

We select 4 problems from each of four different test suites, Markowitz Models for Port-

folio Optimization, Minimal Surfaces, Nonnegative Least Squares and Structural opti-

mization. All problems are retrieved from the collection of AMPL test problems web

site, http://www.ampl.com/ampl. From Markowitz Models for Portfolio Optimization

test suite, we select the markowitz2.mod which has 1200 variables and 201 equality con-

straints. From Minimal Surfaces test suite, we select the minsurf.mod which has 1681
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variables and no constraints. From Nonnegative Least Squares test suite, we select the

nnls2.mod which has 543 variables and 393 equality constraints. From Structural opti-

mization test suite, we select the structure8.mod which has 13448 variables and 13448

equality constraints.

Table 15 summarizes the result of our test runs on large problem sets. Results were

tested on Sparc machine with 245 MB RAM running SunOS version 5.5.1.

Table 15: Total timing from 5 nonlinear solvers

Solver Markowitz Minimal Nonnegative Structural

LANCELOT 503 106 3 mem
MINOS sup sup sup inf
NPSOL 538 657 191 mem
PATH 84 333 2 res

PATH (merit) 123 221 4 18,375
SNOPT itr sup sup ini

Here a keyword in the table identifies that the solver has difficulty solving this prob-

lem, where mem identifies that the solver could not allocate enough spaces, sup identifies

that the solver reported the superbasics limit is too small, itr identifies that the solver

reached its iteration limits, inf identifies that the solver reported problem is unbounded,

res identifies that the solver exceeds the resource limits and ini identifies that the solver

found the problem is infeasible due to a bad starting point. Solutions from all success-

fully solved problems are the same for all solvers. The solution for markowitz2.mod is

−0.526165. The solution for minsurf.mod is 7.611023. The solution for nnls2.mod is

32.644706. The solution for structure8.mod is 1039.825620. Note that MINOS and

SNOPT failed to solve any large problems, while PATHNLP with merit function solved

all of them. This shows the efficiency of our code for handling large problem sets which

is essential for solving real world models.
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Chapter 5

Conclusion and future research

5.1 Summary of thesis work

We have exhibited a method for simulation optimization based on the sample-path tech-

nique using a gradient based optimization solver. This method is applicable for solving

an engineering simulation design problem that incorporates decision variable constraints

within a modeling language such as GAMS, commonly used in many areas of economics,

business and engineering. Our thesis work also exhibits how modular implementations of

different components such as the optimization solver, the external module, the gradient

approximation module can be replaced by new technologies without effecting the other

components of the solver. This shows the potential of applying the new state-of-the-art

optimization solvers to deal with even more difficult problems.

In our simulation optimization method, we treat the simulation module as a black-box

function which is implemented outside the modeling language system. Its implementa-

tion can be written in a standard programming language such as C, FORTRAN or JAVA

or in a shell script that extracts data directly from the system. This opens the oppor-

tunity for researchers to make use of optimization algorithm without re-implementing

the optimization module. They can concentrate on the validity and verification of the

simulation model, the analysis of the optimization results and its interpretation. They

can also add or modify the constraints to help the optimization algorithm to find suitable

solutions for their real problems.

By using CONDOR, the algorithm makes use of all available computing resources
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within a network to solve large computational simulation optimizations. The implemen-

tation is transparent in that a practitioner does not have to understand anything about

CONDOR. In fact, a practitioner can specify to use CONDOR via an option file from

our solver implementation.

To use a Master-Worker server, a practitioner needs to start the server as a separate

process before executing the GAMS model. The Master-Worker server terminates only

when the practitioner changes the status file to contain the termination code. The major

advantage of using the Master-Worker server over using a CONDOR submit file is a

reduction in waiting time for an idle machines.

Typically, a researcher acquires one or more nonlinear optimization algorithms to

find the solution of the problem because each algorithm exhibits different strengths and

weaknesses to cope with a specific nonlinear problem and formulation. Our techniques

show how to expand the use of the mixed complementarity solver to solve nonlinear

programs. This expands the number of nonlinear solvers to cope with difficult nonlinear

problems. A researcher can test the strength of each nonlinear solver to determine the

best solution of the problem.

5.2 Future research

There are many research directions that can enhance the capability of the simulation

optimization solver to solve large stochastic optimizations, or to expand the number of

nonlinear programming solvers.

1. In this thesis, we deal with continuous decision variables because of the use of a gra-

dient based optimization solver. In real simulation models, the mixture of discrete

and continuous decision variables is common. A joint method for solving simulation
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optimization could use gradient based optimization together with search algorithms

such as the branch and bound method, genetic algorithms, nested partitions or tabu

search.

2. We explored the use of the quadratic model to estimate the gradient. For a specific

simulation function, this quadratic model may not be appropriate. The current

implementation deals with this simulation by fitting the quadratic model with a

very small radius. Future research could explore other function models such as

a piecewise linear model, an exponential model, a polynomial of higher degree or

combinations of the above. The derivative computations of a known model can

be computed using automatic differentiation which will guarantee the result up to

the current machine precision. However, this model must overcome the over-fitting

problems that can easily capture a noise.

3. In this thesis, we link the simulation module by either writing a driver routine and

compiling it together with our quadratic simulation module or making the system

call to a separate executable simulation code. We could expand the possibility of

using the simulation computation directly from a commercial simulation software

such as ACSL (Advanced Continuous Simulation Language simulates continuous

process such as the production of sound, the action of a drug, etc.), ATHENA

(ATHENA is a chemical simulators), or Fluent (Fluid Flow Modeling and Analy-

sis uses for advanced physical models for turbulence, combustion and multiphase

applications.), etc.

4. In this thesis, we solve the single-stage deterministic simulation optimization prob-

lem. That means the simulation computation is not changed during the course

of computation. However, we could solve the multi-stage deterministic simulation



87

optimization using our current implementation. The modification of the simulation

module does not effect the optimization algorithm as long as the simulation is de-

terministic. The nondeterministic or nonparametric simulation optimization is the

subject of further research.

5. From the nonlinear solver point of view, we can expand our research to hook up

more mixed complementarity solvers and search for the best choice of merit func-

tions.
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Appendix A

Simulation optimization GAMS
model

A.1 M/M/1 queueing model

This is the complete GAMS model for the M/M/1 queue. The model sets up variables,

parameters and equations using the GAMS syntax. It writes the simulation option file

containing the dimension of the decision variables both dependent and independent, the

name of the simulation configuration file, the number of sampling points, the radius

adjustment and other configurable options. It also creates the configuration file for the

quadratic simulation optimization module containing the number of server, the dimension

of the output, the arrival rate of the queue, the number of simulation length, the random

number seed, and the lower and upper bound of the service rate.

$Title M/M/1

$Offupper

Variables obj ’The objective variable to minimize’,

mu ’The simulation variable, service rate’,

w ’The simulation output, average waiting time’;

Scalars n ’Number of independent variable’

m ’Number of output parameter from simulation function’

ns ’Exact number of simulation points needed for Quadratic’

np ’Number of sampling points in each run’

nw ’Additional sampling points in a run’

tn ’Total number of parameters passing to CONOPTX’

c ’constant’

lambda ’Inter-arrival rate of customers’

ransim ’Current random number’
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cusd ’Number of customers to be dropped from simulation’

cusn ’Number of customers to be used in simulation’

count ’Count the number of locally optimal values’

diffv ’Different between avgsol and aptsol’;

m = 1;

n = 1;

ns = n*(n + 1)/2 + n + 1;

np = round(ns + ns/3);

nw = 10-np;

tn = n + m;

c = 4.0;

lambda = 3.0;

ransim = 578913;

cusd = 10000;

cusn = 1000000;

Sets iter /1*100/

val /’mu’, ’wait’, ’obj’, ’ran’/;

Parameters maxsol(val) ’Maximum among iter runs’

minsol(val) ’Minimum among iter runs’

avgsol(val) ’Expected value among iter runs’

aptsol(val) ’Solution that have objective value close to avgsol’

allsol(val, iter) ’All solutions’

stasol(iter) ’Status of each solution’;

Equations cost ’The cost objective function’,

extcall ’External function call to CONOPTX’;

cost..

obj =e= sqr(mu-c) + w;

* the following equation is w - f(mu) = 0, defined externally

extcall..

1*mu + 2*w =x= 1;

* Set the lower bound constraint on service rate

mu.lo = lambda;

* Construct the model and solve

Model mm1 /all/;
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* Setting for GAMS

option decimals = 8;

option seed=1001;

* Select CONOPTX as the solver

option nlp = conoptx;

* Declare for qso.in file

file qsoin /qso.in/;

qsoin.ap = 0;

qsoin.nj = 2;

* Declare for qso.cfn file

file qsocfn /qso.cfn/;

qsocfn.ap = 0;

qsocfn.nj = 2;

* Initialize mu, w, obj

mu.l = 0.0;

w.l = 0.0;

obj.l = 0.0;

* Write the qso.in

put qsoin;

put ’SOIND=’ n:1:0 /;

put ’SODEP=’ m:1:0 /;

put ’SOTIN=’ tn:1:0 /;

put ’SO_HI=1.0D+13’ /;

put ’QS_NP=’ np:2:0 /;

put ’QS_NW=’ nw:2:0 /;

put ’SGCFN=qso.cfn’ /;

put ’SGSFN=simple.sta’ /;

put ’SOLFN=qso.log’ /;

put ’QS_SR=1.0’ /;

put ’QS_R2=0.999999’ /;

put ’QS_RX=0.00000001’ /;

put ’QS_MT=40’ /;

put ’QS_UR=0.2’ /;

put ’QS_AL=0.01’ /;

put ’QS_FG=3’ /;

put ’SO_FG=0’ /;

put ’SG_FG=0’ /;

putclose qsoin;
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* Write the qso.cfn for simulation generator configuration

put qsocfn;

put n:1:0 /;

put m:1:0 /;

put lambda:5:2 /;

put ’1000’ /;

put ’1000.0’ /;

put ransim:9:0 /;

put cusd:10:0 /;

put cusn:20:0 /;

put mu.lo:5:0 /;

putclose qsocfn;

option iterlim = 100000;

option reslim = 100000;

mm1.optfile = 1;

Solve mm1 using nlp minimizing obj;

A.2 Telemarketing model

The GAMS model for the telemarketing simulation queue with 4 servers and one waiting

queue is provided below. The main process is similar to the M/M/1 model. It differs

in the modeling details and the configuration file. The configuration file contains the

random number seed, the number of customers, the number of servers, the maximum

queue length, the arrival rate, the probability that the customer will call back and the

average waiting time before the customer call back, and the lower or upper bound of

decision variables.

$Title Simulation Optimization:The call-waiting queue with 4 servers

$Offupper

* runno is used for generate the ".sta"

$setglobal runno 0

$Ontext

The call-waiting queue composes of 4 servers and one waiting queue.
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The customer calls this queue. The following situation occurs

1. Some servers are idle, then s/he will be served directly.

2. All servers are busy and the queue is not full, then s/he will

decide either to wait in the queue with probability p or leaving

the system with probability 1-p

3. All servers are busy and the queue is full, then s/he will leave

the system.

Customers are served using FCFS service discipline. All servers are

being selected using the Round Robin order. The length of queue

is limited by M. Assuming the inter-arrival has the exponential

distribution with rate lambda.

The queue collects the ’average waiting time’ for a typical customer and

the ’percentage of customers lost’ for the system.

$Offtext

Scalars MaxQ ’Maximum number of customers in the queue’

p ’Probability of customer call back without being served’

cbwait ’Waiting time before a customer call back’

lambda ’Inter-arrival rate’

cusn ’Number of customers to use in a simulation’

seedran ’Random number seed for simulation generator’

n ’Number of independent variables’

m ’Output parameter from CONOPTX’

ns ’Exact number of simulation points to fit quadratic’

np ’Number of sampling simulation points for each run’

nw ’Additional sampling in one run’

tn ’Number of parameter passing to CONOPTX’

;

MaxQ = 100;

p = 0.1;

cbwait = 0.4;

lambda = 3.0;

cusn = 10000;

* Generate a random number for Simulation generator

seedran = 458239;

Set i /1*4/;

* Set up for configuration files

m = 2;

n = card(i);
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ns = n*(n+1)/2 + n + 1;

np = round(ns + ns/3);

*nw = 2*ns - np;

nw = 15;

tn = n + m;

Parameter r(i) ’Rate of improving server i’;

r(i) = 5*(ord(i) - 1);

r(’1’) = 1;

Variables obj ’Objective function’

w ’Average waiting time’

plost ’Percentage of customers lost’

sizeq ’the total queue size’

x(i) ’Service rate for each servers’;

* Set bounds

sizeq.fx = MaxQ;

*plost.lo = 0.0;

x.lo(i) = 0.5;

x.up(i) = 10.0;

*w.lo = 0.0;

*plost.up = 0.35;

* Guess the starting points

*x.l(i) = 1.0;

Equations COST ’Objective cost function’

EXPLOST ’Expected percentage of customers lost’

EXPWAIT ’Expected waiting time for a typical customer’

;

COST..

obj =e= sum(i, r(i)*(x(i) - x.lo(i))) + 100*plost;

* the following equation is plost - f(1) = 0, defined externally

EXPLOST..

sum(i, ord(i)*x(i)) + 5*plost + 6*w =x= 1;

* the following equation is w - f(2) = 0, defined externally

EXPWAIT..

sum(i, ord(i)*x(i)) + 5*plost + 6*w =x= 2;
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Model callqueue /all/;

** File declaration

file qsoin /qso.in/;

qsoin.nj = 2;

file qsocfn /qso.cfn/;

qsocfn.nj = 2;

* Write the qso.in

put qsoin;

put ’SOIND=’ n:20:0 /;

put ’SODEP=’ m:20:0 /;

put ’SOTIN=’ tn:20:0 /;

put ’QS_NP=’ np:20:0 /;

put ’QS_NW=’ nw:20:0 /;

put ’SGCFN=qso.cfn’ /;

put ’SGSFN=simple%runno%.sta’ /;

put ’SOLFN=qso.log’ /;

put ’QS_SR=4.0’ /;

put ’QS_RX=0.00000001’ /;

put ’QS_R2=0.9999999’ /;

put ’QS_MT=40’ /;

put ’QS_UR=0.5’ /;

put ’QS_FG=3’ /;

put ’SO_FG=0’ /;

put ’SG_FG=14’ /;

putclose qsoin;

* Write the qso.cfn for Simulation generator configuration

put qsocfn;

put seedran:9:0 /;

put cusn:20:0 /;

put card(i):2:0 /;

put MaxQ:10:0 /;

put lambda:10:8 /;

put p:10:8 /;

put cbwait:10:8 /;

loop(i, put ’0.5 ’); put /;

putclose qsocfn;

* Set options

option nlp = conoptx;

option iterlim = 100000;
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option reslim = 100000;

option decimals = 8;

callqueue.optfile=1;

Solve callqueue using nlp minimizing obj;

display x.l, plost.l, w.l, obj.l;

A.3 Tandem production line model

The following is the tandem production line GAMS model of five machines with the sum

of machine rates of the first 3 machines equal to 0.966 and the rest equal to 0.6. The

main process is also similar to the M/M/1 model. The configuration file contains the

number of machines, the number of runs, the simulation length, the time to start trace

(for debugging purpose), the time to start the trace graph (for debugging purpose), the

machine initial status, the flow rates of each machine, the machine failure rates, the

machine repair rates, the buffer sizes, the random number seeds and the lower and upper

bound of the flow rates.

$Title Tandem production line (6a): with five machines

$Offupper

* runno is used for generate the ".sta"

$setglobal runno 10

Set i ’Set of all machines’ /1*5/;

Alias (i, j);

Variables flwr(i) ’Flow rates for each machine, i’

tpinv ’Output simulation = Inverse throughput’

obj ’Objective variable’;

* Set the lower bound and upper bound

* If flow rates is zero, the production line will not move.

flwr.lo(i) = 0.05;

* Set the starting flow rates

flwr.l(’1’) = 0.800;
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flwr.l(’2’) = 0.060;

flwr.l(’3’) = 0.106;

flwr.l(’4’) = 0.070;

flwr.l(’5’) = 0.530;

tpinv.l = 0.0;

obj.l = 0.0;

* Compute the last index for using to return tpinv

Scalars n ’Number of independent variables’

m ’Output parameter from CONOPTX’

ns ’Exact number of simulation points to fit quadratic’

np ’Number of sampling simulation points for each run’

nw ’Additional sampling in one run’

tn ’Number of parameter passing to CONOPTX’;

m = 1;

n = card(i);

ns = n*(n+1)/2 + n + 1;

np = round(ns + ns/3);

nw = 2*ns - np;

tn = n + m;

Scalars random1, random2;

Equation objective ’Objective function’

flow1 ’Flow rate constraint’

flow2 ’Flow rate constraint’

simcon ’Simulation constraint’;

objective..

obj =e= tpinv;

* the following equation is w - f(mu) = 0, defined externally

simcon..

sum(i, ord(i)*flwr(i)) + (n+m)*tpinv =x= 1;

flow1..

sum(i$(ord(i) < 4), flwr(i)) =e= 0.966;

flow2..

sum(i$(ord(i) > 3), flwr(i)) =e= 0.6;

* Create a model using all information
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model simple /all/;

* Pick CONOPTX as the nonlinear programming solver.

option nlp = conoptx;

option Iterlim=10000;

option reslim=10000;

option random1:0;

option random2:0;

option decimals=8;

* File declaration

file qsoin /qso.in/;

qsoin.nj = 2;

file qsocfn /qso.cfn/;

qsocfn.nj = 2;

* Write the qso.in

put qsoin;

put ’SOIND=’ n:20:0 /;

put ’SODEP=’ m:20:0 /;

put ’SOTIN=’ tn:20:0 /;

put ’QS_NP=’ np:20:0 /;

put ’QS_NW=’ nw:20:0 /;

put ’SGCFN=qso.cfn’ /;

put ’SGSFN=simple%runno%.sta’ /;

put ’SOLFN=qso.log’ /;

put ’QS_SR=’ n:5:1 /;

put ’QS_R2=0.99999’ /;

put ’QS_RX=0.00000001’ /;

put ’QS_MT=40’ /;

put ’QS_UR=0.5’ /;

put ’QS_FG=3’ /;

put ’SO_FG=0’ /;

put ’SG_FG=14’ /;

putclose qsoin;

* Generate a random number for Simulation generator

random1 = 229780750;

random2 = 1460288881;

* Write the qso.cfn for Simulation generator configuration

put qsocfn;

put n:20:0 /;
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put ’1 N Number of runs(batches)’ /;

put ’4 500 49500’ /;

put ’0 t_trace’ /;

put ’0 t_graph’ /;

loop(i, put ’1 ’); put /;

put ’FLWR ’; loop(i, put flwr.l(i):8:3 ’ ’;); put /;

put ’MVTF 100 90 100 90 90’ /;

put ’MTTR 10 4.5 6 4.5 4.5’ /;

put ’BUFF 10 10 10 10’ /;

put random1:10:0 ’ ’ random2:10:0 /;

loop(i, put ’0.00001 ’); put /;

putclose qsocfn;

* The solve statement

*simple.optfile=1;

solve simple using nlp minimizing obj;

display random1, random2, flwr.l, tpinv.l, obj.l;
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Appendix B

CONDOR files and commands

B.1 Multiple architecture submit file

In order to use the available heterogeneous machines and checkpoint feature in the CON-

DOR environment, the user must compile binary executable codes that run on different

computer architectures and operating systems. The CONDOR pool at the University of

Wisconsin-Madison supports the following machine architecture/operating system config-

urations: ALPHA/OSF1, INTEL/LINUX, INTEL/SOLARIS26, INTEL/SOLARIS27,

INTEL/WINNT40, SGI/IRIX6, SUN4u/SOLARIS26, SUN4u/SOLARIS27,

SUN4x/SOLARIS26 and SUN4x/SOLARIS27.

The following CONDOR submit file makes use of three configuration types: the

SUN4u/SOLARIS26, the INTEL/SOLARIS26 and the INTEL/LINUX.

NUMRUNS = 19

Initialdir = /p/gams/remote_condor/standalone/condor/unix/tandem/run

universe = standard

requirements = ((ARCH == "SUN4u" && OPSYS == "SOLARIS26") \

|| (ARCH == "INTEL" && OPSYS == "SOLARIS26") \

|| (ARCH == "INTEL" && OPSYS == "LINUX"))

executable = qso_$$(ARCH)_$$(OPSYS).exe

arguments = conqso_$(Process).ifn conqso_$(Process).ofn

rank=KFLOPS

log = condor_qso.log

notification = Error

queue $(NUMRUNS)

The user must supply three binary executable codes as qso SUN4u SOLARIS26.exe,

qso INTEL SOLARIS26.exe and qso INTEL LINUX.exe in the initialdir.
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B.2 CONDOR related commands

The following CONDOR commands are used to investigate and manage tasks within the

CONDOR pool.

Usage: condor_q [options]

where [options] are

-global Get global queue

-submitter <submitter> Get queue of specific submitter

-help This screen

-name <name> Name of schedd

-pool <host> Use host as the central manager to query

-long Verbose output

-format <fmt> <attr> Print attribute attr using format fmt

-analyze Perform schedulability analysis on jobs

-run Get information about running jobs

-goodput Display job goodput statistics

-cputime Display CPU_TIME instead of RUN_TIME

-currentrun Display times only for current run

-io Show information regarding I/O

restriction list

where each restriction may be one of

<cluster> Get information about specific cluster

<cluster>.<proc> Get information about specific job

<owner> Information about jobs owned by <owner>

-constraint <expr> Add constraint on classads

Usage: condor_reschedule [general-options] [targets]

where [general-options] can be zero or more of:

-help gives this usage information

-version prints the version

-pool hostname use the given central manager to find daemons

where [targets] can be zero or more of:

hostname given host

<ip.address:port> given "sinful string"

(for compatibility with other Condor tools, you can also use:)

-name hostname given host

-addr <addr:port> given "sinful string"

(if no targets are specified, the local host is used)

condor_reschedule causes the condor_schedd to update the central manager

and initiate a new negotiation cycle.
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Usage: condor_rm [options] [constraints]

where [options] is zero or more of:

-help Display this message and exit

-version Display version information and exit

-name schedd_name Connect to the given schedd

-pool hostname Use the given central manager to find daemons

-addr <ip:port> Connect directly to the given "sinful string"

and where [constraints] is one or more of:

cluster.proc Removes the given job

cluster Removes the given cluster of jobs

user Removes all jobs owned by user

-all Removes all jobs

Usage: condor_submit [options] [cmdfile]

Valid options:

-v verbose output

-n schedd_name submit to the specified schedd

-r schedd_name submit to the specified remote schedd

-d disable file permission checks

If [cmdfile] is omitted, input is read from stdin
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Appendix C

Options for the quadratic simulation
optimization

C.1 General options

The user can guide the quadratic simulation optimization using the QSO option file

which is divided into 3 sets of options. The first set of options deals with the simulation

module. The second set of options deals with the simulation optimization in general. The

third set of options deals with the quadratic approximation model and the CONDOR

environment. These options are included in a file named ’qso.in’ and their names must

start at the beginning of the line.

_____=#####

NAME VALUE

The option name composes of 5 characters and its value starts from column 7. The order

of options are irrelevant. If the same option appears more than one line, the last option

line will be used. A character in the sixth column will be ignored.

C.2 Simulation module options

These options deal with setting up the simulation file names and the output report of

the simulation run.

SGCFN: Simulation generator customize file name, sgcfn

The file name of the customizable options for the simulation

generator, it will be called in sg_read for setting up the

simulation generator.
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default = ’qso.cfn’

SGEXE: Simulation generator executable command, sgexe

The command line to execute the simulation generator if only

the executable version is available.

default = ’qso.exe’

SGIFN: Simulation generator input file name, sgifn

The input file name for simulation generator to read during the

normal simulation run.

default = ’qso.ifn’

SGOFN: Simulation generator output file name, sgofn

The output file name from the simulation generator after it

simulates the result using the SGIFN as input and SGEXE as

executable.

default = ’qso.ofn’

SGOPT: Simulation generator option file, sgopt

The option file name for simulation generator

default = ’qso.opt’

SGSFN: Simulation generator statistical output file, sgsfn

The output file name to report the statistics of simulation

run, number of function and derivative calls.

default = ’qso.sta’

SG_FG: Simulation generator flag, sgflag

Flag for report the information from the simulation generator

using the bit pattern. So the user can set up any combinations of

report.

Here is the code with respect to the location of bit $2^k$ on

1 Display SG_FG and QS_FG

2 Display SGIFN, SGOFN, SGEXE, SGCFN, SGOPT, SG_DN, SG_CN

3 Display seed, nw, np, relax, rsquare, radius, urad

pfit, skew, nf, maxit, alpha, W2 threshold

4 Display Simulation iterations

SG_FG = 0 means no report.

default = 15 [positive integer]
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C.3 Simulation optimization options

These options deal with setting up the simulation optimization in general and do not

include the quadratic approximation, which is discussed in C.4.

MAXDZ: Size of DPARS (global setting for double precision parameters)

default = 20 [positive integer]

MAXIZ: Size of IPARS (global setting for integer parameters)

default = 40 [positive integer]

MAXMN: Maximum size of double precision for keeping x of size n and f(x)

of size m

default = 53 [= MAX_N + MAX_M]

MAXNP: Maximum number of kept points.

default = 10000 [setting at 50*MAX_P]

MAXSZ: Maximum number of elements in A matrix construct from x during

the least square fitted of the quadratic

default = 1326 [= MAX_N (MAX_N + 1)/2 + MAX_N + 1]

MAX_I: Maximum number of iterations before giving one simulation run

default = 20

MAX_M: Maximum number of dependent variables

default = 3 [positive integer]

MAX_N: Maximum number of independent variables

default = 50 [positive integer]

MAX_P: Maximum number of sampling points at one time

default = 200 [positive integer]

MAX_S: Maximum number of loop delay before checking the output of

simulation run. (only used when simulation source code is not

available.)

default = 1000 [positive integer]

MAX_W: Maximum number of tries before giving up all simulation runs.

(only used when simulation source code is not available.)

default = 100000 [positive integer]
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SODEP: Simulation Optimization number of dependent variables, m

The number of dependent variables for the simulation generator.

default = 1 [positive integer]

SOEPS: Simulation Optimization Epsilon, eps

The largest number that is indistinguishable when adding to 1.0.

default = 3.667D-11 [eps > 0]

SOIND: Simulation Optimization number of independent variables, n

The number of independent variables in the simulation, for M/M/1

it is 1.

default = 1 [positive integer]

SOLFN: Simulation Optimization log file

The name of the simulation optimization log file

default = ’qso.log’

SO_FG: Simulation Optimization general flag, soflag

Printing flag for the Quadratic simulation optimization

We use the bit patterns, so the user can set up any option

combinations.

Here is the code with respect to the location of bit $2^k$ on

1 Display SODEP,SOIND,SOTIN,SOEPS,SO_NI,SO_PI

2 Display Hard lower bound and upper bound

3 Display Return simulation function

4 Display function and derivative calls

5 Display Number of fits, current rsquare,

free space and radius for each minor iteration

6 Display W2 acceptance or rejection

7 Display Skewness coefficient for each minor iteration

and Histogram cutting

8 Display Quadratic information

SO_FG = 0 means no report.

default = 511 [positive integer]

SO_HI: Simulation Optimization general upper bound, upper

The largest upper bound for x

default = 1.0D+20 [upper > 0]

SO_LO: Simulation Optimization general lower bound, lower
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The smallest lower bound for x

default = -1.0D+20 [lower < 0]

SO_NI: Simulation Optimization Negative infinity, neginf

The smallest negative number to be used in the simulation

default = -1.0D+20 [neginf < 0]

SO_PI: Simulation Optimization Positive infinity, posinf

The largest positive number to be used in the simulation

default = 1.0D+20 [posinf > 0]

C.4 Quadratic Simulation optimization options

These options deal with setting up the quadratic model for the gradient approximation

and CONDOR environment.

CON_U: Condor universe flag, conuflag

Flag for submitting the simulation via CONDOR

1 Use the vanilla universe

2 Use the standard universe

default = 1 [positive integer]

CON_S: Condor serial flag, consflag

Flag for computing serial version while waiting

Here is the code with respect to the location of bit $2^k$ on

1 Apply serial computation during the waiting period

default = 1 [positive integer]

QS_AL: Quadratic Simulation significant level

Level of signification testing for error having normal

distribution with unknown mean and standard deviation.

default = 0.05 [Allowable value are 0.15, 0.1, 0.05, 0.025, 0.01]

QS_DR: Quadratic Simulation percentage of sampling region, delta

Percentage of radius to use as the sampling region.

default = 100.0 [0.0 <= QS_DR <= 100.0]

QS_FG: Quadratic Simulation flag, qsflag

Selecting the method of determine function and derivative calls.

Here is the code with respect to the location of bit $2^k$ on
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1 Use delta

2 Use adjusted R-square

3 Use Cramer-von Mises Statistic or W^2 statistic

QS_FG = 0 means no report.

default = 31 [positive integer]

QS_FI: Quadratic Simulation frequency interval, nf

Number of interval to use for droping outline or unfit points

default = 20 [positive integer]

QS_MR: Quadratic Simulation minimum sampling radius, minrx

Minimum radius for fitting QP

default = 0.0000001 [minrx > 0.0]

QS_MT: Quadratic Simulation minor iterations, maxit

Maximum number of minor iterations during the radius reduction

phase in the QP fit.

default = 30 [positive integer]

QS_NP: Quadratic Simulation number of sampling points, np

Minimum requirement for the number of sampling points to fit QP

default = 50 [ = n (n + 1)/2 + n + 1 + 1 ]

QS_NW: Quadratic Simulation number of additional sampling points, nw

Additional sampling points to be called for the minor iteration.

default = 5 [setting as np / 10]

QS_PF: Quadratic Simulation percentage of fit, pfit

Acceptable percentage of point to accept the QP.

default = 100.0 [suggest 90.0 <= QS_PF <= 100.0]

QS_R2: Quadratic Simulation R^2 threshold, rsquare

The R^2 threshold is used when the computed R^2 is greater than

this threshold, then the QP is considering as fit.

If the adjusted R^2 is not used,

then it is fixed at 0.9999999 and cannot be changed.

default = 0.99 [suggest 0.99 <= rsquare <= 1.0]

QS_RX: Quadratic Simulation relax distance, relax

Maximum distance for considering two points to be the same using

1-norm.

default = 0.00001 [relax > 0.0]
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QS_SD: Quadratic Simulation random seed, seed

Start random seed for the random number generator which is used

internally for Quadratic Simulation Optimization for generating

new sampling point, etc.

default = 458239 [positive integer]

QS_SR: Quadratic Simulation sampling radius, radius

Starting radius for the first call to a point during the

computation of derivative.

default = 1.0 [radius > 0.0]

QS_SW: Quadratic Simulation skewness threshold, skew

The coefficient of skewness threshold for removing outliers,

if the absolute of computed skewness is greater than skew then

the Quadratic Simulation Optimization will try to remove outliers.

Otherwise, it uses QS_UR to reduce the radius

default = 1.0 [skew >= 0]

QS_UR: Quadratic Simulation updated radius, urad

Percentages of radius increasing after W^2 test successful or

decreasing after W^2 test is unsatisfactory or the regular

reduction of radius.

default = 0.4 [0 <= urad <= 1.0]


