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Abstract

PIECEWISE LINEAR HOMOTOPIES AND AFFINE
VARIATIONAL INEQUALITIES
Menglin Cao
Under Supervision of Assistant Professor Michael C. Ferris

at the University of Wisconsin—Madison

The purpose of this thesis is to apply the theory of piecewise linear homotopies
and the notion of a normal map in the construction and analysis of algorithms for
affine variational inequalities.

An affine variational inequality can be expressed as a piecewise linear equation
Ac(z) = a, where A is a linear transformation from IR" to R", C is a polyhe-
dral convex subset of IR", and A is the associated normal map. We introduce a
path-following algorithm for solving the equation Ax(z) = a. When A¢ is coher-
ently oriented, we prove that the path following method terminates at the unique
solution of Ac(z) = a. This generalizes the fact that Lemke’s method terminates
at the unique solution of LCP(q, M) with M being a P-matrix. In LCP study,
termination of Lemke’s method is established for two major classes of matrices,
the class of L-matrices introduced by Eaves and the class of Py—matrices studied

by Cottle et al. We generalize the notion of L-matrices for polyhedral convex
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sets in IR" and prove that, when A is a linear transformation associated with
such matrices, our algorithm will find a solution for Ac(z) = a. unless the it is
infeasible in a well specified sense.

Our approach to Py begins with the study of geometric characteristics of an
LCP that contribute to the finite termination of Lemke’s method. Given K (M)
as the set of solvable right hand sides for the matrix M and SOL(q, M) as the
set of solutions for LCP(q, M), we prove that the convexity of K(M) and the
connectedness of SOL(q, M) for all ¢ € IR" guarantee finite termination of Lemke’s
method. We study those matrices such that SOL(q, M) is connected for all ¢ € IR"
as a matrix class, denoted by P.. We are interested in how P, is related to F.

We also study variational inequalities from the perspective of maximal mono-

tone multifunction theory. Our results are presented in the last two chapters.
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Chapter 1

Introduction

The purpose of this thesis is to apply the theory of piecewise linear homotopies and
normal maps in the construction and analysis of algorithms for affine variational
inequalities.

Let F' be a continuous mapping from IR" to IR", and C' be a non—empty closed
convex set. The variational inequality problem VI(F,C) is to find z € C such
that

(F(2),y—2) 20,y € C. (VD)
This problem has appeared in the literature in several equivalent formulations,

the most important of which is the generalized equation, that is
0€ F(z)+0y(z | C), (GE)
where (- | C) is the indicator function of the set C' defined by

0 ifzeC

U(z | C):= _
o ifz¢C

and 0v is the subdifferential of ¢ ( see [45] ).



The variational inequality problem is a very fundamental problem in the the-
ory and practice of optimization. This is mainly due to the fact that optimality
conditions for various optimization problems when expressed in the form of mini-
mum principle ( see [32] and [41]) are variational inequality problems. Also, most
complementarity problems can be equivalently formulated as variational inequali-
ties. Tt is also an important tool for modeling various equilibrium problems ( [26],
[33], and [38] ). For an up-to-date, comprehensive survey on formulation, the-
ory, algorithms and applications of variational inequalities and complementarity
problems, see [27] and [40].

The normal map relating to a function F:IR" — IR" and a non—empty, closed,

convex set (', is defined as
Fc(a,“)Z = F(Wc(ﬂ?)) +x — 71'0(56)

where m¢(x) is the projection (with respect to the Euclidean norm) of  onto the
set C'. We call

Fo(z) =0 (NE)
a normal equation. Note that (NE) is equivalent to (GE), in the sense that if
Fo(xz) =0, then z: = mo(z) is a solution of (GE). Furthermore, if z is a solution
of (GE), then x: = z — F(2) satisfies Fo(z) = 0.

A very familiar special case of (GE) is when C' = K is a polyhedral convex cone.
Then it is easy to show that (GE) is equivalent to the generalized complementarity
problem [28]

€ K,F(z) € K (F(2)—a,z) =0

where K7:= {2*| (2*, k) > 0,Vk € K} is the dual cone associated with K.

In this work, we focus on the special case where the map F'is affine and C' is



polyhedral. In this case, the normal map is piecewise linear and the normal equa-
tion is a piecewise linear equation. The general theory of piecewise linear equations
developed by Eaves in [15] and special properties of normal maps induced by linear
transformation developed by Robinson [43] are used in constructing and analyzing
algorithms for solving this type of normal equation. We generalize the notion of
copositive—plus and L—matrices for polyhedral convex sets in IR" and then prove
that our algorithm processes Ax(z) = a when A is the linear transformation asso-
ciated with such matrices. That is, when applied to such a problem, the algorithm
will find a solution unless the problem is infeasible in a well specified sense.

Another important matrix class in the study of linear complementarity prob-
lem is Py. Our approach to Py begins with the study of geometric characteristics
of an LCP that contribute to the finite termination of Lemke’s method. Given
K (M) as the set of solvable right hand sides for the matrix M and SOL(q, M)
as the set of solutions for LCP(q, M), we prove that the convexity of K (M) and
the connectedness of SOL(q, M) for all ¢ € IR" guarantee finite termination of
Lemke’s method. We study those matrices such that SOL(q, M) is connected for
all ¢ € IR" as a matrix class, which is denoted by P,. This matrix class is not
contained in F,, but contains a substantial portion of F,, e.g. all the column
sufficient matrices. We are interested in knowing whether Py is a subclass of P.,.

Most of the existing algorithms for the mixed linear complementarity prob-
lem rely on a certain non-singularity property of the underlying matrix. Our
study shows that copositive matrices have a special structural property which can
be exploited in constructing algorithms that do not require any non—singularity
assumptions.

In the final two chapters of this thesis, we also investigate variational inequal-

ities from the perspective of maximal monotone multifunction theory.



The following is an introduction to our notation and some mathematical pre-

liminaries.

1.1 Notation

Let IR be the set of real numbers and IR" be the n—tuples of real numbers (n—
vectors). The set of m X n matrices of real numbers is represented by IR™*".
A matrix in IR™*" is usually represented by an upper case English letter and a
vector in IR" is usually represented by a lower case English letter. Unless otherwise
stated, the vector e represents the vector in IR" with all the components being
1, and the vector e; represents the vector in IR" with all the components being 0
except the i—th, which is 1. For any vector or matrix, a superscript 7" indicates the
transpose. Index sets are represented by lower case Greek letters. In particular,
for the index set «, |a| denotes the cardinality of . Given any vector v and index
sets «, v, denotes the set of components of v with index in a. Given any matrix
M and index sets o and (3, M,. denotes the submatrix formed by those rows of
M with indices in o, M g denotes the submatrix formed by those columns of M
with indices in 3, and M,g denotes the submatrix formed by those elements of M
with row indices in a and column indices in f.

For any vectors x and y in R", (x,y) or 27y denotes the inner product of z
and y, and in this thesis, these two notations are freely interchangable. For any
vector or matrix |||, denotes the p-norm, see [39]. B, is used to denote the unit
ball in IR™ with respect to the norm [|-||, and B is used as a shorthand for B,.
Given a vector v, diag{v} is the diagonal matrix whose diagonal elements are the

components of v.



Each m x n matrix A represents a linear map from IR" to IR™, the sym-
bol A refers to either the matrix or the linear map as determined by the con-
text. Given a linear map A from IR" to R™, for any X C IR", the set A(X):=
{y e R™| y = Az, for some x € IR"} is called the image of X under A; for any
set Y C R™, the set A7/ (Y):= {z € R"| Az € Y} is referred to as the inverse
image of Y under A. In particular, the set A~'1({0}) is called the kernel of A
denoted as ker A, and the set A(IR") is called the image of A denoted as imA.

Given any set C' C IR" and the minimization problem
min f(z) x€C
the set of minimizers is denoted by argmin {f(z) | 2 € C'}. Similarly, for
max f(z) 2x€C

argmax { f(z) | x € C'} denotes the set of maximizers.

1.2 Polyhedral Convex Sets in IR"

A set C in IR" is said to be convex if for any two points z,y € C and 0 < A <1

we have

A+ (1-NyeC

It is a direct consequence of the definition that the intersection of any collection
of convex sets is convex.

As examples of convex sets, we introduce sets of the form
{zeR"[(z,0) <pB}, {zeR"[(z.b)>p}
and

{reR"[(z,0) <B}, {zeR"|(z.b)>p}



where b # 0 and # € IR, and call them closed half-spaces and open half-spaces
respectively. These sets are easily verified as convex.

A set C is called a polyhedral convex set if C' is the intersection of finite
number of closed half-spaces. Suppose I is an arbitrary finite index set, and

b; € R", §; € IR, for any ¢ € I. Then, a set of the form
{LEEIRn| <l‘,bz> Sﬁl,ZEI}

is a polyhedral convex set.
A set M is called an affine set if for any two points z,y € M and A € IR we
have

A+ (1=-NyeM
{:rG]R"\(x,bl):ﬂl,zel}

is an affine set. The following theorem indicates a basic property of affine sets.

Theorem 1.1 ([45, Theorem 1.2]) Each non—empty affine set M is parallel to

a unique subspace L. This L s given by
L=M-M={z—-y|lzeMyecM}

As a result, we can define the dimension of M, denoted as dim M to be the
dimension of L.
For a non—empty, closed, convex set C', affC, called the affine hull of C' is the
smallest affine set containing C. That is
affC' = ﬂ S
ccs
where the sets S are affine sets. The dimension of C', denoted as dim C', is defined

to be the dimension of affC.



The topological interior of C' with respect to affC' is call the relative interior
of C, and is denoted as riC'. The closure of C, denoted as clC' is defined as the
topological closure of C'. The set of points clC'\ riC is called the relative boundary
of C' and is denoted as rbdryC.

For any closed convex set C', the set
lin C:={deR"|z+pde C,Vz € C,Vu e R}

forms a linear subspace of IR"™ and is called the lineality space of C' (see [45]).
A set K is called a cone if for any © € K we have \x € K for any A > 0. A
cone K is called a convex cone if it is both a cone and a convex set.

Given a convex C, coneC denotes the set
{M|A>0,zeC}
We call this the cone generated by C'. For any convex set C' and = € C, the set
Nz |C)={s" e R"|(z",y —2) <0,Vy € C}

is a convex cone. We call it the normal cone of C at z.

Let C' be a non—empty convex set in IR", the set
recC:={deR" |z +Ad e C,Ve € C,YA >0}

is called the recession cone of C'. A non—empty closed convex set C' is bounded if
and only if recC = {0} ( see [45, Theorem 8.4] ).
If C is a cone,

= f{rem

:rTyg(],‘v’yeC}

is the polar cone of C', and

CD:{:EEIR"

xTyZO,VyEC’}



is the dual cone of C'. As a matter of fact C° = —CP.

Given a convex set C, a convex subset F' of C' is called a face of C'if any line
segment in C' with a relative interior point in F' has both of its endpoints in F.
Furthermore if there exists a linear function f that is constant on F' and such that
f(x) > f(y) for any x € F and y € C'\ F, F is called an exposed face of C. A
face of dimension 0 is called an extreme point, and an exposed face of dimension
0 is called an exposed point. For a polyhedral convex set every face is an exposed

face.

1.3 Piecewise Linear Manifolds

In the theory of piecewise linear manifolds, a polyhedral convex set is called a cell.
A cell ¢ of dimension m is called an m—cell.

Let M be a finite or countable collection of m-—cells in R". Let M’ i =
1,2,---,m, be the set of i—faces of elements of M, that is faces of a member of
M of dimension i. We call members of M?, i = 1,2,---,m, and M° cells and
vertices of M respectively.

Let M = U,ca 0. We call (M, M) a subdivided m—manifold if

1. any two m-—cells of M are disjoint or meet in a common face.
2. each (m — 1)—cell of M lies in at most two m—cells.

3. each point of M has a neighborhood meeting only finitely many m-—cells of
M.

If (M, M) is a subdivided m-manifold for some M, we call M an m-manifold.
Furthermore, if M is a connected set, we call M a connected m-manifold. Figure

1 shows an example of a 2-manifold.



Figure 1: A 2-MANIFOLD

As another example, we show how an (m + 1)-manifold can be constructed

from an m-manifold by using Cartesian product with IR,. Given an m-manifold
(M, M), we let
N = Mx ]R,_|_
N = {r|r=0xRi,0 € M}
Then, it is easy to verify that (N, N) is an (m + 1)-manifold.
The case of m = 1 is of particular interest in this work. This type of manifold

can be characterized in a simple way. First, we refer to a convex subset of IR that

contains more than one point as an interval, and the set
{x € R?| (z,7) = 1}

as a circle. We say that two sets are homeomorphic to each other if there is a
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bijective map from one to another and both the map and its inverse are continuous.
A connected 1-manifold is called a curve. The following lemma characterizes

a curve.

Lemma 1.2 ([15, Lemma 5.1]) A connected 1-manifold is homeomorphic to

either a circle or an interval.

We call a connected 1-manifold a loop if it is homeomorphic to a circle, and
a route if it is homeomorphic to an interval. In general, we have the following

characterization.

Lemma 1.3 ([15, Lemma 5.5]) A 1-manifold is a disjoint collection of routes

and loops.

The intersection of a line and a cell o of M is called a chord. A ray refers to
a chord that is a half line. Considering an m-manifold (M, M), a chord of M
refers to a chord of an m—cell of M. A ray of M is a chord that is a half line.

For an m—manifold M subdivided by M, the boundary of M, denoted as OM,
is the union of all (m — 1)—cells of M which lie in exactly one m-cell of M. As
an example, in Figure 1, the boundary of the 2-manifold is indicated by the bold
lines. For the case of 1-manifold, it is easy to see that a loop has empty boundary.
However, the boundary of a route may contain 0, 1, or 2 points.

Basic properties of the boundary of a PL-manifold are summarized in the

following two lemmas.

Lemma 1.4 ([15, Lemma 6.3]) The boundary of a manifold is closed in the

manifold.

Lemma 1.5 ([15, Lemma 6.4]) The boundary of a manifold is independent of

the subdivision.
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Consider an m-manifold M and a 1-manifold W contained in M. If W is
closed in M and OW = W N 0M, then we say that W is neat in M. If M is
subdivided by M and W is the set of 1-chords of M of the form W N ¢ where o
is an m—cell of M, we say that W is neat in (M, M) if W is subdivided by W.

1.4 Piecewise Linear Maps

Let (M, M) and (N, N') be subdivided manifolds. Let F': M — N be a continuous

map which is linear on each cell o of M, that is
FAx+ (1= MNy)=AF(z)+ (1 =N F(y), forall z,y € 0 and A € R

and which carries each cell o of M into a cell 7 of /. Then, we call such an F a
piecewise linear map.

Given acell 0 € M and 7 € N with F(0) C 7, we define F, : affc — affr to be
the affine map which agrees with F' on ¢. Such an affine map can be represented
as

F,(x) = Asz + a,

where A, and a, are matrix and vector of appropriate sizes.

In this work, we are particularly interested in the case of a piecewise linear
map from an (n + 1)-manifold to an n-manifold. Let M and N be an (n+1) and
an n—manifold respectively, a point z in M is said to be a degenerate ( otherwise

regular ) point if z lies in a cell o of M such that
dim F(o) <n

A value y in F(M) is said to be a degenerate ( otherwise regular ) value if F~'(y)

contains any degenerate points.
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Suppose F'is a piecewise linear map from an (n 4 1)-manifold (M, M) to an
n—manifold (N, N') and F}, is the affine map that agree with F on the cell 0 € M.
If y is a regular value, then, for each (n + 1)-cell o such that o N F~!(y) # 0, the
rank of the linear map A, is n. Hence o N F~!(y) is a one chord. These chords

actually form a 1-manifold.

Theorem 1.6 ([15, Theorem 9.1]) If y is a reqular value, then F~'(y) is a
1-manifold neat in (M, M). In this case, F~'(y) is subdivided by sets of form
oNF~(y) #0 where o € M.

When y = F(z) is a degenerate value, the structure of F~!(y) can be much
more complicated. However, if z is a regular point or F' is locally univalent on
the boundary of M at x, structural properties similar to those in the proceeding
theorem can also be derived. Note that F' is locally univalent on the boundary
of M at x if there exists a neighborhood U of x such that F(z;) = F(z3) and

xr1,Te € UNOM imply x1 = x».

Theorem 1.7 ([15, Theorem 13.1]) If F is locally univalent on the boundary
of M at x, then F~*(F(x)) contains a route W neat in (M, M) with x € OW.
If z is a regular point, then F~'(F(z)) contains a curve W neat in (M, M) with
x € W. In either case W 1is subdivided by 1—chords of the form o "W with o € M.

In our analysis, we need to use regular values to approximate a given point
in F(M). Given € > 0, let [e] = (e, €2, -+, e")T. The following lemma identifies a
situation in which a point in F'(M) can be approximated by a continuous path

consisting of regular values.

Lemma 1.8 ([15, Lemma 14.2]) Assume that M is finite, y + Ye] € F(M)
for all small positive €, and the rank of Y is n. Then, y + Ye] is reqular for all

small positive €.
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1.5 Piecewise Linear Equations

Let F'is a piecewise linear map from an (n+ 1)-manifold M to an n-manifold N.

Consider the piecewise linear equation
F(z)=y where y € N

We are interested in algorithms for following paths in F~!(y). These are the basic
tools that we use in approaching the piecewise linear equations derived from affine
variational inequalities. We restrict our attention to the case where M and N are
finite.

We first look at the case where y is a regular value and then a more general
case. We need the following technical jargon. Given any point z € o, we say that
a vector v points into o from z if z 4+ fv € ¢ for all 0 < § < @, where § > 0.

Now, suppose y is a regular value, then F~'(y) forms a 1-manifold neat in
(M, M). Suppose we are given a point zy in F~(y), an (n + 1)—cell o4 of M
containing xy and a vector vy such that zo+ pvg € oo N F~1(y) for all 0 < p < fi,
where i > 0. We describe an algorithm for moving along the curve of F~!

containing x, in the direction vy as follows.
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Algorithm 1

1. Initialization :
Given a triple (g, 09, v9) where F(xy) =y, ¢ € 0g, A,,vo = 0, and

vy points into oy from xj.

2. Tteration :

Given the triple (zy, oy, vy ) compute

0, =sup{0| x, + vy, € o }

If 6, = +00, terminate with a ray.
If x4 € 04, with k > 2, terminate with a loop.

Otherwise, let

Tpp1 = Tp + Opvyp

If 21 € OM, terminate at the boundary.

Otherwise determine o1 € M\ {0} which contains z;;. Compute
V1 # 0 by solving the equation A, vy11 = 0 and v,y points
into 44, from x;,,. Proceed with the Iteration step with the triple

(Thg1s Ohgrs Vig1)-

When y is not a regular value, we need to use the lexicographic rule to resolve
degenerate pivots. A non—zero vector x is said to be lexicographically positive,
denoted as x > 0 ( negative, denoted as < 0 ), if its first nonzero component is

positive ( negative ). Let x and y be any vectors in IR", then x is lexicographically
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greater ( less ) than y if and only if x —y > 0 (2 —y < 0 ). In this way, > ( <)

defines a total ordering on IR". The following lemma put this in precise terms.
Lemma 1.9 Given any z, y, z € IR", the following are true

1. Eitherx =y, x =y, orz < y.

2. If x =y, then y < x.

3. Ifx =y, andy > z, then x > 2.
Proof By direct algebraic verification. Q.E.D.

The lexicographic order can be thought of as being induced by a perturbation

o~(o 1)
[4:(6 o 6n>T

Then Q;. > Q... if and only if ¢; + I - [¢] > ¢; + I - [¢] for small positive e.

term. For example, let ¢ € IR™,

and

Suppose xg is a regular point, or F' is locally univalent at the boundary of
M at z(, let oy be a cell containing zy. Then, there exists a vector vy # 0
satisfying A,,v9 = 0. We can also find a set of vectors g1, zgs, - - -, Zon, such that
Zo, Lo+ To1, -+, Lo+ To, are in og and vy, Toq, * * - Tg, are linearly independent. We

can construct a matrix X, as follows

XU:(»T(n To2 1‘0n>

Then, F(zo + Xo[e]) is regular for all small € > 0, since A,, X, has rank n. The
algorithm starts with the triple (zo + Xole], 00, vo).
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Algorithm 2

1. Initialization :
Given a triple (zo+Xo[e], 00, v9) where F(x¢) = y, 2y € 09, Ayyvo = 0,

and v, points into oy from x,.

2. Tteration :

Given the triple (2, + X[€], 0y, vx) compute
0, + @k[E] = sup{9| T + Xk[E] + Qv € O'k}

for small € > 0.
If 8, = +00, terminate with a ray.
If g + Xo[e] € oy with k > 2, terminate with loop.

Otherwise, let
Tpp1 + Xy le] = 2 + Xi[e] + (05, + Ople]) vy,

for small € > 0.
If x4 1 + Xiy1]e] € OM, terminate at the boundary.

Otherwise determine o1 € M\ {0} } which contains zy 1 + Xj41]€]
for small ¢ > 0. Compute vp,; # 0 by solving the equation

Ag  Vkp1 = 0 and vy points into opyy from w4y + Xjpq[e] for

small ¢ > 0. Proceed with the Iteration step with the triple

(Thg1 + Xiyrl€]s Opgrs Vigr)-
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This is the algorithm that we use for solving piecewise linear equation derived
from affine variational inequalities. Later in Chapter 2, we will show how a starting

point is chosen and how a pivot step is computed.

1.6 LCP and Matrix Classes

A special case of using the path following method on piecewise linear equations is

Lemke’s pivotal method for solving the linear complementarity problem

2>0, Mz+q>0, o' (Mz+q¢)=0 (LCP)
where M is an n X n matrix and ¢ is a vector in IR". The pair LCP(q, M) is used

as a shorthand notation for (LCP). For LCP(gq, M) the set
FEA(¢, M) ={z|xz >0, Max+q>0}

is called the feasible set. An LCP is said to be feasible if its feasible set is non—

empty. The set
SOL(g, M) = {x € FEA(g, M) | 2" (Mz +¢) =0}

is called the solution set. An LCP is said to be solvable if its solution set is

non—empty. The set
K(M) ={q € R"| SOL(q, M) # 0}

is the set of all right hand side vectors for which (LCP) is solvable.

The most extensively studied algorithm for solving LCP is Lemke’s pivotal
algorithm. Termination properties of this algorithm are well known on two classes
of matrices, namely, copositive-plus and P (see, for example [7]). Generalizations

are found throughout the LCP literature. For example, results concerning L and
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L, matrices, which are extensions of those for copositive—plus matrices, can be
found in [12] and [13] (see also [37]). Termination results on P, matrices, which
are extensions of those for P-matrices can be found in [1] and [9].

Matrix classes related to LCP are numerous ( see [37] and [8] ). Here is a brief
survey of those that are closely related to this work. Most of these matrix classes
are defined with respect to IR",. Later in this thesis we generalize some of these,
e.g. copositive-plus, L, P, column sufficient, etc. to arbitrary polyhedral convex
sets in R"™.

A matrix M is said to be copositive if
(x,Mx) >0,YVx >0
and M is said to be copositive—plus if M is copositive and
(x,M2) =0,2>0 = (M+M" )z =0
A matrix M is called an L matrix if the LCP
2>0, Mz+q>0, 2"(Mz+q)=0
has a unique solution 0, and furthermore, for any z # 0 such that
2>0, Mz2>0, 2TMz=0
there exist diagonal matrices D > 0 and E > 0 such that Dz # 0 and
(EM +M"D)z=0

A matrix M is called a P ( Py ) matrix if all its principal minors are positive (
non-negative ).

The class of matrices such that

FEA(¢, M) #0 =  SOL(q, M) #
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is referred to as )y matrices. In another words a )y matrix M is one such that
LCP(q, M) is solvable whenever it is feasible. The class @)y can be characterized

as follows.

Theorem 1.10 ([8, Proposition 3.2.1]) For an n x n matriz M, the following

are equivalent
(a) M € Qo.
(b) K(M) is convex.
(¢c) K(M) = pos(I,—M).
Here pos(I,—M) stands for the smallest polyhedral convez cone containing all the

column vectors of the matriz (I,—M) and the origin.

Definition 1.11 A matriz M is said to be column sufficient if, given z € IR"
2i(Mz); <0 foralli = z(Mz);=0 for all i

M is row sufficient if its transpose is column sufficient. M is sufficient if it is

both column and row sufficient.

An key property of row sufficient matrices is that a solution of LCP(q, M)
can be obtained from a Karush-Kuhn-Tucker point ( see [32] ) of the following

quadratic program

min 27 (Mx + q)
subject to Mz +4+¢>0 (1.1)

x>0

A Karush-Kuhn—Tucker point consists of primal and dual variables is also referred

to as a Karush-Kuhn—Tucker pair.
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Theorem 1.12 ([8, Proposition 3.5.4]) Given an n x n matriz, the following
are equivalent:

(a) M is row sufficient.

(b) For each q € IR", if (z,u) is a Karush-Kuhn—Tucker pair for the quadratic
program (1.1) then z solves LCP(q, M).

A consequence of this theorem is that )y contains the class of row sufficient

matrices ([8, Corollary 3.5.5]).
Corollary 1.13 FEvery row sufficient matriz is a Qg matriz.

Proof If FEA(q, M) # (J, then the quadratic program (1.1) is feasible, and hence
has a solution by the Frank-Wolfe theorem ( see [20] ). Therefore a Karush—
Kuhn-Tucker point (2*, u*) exists. Thus z* € SOL(g, M) by the previous theorem.

Q.E.D.

Column sufficient matrices can be characterized by convexity of SOL(q, M) for

all ¢ € IR". The following theorem put this in precise terms.

Theorem 1.14 ([8, Proposition 3.5.8]) A matriz M is column sufficient if
and only if for each q € IR", the set SOL(q, M) is convez.

As a result of Theorem 1.10, Corollary 1.13 and Theorem 1.14, we state the

following theorem for the class of sufficient matrices.

Theorem 1.15 If a matriz M is sufficient then
(a) M € Qo.
(b) K(M) = pos(I,—M) is a polyhedral convex cone.
(c) SOL(q, M) is a non-empty convex set for each q € K(M).
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We conclude this section with a theorem on the connection between sufficient

matrices and P or P, matrices.

Theorem 1.16 Every P-matriz is sufficient, and every sufficient matrix is in

Fy.

Proof Every P-matrix M is column sufficient by part (b) of [8, Theorem 3.3.4].
M7T is a P-matrix provided M is a P-matrix. Hence M7 is column sufficient.
Consequently, M is sufficient.

Suppose M is column sufficient. Let 0 # 2z € IR". Then, we have either
zi(Mz); > 0 for some i or z;(Mz); <0 for all i. In the latter case, z;(Mz); = 0 for
all i. In any event, there is an index ¢ such that z; # 0 and z;(Mz); > 0. Hence,
M is Py by part (b) of [8, Theorem 3.4.2]. So, every column sufficient matrix is a

Py—matrix. Therefore, every sufficient matrix is a Py—matrix. Q.E.D.

A matrix M is said to be semi-monotone if for each non—zero vector x in IR"

such that = > 0, there exists a index k such that
zr >0 and (Mzx), >0

The class of such matrices is denoted as Ey. The following theorem provides a

characterization for semi—-monotone matrices.

Theorem 1.17 Given an n X n matriz, the following are equivalent:

(a) M is semi-monotone.
(b) (LCP) has the unique solution 0 for all ¢ > 0.
(c) For any index o C {1,2,---,n}, the system

Myozo <0, Ty >0

has no solution.
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Proof See [8, Theorem 3.9.3]. Q.E.D.

It is clear from the definition that P matrices and column sufficient matri-
ces are semi—monotone. Copositive—plus matrices and L—matrices are also semi—

monotone as a result of part (b) of the proceeding theorem.



Chapter 2

Pivotal Method

In this chapter we are concerned with the affine variational inequality problem.
The problem can be described as follows. Let C' € IR" be a polyhedral convex set
and A be a linear transformation from IR" to IR". We wish to find a point z € C
such that

(A(2) —a,y —2) > 0,Vy € C (AVI)

The problem can be equivalently formulated as

0€ A(z) —a+0Y(z | C) (GE)
where (- | C) is the indicator function of the set C. It can be easily shown
that 0¢(z | C) = N(z | C), the normal cone to C at z, if z € C and is empty
otherwise, and hence (AVI) is equivalent to (GE). The solutions of such problems
arise for example in the determination of a Newton-type method for generalized
equations.
The problem has also been termed the linear stationary problem and we refer
the reader to the work of [51], [49], [11] and [10] for several methods for the
solution of this problem either over a bounded polyhedron or a pointed convex

polyhedron.

23
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Our approach is to formulate (AVI) as a piecewise linear equation by using

the normal map induced by the linear transformation A
Ac(z):= A(ne(x)) + 2 — mo(x)

and 7o () is the projection (with respect to the Euclidean norm) of z onto the

set C. We know that (AVT) is equivalent to

Ac(z) =a (NE)

from Chapter 1.
In Section 2.1 we describe the theoretical algorithm and apply several results
of Eaves and Robinson to establish its finite termination for coherently oriented
normal maps. In Section 2.2 we carefully describe an implementation of such a

method, under the assumption that C' is given by
C:={z|Bz>bHz=h}.

In Section 2.3 we extend several well known results for linear complementarity
problems to the affine variational inequality. In particular, we generalize the
notions of copositive, copositive-plus and L-matrices from the complementarity
literature and prove that our algorithm processes variational inequalities associ-
ated with such matrices. That is, when the algorithm is applied to such a problem,
either a solution is found, or the problem is infeasible in a well specified sense.
Our definition of L-matrices is new and enables the treatment of both coherently
oriented normal maps and copositive—plus matrices within the same framework.
Furthermore, this result ( Theorem 2.11 ) includes many of the standard existence

results for complementarity problems and variational inequalities as special cases.
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2.1 Theoretical Algorithm

We describe briefly a theoretical algorithm that is guaranteed to find a solution in
finitely many steps when the homeomorphism condition developed in [43] holds.
This method is a realization of the general path—following algorithm described
and justified in [15]. In what follows we use various terms and concepts that
are explained in [15]. Related methods for finding stationary points of affine
functions on polyhedral sets are given in [16, 17]. A more detailed description of
an implementation of the method is given in the Section 2.2; here we deal with
theoretical considerations underpinning the method. Other related work can be
found in [5].

In order to formulate the algorithm, it is important to understand the un-
derlying geometric structure of the problem. Our approach relies heavily on the

normal manifold of the set C, [43], which we will now describe.

Theorem 2.1 Let C be a nonempty polyhedral convex set in IR" and {F;|i €T}
be the nonempty faces of C. For i € I, define N, to be the common value of
N(-| C) on riF; and let 0;: = F; + Np,. The normal manifold N¢ of C consists of
the pair (IR",S), where S:= {o;|i € Z}. The faces of the o; having dimension
k > 0 are called the k—cells of No. N¢ is a subdivided piecewise linear manifold

of dimension n.

It can be seen that the normal map As will agree in each n—cell of this manifold
with an affine map, and therefore, with each such cell we can associate the deter-
minant of the corresponding linear transformation. If each of these determinants
has the same sign, we say that Aq is coherently oriented. The following is the

central result from [43].
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Theorem 2.2 The normal map Ac 1s a Lipschitzian homeomorphism of IR" into

IR™ if and only if Ac is coherently oriented.

We will assume first of all that Ao is a homeomorphism of IR" onto IR",
so that the same—sign condition holds and describe the algorithm within this
framework. Later in the chapter, this condition will be weakened. The first step
of the algorithm is to determine if C' contains any lines. If it does, take orthonormal
bases for lin C' and its orthogonal complement according to the scheme explained
in [43, Prop. 4.1]. The factoring procedure explained there shows how to reduce
the problem to one (which we shall also write Ac(x) = a) in a possibly smaller
space, in which the set C' appearing in this problem contains no lines. In that
case, as shown in [43], the determinants associated with Ac in the various cells
of N¢g must all have positive sign. Further, C' will have an extreme point, say z.,
and as pointed out in [43, §5] the normal cone N¢(x,) must have an interior. Let
e be any element of int Ng(z.). An implementation of the factoring procedure is
given as stage one of the method described in Section 2.2. The construction of an
extreme point and element in the interior of the normal cone corresponds to stage
two of that method.

Now construct a piecewise-linear manifold M from N by forming the Carte-
sian product of each cell of N with IR, the non-negative half-line in IR. This M
will be a PL (n + 1)-manifold in IR™™', as can easily be verified (see [15, Example
4.3]). Define a PL function F: M — IR" (where R" is regarded as a PL manifold
of one cell) by:

F(z,n) = Ac(z) — (pe + a).

We shall consider solutions x(u) of F/(z, ) = 0; it is clear from (NE) that z(0) will

solve our problem. Note that since we have assumed A¢ to be a homeomorphism,
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the function z(-) is single-valued and defined on all of IR,, though this property
is not essential to our argument.

Now define w(p) = . + (a — Ax,) + pe. It is clear that since
w(p) =z, + ple +p' (a — Az,)] (2.1)

for large positive u, w(p) lies interior to the cell x, + N¢(x,) of N. Therefore
(w(p), ) lies interior to the cell [z, + No(x,)] x Ry of M, and so it is a regular
point of M. Further, for such p we have mo(w(p)) = x., so that

F(w(p),p) = Az, + (a — Ax,) + pe — (pe +a) =0,

and therefore for some o > 0, F~1(0) contains the ray { (w(p), p) | 1 > po }-

Now we apply the Algorithm 2 from Chapter 1 to the PL equation F(z, u) =
0, using a ray start at (w(py), #1) for some py > po and proceeding in the direction
(—e, —1). As the manifold M is finite, according to [15, Th. 15.13] the algorithm
generates, in finitely many steps, either a point (z., y1,) in the boundary of M with
F(z, 1) = 0, or aray in F~'(0) different from the starting ray. As the boundary
of M is N x {0}, we see that in the first case u, = 0 and, by our earlier remarks,
x, then satisfies Ac(x,) = a. Therefore in order to justify the algorithm we need
only show that it cannot produce a ray different from the starting ray.

The algorithm in question permits solving the perturbed system F(x, p.) =
p(e), where p(e) is of the form

ple) =Y pie
i=1

for appropriately chosen vectors p;. It is shown in Chapter 1 that p(e) is a regular
value of F' for each small positive ¢, and it then follows by Theorem 1.6 that for

such ¢, F7'(p(¢)) is a connected 1-manifold Y (¢), whose boundary is equal to
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its intersection with the boundary of M, and which is subdivided by the chords
formed by its intersections with the cells of M that it meets. Finally, for an easily

computed function

we have (w(pu1), 1) +b(e) € Y(e), and for small positive € this point evidently lies
on aray in F~'(p(e)). Because we start on this ray, Y (¢) cannot be homeomorphic
to a circle, and therefore it is homeomorphic to an interval.

A simple computation at the starting point shows that the curve index [15,
§12] at that point is —1. By [15, Lemma 12.1] this index will be constant along
Y (e). However, a computation similar to that in [15, Lemma 12.3] shows that in

each cell of M, if the direction of Y (¢) in that cell is (r, p) then
(sgnp)(sgndetT) = —1

where T is the linear transformation associated with A in the corresponding cell
of N¢. Under our hypotheses, det T must be positive, and therefore p is negative
everywhere along Y'(e). But this means that the parameter p decreases strictly
in each cell of linearity that Y'(e) enters, and it follows from the structure of M
that after finitely many steps we must have p = 0, and therefore we have a point
ze with Ag(z) = a + p(e).

Now in practice the algorithm does not actually use a positive €, but only
maintains the information necessary to compute Y'(e) for all small positive e,
employing the lexicographic ordering to resolve possible ambiguities when € =
0. Therefore after finitely many steps it will actually have computed zy, with
Ac(zo) = a.

Note that for linear complementarity problems, the above algorithm corre-

sponds to Lemke’s method [31]. It is well known that for linear complementarity
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problems associated with P-matrices, Lemke’s method terminates at a solution.

For variational inequalities, we have a similar result due to the analysis above.

Theorem 2.3 Given the problem (NE), assume that Ac is coherently oriented;

then the path following method given in this section terminates at a solution of

(NE).

2.2 Algorithm Implementation

The previous section described a method for solving the Affine Variational Inequal-
ity over a general polyhedral set and showed (under a lexicographical ordering)
that a coherently oriented normal equation (NE) can be solved in a finite number
of iterations by a path—following method. In this section, we describe the numer-
ical implementation of such a method, giving emphasis to the numerical linear
algebra required to perform the steps of the algorithm.

We shall specialize to the case where C' is given as
C:={z|Bz>bHz=h} (2.2)

and we shall assume that the linear transformation A(z) is represented by the
matrix A in our current coordinate system. We can describe our method to solve
the normal equation in three stages. Note that by “solving”, we mean producing
a pair (x,m(x)), where z is a solution of (NE) and 7(z) is the projection of = onto
the underlying set C.

In the first stage we remove lines from the set C, to form a reduced problem

(over C) as outlined in the theory above. The lineality space of C' as defined by
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(2.2) is

B
lin C = ker
H

We calculate bases for the lineality space and its orthogonal complement by per-
forming a QR factorization (with column pivoting) of ( BT HT > If < W Vv )

represents these bases, the linear transformation A is represented by

o [ WTAw WAy
VIAW  VTAV

and the vector a is represented by

Apy =a (2.3)

is constructed using the method outlined in [43, Proposition 4.1], which also ap-
pear in this work as Lemma 3.1. First of all, since V is a basis of (lin C)* and

C = Cn (lin C)*, we have

B:>bHz=h}, B=BV, H=HV. (2.4)

C=1{z

The matrix A is the Shur complement of W7 AW in A’ ( see Lemma 3.1 ). That
is

A=VTAV — (VTAW)YWTAW) Y (WTAV)
Let

Z=WWTAW)'WT U= (I-ZAV (2.5)
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Notice that Z satisfies ZTAZ = Z7 and by standard algebraic operations, we

obtain
A=UTAU (2.6)
Similarly, by reference to Lemma 3.1, we have
a=VTa— (VIAWYWTAW) ' (WTa)
That is
i=V"(1-4z )a (2.7

In practice, A and @ are calculated using one LU factorization of WTAW. Fur-

thermore, it follows from Lemma 3.1 that y solves (2.3) implies that
—W(WTAW)"(WTAV )y = WTa) + Vy = Z(a— AVy) + Vy

solves (NE). So, the solution pair (z,7(z)) of the original normal equation (NE)

can be recovered from the solution pair (y,7(y)) of (2.3) using the identities

r = Zla— AVy)
r = o +Vy

m(x) = x+Vn(y)

Therefore, we can assume that the problem has the form (2.3), with C given by

(2.4) and that the matrix | _ | has full column rank. We note that a similar
H

construction is needed in [42, 44].

In the second stage, we determine an extreme point of the set C, and using
this information reduce the problem further by forcing the iterates to lie in the
affine space generated by the equality constraints. More precisely, we have the

following result:
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Lemma 2.4 Suppose y, € C and Y is an orthonormal basis for the kernel of H.

Then g solves (2.3) if and only if § = y. + YT where T solves
Asz =a (2.8)
Here A=YTAY,a=Y"(a— Ay,) and C = {z ‘ BYz>b— Bye}. Furthermore,

. B
BY has full column rank if and only if ( ~ ) has full column rank.
H

Proof By definition, y = y, + Yz € C if and only if z € C. Furthermore

mely) = argmin {|lw—y|,|we C}
= argmin < ||(ye +Y2) — (v + Y)||, ‘w:ye+Yz,z€C’}

= argmin{| (z — ), ‘w—ye+Yz zeC}
= argmin{” z =), ‘w—ye—i-Yz zEC’}
Thus
71-6’(?/) = ye‘i‘Yﬂ'C’(a‘q)
It follows that § = y. + YT solves (2.3), that is

Ara(9) +y—75(y) = a
if and only if
A(ye +Y76(2) + ye + VI — (ye + Y7o(2)) =

or, equivalently

AY (7)) + Y (2 — mo(e)) = a — Ay,

This is in turn, by orthonormality of V', equivalent to

YTAY 16(2)) 4+ 2 — ma(z) = YT (@ — Ay.)
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Hence § = y. + YT solves (2.3) exactly when T solves (2.8).
Suppose BY z = 0 for some z # 0. Yz is nonzero since the columns form an

orthonormal basis of ker H. But then

B BYz
| Yz= ~ =0
H HY z
Conversely if
B
o Jw=0
H

for some w # 0, then w € ker H. Hence w = Yz for some z # 0. Also BY z =
Bw = 0. Q.E.D.

Thus, to reduce our problem to one over an inequality constrained polyhedral
set, it remains to show how we generate the point gy, € C. In fact we show
how to generate y, as an extreme point of C' and further, how to project this
extreme point into an extreme point of C. The following result is a well known

characterization of extreme points of polyhedral sets [36, §3.4].

Lemma 2.5 Let u be partitioned into free and constrained variables (ur,uc). u
is an extreme point of D = {u = (ug, uc)| Du = d,uc > 0} if and only if u € D
and {d; | i € B} are linearly independent, where B:=FJ{j € C|u; > 0}.

If we adopt the terminology of linear programming, then the variables correspond-

ing to B are called basic variables; similarly, the columns of D corresponding to

B are called basic columns; extreme points are called basic feasible solutions.
The extreme points of systems of inequalities and equalities are defined in an

analogous manner. Note that extreme points of C' are (by definition) precisely
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the extreme points of

B -1 2z b
= s> 0. (2.9)

H 0 s h

The slack variables s are implicitly defined by z, so without ambiguity we will refer
to the above extreme point as z. For other systems of inequalities and equations
a similar convention will be used. The following lemma outlines our method for

constructing the relevant extreme points.

Lemma 2.6 Suppose ~ has linearly independent columns, Y is a basis of

the kernel of H and B = BY. Then y, is an extreme point of (2.9) if and only if

Yo = ys + Y2,, for some y,, 2z where Hy, = h and z, is an extreme point of
_ z .
( B —-I ) =b— By,,s>0. (2.10)
s

In our method we produce an extreme point of (2.9) as follows. Find orthonormal
bases U and Y for imH7” and ker H respectively. This can be carried out by a
singular value decomposition of H or by QR factorizations of H and HT (in fact,
Y could be calculated as a by—product of stage 1 of the algorithm). In particular,
if
H" = ( 7Y ) i
0
then Y is an orthonormal basis of ker H and we can let y, = ZR™Th, using this

value of y, in (2.10). If b ¢ imB, then find an extreme point of (2.10) by solving
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the following auxiliary problem with the revised simplex method:

minimize  Zguz

_ . z .
subject to < B b— By, ) >b— By,
Zau:l:
zauz Z 0
Note that 2z = 0, 24, = 1 is an initial feasible point for this problem, with

basic variables (z, zgu,). In contrast to the usual square basis matrix (with corre-
sponding LU factors), we use a QR factorization of the non-square basis matrix.
The calculations of dual variables and incoming columns are performed in a least
squares sense using the currently available QR factorization. This factorization
is updated at each pivot step either by using a rank-one update to the factor-
ization or by adding a column to the factorization (see [22]). In order to invoke
Lemma 2.4, we let y. = y. + Yz, be the feasible point needed to define (2.8).

Note that in the well known method of Lemke, stages one and two are trivial
since C' = IR!, has no lines and a single extreme point at 0. Furthermore, stage
one is an exact implementation of the theory outlined in the previous section and
stage two corresponds to determining an extreme point and treating the defining
equalities of C' in an effective computational manner.

It remains to describe stage three of our method. We are able to assume that
our problem is given as

Acr=a (2.11)

with C = {z‘ Bz > 5}, where B has full column rank and z. is an extreme
point of C' (easily determined from 2,). We also have available a basis matrix
corresponding to this extreme point along with a QR factorization, courtesy of

stage two.
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The method that we use to solve this problem is precisely a realization of the
general scheme for piecewise linear equations as described in Algorithm 2. The

specific algorithm, which we label Algorithm 2', is as follows:

Algorithm 2’

1. Initialize :
Let L,, denote the linear map representing F' on the cell o,. Deter-

mine (z1,0,d;) satisfying

L, d; = 0,d; points into oy at ;.
F(zy)=w

Ty €0y E M,z €Eint{x—0d, |0 >0} C F 'o.

2. Iteration :

Given (zy, o, dy) let
Or:=sup{0| zy + 0dy, € 0 } (2.12)

if 8, = 400 then ray termination.
if xpp1:=xp + Ordp € OM then boundary termination.

Otherwise determine (41,0811, dgr1), dryr # 0, satisfying

L,,,,dyy1 = 0,and dy, points into o4py from zp .

Ok+1 € M \ {O'k} with Tht1 € Ok+41

Set k = k + 1 and repeat iteration.
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How does this relate to the description we gave in the previous section? The

manifold we consider is

M = Nc'v X IR,_|_
and the corresponding cells o 4 are given by
(FA + NFA> X R+

where F4 are the faces of C.
A face of C is described by the set of constraints from the system Bz > b

which are active. Let A represent such a set so that
FA: {Z‘ BAZ:BA,BIZ > BI}

where 7 is the complement of the set 4. The normal cone to the face (the normal

cone to C' at some point in the relative interior of F4) is given by
{BTu| ug < 0,ur = 0}

It now follows that an algebraic description of (z,u) € o4 is that there exist

(%, 2, uq, sz, ) which satisfy

BAZ = [_J_A
Brz—sr = br,s7>0
e nor e (2.13)
r = 2+ Blugus <0
p o= 0

In particular, if z, is the given extreme point, the corresponding face of the

set C' is used to define the initial cell o;. The piecewise linear system we solve is

F(z,p):= Ag(x) — (pe +a) =0
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where e is a point in the interior of N(z, | C). An equivalent description of
N(z. | C) is given by

{Bﬁu | u < 0}
from which it is clear that the interior of this set is nonempty if and only if B4

has full column rank.

Lemma 2.7 If x. is an extreme point of {z‘ Bz > 5} with active constraints A,

then B4 has full column rank.

Proof By definition,
By 0
G=|* (2.14)
Br -1
has linearly independent columns. If B4 does not have linearly independent

columns, then B w = 0, for some w # 0, so that

w
G| =0
BIU)
with (w, Bz) # 0, a contradiction of (2.14). Q.E.D.

This is a simple proof (in this particular instance) of the comment from the previ-
ous section that the normal cone has interior at an extreme point. For consistency,
we shall let e be any point in this interior {Bﬂu lu <0 }, and for concreteness we

could take

e= B
1

Hence F is specified, v = 0 and the cells of o4 are defined. By solving the

perturbed system F'(z.,p.) = p(e) (as outlined in Section 2.1), we know that
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F~'(p(e)) is a connected 1-manifold whose boundary is equal to its intersection
with the boundary of M and which is subdivided by the chords formed by its
intersections with the cells of M that it meets. In practice, this means that (un-
der the lexicographical ordering induced by p(e)) we may assume nondegeneracy.
Thus, if ties ever occur in the description that follows, we will always choose the
the lexicographical minimum from those which achieve the tie. Specific imple-
mentation techniques will be given later in this section.

Note that if (x, ) € 04 as defined in (2.13) then
F(z,p)=Az+1—2—pe—a

It follows that if (z, u) € o4 N F1(0) (i.e. (x, ) is in one of the chords mentioned

in the previous paragraph), then there exist (z, z, u 4, sz, 1) satisfying

r—2z = —Az+pue+a
Baz = by

Brz—s; = br,s1>0 (2.15)
v—2z = Blugus <0

wo> 0

Furthermore, these equations determine the chord on the current cell of the mani-
fold, or in the notation used to describe the algorithm of Eaves, the map L, ,. The
direction is determined from (2.12) by solving L, ,d = 0, which can be calculated

by solving
Ax— Az = —AAz+eApu

BAAZ = 0
BIAZ - ASI =0
Ax — Az = BﬂAuA

(2.16)
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At the first iteration, B4 has full column rank, so that Az = 0, which also implies

that Asz = 0. The remaining system of equations is

Ar = eAp
Azr = BlAuy

We choose Ap = —1 in order to force the direction to move into oy (as required
by (2.12)), and then it follows that Az = —e for the choice of e outlined above
Auyg = (1,...,1)7. The actual choice x; = (w(u), ) given in the previous section
ensures that (2.12) is satisfied.

We can now describe the general iteration and the resultant linear algebra that
it entails. We are give a current point (z, z,u 4, sz, ) satisfying (2.15) for some
cell o4 and a direction (Az, Az, Auy, Asz, Ap) satisfying (2.16). The value of 6
to satisfy (2.12) can be calculated by the following ratio test; that is to find the

largest 6 such that

ug +0Auy < 0
st+0As; > 0 (2.17)
w+60Ap > 0

Ray termination occurs if Auy < 0, Asz > 0 and Ap > 0 . Obviously, if
p+0Ap =0, then we have a solution. Otherwise, at least one of the {u;|i € A}
or {s;| i€ Z} hits a bound in (2.17). By the lexicographical ordering, which
will be discussed more thoroughly in the next few paragraphs, we can determine
the “leaving” variable from these uniquely. The set 4 is updated (corresponding
to moving onto a new cell of the manifold) and a new direction is calculated as
follows: if u;, i € A is the leaving variable, then A:= A\ {i}, As; = 1 and the
new direction is found by solving (2.16); if s;, i € Z is the leaving variable, then
A:= AU{i}, Au; = —1 and the new direction is found by solving (2.16). Note

that in both cases, the choice of one component of the direction ensures movement
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into the new (uniquely specified) cell o4 and forces a unique solution of (2.16).
The linear algebra needed for an implementation of the method is now clear.
The actual steps used to carry out stage 3 are now described. First of all, z is

eliminated from (2.15) to give

—Az+pe+a = Bluy+ Bfur
Baz—5s4 = by
Brz—s; = br

w>0,uy <0,ur =0,57>0,54=0

or, equivalently

Blua+ Bfur — Az+pe+a = 0
Baz—s4 = by
Brz—s; = br

w>0,uy >0,ur =0,57 >0,54=0
Note that we have added in the variables which are set to zero for completeness.
The QR factorization corresponding to the given extreme point is used to elim-
inate the variables z. In fact, we take as our initial active set A, the variables

corresponding to QR, where R is the invertible submatrix of R. Thus

z= B (s4+ba)
and substituting this into the above gives
Bhua+ Bfur — AB'sa+pe = AB'by—a
—BIB.ZtlSA + sz = BIB;‘lgA — BI (218>
,UJZ O,UAS 0,“1207312 OaS.A:U
Essentially we treat this system as in the method of Lemke. An initial basis

is given by (u4,s7) and complementary pivots can then be executed (using the
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variables u and s as the complementary pair). Any basis updating technique or
anti-cycling rule can be incorporated from the literature on linear programming

and complementarity. In fact, by (2.18), we have

_ _ _ _ _ uz
Uy -B,"BY B,"AB,' Bj'e
= B B SA
ST 0 BB} 0
o
B Y(AB ‘b4 —a
T (2.19)

ByBiba— b
ILLZU,UASU,UI:O,SIZO,SA:O

Lexicographic ordering can be achieved by introducing a perturbation

to the vector
B, T"(AB,'b4 — a)
BrB'b4 — by
Initially, lexicographic information is contained in the matrix
B "(AB'byu—a) T 0 uy I 0

Q° = =
BIB;‘lgA - BI 0 I ST 0 I

which has linearly independent and lexicographically positive rows ( as defined in
Section 1.5 ).

Suppose at iteration k, we have (u4, s7) > 0 and the matrix Q° is transformed
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to
Wk Wk
UA AA AT

k k
sz Wixa Wiz

and the linearly independence and lexicographic positivity of its rows are main-

Q=

tained. Let (Aug, Asz) be the direction determined by (2.16). Consider the set
of vectors
1
QZ{——qui<0}
q;
where ¢; = Au; or As; depending on whether ¢ € A or Z. If, there exist indices ¢
and j such that
1 1
~Qr=-0Q;
4q; q;
it would follow that the rows of Q¥ are linearly dependent. Hence, no two such
vectors are equal, and there is a unique index r such that —(1/¢,)QF is the
lexicographic minimum of Q. The leaving variable is now uniquely determined by
the index r. Furthermore, the updated matrix
ua Wi Wit
st Wikt Wi

Qk-l—l —

will again have linearly independent, lexicographically positive rows ( see [8, pp.
340 - 342] for a proof ).

We showed in the previous section that if Ac was coherently oriented then
following the above path gives a monotonic decrease in u. However, the proof
of the finite termination of the method (possibly ray termination) goes through
without this assumption, and in the following section we will look at other con-
ditions which guarantee that the method terminates either with a solution or a
proof that no solution exists. The coherent orientation results are direct analogues
of the P—matrix results for the linear complementarity problem — the results we

shall give now generalize the notions of copositive plus and L—matrices.
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2.3 Existence Results

The following definitions are generalizations of those found in the introduction.

Definition 2.8 Let K be a given closed convex cone. A matriz A is said to be

copositive with respect to the cone K if
(x,Az) > 0,Vx € K

A matriz A is said to be copositive—plus with respect to the cone K if it is copositive

with respect to K and
(r,Az) =0, € K = (A+AT)x =0

Definition 2.9 Let K be a given closed conver cone. A matriz A is said to be

L-matriz with respect to K if both

1. For every q € ri(KP), the solution set of the generalized complementarity

problem
€K, Az4+qe KP, 2T(Az4+¢)=0 (2.20)
15 contained in lin K.
2. For any z ¢ lin K such that
2€K, Aze KP, 2TA2=0

there exists z' ¢ lin K, such that ' is contained in every face of K containing

2z and —AT %' is contained in every face of KP containing Az.

To see how these definitions relate to the standard ones given in the literature

on linear complementarity problems (e.g. [37] and [8]), consider the case that
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C =TR" and K = recC = R".. Condition a) says that LCP(g, A) has a unique
solution 0 for all ¢ > 0. Condition b) states that, if z # 0 is a solution of
LCP(0, A), then there exists 2z’ # 0 such that 2’ is contained in every face of
R" containing z and —A” 2’ is contained in every face of IR", containing Az. In
particular, 2/ € {z € R" | x; =0}, for all i € {i| 2, =0}. Hence 2, = 0 for each
i such that z; = 0. That is, suppz’ C suppz. In another words, there exists a
diagonal matrix D > 0 such that 2’ = Dz. Similarly, there exists a diagonal

matrix £ > 0 such that —A”2' = FAz. Hence
(EA+A"D)z=0

where D, E > 0 and Dz # 0. Thus the notion of L-matrix defined here is a
natural extension of that presented in Section 1.6. The following lemma shows

that the class of L-matrices contains the class of copositive—plus matrices.

Lemma 2.10 If a matriz A is copositive—plus with respect to a closed conver cone

K, then it is an L-matriz with respect to K.

Proof Suppose that ¢ € ri(KP) and z € K \ lin K, then Tlin () # 0.
Furthermore, there exists an € > 0, such that ¢ — €T lin K)L(z) € KP, since

aff(KP) = (lin K)* (cf. [45, Theorem 14.6]). It follows that

(2,q) — ¢ H”(lin K)l(Z)HZ
= (2,q9) —¢€ <Z:7T(1in K)i(z>>

= <z, q — €T iy K)l(z)>
0

Vv

2
That is (z,q) > € H7r (z)H2 > 0. Also 2" Az > 0 since A is copositive with

din k)L
respect to K. Thus 27 (Az 4+ q) = 2" Az + 27q > 2"¢q > 0. This shows that the
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set K\ lin K does not contain any solution of (2.20). Therefore the solution set
of the problem (2.20) is contained in lin K.

To complete the proof, note that for any z € K, such that Az € KP and
2TAz =0, we have Az + AT2 =0, or —ATz = Az, since A is copositive-plus. So

the condition b) of Definition 2.9 is satisfied with 2z’ = z. Q.E.D.
We now come to the main result of this section.

Theorem 2.11 Suppose C = {z| Bz > b,Hz = h}. Suppose A is an L-matriz
with respect to recC' and invertible on the lineality space of C. Then exactly one

of the following occurs:
e The method given above solves (AVI)

e the following system has no solution

Ar —a € (recC)’, zeC (2.21)

Proof We may assume that (AVI) is in the form (2.11) due to Lemma 2.17 and
Lemma 2.18. The pivotal method fails to solve (AVI) only if, at some iterate zy,
it reaches an unbounded direction dy; in ox11. We know that x; satisfies (2.15),
and the direction dg;; which satisfies Ly, dxi1 = 0 can be found by solving

(2.16). Suppose (Ax, Az, Auy, Asz, Ap) is a solution of (2.16), then
Auyg <0, Asz >0, Ap>0 (2.22)

provided that x; + dg,q is an unbounded ray. By reference to (2.16), we have

BliAug+ ANz = eAp
BsAz = 0 (2.23)
BIAZ = ASI > 0
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That is, Az satisfies

Az € recC
ANz —eAp = BL(—Auy) € (recC)”
AZT(AAz —eAp) = AZ"BY(—Auy) = —(B4A2)"Auy =0
If Ap > 0, then eAp € intN(x, | O), hence —eApu € int(recC’)D. The above
system has a unique solution Az = 0 by the fact that A is an L-matrix with
respect to recC’ and lin C' = {0}. Therefore the terminating ray is the starting
ray, a contradiction. Thus Ay = 0. Tt follows that Az € recC, AAz € (recC’)D,
and 2T Az = 0, therefore there exist 7 # 0, such that Z is contained in every
face of recC containing Az, and that —ATZ is contained in every face of (recC)”
containing AAz. We observe that, since z; € o3 N op1 N F~1(0), there exist z,
uk, Sk, and py such that (2.15) is satisfied. It is easy to verify that Az is in the
face
G, = {z € recC_" 21 (BTuy) = 0}
of recC, and AAz is in the face
Gy = {z € (recC’)D‘ 2= BTu,u = (uy,0) > 0}
of (recC)”, and thus
—A"z=B"u€G,, forsome @ = (iig,0)>0 (2.24)

Consequently, by (2.15) we have

a=xp— 2+ Az — ey,

i (Bz, — b) = (0%,0) =0
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and
ET(l‘k - Zk) = 2TBT’UJ]C =0

since Z € (G;. Therefore

W'b+2"a = 4 (b— Bz)+ " By + 2 (xp — 21 + Az — epr)
= (BTa+ A"z, — upe’ 2
= —uelz>0

in which the last inequality is due to Z € recC' and e € intN(z, | ) C
—int(recC)”. We now claim that the the system

Az —ae (recC)’, z€C (2.25)
has no solution. To see this, let = € C, then

W'Bx+3"Ax =0

as a result of (2.24). Subtract from this the inequality

which we have just proven, then
" (Bx —b) + 2 (Az —a) < 0
But it is obvious that @ (Bx — b) > 0, hence
#(Ar—a) <0

But 7 € recC. Thus Az — a ¢ (recC)”.
The proof is complete by noting that (2.25) has a solution if and only if (2.21)
has a solution. Q.E.D.
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(AVI) is said to be feasible if (2.21) has a solution. z is said to be feasible for
(AVT) if it satisfies (2.21). Notice that if x solves (AVI), then

0€ Az —a+ Ne(z), =z€C
that is
—(Az —a) € Ng(x) C (recC)?, 2z €C
In another words
(Az —a) € (recC)?, z€C

So, every solution of (AVI) is feasible.
As a special case of Theorem 2.11, we have the following result for copositive—

plus matrices.

Corollary 2.12 Suppose C = {z| Bz > b, Hz = h} and A is copositive—plus with
respect to recC and invertible on the lineality space of C'. Then exactly one of the

following occurs:
e The method given above solves (AVI)

e the following system has no solution
Az —a € (reeC)’, z€C (2.26)
Proof Obvious, in view of Lemma 2.10. Q.E.D.

We can also prove Theorem 2.3 as a special case of Theorem 2.11 by using the

following lemma.
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Lemma 2.13 Suppose Ac is coherently oriented. Then
a) Arecc is coherently oriented;

b) A is an L—matriz with respect to recC.

Proof a ) This follows from the proof of [43, Theorem 4.3].

b ) By the first part, Arecc is coherently oriented, so by [43, Theorem 4.3] it
is a Lipschitzian homeomorphism, and hence Ayecc(z) = ¢ has a unique solution
for all g. Therefore part 1 and 2 of the definition of L—matrix are trivially satisfied
by the unique solution 0. Q.E.D.

2.4 Invariance Properties of L—matrices

In this section we show that the property of L-matrix with respect to a polyhedral
convex cone is invariant under the two reductions presented in Section 2.2. We

begin with the following technical lemmas.

Lemma 2.14 Let C, C, and C be as in (AVI), (2.3) and (2.11); V and Y be as
in (2.5) and Lemma 2.4. Then

recC = V(recC) (2.27)
recC = Y (recC) (2.28)
and

VT ((recC)?) = (recC)” (2.29)
YT((recé’)D) = (recC)” (2.30)

Furthermore
VT (ri((recC))”) = ri(recé’)D (2.31)
YT(m'(recC’)D) = ri(recC’)D (2.32)
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Proof (2.27) and (2.28) are obvious from definition.

Based on these two equations and [45, Corollary 16.3.2], we have
(recC)? = —(recC)’ = —(VrecC)°
= — (VD) Y(recC)® = (VT) L (recO)”

where K° = —KP is the polar cone of K and (VT)™! is the inverse image of the

linear map V7 (also see [45]). Similarly
(recé’)D = (YrecC’)D = (YT)_l(recC_’)D

So we have proven (2.29) and (2.30).
(2.31) and (2.32) can be obtained from (2.29) and (2.30) by applying [45,
Theorem 6.6]. Q.E.D.

Lemma 2.15 For z € recC, 3 € recC, and z € recC, define

D(z) := {de(recC)”|(d,z)=0}
D) = {Je(mcé) [ (d,2 =o}
D(z) := {de(reecC)”| (d,z) =0}
Then
D(z) = VI'D(V3z) (2.33)
D(z) = Y'D(vz) (2.34)

where V and Y are as in (2.5) and Lemma 2.4.
Proof
D) = {de o)’ (82) =0f = {T V" (recC)| (d.2) = 0]
= VT {de (recC)” | (d",V2) =0} =V'D(V3)

The other equation can be proven similarly. Q.E.D.
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Actually, for z € recC, D(z) is the set of vectors defining faces of recC' con-
taining z, a vector 2’ is in every face of recC' containing z if and only if (d, 2') =0
for all d € D(z). Similar observations can also be made for the set C' and C.

D
)

Lemma 2.16 For w € (recC)”, w € (recC)”, and w € (recC’)D, define

R(w) = {r € recC| (r,w)=0}
R(w) = {i€recC| (7,) =0}
Rw) = {rerecC|(r,w) =0}
Then
VRVTw) = R(w) (2.35)
YR(Y"w) = R(w) (2.36)

where V and Y are as in (2.5) and Lemma 2.4.
Proof
R(w) = {rerecC|(r,w)=0}= {7“ € V(recC) | (r,w) = 0}
=V {f € recCN" <f, VTw> = 0} = VRV w)
The other equation can be proven similarly. Q.E.D.

Similar to the case of Lemma 2.15, for w € (recC)”, R(w) is the set of vectors
defining faces of (recC)” containing w, a vector w' is in every face of (recC)”
containing w if and only if (r,w’) = 0 for all » € R(z). The situation is similar
for the set C' and C.

Now, we come to the invariance of the L-matrix property.
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Lemma 2.17 Given the problems (2.3) and (2.11), suppose A is an L-matriz

with respect to recC. Then A is an L-matriz with respect to recC'.

Proof For z € recC, Yz € recC. For any ¢ € ri(recC’)D, there exists ¢ €
ri(recé’)D such that ¢ = Y7§ due to (2.32). If Az + G € (recC’)D then

YTAYZ+ Y7 € (recC)”
by definition of A. Hence
<£1Yz + 4, Y2> = <YT21Y5 +Y73, z> >0, VzéerecC
It follows from (2.28) that
<21Y2 +4, z> >0, Vzé€recC
Thus
AYzi+je (recC’)D
Therefore Z satisfies
zerecC, Az+qe (recC)”, and F(Az+q) =0 (2.37)

with g € ri(recC’)D, implies Yz satisfies

Yz ecrecl, AYZ+qe (rtecC)”, and (V2)7[A(YZ) 4+ =0 (2.38)

with ¢ € ri(recé’)D. Thus, the solution Yz of (2.38) is contained in lin C' = {0},
which implies that Z = 0. Thus the solution set of (2.37) is {0} C lin C.
For any 0 # 2z € recC such that

Az € (recC)”  and zTAz =0
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we have, 0 # Yz € recC, and

AYz € (rec)” and  (YZ)TA(Y2) =0
So, there exists 0 # Z € recC such that Z is contained in every face of recC
D
)

containing Yz, and —A” % is contained in every face of (recé’ containing AYz.

That is
(d,z)=0 VdeD(Yz)
(7,—ATz) =0 Vi€ R(AYz)
Consequently, there exists 0 # 2’ € recC such that Z = Y2'. For any d € D(z),
d=YTd for some d € D(Y%). Hence
<ci, z’> = <YTJ, 2’> = <J, Yz’> =0
So, Z' is contained every face of recC' containing z. Moreover, for any 7 € R(Az)
<f, —AT2’> = <Yf, —ATY2’> = <YF, —AT2> =0

since Yz € R(AY%). We see that —ATZ' is contained in every face of (recC)”

containing Az. Thus A is an L-matrix with respect to C. Q.E.D.

Lemma 2.18 Given the problems (NE) and(2.3), suppose A is an L—matriz with

respect to recC'. Then A is an L-matriz with respect to recC..
Proof For any % € recC, VZ € recC and

Uz =V -WWTAW)""WTAV)Z =VZ - WWTAW)'"WTAV 2 € recC
since W(WTAW) "WTAVZ € lin C. For any G € ri(recé’)D
ri(recC)” such that § = V7q. If Az 4G € (recC’)D then

, there exists ¢ €

UTAUz+VTq e (recé’)D, q € (recC)”



by definition of A. But

UTAU = VT AU - VTATW(WTAW) TWTAU = VT AU
since WT AU = 0, as can be directly verified. Thus

VIAUZ +q) = VT AUz + Vg € (recé’)D, q € (recC)”
which implies

(AUZ +q,V2) = (VI (AUZ + ),2) >0,  Vz € recC
It follows from (2.27) that
(AUzZ+¢q,2z) >0, Vzé€recC
Thus
AUZ + q € (recC)”

Also
(U)T[A(U2) +q) = 5TA2 =0

Therefore Z satisfies
zerecC, Ai4{e (recé’)D, and ZT(Az+§) =0
with ¢ € ri(recé’)D implies UZ satisfies
Uz e recC, AUZ+qe (recC)?, and (U2)T[AUZ) +¢] =0
with ¢ € ri(recC)”. Hence the solution UZ € lin recC' = lin C. But then

Vie WWTAW) 'ATVZ +1in C Clin C

39

(2.39)

(2.40)
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which, by the definition of V', implies Z = 0. This shows that the solution set of
(2.39) is contained in lin C' = {0}.
For any 0 # Z € recC such that

Az € (recé’)D and 3TAz=0
we have 0 # Uz € recC', and

VIAU: = UTAUS = A% € (vecC)”
which implies A(U2) € (recC)”. We also have
(UTAU2) =342 =0

So, there exists 0 # 2’ € recC such that 2’ is contained in every face of recC

containing UZ, and that —AT2' is contained in every face of (recC')” containing
A(Uz). That is
(d,2'y =0 Vde DUz)
(r,—AZ'Y=0 Vr e R(AUZ)

Consequently, there exists 0 # 3’ € recC, such that 2/ = VZ, and for any d €
D(Z), we have d = V7d, for some d € D(V%), but since d € (recC)”, WTd = 0,
therefore (d,VZ) = (d,UZ), so d € D(VZ) implies d € D(UZ%), hence

(d,2y=(V"d,#') = (d,VZ) = (d,7) =0
So, ' is contained in every face of recC containing Z. For any 7 € R(flé)

(7,—ATY) = (7, -UTATUZ) = (r,-U"A"VZ) = (7, ~U"TA"')
= <f, —VTATZ'> = <Vf, —ATZ'> = <7“, —ATZ'> =0
)

since r = Vi € R(AUZ) as a result of (2.36). This proved that —AT%" is contained

in every face of (recC’)D containing Az, Q.E.D.
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2.5 P. Matrices

Using a geometric approach, we generalize both the notion of P matrices for
arbitrary polyhedral convex sets in IR", and the termination results for Lemke’s
pivotal method on P—matrices. These termination results can be generalized to a
much broader class of matrices known as L as demonstrated by the work of Eaves
( see [12] and [13] ) and our work earlier in this chapter. Another approach for
generalizing the termination results for Lemke’s pivotal method on P-matrices is
through the notion of P, matrices and the work of Cottle et.al. in [1] and [9].

In this section, we explore the possibility of generalizing the notion of P, for
polyhedral convex sets. We begin with an analysis on the standard LCP. Our study
focuses on geometric and topological properties of the sets K (M) and SOL(q, M)
that are crucial in analyzing termination behavior of Lemke’s algorithm. We prove
that the convexity of K(M) and the connectedness of the set SOL(q, M) for all
q are sufficient conditions for Lemke’s algorithm to terminate at a solution of
LCP(q, M). We study those matrices M for which SOL(q, M) is connected for all
g € IR" as a matrix class. We denote this matrix class as P.. We show that P,
is a subclass of semi-monotone matrices. We also show that this class is not a
subclass of Py, but it contains at least a substantial portion of it, e.g. it contains
all the column sufficient matrices. The question of whether P, is subclass of P, is
still unknown.

As we know, (LCP) is a special case of (NE). We have F' = M, a linear map,

and C' = IR’,. The normal equation is
MIRi (x)+q¢=0

or equivalently

Ml‘++$—$++q20
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Define a PL function F: (N, N') — IR" (where IR" is regarded as a PL manifold
of one cell) by:
F(z,p) = Mg (z) + (¢ + pe)

We shall consider solutions z(u) of F(x,u) = 0; it is clear from (NE) that z(0)
will solve our problem.
We use the path following algorithm of Section 2.1 to find x(0). In order to

find a starting ray, consider w(p) = —q — pe. It is clear that since

w(p) = —ple +p~'q] (2.41)

for large positive u, w(p) lies interior to the cell R"™ of NIRi' Therefore (w(p), i)
lies interior to the cell R™ x Ry of (N, N), and so it is a regular point of (N, ).

Further, for such x4 we have W[Ri(w(,u)) = 0, so that

F(w(p), p) = —q — pe — (g + pe) =0

Therefore for some py > 0, F~1(0) contains the ray { (w(u), 1) | p > po }-
In analyzing the termination behavior of our algorithm, we assume that M is
in @, that is, LCP(gq, M) is solvable whenever it is feasible ( see Section 1.6 ).

Our main result is summarized in the following theorem.
Theorem 2.19 Suppose M is in Qo N P,.. Let
q€ K(M) = pos(I,—M)
Then, the algorithm given in Section 2.1 terminates at a solution of LCP(q, M).

We first introduce a series of technical tools before proving the theorem.
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Lemma 2.20 Given a QQy matriz M and
q€ K(M) = pos(I,—M)

there exists a set of n linearly independent vectors {yi,ys, -, yn} C IR" such that
q+y; € intK(M) for all1 <i <mn.

Proof First we notice that int K (M) D R}, # 0.

For any ¢ € int K (M), the lemma is trivially true by selecting the set of vectors
{be;|1 <i<n}

for some 6 > 0 sufficiently small.

For any other vector ¢ € K(M), we can first choose a vector ¢y € intK (M)
and a set of linearly independent vectors {yi, 42, -, yn} C IR"” such that qo+y; €
int K (M) for all 1 <i < n. Let

zZi=Yi+q —q I<i<n
then 2y, 29, -+, 2, are linearly independent and
q—i—zi:yi—l-qoeintK(M) 1<:1<n

Q.E.D.

Lemma 2.21 Given a Qo matriz M and a vector ¢ € K (M) = pos(I,—M), there
exists a matrix Y of order n having linearly independent columns and q + y; €
K(M) for all 1 < i < n, where y; is the i—th column of Y. Let [¢] be the vector
(6,62, -+, €T, then ¢ +Y[e] € K(M) for e > 0 sufficiently small.

Proof Choose a set of vectors {y1,ys,- -, yn} as specified by Lemma 2.20. Form

the matrix Y by using y; as the i—th column, for 1 < i < n.
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We observe that for any € > 0
n 61
q+Y[e] = Q+E§:E%
i=1

q n 61
- BLiy Ly,
(E+i:1Ey)

"¢ g+ By

|
=

=

where B =31 | €
We notice that E < 1 when e is sufficiently small. Hence ¢ + Ey; € K(M) by
convexity of K (M) and “t2% € K (M) by the fact that K (M) is a cone. Therefore

> & B e

z:l

as a convex combination of %Ey“s, and
€ q+Ey
Ye=E) — - ——ec KM
¢+ Yl ; 7 € K(M)
since K (M) is a cone. Q.E.D.

Now, we are ready to prove the main theorem.

Proof We wish to solve F(z,u) = 0. Unfortunately, 0 may not be a regular
value of F'. Thus we use Algorithm 2 from Chapter 1 which permits solving the
perturbed system

F(z, p) = Ye]

We choose —Y and € according to Lemma 2.20 and Lemma 2.21 so that Y is of
rank n and g — Y[e] € K(M) for all small non-negative e. That is Y[e] is in F/(IV)

for all small non—negative e. Hence, by Theorem 1.6, Ye| is a regular value of F'
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for each small positive €. Tt then follows by Theorem 1.6 that for such ¢, F'~'(Ye])
is a 1-manifold neat in A". Furthermore, we have (w(u) + Y[e],n) € F~1(Y]e]),
for sufficiently large pu.

Now, assume that the algorithm starts with the ray
{(w(p) + Y€, p) | p sufficiently large }

generates a sequence of points (1, it1), (a2, pa), -+, (T, gx) and terminates at
step k with a ray different from the starting one. Let ¥ (e) be the route formed
by the set of chords traversed by the the algorithm. Then, due to the ray start,
W (e) cannot be homeomorphic to a circle, and therefore it is homeomorphic to
an interval.

Upon ray termination, p is non-decreasing on the terminating ray. Thus, the

set

E=A{nl(z,n) eW(e}
admits a minimum 0 < g = inf{y € Z} which is achieved on (x;, u;) for some
1 <7<k Let

S=A{z|(z,p) e W(e)}

then F'(z, 1) = Ye] for x € S. Hence
S C SOL(q — Y[e] + pe, M)

But SOL(q — Ye] + fze, M) cannot contain any other point z; such that (zq1, 1) ¢
W (e), otherwise, by our hypothesis on the connectedness of the solution set, there
is a continuous path map z : [0,1] — SOL(q — Y[e] + fie, M) with 2(1) = 2; and
z(0) = 2o for any zg € S. Thus

{(z(t), )] 0<t <1} C FH(Ye])
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21

Figure 2: THE PATH CONNECTING z; TO S FORMS A BRANCH OF W

But this contradicts the fact that F~'(Y([e]) is a 1-manifold, since (2q, /i) contains
a neighborhood not homeomorphic to an interval ( see Figure 2 ).

Thus S = SOL(q — Y'[¢] + ze, M) is a connected set. It is either a single point,
or the union of finite number of consecutive chords in W(e). In particular, S is
closed.

Considering that K (M) is convex and that SOL(q — Y[e] + pe, M) # @ for
p=jand for pu =0

SOL(q — Y[e] + pe, M) # 0

for all 0 < p < 1. Consider a strictly increasing sequence {yu;|j =1,2,---} with
pr < o and lim; o pr; = i Assume that z(u;) € SOL(q — Y[e] + pe, M). Then,
(z(py), ;) € F~Y(Y'[e]), hence each (z(p;), u;) € F~'(Y]e]) is contained in a 1-
chord of FF~'(Y[e]). Since the 1-manifold F~'(Y'[¢]) is finite, there exists a chord
d such that (z(u;), ;) € d for infinitely many j, and without loss of generality we
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Figure 3: THE CHORD d FORMS A BRANCH OF W

can assume that (z(p;), u;) € d for all j. Therefore d contains the set

——

{@w,m e F ') -8 <u<p

for some 6 > 0. Thus d contains a point (w(fi), z) with w(fi) € S. On the other
hand, by definition of f

(w(p), p) & W{(e)

for any p < fi. Hence d is not a subset of W(e), and d forms a branch from
S x {ii} ( see Figure 3 ). This is in contradiction to the fact that F~1(Y][e]) is a
1-manifold.

So the algorithm terminates at a point at the boundary, that is a solution of
F(z,0) =Y]e.

Now in practice the algorithm does not actually use a positive €, but only
maintains the information necessary to compute W(e) for all small positive e,

employing the lexicographic ordering to resolve possible ambiguities when ¢ =
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0. Therefore after finitely many steps it will actually have computed x, with

Mgr (z0) +q = 0. Q.E.D.

By reference to Theorem 1.15, we obtain the termination property of the piv-

otal algorithm for sufficient matrices.

Corollary 2.22 Suppose M is a column sufficient matriz and M s in QQy. Let
q€ K(M) = pos(I,—M)

Then, the algorithm given in Section 2.1 terminates at a solution of LCP(q, M).

Proof Since M is column sufficient, SOL(q, M) is convex, and is hence connected

for all g. The corollary now follows from Theorem 2.19. Q.E.D.

Now that we know our new matrix class contains a substantial portion of Py,
e.g. column sufficient matrices, we will be interested to find out how is it related to
Py itself. The following example indicates this new matrix class is not a subclass
of Py. Note that this example also shows that a matrix M being in P, does not
guarantee that M is Q).

Let
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Then, M is not a Py matrix. But for any ¢ € IR", we have

{(0,0)} if ¢ >0,g2>0
0 if ¢1>0,00<0
0 if ¢1<0,q0>0
SOL(q, M) = {(~q2, —q1)} if g1<0,q0<0
{(0,y) |y =0} if ¢1>0,¢2=0
{(2,0) [z >0} if ¢1=0,g2>0

{(0,
| {(%

We see that SOL(q, M) is connected for all g. Now that Py does not contain P,,

ly>—qtU{(z,—q) |z >0} if ¢ <0,0=0
2> =@ }U{(=qy)|y>0} if ¢1=0,00<0

Y)
0)
Y)
0)

does P, contains Py? According to a result in [23, Theorem 2|, originally due to
Cottle and Guu, SOL(q, M) contains either 0, 1, or infinitely many points, given
that M is a Py matrix. Hence, SOL(q, M) is connected when it has finitely may
elements. The question whether SOL(g, M) is connected when it has infinitely

many elements remains open.

2.6 An Implementation in MATLAB

The algorithm described in this chapter has been implemented in MATLAB [34].
Copies of the code and the testing script files are available.

The algorithm NEPQOLY is implemented as three function files in MATLAB . The
development of the code is exactly as outlined in Section 2.2. The first function
removes the lineality of the set C', then calls the second routine which proceeds
to determine an extreme point and factor out the equality constraints. Having
accomplished this, the third routine then executes the pivot steps. We note in

particular, that Lemke’s original pivot algorithm can be carried out just using the
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third routine, since the defining set C' = IR} has no lines, no equality constraints
and a single extreme point 0.

We now present two tables of our results of applying this algorithm to some
small quadratic programs. In Table 1 we present a comparison of NEPOLY to
the standard QP solver that is available as part of the optimization tool box of
MATLAB . This QP solver is an active set method, similar to that described in [21].
Further details are available in [34].

The problems that we generate are of the form

1 1
min aa:TQa: +cle+ iny (2.42)
subject to Az +By=0, >0 (2.43)

where Q € R™", A € IRP*" and B € IRP*™. The minimum principle generates
an affine variational inequality which under convexity is equivalent to (2.42). In
general, the variational inequality represents necessary optimality conditions for
(2.42).

We generate () as a random sparse symmetric matrix. Unfortunately, the
MATLAB QP solver did not solve (2.42) unless ) was positive semi-definite, so in
Table 1, @ was generated positive semi-definite. The matrices A and B were
generated using the MATLAB random generator, the feasible region was guaranteed
to be non—empty by randomly generating a feasible point (xg, ) and setting
b= Azxy + Byjp.

MATLAB 4.0 was used with dedicated access to a Hewlett Packard 9000/705
workstation. The times reported are elapsed times in seconds using the built-in
stopwatch timer of MATLAB . The ordering of entries in the table is by total problem
size. Since the problems are convex, both codes always found the solution of (2.42).

The constraint error was always less than 107!, All MATLAB codes reported here



do not use the sparse matrix facility of MATLAB .

m n p | NEPOLY time | MATLAB QP time
10 | 10 | 10 0.3 0.8
20 | 10 | 10 0.2 0.2
30 | 20 | 10 0.3 0.3
10 | 40 | 10 3.4 10.5
10 | 10 | 50 0.6 5.7
20 | 20 | 30 1.2 4.6
10 | 60 | 20 5.8 45.1
70 | 10 | 30 0.8 0.9
40 | 40 | 40 4.6 14.3
100 | 10 | 10 0.5 0.6
10 | 10 | 100 3.1 9.8
10 | 100 | 10 28.0 121.1
50 | 30 | 40 7.9 6.8
40 | 100 | 60 32.4 208.5
80 | 40 | 100 10.2 37.4
60 | 60 | 100 13.3 114.5

Table 1: NEPOLY and MATLAB QP
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Notice that NEPOLY solves all but one of these instances more quickly than the

MATLAB code. On the bigger problems, NEPOLY is much quicker that QP. These

results are averaged over 10 randomly generated problems of the given size. The

times vary slightly for different random problems of the same dimension, but the

main conclusion is that NEPOLY outperforms MATLAB QP.
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In Table 2, we present similar results comparing NEPOLY with a standard Lemke
code. As outlined above, NEPOLY is easily adapted to generate the Lemke path as
a special case. In order to carry out this comparison, we reformulate (2.42) as the
following quadratic program:

min %xTQ:c +clr+ %(z —e&)T (2 — €)

Ax + B(z — e€) > b,
subject to el (Az + B(z — €€)) < eTb,
x,z,E> 0.

The necessary optimality conditions for this problem give rise to a standard form
LCP to which Lemke’s method can then be applied. Table 2 reports the iteration
count and elapsed time for problems of various sizes. In all cases, the problems
were solved to high accuracy (constraint errors less than 107'*).

Notice on some of the problems, one or other of the codes failed (denoted by F
in the table). This is because for these experiments, () was generated sparse and
symmetric but not positive definite. The convergence theory does not guarantee
finding a solution in these case, but note that the number of failures are small for
NEPOLY . The number of failures can be made large by testing problems with large
n since the failures are entirely due to the indefiniteness of (). However, it is easy

to infer that NEPOLY is significantly quicker than the standard Lemke code.



NEPOLY Lemke

m| n p | iter | time | iter time
10 | 10 | 10 8| 03] 46 2.6
10| 10 | 10 91 03] 69 3.5
20 | 10 5 0] 01| 64 4.0
10| 14 | 24 91 05| 75 7.7
13126 | 10 | 37| 24| 80 11.3
131 26 | 10 29| 231|114 16.5
131 26 | 10 18] 2.1 F

20 40 | 20 | 32| 4.6 | 126 46.5
20| 40 | 20 23| 281|173 62.6
10 | 50 | 30 F F

30| 30 | 30 20| 2.1 168 60.8
50 | 30 | 40 10| 81196 | 109.6
10| 50 | 70 F F

40 | 70 | 50 | 40| 13.5| 298 | 471.2
40 | 100 | 60 55 | 33.8 | 323 | 1199.5
80| 40 | 100 | 29| 21.9| 349 | 860.7

Table 2: NEPOLY and Lemke code
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Chapter 3
Lineality Space

The pivotal method for solving the normal equation
Ac(z) =a

described in the last chapter depends on a non-singularity property of A with
respect to the lineality of C'. In this chapter, we prove that if A is copositive—plus,
we can remove the lineality space in the absence of such non—singularity assump-
tion. For convenience of terminology, we refer to Ac(z) = a as a copositive—plus
normal equation when the matrix A is copositive—plus.

Recall that the property of being copositive—plus is defined with respect to a
cone. The bigger the cone, the stronger is the assumption of being copositive—
plus. For example, a matrix is positive semi-definite when it is copositive—plus
with respect to IR”, on the other hand, any matrix in IR"*" is copositive—plus
with respect to {0}. The analysis of this chapter requires that the matrix A be
copositive—plus with respect to a cone K with non—empty interior. In the context
of a normal equation Ac(z) = a, we assume that K D recC'. When int recC' # (),

the assumption that A is copositive—plus on recC' will suffice.
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3.1 Basic Techniques

We introduce a standard form of the normal equation Ac(x) = a by using a
reduction procedure similar to the one described in the paper [43, Proposition
4.1]. For easy reference, we summarize the relevant results from [43, Proposition

4.1] as follows.

Lemma 3.1 Let C be a nonempty polyhedral conver set in IR" and A be a linear
map. Let C = C N (lin C)* so that C = lin C + C. Let {e;,es,---,¢;} be a basis
of lin C, and {ej11,€j42, -+, €en} be a basis of (lin C)*, and let A be the matriz
that represent the linear map A with respect to this basis. Let o = {1,2,--+,j},
B={j+1,j+2,---,n} and

Aaa Aaﬂ
Apa  App

A=

Assume that Aaq is non-singular. Let AJ/Aqq be the Schur complement of Anq in
A, e
AfAna = Aps — ApaAiadas
and let
a=ag— AﬂaA;iaa
Then the normal equation

Ac(z) =a
18 equivalent to
(A/Aca)e(z) =a
in the sense that for any © = (T4, Tp) satisfying the former, Tg satisfies the latter,

and for any Tg that solves the latter, there exists an T, such that (Z,,Zg) solves

the former.
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Proof By selection of basis, we have
C=TR'xC
If £ = (Ta,Z5) solves Ac(z) = a, then T3 € C and for any ys € C,

Aaai‘a + Aaﬁi‘ﬁ —0q = 0

(ApaTa + AppZs — ag,ys — Ig) > 0
Therefore we have, from the first equation,
Ta = —Aga(AapTs — o)
and, applying this to the second equation
(A/ Aaa)ts — 8,55 — 5) > 0

for any yg € C. It follows that x4 solves (A/Auq)c(z) = a.
Conversely, if 75 solves (A/Ana)a(z) = @, then

T = (—A 0 (AapTp — ao),75) € RV x C =C
it is now easy to verify that z solves Aq(x) = a. Q.E.D.

This type of reduction can be carried out with respect to any principal sub-

matrix of A,,. In particular, we have the following corollary.

Corollary 3.2 Let C' be a nonempty polyhedral convez set in IR" in the form of
C = IR’ x C with lin C = {0}. Let A be a linear transformation from IR" to
IR", and Ac be the corresponding normal map. Let k C {1,2,---,7} and Ay
non-singular and C(rk) = C' N {e;}iz,.. Denote

E = {1,2,---,n}\ k
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let
(A/A/m) - ARR - ARK/A;;AHEZ
and
a(k) = az — Agpay
Then

18 equivalent to

(A/An'i)C(n)(x) = a(k)
Proof Similar to that of Lemma 3.1. Q.E.D.

It is a crucial fact that the property of copositive—plus is invariant under such

reductions. In fact, we have the following theorem.

Theorem 3.3 Let C be a nonempty polyhedral convex set in IR" and A a linear
transformation from IR" to IR". Assume that the matriz A is copositive—plus with
respect to recC, where C = IR’ x C with lin C = {0}. Let x C {1,2,--+,j} and
Ayw be non—singular and let C(k) = C N {e }ic,,

E = {1,2,---,n}\ k

Then
(A/AHK,) - ARR - ARKZA;;ilAHR‘,

is copositive—plus over recC (k).
Furthermore, if K is any cone containing recC, K(k) = K N {e}is,, and A
is copositive—plus with respect to K, then A/Ay is copositive—plus with respect to

K(k).



Proof For any z € recC(k)

2T (A) Az
- ZT(ARR - ARHA;;AHR‘,)Z

Amc Am‘q w
- (wr #)
Az Agg z

where w = —A_! A,z2. By our assumption on the structure of C, we have

C =R" x C(k)
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It follows from z € recC(k) that (w,z) € recC. Therefore, by assuming A

copositive—plus with respect to recC', we have

Amc AKR w
(A Aw)z = (T 2T ) >0
Agp  Agr Z

For any z € recC(k) such that
we have

_ gt
where w = —A_ A,zz. Hence

T
A/m Am% w A,m Am% w
+ =0
Are Arr 4 Are  Arr z
due to A is copositive—plus with respect to recC. In particular
Amw -+ A,{RZ = 0

AT w+ AT 2 = 0

Apew + Agrz + Af,_{w + AZRZ =0

(3.1)
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where the first equation is due to the definition of w, the second equation follows

from the first and (3.1). By using the first two equations on the third
(A,g,g — ARHA;’{lAKR)Z + (Agg — ARK/A;’%AHR)TZ = 0

That is
(A/Akx)z + (A/A,m)Tz =0

Thus (A/A,k) is copositive-plus with respect to recC(k).

The conclusion regarding K and K (k) can be proven in a similar way. Q.E.D.

3.2 Copositive—plus Normal Equations

In this section we show that the invertibility assumption over the lineality space is
unnecessary in the case that A is copositive—plus with respect to a cone K D recC'
with int K # (. The proof of this result requires two separate reductions which
we give as Lemma 3.6 and Lemma 3.7, which lead to the results in Theorem 3.8.

The main theorem follows as Theorem 3.9. We first state some technical results.

Lemma 3.4 ([37, Result 1.6]) Let M be a positive semi-definite matriz, and

assume
0 ul

0 M

M =
then u = 0.
Consequently, we have the following corollary.
Corollary 3.5 Let M be an n X n positive semi-definite matriz, and let

’)/C{].,2,,TL}

Assume M., =0, then M,. = 0.
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Proof Apply the previous Lemma to each index of . Q.E.D.

Lemma 3.6 describes the first of our reductions. Essentially we make a change
of variables over the lin C' which transforms the submatrix A,,, which corresponds
to the lineality space, into a matrix of the form

Dy 0
0 0

where Dy is a positive definite matrix. This form will be exploited in Lemma 3.7.

Lemma 3.6 Given a normal equation Ac(x) = a, where A and C are as in

Lemma 3.1. Then, there exists a linear transformation
r=Uy

such that the restriction of U to L+ = (lin C)* is the identity. This transformation
maps C onto itself. Let Ac(y) = a be the representation of Ac(x) = a in the

variable y. Then, we can choose U such that A is in the form

_ D A,
a=| 0 1, a=U"a (3.2)
Apa Asp
where D is given by
Dy 0
D= (3.3)
0 O

with Dy being a positive definite matriz. Furthermore, if A is copositive—plus with

respect to a cone K containing recC, then A is copositive—plus with respect to K.

Proof Since A is copositive with respect to recC = R x C

Apa Ag T
x(j;Aaaxa = ( l‘£ 0 > o =
Aﬂa Ag/g 0
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for all z, € R'®. That is, A, is positive semi—definite. Consider a QR factor-

ization of A,

Aaa = QaaR
where
|1
0

Here, Ry is an upper triangular matrix whose row rank equals the rank of A,,.

By orthonormality of Qua,
foAaaQaa = D
where D = R(Q),,. Furthermore D is of the form
D
0

D=

and D is positive semi-definite, and
rankD’ = rankR = rankR,

Thus, D is a matrix in the form of (3.3) due to Corollary 3.5.

Let

U — Qaa
I

then U is orthonormal and the transformation
rx=Uy

maps C onto itself. The linear transformation A is represented by UT AU with
respect to the variable y, and therefore the normal map will be Ax(y) as claimed.
The verification that A is copositive-plus with respect to K is straight forward.

Q.E.D.
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In the following lemma, we reduce the problem resulting from Lemma 3.6 by
eliminating the variables associated with the positive definite matrix Dy. The
statement of the result is somewhat technical, but this reduction is crucial step
for establishing our main result in Theorem 3.9. The proof of Lemma 3.7 relies

heavily on Corollary 3.2 and Theorem 3.3.

Lemma 3.7 Given a normal equation Ac(x) = a, where A is as in (3.2) and C
1s as in Lemma 3.1 and suppose that A is copositive—plus with respect to a cone
K D recC, intK # 0. Let k = {1,2,---,k} be the set of indices for the submatriz
Dq in (3.8), and C(k) be as in Theorem 8.3. Then, the given normal equation is

equivalent to Ao, (z) = a where

i 0 A 0 A
i ) s ., 8
Ao App —Ays Aps

where o = a'\ k. Furthermore, A is copositive—plus with respect to K (k).

Proof By Corollary 3.2, Ac(z) = a is equivalent to Ac(q(z) = @, where

0 Aalﬁ
Aﬁa’ Aﬂﬁ

A=

Furthermore, it is easy to see that K (k) D recC(k). For any x = (24, 23) € K(k)

0 Aalﬂ
<x£, x%) _ B <xa, x5>20
Apar App
That is
!Eg;(/_lgrﬂ + Aﬁa/)l‘ar + $£A5B$£ Z 0 (35)

for all 7, € RI*!,
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If
14_.(7;//5 + Aﬂa’ ?é 0

then dimker(AY ; + Agy) < || = dim K (k). Hence there exists an I3 € K (k)

such that
(Aqg + Apar)Ts # 0
Let
Tor = —MNAL g+ Agar)Zs
then

fi‘g(Agrﬁ + Aﬁa’):’:a’ + j‘gfiﬁﬂfz'g < 0
for sufficiently large A, a contradiction to (3.5). So we have
AZ’,@ + Aﬂa’ — 0
The last statement follows easily from Theorem 3.3. Q.E.D.
The following theorem summarize the outcome of the two reduction steps de-

scribed in Lemma 3.6 and Lemma 3.7 which lead to a standard form for copositive—

plus normal equations.

Theorem 3.8 Given a normal equation Ac(x) = a, where A is copositive—plus
with respect to a polyhedral convex cone K D recC such that intK # (), there is
an equivalent normal equation Ax(x) = @, where A is copositive—plus with respect

to recC. Furthermore

Q)
Il
8
—
(e
wel]
~
=
S
vV
=

and

—Al; Agg
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Proof We can first perform a transformation as given in Lemma 2.4, so that C'

is in the form

Tq
C=<3z < 0 B ) >b
Zp
The theorem now follows by applying Lemma 3.6 and Lemma 3.7. Q.E.D.

Given a normal equation in standard form, we are able to reduce it to one
whose feasible set has zero lineality. This is the subject of our main result of this

chapter.

Theorem 3.9 Consider a normal equation Ac(x) = a, where A and C' is given

by
0 Aap

—Al; Ags

A=

and

Tq
C=x<0 B) >b
g

Suppose A is copositive—plus with respect to recC, let

A= Agﬂ a=ag
and

é = {LEﬁ | Bl‘ﬁ Z b,Aaﬁlbﬁ = aa}

Then, Ac(x) = a is equivalent to As(x) = a, in the sense that for any z =
(Za,Tp) satisfying Ac(z) = a, Tz satisfies Aa(z) = @, and for any Tz satisfying

An(z) = a, there exists an T, such that (T,,Tg) satisfies Ac(x) = a. Moreover,

A is copositive—plus with respect to recC.
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Proof TLet C' = {x3| Bxg > b}. Notice that 73 € C satisfies As(z) = a if and

only if

ApsZp — ag € Np(Tp)

Notice that C' = C'N{z| Aasz = b} and by reference to [45, Corollary 23.8.1], we

have

or

Aﬁﬂfﬂ —ag € N@(fﬂ) + imAgﬂ

Aﬂga_?g —ag— Aggja € N@(:Eg) (36)

for some 7,. Hence 74, together with z,, satisfies

that is

or

7 € {rg| Brg > b}
Aaﬂa_?g —a,=0

_ T - _
AppTs — ag — AypTa € No(Tp)

(Za,Zp) € C
0 Aaﬁ Za Qo N (, _ )
- € lol  ~(Ta>Tp
—Aly Ags g ag IR e

AZ —a € Ne(x)

Therefore © = (24, 23) solve Ac(z) = a.

It is obvious that A is copositive—plus with respect to C, and C  C. Hence,

A is copositive—plus with respect to C. Q.E.D.
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Notice that  can be determined easily from a single QR factorization ( see
Section 2.2 ). Thus A and C' can be easily formed. Furthermore, the path following
algorithm of Chapter 2 can be used to solve this problem, starting at stage 2. The
fact that A is copositive—plus with respect to C guarantees that the algorithm
will process the normal equation. Given a solution zg of Aé = a, a solution of

Ac(x) = a can be constructed from (3.6), which is equivalent to
Aﬂgi‘g +ag — Agﬁfa = Bﬁu, u <0
that is

Agﬁfa + Bﬁu = Ag/@fﬂ —ag
u < 0
So, x can be constructed from x4 by solving a linear program.

Theorem 3.9 is actually a variant of the results regarding augmented LCP

discussed by Eaves in [14], also see [24].



Chapter 4

Monotonicity and Interior Point

Methods

Given a variational inequality VI(F,C') where F is a continuous mapping from
IR" to IR", and C be a non—empty closed convex set in IR". We say that VI(F, C)

is monotone if F' is a monotone mapping, that is
<F(£E2) — F(l‘1>,$2 — $1> Z 0

for any x1, x5 € R". In particular, the affine variational inequality AVI(q, M, X),
where M is an n x n matrix and X is a polyhedral set in IR", is monotone if M is
positive semi-definite. In this chapter, we investigate monotone affine variational
inequalities from the perspective of maximal monotone multifunction theory.

We begin with a few basic concepts from the theory of monotone multi-
functions. A multifunction from IR" to IR™ is a subset of IR" x IR™. For any

TCR"xR™and z € IR" we define

T(z):={y € R"|(z,y) € T}
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and

T7'(y):={z € R"|(2,y) € T}

In particular, 7-1(0) is called the zero set of T'.
A multifunction, T, from IR" to IR" is said to be monotone if for each pair

(z1,91), (72, y2) of points in T,

(1 — 9,51 —y2) > 0

T is said to be maximal if it is not properly contained in any other monotone
multifunction. Also, T is said to be affine if T" is an affine subset of IR" to IR".

For each monotone multifunction 7" and A > 0 define
Jy=(+ )\T)*1

and J) is called the resolvent of T. The following theorem due to Minty charac-

terize a maximal monotone multifunction in terms of its resolvent .J,.

Theorem 4.1 ([35]) Suppose that T is a monotone multifunction from IR" to

IR". T is mazimal monotone if and only if dom.J, = IR".

We refer readers to [2] for a comprehensive treatment of the theory of maximal
monotone multifunctions.
Given a monotone multifunction 7" we can define a complementarity problem

of finding (z,y) such that
(z,y) €T, (z,y)>0 and 27y=0 (4.1)

We call it the generalized linear complementarity problem when 7' is affine and

maximal monotone (see [25]).
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In Section 4.1, we will show how AVI(q, M, X) is related to a generalized linear
complementarity problem and how interior point methods can be used for solving
monotone affine variational inequalities. In Section 4.2, we try to address some

related computational issues.

4.1 Generalized Linear Complementarity Prob-

lem

It is well known (see [27]) that AVI(q, M, X) is equivalent to the following com-

plementarity problem

(s,z,u) € R x R" x R}

0 —B O s d
H(s,x,u)=| BT M AT z |+ | ¢ | €{0} x {0} xR (CP)
0 —-A 0 u b

(s,z,u)"H(s,z,u) =0

Furthermore, this complementarity problem can be put into the framework of

(4.1).

Theorem 4.2 Suppose that M is positive semidefinite. Then, the problem (CP)

15 a generalized linear complementarity problem with
T ={(u,v) € R™ x JRm\v:b—Ax,szd,Mx+ATu+BTs+q=0} (4.2)

Proof Obviously 7T is affine. It suffice to show that 7" is maximal monotone.

For any (u;,v;) € T,i=1,2,

Au = uy —uy, and Av = vy — vy
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and some appropriate As and Az satisfy the following homogeneous equation

As
BT AT 0 M
Au
0 0 I A =0 (4.3)
Av
0 0 0 B
Ax

Therefore
Au"Av = Ax"MT Ax
It follows from the positive semi-definiteness of M that
Au"Av >0 (4.4)

which implies that 7" is a monotone multifunction.

In showing that 7' is maximal, we may assume without loss of generality that
b=0,d=0, and ¢ = 0. By Minty’s Theorem, it suffices to show that the range
of I + T is IR™. Let z € R™ be arbitrary. We show the existence of (u,v) € T
such that z = u+ v. It follows from (4.2) that this is equivalent to the solvability
of the system

u+v = 2z
Bx = 0
Az +v = 0

Mz + ATu+B"s = 0
Equivalently the system

Br=0, Mz+AT(Az+2)+BTs=0 (4.5)
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must be solvable for (z,s). Let C € R""7? be a matrix such that ker B = imC'

Letting # = Ct, (4.5) reduces to the system
(M + ATA)Ct + A"z € imB" = ker C*

or

CT(M 4+ ATA)Ct+CTAT2 =0
Since z is arbitrary, we must show
imCT AT c imCT (M + AT A)C
which is in turn equivalent to the statement
ker(CT(M™ + AT A)C) C ker(AC)
To prove the last statement, assume that CT(M7T + AT A)Cw = 0. Then,
w' CT(M" + AT A)Cw = 0

or

wlCT(MT)Cw + || ACw]|; = 0

But M is positive semi-definite, hence w”C”(M")Cw = 0 and ACw = 0. The
claim is proved. Q.E.D.

Now that we know that 7 is maximal monotone, the following result ([25,
Corollary 2.1]) illustrates the connection between (CP) and a class of horizontal

LCP as defined in [48].

Theorem 4.3 Let T be an affine multifunction on IR™, T 1s maximal monotone

if and only if there exist matrices Hy, Hy € IR™*™ and a € IR™ such that the pair
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H, and H, is column monotone, i.e. Hi+Hy = I, HI H, is positive semi-definite,
and

T ={(u,v)| Hu— Hyv =a}

With T represented as in Theorem 4.3, (CP) is equivalent to the following
horizontal LCP (see [48])

Hu—-Hw=a, u,v>0 v'v=0 (4.6)

The pair H; and H, is column monotone due to the maximality of T, therefore

following theorem ([48, Theorem 7]) applies.

Theorem 4.4 Given Hy and Hy column monotone, then, for any a € IR™ (4.6)

is equivalent to LOCP(C~1D,C~ta), where C' and D are column representatives

(see [48]) of H, and Hy and C~'D is positive semi-definite.

Since (CP) is equivalent to a standard monotone LCP, interior point algo-
rithms, e.g., the path following algorithm in [29], the potential reduction algorithm
in [30], and the infeasible path following algorithm in [50] and [3], can be applied
to provide polynomial algorithms for (CP) and hence for (AVI). In the next sec-
tion, we show that the path following and the potential reduction algorithms can

be carried out without specifically reducing (CP) to a monotone LCP.

4.2 Interior Point Algorithms

Section 4.1 shows that (CP) is equivalent to a standard LCP. However, directly
reducing (CP) to a standard LCP using the method outlined in the last section will
not provide a practical algorithm. We now show how to exploit the structure of the

problem (CP) in applying the path following and potential reduction algorithms.
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We assume that all elements of the matrix

M q
Q=] A b
B d

are integers. The size of the problem (AVI) is defined by
m+n+p n+1

L = 1+logm+n+p?+| > > log(l+ gl

i=1 j=1

where ¢;;’s are element of the matrix Q).
To solve (CP) using path following method, we begin with an initial point

(8% u% 09 %) which is close to the central path, that is, a point in the set
1
S = {(s,u,v,x) €S|u,v>0,|UVe—_el, <a(, where ( = —UTU} (4.7)
m

At each step, Newton’s step for the nonlinear equation

F(s,u,v,x, 1) (4.8)
= (UV —pe,Mz +q+ B's + ATu,v+ Az — b, Bx — d) (4.9)
= 0 (4.10)

is used to compute a new point in S® such that ( is reduced from the previous
value by a constant factor. The algorithm terminates when ( is sufficiently small.

Given a point (s%, u% 1% 2°) € S®, here is the algorithm:
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Algorithm 3

1. Choose 0 < o < 4, let 6 = 12—, and let k£ = 0.

2. If u*Tvk < 274L then stop.
3. Let
¢ = 4Tt /m
po= (1-6/m2)¢
(s’u’v7x> = (Sk,uk,vkﬂllk)
4. Compute (As, Au, Av, Az) by constructing a Newton step for the

nonlinear equation (4.8), that is, solving

0 V U 0 As UVe — e
BT AT 0 M Au 0
= (4.11)
0 0o I A Av 0
0 0 0 B Az 0

and set

(P b M R ) = (s u,0,2) — (As, Au, Av, Ax)

5. Set k =k + 1, and go to Step 2.

There are two crucial issues concerning the validity of the algorithm, one is

the solvability of (4.11), and the other is the justification that each new iterate
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stays in S and that ( is reduced. In fact, by the analysis from the last section,

(4.11) is equivalent to
HiAu— H)Av=0, VAu+UAv=UVe— pe (4.12)

Hence, (Au,Av) is uniquely solvable from (4.11) by the maximality of T ( see
[25, Theorem 2.1] ). Furthermore, in view of Theorem 4.4, the step computed
from (4.11) is the same as the interior step used by Kojima et.al. in [29] for

LCP(C~'D,C~'a). Therefore we have the following theorem.

Theorem 4.5 Let (s,u,v,z) € S with u, v > 0 satisfy
. 1 -
|UVe—Cell, <al with (=—u'v
m

for a € (0,%). Let

' 10
po= (1—6/m)C
Suppose (As, Au, Av, Az) is a solution of (4.11), and
(5,4,7,%) = (s,u,v,x) — (As, Au, Av, Ax)
Then, (u,7) > 0, and
HUVG - feHz < ol

¢ =

1 )
_ﬂTT) < (1 - 1 )C
m om?2

As a result of this theorem, Algorithm 3 stops in O(m%L) iterations, each
of which requires O((m +n + p)?) operations to compute a new point. Therefore,

the number of arithmetic operations needed for finding a point {(s*,u*, v¥, z%)}

such that u*"v* < 2747 is no more than O(mz(m + n + p)3L). Furthermore, an
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exact solution of AVI(q, M, X) can be constructed from such a point in no more
than O((m + n + p)?) arithmetic operations by using a technique similar to that
of [29].

Potential reduction algorithms start with a point in
S% = {(s,u,v,2) € S| u,v >0}

such that f(u,v) does not exceed O(m2L), where the potential function f is

defined by
f(u,v) = mlogu"v = log(u;v;) — mlogm for (s,u,v,z) € S° (4.13)
i=1

The algorithm is as follows.
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Algorithm 4

1. Choose (5% u® 0% 2% € S° such that f(u,v) does not exceed

O(m=L), and let k = 0.
2. Let (s,u,v,2) = (s, ub, v*, 2*), if f(u*,v*) < —4m? L, then stop.
3. Let
w = (JET T s i)
W = diag{w}
s = Wole— ((n+ v/ Julw

4. Compute (As, Au, Av, Az) by constructing a Newton step for the

function F, that is, solving

As
BT AT 0 M
Au
0 0 I A = 0
Av
0 0 0 B
Ax

(4.14)

W (UAv+ VA = ——
2],

and set

(P b M R = (s u,0,2) — (As, Au, Av, Ax)

5. Set k =k + 1, and go to Step 2.
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We notice that the system (4.14) is equivalent to

z

121l

HAu—H)Av=0, UAv+VAu=W (4.15)

A reference to Theorem 4.4 and [30, Theorem 2.2] leads to the following result.

Theorem 4.6 (Au, Av) is uniquely determined by (4.14) and at each iteration

we have

f(ukH, ?)k+1) < f(uk, Uk) — 0.2

Similar to case of Algorithm 3, Theorem 4.6 guarantees that the number of
arithmetic operations needed by the potential reduction algorithm for finding a

solution of AVI(g, M, X) is bounded by O(mz(m + n + p)3L).

4.3 An Implementation Issue

Although (Awu, Av) can be uniquely determined from the system (4.12) or (4.15),
in practice we are dealing with (4.11) or (4.14). The task of of computing (Au, Av)
can be significantly simplified if solution to each of these systems is unique. Our

next lemma shows that the following assumption

0 -B
rank | B M |[=n+p (4.16)
0 —-A

guarantees the uniqueness of solution for (4.11) and (4.14). The general case will

be dealt with in the rest of this section.
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Lemma 4.7 Suppose that the condition (4.16) holds. Then, for any positive di-

agonal matrices Dy, Dy, and r € IR™, the equation

0 D1 DQ 0 AS T
BT AT 0 M Au 0
0O 0 I A Av 0
0O 0 0O B Ax 0
has a unique solution.
Proof Tt suffices to show that the homogeneous system
0 D1 D2 0 As
BT AT 0 M Au
=0 (4.17)

o 0 I A Av
0o 0 0 B Ax

has a unique solution.

Suppose (As, Au, Av, Ax) is a solution, then

DiAu+ DyAv =0

hence
DAu+ D 'Av=0

where D = (D;D;"')7. Therefore
| DA +2(DAw)" (D' Av) + | D7 Au]” = 0
Notice that (DAu)T (D 'Av) = AuTAv > 0 as a result of (4.4), so we have

|DAuf, =0, [D1Aw], =0
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It follows that

Au=0, Av=0

0 -B
Consequently, As =0 and Az =0 since rank | BT M | =n+0p. Q.E.D.
0 —-A

In general, a problem in the form of (CP) can be reduced to a smaller problem

satisfying (4.16). Define the feasible set of (CP) by

S:= {(u,v)’u,v > U,vzAx—b,Bx—dzO,Mx—l-ATu-i-BTs—i-q:O}
(4.18)
Then the lineality space (see [45]) of S is

L(S) = {(S,O,U,l‘) r BY's+ Mz =0,-Az =0, —-Bzr = 0}

So, L(S) = {0} if and only if (4.16) holds.

For convenience of notation, define

(CP) can be reformulated as

(z,u) € RP™" x RT

c’ z !
H(z,u)—(QC . )( )+(i)€{0}xmﬁ'j (CP)

(z,u)TH(z,u) =0

s d
where z = and ¢ = .
z q
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Suppose L(S) # {0}, then the columns of the matrix ( ) are linearly

-C
dependent. There exist index sets a and ( such that

(2)-(% %)

and ( “ ) is a maximum subset of linearly independent columns of the matrix
—C,

7 . Thus
( Qs ) - ( Qa ) P (4.19)
—Cp —Clq
for some |a| x |3] matrix P.

The following lemma will be useful as a technical tool.

Lemma 4.8 Let M be an n X n positive semi-definite matriz, and v,a, 3 be a

partition of {1,2,---,n}, so that
M= ( M., M, M; )

Assume that

for some |a| x |y| matriz P, then

M, = P"M,
Proof
I —PT ¢ I 00 I —PT 0
o I OoO|(M| —-P I 0 = 0 I 0 <0M.QM.[,>

0o 0 I 0 0 I 0o 0 I
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I —PT 0\ [0 M, My
= |0 I 0|0 Ma Mg
0 0 I\ 0 Mg Mg
0 = *
= 0 Moo Myp
0 Mps, Mpg
0 0 0
= 0 Maa Maﬁ
0 Mps, Mpg

where the last equality follows from Lemma 3.4. It now follows that

I PTo\[0o 0 o0 100
M =10 1T 0|0 My Mg || P I 0
0 0 I )\ 0 Mg, Mg 00 I

PTM,.P PTM,, PTMaﬂ
= MaaP Maa Maﬂ
M.gP Mop Magg

therefore

M, = (PTMMP PTM,, PTMag>

= PT( Maap Maa Ma,@ )
= P"M,.

Q.E.D.
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The method of reducing (CP) to a smaller problem satisfying (4.16) is derived

from the following two lemmas.

Lemma 4.9 Let o,  and P be as in (4.19), 5 # 0. If (CP') is solvable, then

there exists a solution (Z,u) such that Zz = 0.

Proof Let (Z,4) = (Za, 23, @) be a solution of (CP’), then it is clear that (Z, +
PZz3,0,u) is the desired solution. Q.E.D.

Lemma 4.10 Define (CP") by

(w,u) € R Pl x R™

H(w,u) = ( i“f‘ (CZ)“' ) ( v ) + ( q;‘“ ) e {0} x R™ (CP")

(w, u)TH(w,u) = 0

Then (z,u) is a solution of (CP') with zz = 0 if and only if (za,u) is a solution
of (CP").

Proof If (z,u) is a solution of (CP’) with z3 = 0, then it is easily verified that
(24, u) is a solution of (CP").

If (24, u) is a solution of (CP"), then

Qoaza + (CT)au+4, = 0 (4.20)

—Co2a+b € ]RT (4.21)
and

U (—CloZa +b) =0 (4.22)
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CT
-C 0
Lemma 4.8 to (4.19) resulting in

Moreover, since the matrix ( ) is positive semi-definite, we can apply

( Qso Qss (CT)s ) =P ( Qoo Qap (CT)a )

Also, taking into account (4.20), we have

Za
<Q/3a Qsp (CT)5-> 0 | +ds
u
Za
= P"((Qua Qus (€T )| 0 [+d
u

— qlﬂ o PT Ia
If g5 — PTq', # 0, then the system
Qoo Qas (CT) N '
(6708} « (e} q «
o 0 |+ —0
Qs Qps (C7)p. q's
u

is inconsistent, a contradiction to the solvability of (CP’) and Lemma 4.9. Hence
qlﬂ . PT Ia =0

Let zg = (za,0), then

H(zg,u) = 0 € {0} x R
—C. o2+ b
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follows from (4.20), (4.21). We also have (zg,u”)H(29,u) = 0 by reference to
(4.22). Q.E.D.

By definition, we can write

for appropriate submatrices A, B, and M of A, B, and M respectively. Note that

M is positive semi-definite and the matrix

0 -B
BT M
0 —A

has full column rank. Therefore (CP") is equivalent to AVI(g, M, X) where

X = {y‘AySE,ByZCI}
and g, b, and d are vectors which consist of appropriate components of ¢, b and d
respectively.

The procedure of reducing AVI(q, M, X) to AVI(g, M, X) can be carried out
by using Gaussian elimination and deleting rows and columns from a matrix. A
solution of AVI(g, M, X) is found by solving (CP”). A solution of (CP), and
hence a solution of AVI(g, M, X'), can then be constructed from that of (CP") by
applying Lemma 4.10. Therefore these operations will not increase the order of

complexity.



Chapter 5

Monotone Variational Inequalities

The proximal point algorithm is an iterative method for solving the generalized
equation

0€T(z) (5.1)

for x € IR", where T is a maximal monotone multifunction on IR". The iterates

are constructed by

Tpa1 = J)\k (l‘k) == (I + )\kT>71(Ik> (52)

where Jy, = (I + \T)~" is called the resolvent of T. The well known Minty’s
theorem ( see Theorem 4.1 ) guarantees that such a sequence {z;} is well defined
given any starting point xy. Basic convergence results are summarized in the

following theorem (cf. [46]).

Theorem 5.1 Suppose that T is a maximal monotone operator from IR" to IR"
with 0 € imT. Let {xy} be generated by (PP) using a sequence of positive numbers
{M\} such that °° A2 = oco. Then {xy} converges to a point T such that 0 €
T(7).

102
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In the case of convex programming, the minimization problem

min f(z) (5.3)

zeC
where f is a proper closed convex function and C' is a closed convex set in IR", is
equivalent to (GE) with
T=0f+N(-]|C)
The finite termination of (PP) is studied in [18] and [4] in conjunction with the
notions of weak sharp minima and minimum principle sufficiency (see [19] and
[6]). We proceed to extend some of these results to the case of general maximal
monotone multifunction and show how these results can be applied to monotone

variational inequalities.

5.1 Finite Termination

We begin with the definition of a sharp zero set for a maximal monotone multifunc-
tion. The concept of sharp zero set is crucial in generalizing the finite termination

results in [18] to a generalized equation in the form of (5.1).

Definition 5.2 Given a mazimal monotone multifunction T. The set Z = T~1(0)

is called a sharp zero of T if Z # (0 and there exists a 6 > 0 such that
SBNN(z|Z)CT(2) V2eZ (5.4)
The constant 6 is called the modulus of sharpness.

As an example, consider the case where T'= df + N(- | C) [18, Theorem 2]
shows that a sharp zero set of T = 0f + N(- | C) is a set of weak sharp minima

for the convex program (5.3).
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T is assumed to have a sharp zero set throughout the rest of this chapter. Our

first step is to establish a result similar to that of [18, Lemma 4] for (5.1).

Lemma 5.3 Let 6 be the modulus of sharpness for T and 0 < € < 6. Suppose

. 2z —mz(2)
R PR

and y € T(w) for some w € Z, then y € T(nz(z)).

Proof By the definition z —74(2) € N(7z(2) | Z), hence y € 6BN N(m4(z) | Z)
since € < 6. Therefore y € T(mz(z)) by (5.4). Q.E.D.

The next lemma is similar to [18, Lemma 5.

Lemma 5.4 Let ¢ and 6 be as in Lemma 5.3. If w € T(z) and ||w|| < €, then

z € /.

Proof 1If z # 74(z), then

2z —mz(2)

y = em € T(nz(z2))

by Lemma 5.3. It follows from monotonicity of T" that
0<(z=mz(2),w—y)

By definition of y

(2 —mg(2), 2 — ()

|2 —mz(2)||
= (2 —72(2),9)
< (z—=mz(2),w)
< Iz = mz(2)]| [[w]]

Consequently, ||w|| > €, a contradiction. Q.E.D.
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Now, we are ready to present the main theorem of this section.

Theorem 5.5 Suppose Z is sharp zero set of T with modulus 6. Let {\} be any
sequence of positive number which is bounded below and let xo € IR". The (PP)

terminates in a finite number of iterations.

Proof For any 0 < € < ¢, we have
eBNN(z| Z)CT(z)

for all z € Z.
Let A\x > A > 0 for the given sequence. Then, for any z € Z we know that the

sequence {||zx — z||} is bounded and hence converges (see [47]). Furthermore

) | = 2 2

251 = 2II° + > Ak llvell” < [l — 2
k=0

where vy € T'(zx) and x4+ A\g_1vx = Tg—1. Since {||zx — z||} is bounded, it follows
that

K

> A llul* < M

k=0
for some constant M. Hence

Ao |* (K +1) <M

Therefore, there exists a sufficiently large K such that

gl < — < ¢
A= N2(K + 1)

by the non-increasing property of ||vk 1] (see [47]). It follows from Lemma 5.4

that xx . is in the solution set. Q.E.D.
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Corollary 5.6 Suppose Z is a sharp zero set of T with modulus 6. Let {\;} be
any sequence of positive number which is bounded below by A > 0. Then for any

given xy € IR", (PP) terminates in one iteration for a sufficiently large choice of

A

Proof See the proof of [18, Theorem 8§]. Q.E.D.

5.2 An Equivalence Relation

In the studying the connection between weak sharp minima and finite termination

of (PP), the equivalence between
aBNN(x | Z)CT(x)

and

aBN |JN@=|Z2)c | T(x)

TEZ TEZ

where T = df + N(- | C) and Z = T~'(0), plays an important role. We extend
it to the case where T is a maximal monotone multifunction with the further
assumption that Z is polyhedral. Such a generalization turns out to be useful
in establishing the connection between finite termination of (PP) and minimum
principle sufficiency for monotone variational inequalities.

Since T is maximal monotone, the set Z = T !(0) is closed convex. The

following result is a direct consequence of the monotonicity of 7T'.

Lemma 5.7 Suppose T is mazimal monotone, Z = T~'(0), then

T(x) C Nz | Z) forallx € Z (5.5)
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Proof Let z be any point in Z, u € T(x). For all z € Z, we have, 0 € T(z).
So, by monotonicity, (0 —u,z —x) > 0, i.e. (u,z—x) < 0, which implies that
we N(z|Z). Q.E.D.

For those points not in Z, their images under 7" also possess interesting prop-

erties.
Lemma 5.8 For any points x,y € IR", 0 < XA <1, we have
Tx)NT(y) c T(Ax+(1—Ny) (5.6)

In general, for any x; € IR", \; > 0,i=1,...,k, and Zle A=1
k k

=1 =1

Assume that Z #+ (. Then, for x € IR", d € recZ, X\ > 0
T(z)N{d}* C T(x + \d) (5.8)
Proof Let v € T(x)NT(y), then for any z € IR" and w € T(z)
(u—w, Az + (1 =Ny — 2)
= Mu—w,z—2)+(1—-N)(u—w,y—2)
> 0

Sou € T(Ax + (1 — A)y) by maximality of 7.
(5.7) can be proven by using induction on (5.6).
To prove (5.8), let z € R", Z € Z, v € T(2), then

1
— — lim - {z— (% —0) < .
(d,v) Jim ; (z = (T4 pd),v—0)<0 (5.9)

since T' is monotone, T + ud € Z, 0 € T(Z + pd), and v € T(z).
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Ifue T(z)n{d}*, 2 € R",v € T(z) then (u — v,z — z) > 0 by monotonicity

of T. Knowing that u € {d}* and (d,v) <0, it follows that
(u—v,x4+Xd—2)>0

Hence, u € T(x + Ad) by maximality of T

Q.E.D.

We further claim that the inequalities of Lemma 5.7 hold as equalities if T' =

N(-[2).
Lemma 5.9 For any points x,y € Z, 0 < A < 1, we have
N(z|[Z)NN(y|Z)=NXz+(1-XNy| Z)

Forz; € R", \;y >0,i=1,....k, and X¢_ Ny =1

k

(\ N(z; | Z) Z)\ x| Z)
i=1
Foranyz € Z,d € recZ, and A > 0
Nz | Z)n{d}* =N@+ X | Z)
Proof In view of Lemma 5.7, the only thing needed to prove (5.10) is

Nz | Z)NN(y | Z)DNAx+(1-Ny | Z2)

Let u € N(Ax + (1 — Ny | Z), then for any z € Z

(u, 2 — ) = %(u,)\z—)\x)
_ %(u,)\z—i-(l—)\)y—()\ﬁ'i‘(l_)‘)y»

< 0

(5.10)

(5.11)

(5.12)
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since w € NAz + (1 — ANy | Z) and Az + (1 — A\)y € Z. Thus, v € N(z | Z).
Interchanging the roles of x and y, we see that u € N(y | Z).

(5.11) follows from induction on (5.10).

To prove (5.12), it is sufficient to show that

N(z | Z)n{d}* D N@E+ M| Z)
Let u € N(z+Md | Z), then (u,z — (z + A\d)) < 0 for any z € Z. By taking z = &
and z = T + 2\d, it follows that (u,d) = 0. Hence

(u,2 —Z) =(u, 2 — (T+Ad)) <0
We now have u € N(z | Z) N {d}*. Q.E.D.

Lemma 5.10 Suppose x,y € Z, then

| Ne 2
N | Z)NN(y| Z) = ot of N (e | 2 (5.13)
a SubSet oy roary T

Proof Suppose that N(z | Z) N N(y | Z) does not equal N(z | Z), so that we
can find w € N(x | Z)\ N(y | Z). For any point v € N(x | Z)NN(y | Z), we have

<v,:r:—y> =0
since v € N(z | Z) implies

<U,y—l‘> <0
and v € N(y | Z) implies

(v,x—y) <0

Knowing that v € N(x | Z), we have (u,z —y) > 0. We further claim that

(u,z —y) > 0, since if (u,x —y) =0, then for all z € Z

(u,z—1y) = (u,z—x+x—1y) (5.14)
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= (u,z2—x) (5.15)

< 0 (5.16)
and hence u € N(y | Z), a contradiction to u ¢ N(y | Z). It follows that
(v+e(v—u),y—z)y=€e{u,x—y) >0

for all € > 0. Hence v + ¢(v —u) ¢ N(z | Z), which implies v ¢ riN(z | Z).
Therefore v € rbdryN(z | Z). Q.E.D.

With these four lemma as technical tools, we are now ready to establish our
main result. Note that the converse statement is obvious, even without polyhe-

drality of Z.
Theorem 5.11 Let T be mazimal monotone and Z = T'(0) be polyhedral. If
aBN |JN@=|Z)c | T() (5.17)

T€EZ TE€EZ

then Z 1is a sharp zero set of T with modulus o. That s
aBNN(z|Z)CT(x) (5.18)
forall z € Z.

Proof i) Assume that Z contains no lines. We first show (5.18) for an extreme
point of Z, then show it for a convex combination of extreme points, and finally
show it for an arbitrary point in Z.

Suppose that z is an extreme point of Z, then according to [45, Theorem 18.6
and Corollary 19.1.1], z is also an exposed point, i.e. there exists ¢ € IR" such
that

(c,w—2) <0
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forall w € Z\ {z}. So,c € N(z | Z), but ¢ ¢ N(w | Z). Hence
N(z|Z)NN(w| Z) # N(z | Z)
It follows, by Lemma 5.10 , that
N(z|Z)NN(w | Z) C rbdryN(z | Z) (5.19)

for all w € Z\ {z}.
If there exists v € (aB N1iN(z | Z)) \ T(2). Then, because of (5.17), there
exists w € Z such that
veT(w)C Nw| Z)

and then
veEN(z|Z)NN(w | Z)

But since we have shown (5.19), there must be
v € thdryN(z | Z)
a contradiction to v € riN(z | Z). So
(aBNriN(z | Z2))\T(z) =0

Therefore
T(z) DaBNriN(z | Z)
But since T' is maximum monotone, T(z) is closed; consequently T(z) D aB N
N(z| Z).
Now let x = Zle Aix;, where x;’s are extreme points of Z, A\; > 0 for ¢ =
1,2,...,k, and % | \; = 1, we have, according to previous lemma

oBNN(@|Z) = aBNND_ Nz, | 2)

=1



According to [45, Theorem 18.5, pp.
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s

(aBNN(z; | Z))

-
Il
_

m T(z)
T(x)

166], any polyhedral convex set containing

no lines equals the convex hull of all its extreme points and extreme directions.

Therefore, for any y € Z, we can write y = x + Ad, for some x as a convex

combination of extreme points, d € recZ and A > 0. It follows that

BN N(y| 2)

aBNN(x+ M| Z)
aBNN(z| Z)n{d}*
T(z) N {d}*

T(z+ M)

T(y)

ii) Let L be the lineality space of Z, then Z can be decomposed as

Z=L+(ZnL")

with no lines in Z N L*. Furthermore, L is perpendicular to T'(z) for any z € R".

We can see this by looking at any d € L, we know that +d € recZ, and therefore

dLT(z) by (5.9).
Since T(z) C L*, for all z € R"

TcR"x Lt
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By restricting the domain of T to L, we obtain a multifunction

Tpr = Tn(L"xR")
c (R"x L) n (Lt x R")
= LtxL*
which is a multifunction from L+ to L. Moreover, it is monotone due to mono-
tonicity of 7.

Let 2 € R", d € L, and A > 0, then since +d € recZ, and T(z) C L', it
follows from (5.8) that

T(z) = T(z)nL*

c T(z)n{d}*

C T(z+ \d)
and
T(z+ M) C T(z+AMd)n{-d}*
C T(z+ M+ A—d))
= T(2)
Thus

T(z) =T(z+ Ad)
We see that T' is constant on any direction d € L. Hence
T = Yj‘LLOTfLL(') (520)

where 7,1 () is the linear projector onto L.
We also claim that Tj;. is maximal. Otherwise, there will be some monotone

multifunction T}, from L* to L* properly containing Tipr. Thus T will be properly
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contained in the multifunction T2 w1 (-). Furthermore, for any z, y € R", we

have

r=m(z)+ 7y (x)
and

y=mr(y) +mr2(y)
Hence

(Thempa(x) — Tpemri(y), z — y)
= (Tyemp(x) — Themp(y), mo(x) — 7r(y))
+ (Lyempe(z) = Tempa(y), mpe () — e (y))
But the second term is non—negative due to the monotonicity of 7, and we have
(Tnemp(z) = Tpemp(y),x —yy > (Thempi(x) — Themp(y), mo(x) — mr(y))

The right hand side is 0 since imT,, C L, 7(z) — 71(y) € L and L is perpen-
dicular to L*. Thus

(Tyempi(x) — Tpempi(y),z—y) > 0

for all z, y € R". In another words, T,° 7y () is monotone. But the proper
inclusion of T in T,° wy.(-) contradicts the maximality of 7. So, we know that
T ;v is a maximal monotone.

We also observed that the zero set of T);1 is Z N L+, and for any x € Z N L+
N(z|ZNnLY)=N(z| Z) (5.21)

with the first normal cone taken with respect to L .

Now, by using (5.20), we can reduce (5.17) into

aBn |J Nz|Z)c (J T(z)

rEZNLL rEZNLL
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which is, by (5.21), equivalent to

aBn |J N@|ZnLHc U Ti(o)

rE€ZNLL rEZNLL

By applying the result of i) on the multifunction T1v, we have
aBNN(z|Z)=aBNN(z|ZNL") C Tpi(z) = T(x) (5.22)

forall z € Z N L*.
We further conclude that (5.18) is true for all x € Z based on (5.20), (5.21)
and (5.22). In fact, for any x € Z

T(z) = Tips (mpe(2))
> aBNN(rpu(x) | ZNL*Y)
= aBNN(m(z) | 2)

— aBNN(z|2)

where the inclusion on the second line follows from (5.22) due to 7. (z) € ZNL*
and the last equality is true because N(- | Z) is constant along any direction of L

just like T'. Q.E.D.

The method used in part i) of the proof can be used on another class of maximal
monotone multifunctions to obtain a result similar to that of the proceeding the-
orem. A set C' C IR" is called strictly convex, if for any z,y € C'and 0 < A\ < 1,
Az + (1 — Ny € riC. The following Corollary is a consequence of Lemma 5.8,

Lemma 5.9 and the method mentioned above.

Corollary 5.12 Let T be mazimal monotone, and Z = T~1(0). Assume that Z

18 strictly convex, and

aBN |JN@=|Z)c | T() (5.23)

T€EZ T€EZ
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then
aBNN(z | Z)CT(x) (5.24)

forallz € Z.

5.3 An Application to Monotone Variational In-
equalities
Consider a monotone variational inequality
0€ f(z)+ N(z | X) (5.25)

where f is a monotone, continuous function from IR" to IR", X is a polyhedral

set. The solution set Z is the zero set of the maximal monotone multifunction
T=f()+N(|X)

We prove that a necessary condition for 7" to be a sharp zero set of 7" is that
7 is an exposed face of X.

Before presenting our main results, we need the following lemmas.
Lemma 5.13 If xy € riF" for some face F' of a polyhedral convex set C', then
N(zo | C)=N(zy |CNF*nF* (5.26)
Proof We first observe that
N(z¢ | C) Cc F*
due to zg € riF. We also know

N(l‘o‘C)CN(l‘O‘CmFL)
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from C N F+ c C. Therefore
N(x | C) C N(xy | CNFH)NF+ (5.27)

If there exists v € N(zo | C N FY) N FX\ N(zo | C), then we can find ¢ € F*
such that ¢ strongly separates v from N(xy | C'). That is

(c,v) >0 and (c,y) <0 (5.28)
for all y € N(zy | C). That is to say
c € (N(zg | C))° = coneC — xy (5.29)
Furthermore, because ¢ € F*

¢ € coneC —xqN F*
= cone(C N F*) — g

= N(zo |CNFHnFH)°

The last equality is due to the fact N(zy | C N F+) N F+ is the normal cone of
C N F* at 2y with respect to '+ as opposed to IR", which is the case in (5.29).
But we assumed v € N(xq | C N FLY) N FL, therefore

(c,v) <0
contradicting (5.28). So we see that
N(zg | COFYNFY\N(z |C) =10
which, together with (5.27), leads to
N(zo | C) = N(zy |CNFHNnF*

Q.E.D.
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Lemma 5.14 Let Z = T7'(0), then
(f(z1), 20 —21) =0 (5.30)

for any x1,x9 € Z.

If 7 is a sharp zero set, then
affZNX =27 (5.31)

Proof Let xy,29 € Z, we have

(f(z1),29 — 1) > 0
If (f(z1),29 —21) > 0, then

(f(z2), 21 — m2) < = (f(21) = fla2), 21 — 22) <0

contradicting the fact that zo € Z. Hence

(flz1), 22 —21) =0

for all x1,29 € Z.
Assume Z # () satisfies (5.18). It is obvious that

Z CcafiZnNnX c affZ

because Z is contained in both affZ and X. Thus riZ C ri(affZ N X).
Suppose z € ((affZ) N X )\ Z and T € riZ. Let

p=sup{0 < Adzx+ (1- Nz e Z}
then, because 7 is closed

r,=pr+(l—pre”z
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hence 1 < 1. Also notice that z € riZ C ri(affZ N X)), we have
z, €ri(affZ N X)
Therefore N(z, | X) C (affZ N X)* C Z+ = (affZ)*, which then implies
dim N(z, | X) <n —dim(aff?) (5.32)

where dim denotes the dimensionality of a set.

On the other hand, for any ¢ > 0

r,—ex—x,) = (1+ex,—€x

= l+epur+(1-1+e)pu)z ¢z

by the definition of . Thus z, ¢ riZ. So z, is in riF’ for some face F' of Z (see
[45, Theorem 18.2]) with

dim F' < dim Z = dim(affZ)

We now show that
dimN(z, | Z) =n—dim F

In fact, x, is an extreme point of Z N F*. Otherwise
T, = Az + (1 — M)y

where 0 < A < 1, 71,29 € Z N F*. But given that z1,29 € Z, z, € ri[z, 7],
and z, € F, we conclude that z,29 € F by the fact that F' is a face of Z.
Consequently, z,29 € F N F+ = {z,}, a contradiction. Now that z, is an

extreme point of Z N F+

dim(z,|Z N F*) = dim F*
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where the normal cone is taken in F'*, or equivalently
dim(N(z, | ZNn FY) N F') = dim F*
with the normal cone taken in IR". This in turn gives
dim N(z, | Z) = dim(N(z, | ZnFYHnF*)
= dimF*
= n—dimF
by virtue of (5.26). Combining this with (5.32)
dimN(z, | Z) = n—dimF
> n —dim(aff?)
= dim N(z, | X)
which makes
oBN N(z, | Z) € T(z,) = f(x,) + N(z, | X)
impossible and hence contradicts (5.18). We therefore conclude that
(afZ2) N X)\Z =10

or equivalently
aftZNnX =2
Q.E.D.
Theorem 5.15 Let Z be a sharp zero set of T, then Z 1s an exposed face of X,

and furthermore

Z = {alz € X, (f(7),2 — T) = 0} (5.33)

for x € riZ.
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Proof We first prove (5.33). Note that if Z = X, then (5.33) holds trivially. So
we assume Z # X. Let S be the right hand side of (5.33), then Z C S is a direct
consequence of Lemma 5.14 (see (5.30)).

To prove S C Z, we notice that since T € riZ,

N(z | Z) = {affZ}*

By the fact that Z is a sharp zero set
aBn{affZ}* Cc T(z) = f(z) + N(z | X) (5.34)
for some o > 0. Considering that N(z | X) C N(z | Z) = {affZ}+
—f(@) +aBn{affZ}t c N(z | X) c {affZ}*

It follows that aff N(z | X) = {affZ}+ and

—f(z) €riN(z | X)
For any z € X, we can write

=T =y, (0 —T) + Tiafryy. (€ — T)

where 77,(-) denotes the linear projection onto a subspace L.

Knowing that —f(z) € riN(z | X) C N(z | Z) C {affZ}*

<_f(j)’7r{affZ}L($ - j)> = (—f(z),z—1z) <0

If € X\ Z, then z ¢ affZ by (5.31), hence we have W{aﬁz}l(l‘ — ) # 0. In this

case, we claim that

1

<_f(j)’7r{affzp(x - 5)> =(—f(z),z—x) <0



122

otherwise from —f(Z) € riN(Z | X) and 7,4, (x — 7) € {affZ}1, there exists

an € > 0 such that
—f(Z) + emafpy. (@ — 7) € N(7 | X)
and so
<—f(j) + ew{aﬁZ}L(m —I),x— :E> <0
which is reduced to
(=1(@) + empafiy (& = ), Tpagryy (@ = 7)) <O
by orthogonality between affZ and {affZ}+. But we assumed that
(= 1@), Tpafrpy (@ = 7)) = (—f(3),2 = F) =0
so we have

0<e <7r{affz}l(x — j)aﬂ{aﬂz}L(l‘ — j)> <0

a contradiction.

Hence
(—f(Z),z—Z) <0 (5.35)
for all z € X\ Z. This proves (5.33). (5.33) and (5.35) show that Z is the set
of maxima for the linear function (—f(z),- — Z) over X and is hence an exposed
face of X. Q.E.D.

A stronger version of (5.33) turns out to be a sufficient condition as demon-

strated by the following theorem.
Theorem 5.16 Let Z =T '(0). Assume that
Z ={zlz € X,(f(Z),x — ) =0} (5.36)

for each x € Z. Then Z 1s a sharp zero set of T.
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Proof We can actually write
7 ={z e X|(f(2),z—2) <0}
for any z € Z, which implies
N(z | Z) =cone{f(z)} + N(z | X)

Let F be the set of all faces of Z, then

UN(EI12) = UNF|2)

2E€Z FeF

= [J {cone{f(2)} + N(F | X)}

FeF

where z € riF’. We can choose a finite set of z € Z, and an a > 0 such that
aB N {cone{f(z)} + N(F | X)} C f(2)+ N(F | X) forall F e F
Then

aBN|JN((z|Z) = aBn |J N(F|Z)
= aBn FUf{cone{f(z)} +N(F | X)}
c U/ +NF|X)}

FeF

c U{fGz)+N(=|X)}

2E€Z

ie. Z satisfies (5.17). But Z is polyhedral, hence Z sharp zero set of T by
Theorem 5.11. Q.E.D.
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