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Abstract
PIECEWISE LINEAR HOMOTOPIES AND AFFINEVARIATIONAL INEQUALITIESMenglin CaoUnder Supervision of Assistant Professor Michael C. Ferrisat the University of Wisconsin{MadisonThe purpose of this thesis is to apply the theory of piecewise linear homotopiesand the notion of a normal map in the construction and analysis of algorithms fora�ne variational inequalities.An a�ne variational inequality can be expressed as a piecewise linear equationAC(x) = a, where A is a linear transformation from IRn to IRn, C is a polyhe-dral convex subset of IRn, and AC is the associated normal map. We introduce apath-following algorithm for solving the equation AC(x) = a. When AC is coher-ently oriented, we prove that the path following method terminates at the uniquesolution of AC(x) = a. This generalizes the fact that Lemke's method terminatesat the unique solution of LCP(q;M) with M being a P{matrix. In LCP study,termination of Lemke's method is established for two major classes of matrices,the class of L{matrices introduced by Eaves and the class of P0{matrices studiedby Cottle et al. We generalize the notion of L{matrices for polyhedral convexii



sets in IRn and prove that, when A is a linear transformation associated withsuch matrices, our algorithm will �nd a solution for AC(x) = a. unless the it isinfeasible in a well speci�ed sense.Our approach to P0 begins with the study of geometric characteristics of anLCP that contribute to the �nite termination of Lemke's method. Given K(M)as the set of solvable right hand sides for the matrix M and SOL(q;M) as theset of solutions for LCP(q;M), we prove that the convexity of K(M) and theconnectedness of SOL(q;M) for all q 2 IRn guarantee �nite termination of Lemke'smethod. We study those matrices such that SOL(q;M) is connected for all q 2 IRnas a matrix class, denoted by Pc. We are interested in how Pc is related to P0.We also study variational inequalities from the perspective of maximal mono-tone multifunction theory. Our results are presented in the last two chapters.

iii



Acknowledgements
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Chapter 1
Introduction
The purpose of this thesis is to apply the theory of piecewise linear homotopies andnormal maps in the construction and analysis of algorithms for a�ne variationalinequalities.Let F be a continuous mapping from IRn to IRn, and C be a non{empty closedconvex set. The variational inequality problem VI(F;C) is to �nd z 2 C suchthat hF (z); y � zi � 0; 8y 2 C: (VI)This problem has appeared in the literature in several equivalent formulations,the most important of which is the generalized equation, that is0 2 F (z) + @ (z j C); (GE)where  (� j C) is the indicator function of the set C de�ned by (z j C): = 8><>: 0 if z 2 C1 if z =2 Cand @ is the subdi�erential of  ( see [45] ).1



2The variational inequality problem is a very fundamental problem in the the-ory and practice of optimization. This is mainly due to the fact that optimalityconditions for various optimization problems when expressed in the form of mini-mum principle ( see [32] and [41]) are variational inequality problems. Also, mostcomplementarity problems can be equivalently formulated as variational inequali-ties. It is also an important tool for modeling various equilibrium problems ( [26],[33], and [38] ). For an up{to{date, comprehensive survey on formulation, the-ory, algorithms and applications of variational inequalities and complementarityproblems, see [27] and [40].The normal map relating to a function F : IRn ! IRn and a non{empty, closed,convex set C, is de�ned asFC(x): = F (�C(x)) + x� �C(x)where �C(x) is the projection (with respect to the Euclidean norm) of x onto theset C. We call FC(x) = 0 (NE)a normal equation. Note that (NE) is equivalent to (GE), in the sense that ifFC(x) = 0, then z: = �C(x) is a solution of (GE). Furthermore, if z is a solutionof (GE), then x: = z � F (z) satis�es FC(x) = 0.A very familiar special case of (GE) is when C � K is a polyhedral convex cone.Then it is easy to show that (GE) is equivalent to the generalized complementarityproblem [28] z 2 K;F (z) 2 KD; hF (z)� a; zi = 0where KD: = fz� j hz�; ki � 0; 8k 2 K g is the dual cone associated with K.In this work, we focus on the special case where the map F is a�ne and C is



3polyhedral. In this case, the normal map is piecewise linear and the normal equa-tion is a piecewise linear equation. The general theory of piecewise linear equationsdeveloped by Eaves in [15] and special properties of normal maps induced by lineartransformation developed by Robinson [43] are used in constructing and analyzingalgorithms for solving this type of normal equation. We generalize the notion ofcopositive{plus and L{matrices for polyhedral convex sets in IRn and then provethat our algorithm processes AC(x) = a when A is the linear transformation asso-ciated with such matrices. That is, when applied to such a problem, the algorithmwill �nd a solution unless the problem is infeasible in a well speci�ed sense.Another important matrix class in the study of linear complementarity prob-lem is P0. Our approach to P0 begins with the study of geometric characteristicsof an LCP that contribute to the �nite termination of Lemke's method. GivenK(M) as the set of solvable right hand sides for the matrix M and SOL(q;M)as the set of solutions for LCP(q;M), we prove that the convexity of K(M) andthe connectedness of SOL(q;M) for all q 2 IRn guarantee �nite termination ofLemke's method. We study those matrices such that SOL(q;M) is connected forall q 2 IRn as a matrix class, which is denoted by Pc. This matrix class is notcontained in P0, but contains a substantial portion of P0, e.g. all the columnsu�cient matrices. We are interested in knowing whether P0 is a subclass of Pc.Most of the existing algorithms for the mixed linear complementarity prob-lem rely on a certain non{singularity property of the underlying matrix. Ourstudy shows that copositive matrices have a special structural property which canbe exploited in constructing algorithms that do not require any non{singularityassumptions.In the �nal two chapters of this thesis, we also investigate variational inequal-ities from the perspective of maximal monotone multifunction theory.



4The following is an introduction to our notation and some mathematical pre-liminaries.1.1 NotationLet IR be the set of real numbers and IRn be the n{tuples of real numbers (n{vectors). The set of m � n matrices of real numbers is represented by IRm�n.A matrix in IRm�n is usually represented by an upper case English letter and avector in IRn is usually represented by a lower case English letter. Unless otherwisestated, the vector e represents the vector in IRn with all the components being1, and the vector ei represents the vector in IRn with all the components being 0except the i{th, which is 1. For any vector or matrix, a superscript T indicates thetranspose. Index sets are represented by lower case Greek letters. In particular,for the index set �, j�j denotes the cardinality of �. Given any vector v and indexsets �, v� denotes the set of components of v with index in �. Given any matrixM and index sets � and �, M�� denotes the submatrix formed by those rows ofM with indices in �, M�� denotes the submatrix formed by those columns of Mwith indices in �, and M�� denotes the submatrix formed by those elements ofMwith row indices in � and column indices in �.For any vectors x and y in IRn, hx; yi or xT y denotes the inner product of xand y, and in this thesis, these two notations are freely interchangable. For anyvector or matrix k�kp denotes the p-norm, see [39]. Bp is used to denote the unitball in IRn with respect to the norm k�kp and B is used as a shorthand for B2.Given a vector v, diagfvg is the diagonal matrix whose diagonal elements are thecomponents of v.



5Each m � n matrix A represents a linear map from IRn to IRm, the sym-bol A refers to either the matrix or the linear map as determined by the con-text. Given a linear map A from IRn to IRm, for any X � IRn, the set A(X): =fy 2 IRm j y = Ax; for some x 2 IRng is called the image of X under A; for anyset Y � IRm, the set A�1(Y ): = fx 2 IRn j Ax 2 Y g is referred to as the inverseimage of Y under A. In particular, the set A�1(f0g) is called the kernel of Adenoted as kerA, and the set A(IRn) is called the image of A denoted as imA.Given any set C � IRn and the minimization problemmin f(x) x 2 Cthe set of minimizers is denoted by argmin ff(x) j x 2 C g. Similarly, formax f(x) x 2 Cargmax ff(x) j x 2 C g denotes the set of maximizers.1.2 Polyhedral Convex Sets in IRnA set C in IRn is said to be convex if for any two points x; y 2 C and 0 � � � 1we have �x + (1� �)y 2 CIt is a direct consequence of the de�nition that the intersection of any collectionof convex sets is convex.As examples of convex sets, we introduce sets of the formfx 2 IRn j hx; bi � �g ; fx 2 IRn j hx; bi � � gand fx 2 IRn j hx; bi < �g ; fx 2 IRn j hx; bi > �g



6where b 6= 0 and � 2 IR, and call them closed half{spaces and open half{spacesrespectively. These sets are easily veri�ed as convex.A set C is called a polyhedral convex set if C is the intersection of �nitenumber of closed half{spaces. Suppose I is an arbitrary �nite index set, andbi 2 IRn, �i 2 IR, for any i 2 I. Then, a set of the formfx 2 IRn j hx; bii � �i; i 2 I gis a polyhedral convex set.A set M is called an a�ne set if for any two points x; y 2 M and � 2 IR wehave �x + (1� �)y 2Mfx 2 IRn j hx; bii = �i; i 2 I gis an a�ne set. The following theorem indicates a basic property of a�ne sets.Theorem 1.1 ([45, Theorem 1.2]) Each non{empty a�ne set M is parallel toa unique subspace L. This L is given byL =M �M = fx� y j x 2M; y 2M gAs a result, we can de�ne the dimension of M , denoted as dimM to be thedimension of L.For a non{empty, closed, convex set C, a�C, called the a�ne hull of C is thesmallest a�ne set containing C. That isa�C = \C�S Swhere the sets S are a�ne sets. The dimension of C, denoted as dimC, is de�nedto be the dimension of a�C.



7The topological interior of C with respect to a�C is call the relative interiorof C, and is denoted as riC. The closure of C, denoted as clC is de�ned as thetopological closure of C. The set of points clC nriC is called the relative boundaryof C and is denoted as rbdryC.For any closed convex set C, the setlin C: = fd 2 IRn j x + �d 2 C; 8x 2 C; 8� 2 IRgforms a linear subspace of IRn and is called the lineality space of C (see [45]).A set K is called a cone if for any x 2 K we have �x 2 K for any � > 0. Acone K is called a convex cone if it is both a cone and a convex set.Given a convex C, coneC denotes the setf�x j � > 0; x 2 C gWe call this the cone generated by C. For any convex set C and x 2 C, the setN(x j C) = fx� 2 IRnj hx�; y � xi � 0; 8y 2 Cgis a convex cone. We call it the normal cone of C at x.Let C be a non{empty convex set in IRn, the setrecC: = fd 2 IRn j x + �d 2 C; 8x 2 C; 8� � 0gis called the recession cone of C. A non{empty closed convex set C is bounded ifand only if recC = f0g ( see [45, Theorem 8.4] ).If C is a cone, Co = nx 2 IRn ��� xT y � 0; 8y 2 C ois the polar cone of C, andCD = nx 2 IRn ��� xT y � 0; 8y 2 C o



8is the dual cone of C. As a matter of fact Co = �CD.Given a convex set C, a convex subset F of C is called a face of C if any linesegment in C with a relative interior point in F has both of its endpoints in F .Furthermore if there exists a linear function f that is constant on F and such thatf(x) > f(y) for any x 2 F and y 2 C n F , F is called an exposed face of C. Aface of dimension 0 is called an extreme point, and an exposed face of dimension0 is called an exposed point. For a polyhedral convex set every face is an exposedface.1.3 Piecewise Linear ManifoldsIn the theory of piecewise linear manifolds, a polyhedral convex set is called a cell.A cell � of dimension m is called an m{cell.Let M be a �nite or countable collection of m{cells in IRn. Let Mi, i =1; 2; � � � ; m, be the set of i{faces of elements of M, that is faces of a member ofM of dimension i. We call members of Mi, i = 1; 2; � � � ; m, and M0 cells andvertices of M respectively.Let M = S�2M �. We call (M;M) a subdivided m{manifold if1. any two m{cells of M are disjoint or meet in a common face.2. each (m� 1){cell of M lies in at most two m{cells.3. each point of M has a neighborhood meeting only �nitely many m{cells ofM.If (M;M) is a subdivided m{manifold for some M, we call M an m{manifold.Furthermore, if M is a connected set, we call M a connected m{manifold. Figure1 shows an example of a 2{manifold.



9

Figure 1: A 2{manifold

�1�0 �4�2 �3
As another example, we show how an (m + 1){manifold can be constructedfrom an m{manifold by using Cartesian product with IR+. Given an m-manifold(M;M), we let N = M � IR+N = f� j � = � � IR+; � 2 MgThen, it is easy to verify that (N;N ) is an (m+ 1){manifold.The case of m = 1 is of particular interest in this work. This type of manifoldcan be characterized in a simple way. First, we refer to a convex subset of IR thatcontains more than one point as an interval, and the setnx 2 IR2 j hx; xi = 1oas a circle. We say that two sets are homeomorphic to each other if there is a



10bijective map from one to another and both the map and its inverse are continuous.A connected 1{manifold is called a curve. The following lemma characterizesa curve.Lemma 1.2 ([15, Lemma 5.1]) A connected 1{manifold is homeomorphic toeither a circle or an interval.We call a connected 1{manifold a loop if it is homeomorphic to a circle, anda route if it is homeomorphic to an interval. In general, we have the followingcharacterization.Lemma 1.3 ([15, Lemma 5.5]) A 1{manifold is a disjoint collection of routesand loops.The intersection of a line and a cell � of M is called a chord. A ray refers toa chord that is a half line. Considering an m{manifold (M;M), a chord of Mrefers to a chord of an m{cell of M. A ray of M is a chord that is a half line.For an m{manifold M subdivided byM, the boundary of M , denoted as @M ,is the union of all (m � 1){cells of M which lie in exactly one m-cell of M. Asan example, in Figure 1, the boundary of the 2{manifold is indicated by the boldlines. For the case of 1{manifold, it is easy to see that a loop has empty boundary.However, the boundary of a route may contain 0, 1, or 2 points.Basic properties of the boundary of a PL{manifold are summarized in thefollowing two lemmas.Lemma 1.4 ([15, Lemma 6.3]) The boundary of a manifold is closed in themanifold.Lemma 1.5 ([15, Lemma 6.4]) The boundary of a manifold is independent ofthe subdivision.



11Consider an m{manifold M and a 1{manifold W contained in M . If W isclosed in M and @W = W \ @M , then we say that W is neat in M . If M issubdivided by M and W is the set of 1{chords of M of the form W \ � where �is an m{cell of M, we say that W is neat in (M;M) if W is subdivided by W.1.4 Piecewise Linear MapsLet (M;M) and (N;N ) be subdivided manifolds. Let F :M ! N be a continuousmap which is linear on each cell � of M, that isF (�x+ (1� �)y) = �F (x) + (1� �)F (y); for all x; y 2 � and � 2 IRand which carries each cell � of M into a cell � of N . Then, we call such an F apiecewise linear map.Given a cell � 2 M and � 2 N with F (�) � � , we de�ne F� : a�� ! a�� to bethe a�ne map which agrees with F on �. Such an a�ne map can be representedas F�(x) = A�x + a�where A� and a� are matrix and vector of appropriate sizes.In this work, we are particularly interested in the case of a piecewise linearmap from an (n+1){manifold to an n{manifold. Let M and N be an (n+1) andan n{manifold respectively, a point x in M is said to be a degenerate ( otherwiseregular ) point if x lies in a cell � of M such thatdimF (�) < nA value y in F (M) is said to be a degenerate ( otherwise regular ) value if F�1(y)contains any degenerate points.



12Suppose F is a piecewise linear map from an (n + 1){manifold (M;M) to ann{manifold (N;N ) and F� is the a�ne map that agree with F on the cell � 2 M.If y is a regular value, then, for each (n+ 1){cell � such that � \ F�1(y) 6= ;, therank of the linear map A� is n. Hence � \ F�1(y) is a one chord. These chordsactually form a 1{manifold.Theorem 1.6 ([15, Theorem 9.1]) If y is a regular value, then F�1(y) is a1{manifold neat in (M;M). In this case, F�1(y) is subdivided by sets of form� \ F�1(y) 6= ; where � 2 M.When y = F (x) is a degenerate value, the structure of F�1(y) can be muchmore complicated. However, if x is a regular point or F is locally univalent onthe boundary of M at x, structural properties similar to those in the proceedingtheorem can also be derived. Note that F is locally univalent on the boundaryof M at x if there exists a neighborhood U of x such that F (x1) = F (x2) andx1; x2 2 U \ @M imply x1 = x2.Theorem 1.7 ([15, Theorem 13.1]) If F is locally univalent on the boundaryof M at x, then F�1(F (x)) contains a route W neat in (M;M) with x 2 @W .If x is a regular point, then F�1(F (x)) contains a curve W neat in (M;M) withx 2 W . In either case W is subdivided by 1{chords of the form �\W with � 2 M.In our analysis, we need to use regular values to approximate a given pointin F (M). Given � > 0, let [�] = (�; �2; � � � ; �n)T . The following lemma identi�es asituation in which a point in F (M) can be approximated by a continuous pathconsisting of regular values.Lemma 1.8 ([15, Lemma 14.2]) Assume that M is �nite, y + Y [�] 2 F (M)for all small positive �, and the rank of Y is n. Then, y + Y [�] is regular for allsmall positive �.



131.5 Piecewise Linear EquationsLet F is a piecewise linear map from an (n+1){manifold M to an n{manifold N .Consider the piecewise linear equationF (x) = y where y 2 NWe are interested in algorithms for following paths in F�1(y). These are the basictools that we use in approaching the piecewise linear equations derived from a�nevariational inequalities. We restrict our attention to the case whereM and N are�nite.We �rst look at the case where y is a regular value and then a more generalcase. We need the following technical jargon. Given any point x 2 �, we say thata vector v points into � from x if x + �v 2 � for all 0 � � � ��, where �� > 0.Now, suppose y is a regular value, then F�1(y) forms a 1{manifold neat in(M;M). Suppose we are given a point x0 in F�1(y), an (n + 1){cell �0 of Mcontaining x0 and a vector v0 such that x0 + �v0 2 �0 \ F�1(y) for all 0 � � � ��,where �� > 0. We describe an algorithm for moving along the curve of F�1containing x0 in the direction v0 as follows.



14
Algorithm 11. Initialization :Given a triple (x0; �0; v0) where F (x0) = y, x0 2 �0, A�0v0 = 0, andv0 points into �0 from x0.2. Iteration :Given the triple (xk; �k; vk) compute�k = sup f� j xk + �vk 2 �k gIf �k = +1, terminate with a ray.If x0 2 �k with k � 2, terminate with a loop.Otherwise, let xk+1 = xk + �kvkIf xk+1 2 @M , terminate at the boundary.Otherwise determine �k+1 2Mnf�kg which contains xk+1. Computevk+1 6= 0 by solving the equation A�k+1vk+1 = 0 and vk+1 pointsinto �k+1 from xk+1. Proceed with the Iteration step with the triple(xk+1; �k+1; vk+1).

When y is not a regular value, we need to use the lexicographic rule to resolvedegenerate pivots. A non{zero vector x is said to be lexicographically positive,denoted as x � 0 ( negative, denoted as x � 0 ), if its �rst nonzero component ispositive ( negative ). Let x and y be any vectors in IRn, then x is lexicographically



15greater ( less ) than y if and only if x� y � 0 ( x� y � 0 ). In this way, � ( � )de�nes a total ordering on IRn. The following lemma put this in precise terms.Lemma 1.9 Given any x, y, z 2 IRn, the following are true1. Either x � y, x = y, or x � y.2. If x � y, then y � x.3. If x � y, and y � z, then x � z.Proof By direct algebraic veri�cation. Q.E.D.The lexicographic order can be thought of as being induced by a perturbationterm. For example, let q 2 IRn, Q = � q I �and [�] = � � �2 � � � �n �TThen Qi� � Qj��� if and only if qi + I � [�] > qj + I � [�] for small positive �.Suppose x0 is a regular point, or F is locally univalent at the boundary ofM at x0, let �0 be a cell containing x0. Then, there exists a vector v0 6= 0satisfying A�0v0 = 0. We can also �nd a set of vectors x01; x02; � � � ; x0n, such thatx0; x0+x01; � � � ; x0+x0n are in �0 and v0; x01; � � �x0n are linearly independent. Wecan construct a matrix X0 as followsX0 = � x01 x02 � � � x0n �Then, F (x0 +X0[�]) is regular for all small � > 0, since A�0X0 has rank n. Thealgorithm starts with the triple (x0 +X0[�]; �0; v0).



16
Algorithm 21. Initialization :Given a triple (x0+X0[�]; �0; v0) where F (x0) = y, x0 2 �0, A�0v0 = 0,and v0 points into �0 from x0.2. Iteration :Given the triple (xk +Xk[�]; �k; vk) compute�k +�k[�] = sup f� j xk +Xk[�] + �vk 2 �k gfor small � > 0.If �k = +1, terminate with a ray.If x0 +X0[�] 2 �k with k � 2, terminate with loop.Otherwise, letxk+1 +Xk+1[�] = xk +Xk[�] + (�k +�k[�])vkfor small � > 0.If xk+1 +Xk+1[�] 2 @M , terminate at the boundary.Otherwise determine �k+1 2Mnf�kg which contains xk+1+Xk+1[�]for small � > 0. Compute vk+1 6= 0 by solving the equationA�k+1vk+1 = 0 and vk+1 points into �k+1 from xk+1 + Xk+1[�] forsmall � > 0. Proceed with the Iteration step with the triple(xk+1 +Xk+1[�]; �k+1; vk+1).



17This is the algorithm that we use for solving piecewise linear equation derivedfrom a�ne variational inequalities. Later in Chapter 2, we will show how a startingpoint is chosen and how a pivot step is computed.1.6 LCP and Matrix ClassesA special case of using the path following method on piecewise linear equations isLemke's pivotal method for solving the linear complementarity problemx � 0; Mx + q � 0; xT (Mx + q) = 0 (LCP)where M is an n� n matrix and q is a vector in IRn. The pair LCP(q;M) is usedas a shorthand notation for (LCP). For LCP(q;M) the setFEA(q;M) = fx j x � 0; Mx + q � 0gis called the feasible set. An LCP is said to be feasible if its feasible set is non{empty. The setSOL(q;M) = nx 2 FEA(q;M) ��� xT (Mx + q) = 0ois called the solution set. An LCP is said to be solvable if its solution set isnon{empty. The set K(M) = fq 2 IRn j SOL(q;M) 6= ;gis the set of all right hand side vectors for which (LCP) is solvable.The most extensively studied algorithm for solving LCP is Lemke's pivotalalgorithm. Termination properties of this algorithm are well known on two classesof matrices, namely, copositive{plus and P (see, for example [7]). Generalizationsare found throughout the LCP literature. For example, results concerning L and



18L� matrices, which are extensions of those for copositive{plus matrices, can befound in [12] and [13] (see also [37]). Termination results on P0 matrices, whichare extensions of those for P{matrices can be found in [1] and [9].Matrix classes related to LCP are numerous ( see [37] and [8] ). Here is a briefsurvey of those that are closely related to this work. Most of these matrix classesare de�ned with respect to IRn+. Later in this thesis we generalize some of these,e.g. copositive{plus, L, P , column su�cient, etc. to arbitrary polyhedral convexsets in IRn.A matrix M is said to be copositive ifhx;Mxi � 0; 8x � 0and M is said to be copositive{plus if M is copositive andhx;Mxi = 0; x � 0 =) (M +MT )x = 0A matrix M is called an L matrix if the LCPz � 0; Mz + q � 0; zT (Mz + q) = 0has a unique solution 0, and furthermore, for any z 6= 0 such thatz � 0; Mz � 0; zTMz = 0there exist diagonal matrices D � 0 and E � 0 such that Dz 6= 0 and(EM +MTD)z = 0A matrix M is called a P ( P0 ) matrix if all its principal minors are positive (non{negative ).The class of matrices such thatFEA(q;M) 6= ; ) SOL(q;M) 6= ;



19is referred to as Q0 matrices. In another words a Q0 matrix M is one such thatLCP(q;M) is solvable whenever it is feasible. The class Q0 can be characterizedas follows.Theorem 1.10 ([8, Proposition 3.2.1]) For an n�n matrix M , the followingare equivalent(a) M 2 Q0.(b) K(M) is convex.(c) K(M) = pos(I;�M).Here pos(I;�M) stands for the smallest polyhedral convex cone containing all thecolumn vectors of the matrix (I;�M) and the origin.De�nition 1.11 A matrix M is said to be column su�cient if, given z 2 IRnzi(Mz)i � 0 for all i ) zi(Mz)i = 0 for all iM is row su�cient if its transpose is column su�cient. M is su�cient if it isboth column and row su�cient.An key property of row su�cient matrices is that a solution of LCP(q;M)can be obtained from a Karush{Kuhn{Tucker point ( see [32] ) of the followingquadratic program min xT (Mx + q)subject to Mx + q � 0 (1.1)x � 0A Karush{Kuhn{Tucker point consists of primal and dual variables is also referredto as a Karush{Kuhn{Tucker pair.



20Theorem 1.12 ([8, Proposition 3.5.4]) Given an n� n matrix, the followingare equivalent:(a) M is row su�cient.(b) For each q 2 IRn, if (z; u) is a Karush{Kuhn{Tucker pair for the quadraticprogram (1.1) then z solves LCP(q;M).A consequence of this theorem is that Q0 contains the class of row su�cientmatrices ([8, Corollary 3.5.5]).Corollary 1.13 Every row su�cient matrix is a Q0 matrix.Proof If FEA(q;M) 6= ;, then the quadratic program (1.1) is feasible, and hencehas a solution by the Frank{Wolfe theorem ( see [20] ). Therefore a Karush{Kuhn{Tucker point (z�; u�) exists. Thus z� 2 SOL(q;M) by the previous theorem.Q.E.D.Column su�cient matrices can be characterized by convexity of SOL(q;M) forall q 2 IRn. The following theorem put this in precise terms.Theorem 1.14 ([8, Proposition 3.5.8]) A matrix M is column su�cient ifand only if for each q 2 IRn, the set SOL(q;M) is convex.As a result of Theorem 1.10, Corollary 1.13 and Theorem 1.14, we state thefollowing theorem for the class of su�cient matrices.Theorem 1.15 If a matrix M is su�cient then(a) M 2 Q0.(b) K(M) = pos(I;�M) is a polyhedral convex cone.(c) SOL(q;M) is a non{empty convex set for each q 2 K(M).



21We conclude this section with a theorem on the connection between su�cientmatrices and P or P0 matrices.Theorem 1.16 Every P{matrix is su�cient, and every su�cient matrix is inP0.Proof Every P{matrix M is column su�cient by part (b) of [8, Theorem 3.3.4].MT is a P{matrix provided M is a P{matrix. Hence MT is column su�cient.Consequently, M is su�cient.Suppose M is column su�cient. Let 0 6= z 2 IRn. Then, we have eitherzi(Mz)i > 0 for some i or zi(Mz)i � 0 for all i. In the latter case, zi(Mz)i = 0 forall i. In any event, there is an index i such that zi 6= 0 and zi(Mz)i � 0. Hence,M is P0 by part (b) of [8, Theorem 3.4.2]. So, every column su�cient matrix is aP0{matrix. Therefore, every su�cient matrix is a P0{matrix. Q.E.D.A matrix M is said to be semi{monotone if for each non{zero vector x in IRnsuch that x � 0, there exists a index k such thatxk > 0 and (Mx)k � 0The class of such matrices is denoted as E0. The following theorem provides acharacterization for semi{monotone matrices.Theorem 1.17 Given an n� n matrix, the following are equivalent:(a) M is semi{monotone.(b) (LCP) has the unique solution 0 for all q > 0.(c) For any index � � f1; 2; � � � ; ng, the systemM��x� < 0; x� � 0has no solution.



22Proof See [8, Theorem 3.9.3]. Q.E.D.It is clear from the de�nition that P matrices and column su�cient matri-ces are semi{monotone. Copositive{plus matrices and L{matrices are also semi{monotone as a result of part (b) of the proceeding theorem.



Chapter 2
Pivotal Method
In this chapter we are concerned with the a�ne variational inequality problem.The problem can be described as follows. Let C 2 IRn be a polyhedral convex setand A be a linear transformation from IRn to IRn. We wish to �nd a point z 2 Csuch that hA(z)� a; y � zi � 0; 8y 2 C (AVI)The problem can be equivalently formulated as0 2 A(z)� a+ @ (z j C) (GE)where  (� j C) is the indicator function of the set C. It can be easily shownthat @ (z j C) = N(z j C), the normal cone to C at z, if z 2 C and is emptyotherwise, and hence (AVI) is equivalent to (GE). The solutions of such problemsarise for example in the determination of a Newton{type method for generalizedequations.The problem has also been termed the linear stationary problem and we referthe reader to the work of [51], [49], [11] and [10] for several methods for thesolution of this problem either over a bounded polyhedron or a pointed convexpolyhedron. 23



24Our approach is to formulate (AVI) as a piecewise linear equation by usingthe normal map induced by the linear transformation AAC(x): = A(�C(x)) + x� �C(x)and �C(x) is the projection (with respect to the Euclidean norm) of x onto theset C. We know that (AVI) is equivalent toAC(x) = a (NE)from Chapter 1.In Section 2.1 we describe the theoretical algorithm and apply several resultsof Eaves and Robinson to establish its �nite termination for coherently orientednormal maps. In Section 2.2 we carefully describe an implementation of such amethod, under the assumption that C is given byC: = fz j Bz � b;Hz = hg :In Section 2.3 we extend several well known results for linear complementarityproblems to the a�ne variational inequality. In particular, we generalize thenotions of copositive, copositive{plus and L{matrices from the complementarityliterature and prove that our algorithm processes variational inequalities associ-ated with such matrices. That is, when the algorithm is applied to such a problem,either a solution is found, or the problem is infeasible in a well speci�ed sense.Our de�nition of L{matrices is new and enables the treatment of both coherentlyoriented normal maps and copositive{plus matrices within the same framework.Furthermore, this result ( Theorem 2.11 ) includes many of the standard existenceresults for complementarity problems and variational inequalities as special cases.



252.1 Theoretical AlgorithmWe describe brie
y a theoretical algorithm that is guaranteed to �nd a solution in�nitely many steps when the homeomorphism condition developed in [43] holds.This method is a realization of the general path{following algorithm describedand justi�ed in [15]. In what follows we use various terms and concepts thatare explained in [15]. Related methods for �nding stationary points of a�nefunctions on polyhedral sets are given in [16, 17]. A more detailed description ofan implementation of the method is given in the Section 2.2; here we deal withtheoretical considerations underpinning the method. Other related work can befound in [5].In order to formulate the algorithm, it is important to understand the un-derlying geometric structure of the problem. Our approach relies heavily on thenormal manifold of the set C, [43], which we will now describe.Theorem 2.1 Let C be a nonempty polyhedral convex set in IRn and fFi j i 2 I gbe the nonempty faces of C. For i 2 I, de�ne NFi to be the common value ofN(� j C) on riFi and let �i: = Fi+NFi. The normal manifold NC of C consists ofthe pair (IRn;S), where S: = f�i j i 2 I g. The faces of the �i having dimensionk � 0 are called the k{cells of NC . NC is a subdivided piecewise linear manifoldof dimension n.It can be seen that the normal map AC will agree in each n{cell of this manifoldwith an a�ne map, and therefore, with each such cell we can associate the deter-minant of the corresponding linear transformation. If each of these determinantshas the same sign, we say that AC is coherently oriented. The following is thecentral result from [43].



26Theorem 2.2 The normal map AC is a Lipschitzian homeomorphism of IRn intoIRn if and only if AC is coherently oriented.We will assume �rst of all that AC is a homeomorphism of IRn onto IRn,so that the same{sign condition holds and describe the algorithm within thisframework. Later in the chapter, this condition will be weakened. The �rst stepof the algorithm is to determine if C contains any lines. If it does, take orthonormalbases for lin C and its orthogonal complement according to the scheme explainedin [43, Prop. 4.1]. The factoring procedure explained there shows how to reducethe problem to one (which we shall also write AC(x) = a) in a possibly smallerspace, in which the set C appearing in this problem contains no lines. In thatcase, as shown in [43], the determinants associated with AC in the various cellsof NC must all have positive sign. Further, C will have an extreme point, say xe,and as pointed out in [43, x5] the normal cone NC(xe) must have an interior. Lete be any element of intNC(xe). An implementation of the factoring procedure isgiven as stage one of the method described in Section 2.2. The construction of anextreme point and element in the interior of the normal cone corresponds to stagetwo of that method.Now construct a piecewise-linear manifold M from NC by forming the Carte-sian product of each cell of NC with IR+, the non-negative half-line in IR. ThisMwill be a PL (n+1)-manifold in IRn+1, as can easily be veri�ed (see [15, Example4.3]). De�ne a PL function F :M! IRn (where IRn is regarded as a PL manifoldof one cell) by: F (x; �) = AC(x)� (�e+ a):We shall consider solutions x(�) of F (x; �) = 0; it is clear from (NE) that x(0) willsolve our problem. Note that since we have assumed AC to be a homeomorphism,



27the function x(�) is single-valued and de�ned on all of IR+, though this propertyis not essential to our argument.Now de�ne w(�) = xe + (a� Axe) + �e. It is clear that sincew(�) = xe + �[e+ ��1(a� Axe)] (2.1)for large positive �, w(�) lies interior to the cell xe + NC(xe) of NC. Therefore(w(�); �) lies interior to the cell [xe +NC(xe)]� R+ of M, and so it is a regularpoint of M. Further, for such � we have �C(w(�)) = xe, so thatF (w(�); �) = Axe + (a� Axe) + �e� (�e+ a) = 0;and therefore for some �0 � 0, F�1(0) contains the ray f (w(�); �) j � � �0 g.Now we apply the Algorithm 2 from Chapter 1 to the PL equation F (x; �) =0, using a ray start at (w(�1); �1) for some �1 > �0 and proceeding in the direction(�e;�1). As the manifoldM is �nite, according to [15, Th. 15.13] the algorithmgenerates, in �nitely many steps, either a point (x�; ��) in the boundary ofM withF (x�; ��) = 0, or a ray in F�1(0) di�erent from the starting ray. As the boundaryofM is NC�f0g, we see that in the �rst case �� = 0 and, by our earlier remarks,x� then satis�es AC(x�) = a. Therefore in order to justify the algorithm we needonly show that it cannot produce a ray di�erent from the starting ray.The algorithm in question permits solving the perturbed system F (x�; ��) =p(�), where p(�) is of the form p(�) = nXi=1 pi�ifor appropriately chosen vectors pi. It is shown in Chapter 1 that p(�) is a regularvalue of F for each small positive �, and it then follows by Theorem 1.6 that forsuch �, F�1(p(�)) is a connected 1-manifold Y (�), whose boundary is equal to



28its intersection with the boundary of M, and which is subdivided by the chordsformed by its intersections with the cells ofM that it meets. Finally, for an easilycomputed function b(�) = nXi=1 bi�iwe have (w(�1); �1)+ b(�) 2 Y (�), and for small positive � this point evidently lieson a ray in F�1(p(�)). Because we start on this ray, Y (�) cannot be homeomorphicto a circle, and therefore it is homeomorphic to an interval.A simple computation at the starting point shows that the curve index [15,x12] at that point is �1. By [15, Lemma 12.1] this index will be constant alongY (�). However, a computation similar to that in [15, Lemma 12.3] shows that ineach cell of M, if the direction of Y (�) in that cell is (r; �) then(sgn�)(sgn detT ) = �1where T is the linear transformation associated with AC in the corresponding cellof NC . Under our hypotheses, detT must be positive, and therefore � is negativeeverywhere along Y (�). But this means that the parameter � decreases strictlyin each cell of linearity that Y (�) enters, and it follows from the structure of Mthat after �nitely many steps we must have � = 0, and therefore we have a pointx� with AC(x�) = a + p(�).Now in practice the algorithm does not actually use a positive �, but onlymaintains the information necessary to compute Y (�) for all small positive �,employing the lexicographic ordering to resolve possible ambiguities when � =0. Therefore after �nitely many steps it will actually have computed x0 withAC(x0) = a.Note that for linear complementarity problems, the above algorithm corre-sponds to Lemke's method [31]. It is well known that for linear complementarity



29problems associated with P{matrices, Lemke's method terminates at a solution.For variational inequalities, we have a similar result due to the analysis above.Theorem 2.3 Given the problem (NE), assume that AC is coherently oriented;then the path following method given in this section terminates at a solution of(NE).2.2 Algorithm ImplementationThe previous section described a method for solving the A�ne Variational Inequal-ity over a general polyhedral set and showed (under a lexicographical ordering)that a coherently oriented normal equation (NE) can be solved in a �nite numberof iterations by a path{following method. In this section, we describe the numer-ical implementation of such a method, giving emphasis to the numerical linearalgebra required to perform the steps of the algorithm.We shall specialize to the case where C is given asC: = fz j Bz � b;Hz = hg (2.2)and we shall assume that the linear transformation A(z) is represented by thematrix A in our current coordinate system. We can describe our method to solvethe normal equation in three stages. Note that by \solving", we mean producinga pair (x; �(x)), where x is a solution of (NE) and �(x) is the projection of x ontothe underlying set C.In the �rst stage we remove lines from the set C, to form a reduced problem(over ~C) as outlined in the theory above. The lineality space of C as de�ned by



30(2.2) is lin C = ker0B@ BH 1CAWe calculate bases for the lineality space and its orthogonal complement by per-forming a QR factorization (with column pivoting) of � BT HT �. If � W V �represents these bases, the linear transformation A is represented byA0 = 0B@ W TAW W TAVV TAW V TAV 1CAand the vector a is represented bya0 = 0B@ W TaV Ta 1CAunder this basis. The reduced problem~A ~Cy = ~a (2.3)is constructed using the method outlined in [43, Proposition 4.1], which also ap-pear in this work as Lemma 3.1. First of all, since V is a basis of (lin C)? and~C = C \ (lin C)?, we have~C = nz ��� ~Bz � b; ~Hz = ho ; ~B = BV; ~H = HV: (2.4)The matrix ~A is the Shur complement of W TAW in A0 ( see Lemma 3.1 ). Thatis ~A = V TAV � (V TAW )(W TAW )�1(W TAV )Let Z = W (W TAW )�1W T ; U = (I � ZA)V (2.5)



31Notice that Z satis�es ZTAZ = ZT and by standard algebraic operations, weobtain ~A = UTAU (2.6)Similarly, by reference to Lemma 3.1, we have~a = V Ta� (V TAW )(W TAW )�1(W Ta)That is ~a = V T � I � AZ � a (2.7)In practice, ~A and ~a are calculated using one LU factorization of W TAW . Fur-thermore, it follows from Lemma 3.1 that y solves (2.3) implies that�W (W TAW )�1((W TAV )y �W Ta) + V y = Z(a� AV y) + V ysolves (NE). So, the solution pair (x; �(x)) of the original normal equation (NE)can be recovered from the solution pair (y; �(y)) of (2.3) using the identitiesxl = Z(a� AV y)x = xl + V y�(x) = xl + V �(y)Therefore, we can assume that the problem has the form (2.3), with ~C given by(2.4) and that the matrix 0B@ ~B~H 1CA has full column rank. We note that a similarconstruction is needed in [42, 44].In the second stage, we determine an extreme point of the set ~C, and usingthis information reduce the problem further by forcing the iterates to lie in thea�ne space generated by the equality constraints. More precisely, we have thefollowing result:



32Lemma 2.4 Suppose ye 2 ~C and Y is an orthonormal basis for the kernel of ~H.Then �y solves (2.3) if and only if �y = ye + Y �x where �x solves�A �Cx = �a (2.8)Here �A = Y T ~AY , �a = Y T (~a� ~Aye) and �C = nz ��� ~BY z � b� ~Byeo. Furthermore,~BY has full column rank if and only if 0B@ ~B~H 1CA has full column rank.Proof By de�nition, y = ye + Y x 2 ~C if and only if x 2 �C. Furthermore� ~C(y) = argmin nkw � yk2 ��� w 2 ~C o= argmin nk(ye + Y z)� (ye + Y x)k2 ��� w = ye + Y z; z 2 �C o= argmin nkY (z � x)k2 ��� w = ye + Y z; z 2 �Co= argmin nk(z � x)k2 ��� w = ye + Y z; z 2 �C oThus � ~C(y) = ye + Y � �C(x)It follows that �y = ye + Y �x solves (2.3), that is~A� ~C(�y) + �y � � ~C(�y) = ~aif and only if ~A(ye + Y � �C(�x)) + ye + Y �x� (ye + Y � �C(x)) = ~aor, equivalently ~AY � �C(�x)) + Y (�x� � �C(x)) = ~a� ~AyeThis is in turn, by orthonormality of V , equivalent toY T ~AY � �C(�x)) + �x� � �C(x) = Y T (~a� ~Aye)



33Hence �y = ye + Y �x solves (2.3) exactly when �x solves (2.8).Suppose ~BY z = 0 for some z 6= 0. Y z is nonzero since the columns form anorthonormal basis of ker ~H. But then0B@ ~B~H 1CAY z = 0B@ ~BY z~HY z 1CA = 0Conversely if 0B@ ~B~H 1CAw = 0for some w 6= 0, then w 2 ker ~H. Hence w = Y z for some z 6= 0. Also ~BY z =~Bw = 0. Q.E.D.Thus, to reduce our problem to one over an inequality constrained polyhedralset, it remains to show how we generate the point ye 2 ~C. In fact we showhow to generate ye as an extreme point of ~C and further, how to project thisextreme point into an extreme point of �C. The following result is a well knowncharacterization of extreme points of polyhedral sets [36, x3.4].Lemma 2.5 Let u be partitioned into free and constrained variables (uF ; uC). uis an extreme point of D = fu = (uF ; uC) j Du = d; uC � 0g if and only if u 2 Dand fdi j i 2 Bg are linearly independent, where B: = F S fj 2 C j uj > 0g.If we adopt the terminology of linear programming, then the variables correspond-ing to B are called basic variables; similarly, the columns of D corresponding toB are called basic columns; extreme points are called basic feasible solutions.The extreme points of systems of inequalities and equalities are de�ned in ananalogous manner. Note that extreme points of ~C are (by de�nition) precisely



34the extreme points of0B@ ~B �I~H 0 1CA0B@ zs 1CA = 0B@ bh 1CA ; s � 0: (2.9)The slack variables s are implicitly de�ned by z, so without ambiguity we will referto the above extreme point as z. For other systems of inequalities and equationsa similar convention will be used. The following lemma outlines our method forconstructing the relevant extreme points.Lemma 2.6 Suppose 0B@ ~B~H 1CA has linearly independent columns, Y is a basis ofthe kernel of ~H and �B = ~BY . Then ye is an extreme point of (2.9) if and only ifye = y� + Y z�, for some y�, z� where ~Hy� = h and z� is an extreme point of� �B �I �0B@ zs 1CA = b� ~By�; s � 0: (2.10)In our method we produce an extreme point of (2.9) as follows. Find orthonormalbases U and Y for im ~HT and ker ~H respectively. This can be carried out by asingular value decomposition of ~H or by QR factorizations of ~H and ~HT (in fact,Y could be calculated as a by{product of stage 1 of the algorithm). In particular,if HT = � Z Y �0B@ R0 1CAthen Y is an orthonormal basis of ker ~H and we can let y� = ZR�Th, using thisvalue of y� in (2.10). If b =2 im �B, then �nd an extreme point of (2.10) by solving



35the following auxiliary problem with the revised simplex method:minimize zauxsubject to � �B b� ~By� �0B@ zzaux 1CA � b� ~By�zaux � 0Note that z = 0, zaux = 1 is an initial feasible point for this problem, withbasic variables (z; zaux). In contrast to the usual square basis matrix (with corre-sponding LU factors), we use a QR factorization of the non{square basis matrix.The calculations of dual variables and incoming columns are performed in a leastsquares sense using the currently available QR factorization. This factorizationis updated at each pivot step either by using a rank{one update to the factor-ization or by adding a column to the factorization (see [22]). In order to invokeLemma 2.4, we let ye = y� + Y z� be the feasible point needed to de�ne (2.8).Note that in the well known method of Lemke, stages one and two are trivialsince C = IRn+ has no lines and a single extreme point at 0. Furthermore, stageone is an exact implementation of the theory outlined in the previous section andstage two corresponds to determining an extreme point and treating the de�ningequalities of C in an e�ective computational manner.It remains to describe stage three of our method. We are able to assume thatour problem is given as �A �Cx = �a (2.11)with �C = nz ��� �Bz � �bo, where �B has full column rank and xe is an extremepoint of �C (easily determined from z�). We also have available a basis matrixcorresponding to this extreme point along with a QR factorization, courtesy ofstage two.



36The method that we use to solve this problem is precisely a realization of thegeneral scheme for piecewise linear equations as described in Algorithm 2. Thespeci�c algorithm, which we label Algorithm 20, is as follows:Algorithm 201. Initialize :Let L�k denote the linear map representing F on the cell �k. Deter-mine (x1; �1; d1) satisfyingL�1d1 = 0; d1 points into �1 at x1.F (x1) = vx1 2 �1 2M; x1 2 int fx� �d1 j � � 0g � F�1v:2. Iteration :Given (xk; �k; dk) let�k: = sup f� j xk + �dk 2 �k g (2.12)if �k = +1 then ray termination.if xk+1: = xk + �kdk 2 @M then boundary termination.Otherwise determine (xk+1; �k+1; dk+1), dk+1 6= 0, satisfyingL�k+1dk+1 = 0; and dk+1 points into �k+1 from xk+1.�k+1 2M n f�kg with xk+1 2 �k+1Set k = k + 1 and repeat iteration.



37How does this relate to the description we gave in the previous section? Themanifold we consider is M = N �C � IR+and the corresponding cells �A are given by(FA +NFA)� IR+where FA are the faces of �C.A face of �C is described by the set of constraints from the system �Bz � �bwhich are active. Let A represent such a set so thatFA = nz ��� �BAz = �bA; �BIz � �bI owhere I is the complement of the set A. The normal cone to the face (the normalcone to �C at some point in the relative interior of FA) is given byn �BTu j uA � 0; uI = 0oIt now follows that an algebraic description of (x; �) 2 �A is that there exist(x; z; uA; sI; �) which satisfy �BAz = �bA�BIz � sI = �bI ; sI � 0x = z + �BTAuA; uA � 0� � 0 (2.13)
In particular, if xe is the given extreme point, the corresponding face of theset �C is used to de�ne the initial cell �1. The piecewise linear system we solve isF (x; �): = �A �C(x)� (�e+ �a) = 0



38where e is a point in the interior of N(xe j �C). An equivalent description ofN(xe j �C) is given by n �BTAu j u � 0ofrom which it is clear that the interior of this set is nonempty if and only if �BAhas full column rank.Lemma 2.7 If xe is an extreme point of nz ��� �Bz � �bo with active constraints A,then �BA has full column rank.Proof By de�nition, G: = 0B@ �BA 0�BI �I 1CA (2.14)has linearly independent columns. If �BA does not have linearly independentcolumns, then �BAw = 0, for some w 6= 0, so thatG0B@ w�BIw 1CA = 0with (w; �BI) 6= 0, a contradiction of (2.14). Q.E.D.This is a simple proof (in this particular instance) of the comment from the previ-ous section that the normal cone has interior at an extreme point. For consistency,we shall let e be any point in this interior n �BTAu j u < 0o, and for concreteness wecould take e = � �BTA 0BBBBB@ 1...1 :1CCCCCAHence F is speci�ed, v = 0 and the cells of �A are de�ned. By solving theperturbed system F (x�; ��) = p(�) (as outlined in Section 2.1), we know that



39F�1(p(�)) is a connected 1{manifold whose boundary is equal to its intersectionwith the boundary of M and which is subdivided by the chords formed by itsintersections with the cells of M that it meets. In practice, this means that (un-der the lexicographical ordering induced by p(�)) we may assume nondegeneracy.Thus, if ties ever occur in the description that follows, we will always choose thethe lexicographical minimum from those which achieve the tie. Speci�c imple-mentation techniques will be given later in this section.Note that if (x; �) 2 �A as de�ned in (2.13) thenF (x; �) = �Az + x� z � �e� �aIt follows that if (x; �) 2 �A TF�1(0) (i.e. (x; �) is in one of the chords mentionedin the previous paragraph), then there exist (x; z; uA; sI; �) satisfyingx� z = � �Az + �e+ �a�BAz = �bA�BIz � sI = �bI ; sI � 0x� z = �BTAuA; uA � 0� � 0 (2.15)
Furthermore, these equations determine the chord on the current cell of the mani-fold, or in the notation used to describe the algorithm of Eaves, the map L�A . Thedirection is determined from (2.12) by solving L�Ad = 0, which can be calculatedby solving �x��z = � �A�z + e���BA�z = 0�BI�z ��sI = 0�x��z = �BTA�uA (2.16)



40At the �rst iteration, �BA has full column rank, so that �z = 0, which also impliesthat �sI = 0. The remaining system of equations is�x = e���x = �BTA�uAWe choose �� = �1 in order to force the direction to move into �1 (as requiredby (2.12)), and then it follows that �x = �e for the choice of e outlined above�uA = (1; : : : ; 1)T . The actual choice x1 = (w(�); �) given in the previous sectionensures that (2.12) is satis�ed.We can now describe the general iteration and the resultant linear algebra thatit entails. We are give a current point (x; z; uA; sI; �) satisfying (2.15) for somecell �A and a direction (�x;�z;�uA;�sI;��) satisfying (2.16). The value of �kto satisfy (2.12) can be calculated by the following ratio test; that is to �nd thelargest � such that uA + ��uA � 0sI + ��sI � 0�+ ��� � 0 (2.17)Ray termination occurs if �uA � 0, �sI � 0 and �� � 0 . Obviously, if�+ ��� = 0, then we have a solution. Otherwise, at least one of the fui j i 2 Agor fsi j i 2 I g hits a bound in (2.17). By the lexicographical ordering, whichwill be discussed more thoroughly in the next few paragraphs, we can determinethe \leaving" variable from these uniquely. The set A is updated (correspondingto moving onto a new cell of the manifold) and a new direction is calculated asfollows: if ui, i 2 A is the leaving variable, then A: = A n fig, �si = 1 and thenew direction is found by solving (2.16); if si, i 2 I is the leaving variable, thenA: = ASfig, �ui = �1 and the new direction is found by solving (2.16). Notethat in both cases, the choice of one component of the direction ensures movement



41into the new (uniquely speci�ed) cell �A and forces a unique solution of (2.16).The linear algebra needed for an implementation of the method is now clear.The actual steps used to carry out stage 3 are now described. First of all, x iseliminated from (2.15) to give� �Az + �e+ �a = �BTAuA + �BTI uI�BAz � sA = �bA�BIz � sI = �bI� � 0; uA � 0; uI = 0; sI � 0; sA = 0or, equivalently �BTAuA + �BTI uI � �Az + �e+ �a = 0�BAz � sA = �bA�BIz � sI = �bI� � 0; uA � 0; uI = 0; sI � 0; sA = 0Note that we have added in the variables which are set to zero for completeness.The QR factorization corresponding to the given extreme point is used to elim-inate the variables z. In fact, we take as our initial active set A, the variablescorresponding to QR̂, where R̂ is the invertible submatrix of R. Thusz = �B�1A (sA +�bA)and substituting this into the above gives�BTAuA + �BTI uI � �A �B�1A sA + �e = �A �B�1A �bA � �a� �BI �B�1A sA + sI = �BI �B�1A �bA � �bI� � 0; uA � 0; uI = 0; sI � 0; sA = 0 (2.18)Essentially we treat this system as in the method of Lemke. An initial basisis given by (uA; sI) and complementary pivots can then be executed (using the



42variables u and s as the complementary pair). Any basis updating technique oranti-cycling rule can be incorporated from the literature on linear programmingand complementarity. In fact, by (2.18), we have0B@ uAsI 1CA = 0B@ � �B�TA �BTI �B�TA �A �B�1A �B�TA e0 �BI �B�1A 0 1CA0BBBBB@ uIsA� 1CCCCCA+ 0B@ �B�TA ( �A �B�1A �bA � �a)�BI �B�1A �bA � �bI 1CA (2.19)� � 0; uA � 0; uI = 0; sI � 0; sA = 0Lexicographic ordering can be achieved by introducing a perturbation0B@ I 00 I 1CA0BBBBBBBB@ ��2� � ��m
1CCCCCCCCAto the vector 0B@ �B�TA ( �A �B�1A �bA � �a)�BI �B�1A �bA � �bI 1CAInitially, lexicographic information is contained in the matrixQ0 = 0B@ �B�TA ( �A �B�1A �bA � �a) I 0�BI �B�1A �bA � �bI 0 I 1CA = 0B@ uA I 0sI 0 I 1CAwhich has linearly independent and lexicographically positive rows ( as de�ned inSection 1.5 ).Suppose at iteration k, we have (uA; sI) � 0 and the matrix Q0 is transformed



43to Qk = 0B@ uA W kAA W kAIsI W kIA W kII 1CAand the linearly independence and lexicographic positivity of its rows are main-tained. Let (�uA;�sI) be the direction determined by (2.16). Consider the setof vectors Q = (�1q iQki� j qi < 0)where qi = �ui or �si depending on whether i 2 A or I. If, there exist indices iand j such that 1q iQki� = 1q jQkj�it would follow that the rows of Qk are linearly dependent. Hence, no two suchvectors are equal, and there is a unique index r such that �(1=qr)Qkr� is thelexicographic minimum of Q. The leaving variable is now uniquely determined bythe index r. Furthermore, the updated matrixQk+1 = 0B@ uA W k+1AA W k+1AIsI W k+1IA W k+1II 1CAwill again have linearly independent, lexicographically positive rows ( see [8, pp.340 - 342] for a proof ).We showed in the previous section that if AC was coherently oriented thenfollowing the above path gives a monotonic decrease in �. However, the proofof the �nite termination of the method (possibly ray termination) goes throughwithout this assumption, and in the following section we will look at other con-ditions which guarantee that the method terminates either with a solution or aproof that no solution exists. The coherent orientation results are direct analoguesof the P{matrix results for the linear complementarity problem { the results weshall give now generalize the notions of copositive plus and L{matrices.



442.3 Existence ResultsThe following de�nitions are generalizations of those found in the introduction.De�nition 2.8 Let K be a given closed convex cone. A matrix A is said to becopositive with respect to the cone K ifhx;Axi � 0; 8x 2 KA matrix A is said to be copositive{plus with respect to the cone K if it is copositivewith respect to K andhx;Axi = 0; x 2 K =) (A+ AT )x = 0De�nition 2.9 Let K be a given closed convex cone. A matrix A is said to beL{matrix with respect to K if both1. For every q 2 ri(KD), the solution set of the generalized complementarityproblem z 2 K; Az + q 2 KD; zT (Az + q) = 0 (2.20)is contained in lin K.2. For any z =2 lin K such thatz 2 K; Az 2 KD; zTAz = 0there exists z0 =2 lin K, such that z0 is contained in every face of K containingz and �AT z0 is contained in every face of KD containing Az.To see how these de�nitions relate to the standard ones given in the literatureon linear complementarity problems (e.g. [37] and [8]), consider the case that



45C = IRn+ and K = recC = IRn+. Condition a) says that LCP(q; A) has a uniquesolution 0 for all q > 0. Condition b) states that, if z 6= 0 is a solution ofLCP(0; A), then there exists z0 6= 0 such that z0 is contained in every face ofIRn+ containing z and �AT z0 is contained in every face of IRn+ containing Az. Inparticular, z0 2 fx 2 IRn j xi = 0g, for all i 2 fi j zi = 0g. Hence z0i = 0 for eachi such that zi = 0. That is, suppz0 � suppz. In another words, there exists adiagonal matrix D � 0 such that z0 = Dz. Similarly, there exists a diagonalmatrix E � 0 such that �AT z0 = EAz. Hence(EA+ ATD)z = 0where D;E � 0 and Dz 6= 0. Thus the notion of L{matrix de�ned here is anatural extension of that presented in Section 1.6. The following lemma showsthat the class of L{matrices contains the class of copositive{plus matrices.Lemma 2.10 If a matrix A is copositive{plus with respect to a closed convex coneK, then it is an L{matrix with respect to K.Proof Suppose that q 2 ri(KD) and z 2 K n lin K, then �(lin K)?(z) 6= 0.Furthermore, there exists an � > 0, such that q � ��(lin K)?(z) 2 KD, sincea�(KD) = (lin K)? (cf. [45, Theorem 14.6]). It follows thathz; qi � � 


�(lin K)?(z)


22= hz; qi � � Dz; �(lin K)?(z)E= Dz; q � ��(lin K)?(z)E� 0That is hz; qi � � 


�(lin K)?(z)


22 > 0. Also zTAz � 0 since A is copositive withrespect to K. Thus zT (Az + q) = zTAz + zT q � zT q > 0. This shows that the



46set K n lin K does not contain any solution of (2.20). Therefore the solution setof the problem (2.20) is contained in lin K.To complete the proof, note that for any z 2 K, such that Az 2 KD andzTAz = 0, we have Az + AT z = 0, or �AT z = Az, since A is copositive{plus. Sothe condition b) of De�nition 2.9 is satis�ed with z0 = z. Q.E.D.We now come to the main result of this section.Theorem 2.11 Suppose C = fz j Bz � b;Hz = hg. Suppose A is an L{matrixwith respect to recC and invertible on the lineality space of C. Then exactly oneof the following occurs:� The method given above solves (AVI)� the following system has no solutionAx� a 2 (recC)D; x 2 C (2.21)Proof We may assume that (AVI) is in the form (2.11) due to Lemma 2.17 andLemma 2.18. The pivotal method fails to solve (AVI) only if, at some iterate xk,it reaches an unbounded direction dk+1 in �k+1. We know that xk satis�es (2.15),and the direction dk+1 which satis�es L�k+1dk+1 = 0 can be found by solving(2.16). Suppose (�x;�z;�uA;�sI;��) is a solution of (2.16), then�uA � 0; �sI � 0; �� � 0 (2.22)provided that xk + �dk+1 is an unbounded ray. By reference to (2.16), we have�BTA�uA + �A�z = e���BA�z = 0�BI�z = �sI � 0 (2.23)



47That is, �z satis�es �z 2 rec �C�A�z � e�� = �BTA(��uA) 2 (rec �C)D�zT ( �A�z � e��) = �zT �BTA(��uA) = �( �BA�z)T�uA = 0If �� > 0, then e�� 2 intN(xe j �C), hence �e�� 2 int(rec �C)D. The abovesystem has a unique solution �z = 0 by the fact that �A is an L{matrix withrespect to rec �C and lin �C = f0g. Therefore the terminating ray is the startingray, a contradiction. Thus �� = 0. It follows that �z 2 rec �C, �A�z 2 (rec �C)D,and zT �Az = 0, therefore there exist ~z 6= 0, such that ~z is contained in everyface of rec �C containing �z, and that � �AT ~z is contained in every face of (rec �C)Dcontaining �A�z. We observe that, since xk 2 �k \ �k+1 \ F�1(0), there exist zk,uk, sk, and �k such that (2.15) is satis�ed. It is easy to verify that �z is in theface G1 = nz 2 rec �C ��� zT ( �BTuk) = 0oof rec �C, and �A�z is in the faceG2 = nz 2 (rec �C)D ��� z = �BTu; u = (uA; 0) � 0oof (rec �C)D, and thus� �AT ~z = �BT ~u 2 G2; for some ~u = (~uA; 0) � 0 (2.24)Consequently, by (2.15) we have�a = xk � zk + �Azk � e�k~uT ( �Bzk � �b) = (~uTA; 0)0B@ 0sI 1CA = 0



48and ~zT (xk � zk) = ~zT �BTuk = 0since ~z 2 G1. Therefore~uT�b + ~zT �a = ~uT (�b� �Bzk) + ~uT �Bzk + ~zT (xk � zk + �Azk � e�k)= ( �BT ~u+ �AT ~z)T zk � �keT ~z= ��keT ~z > 0in which the last inequality is due to ~z 2 rec �C and e 2 intN(xe j �C) ��int(rec �C)D. We now claim that the the system�Ax� �a 2 (rec �C)D; x 2 �C (2.25)has no solution. To see this, let x 2 �C, then~uT �Bx + ~zT �Ax = 0as a result of (2.24). Subtract from this the inequality~uT�b + ~zT �a > 0which we have just proven, then~uT ( �Bx� �b) + ~zT ( �Ax� �a) < 0But it is obvious that ~uT ( �Bx� �b) � 0, hence~zT ( �Ax� �a) < 0But ~z 2 rec �C. Thus �Ax� �a =2 (rec �C)D.The proof is complete by noting that (2.25) has a solution if and only if (2.21)has a solution. Q.E.D.



49(AVI) is said to be feasible if (2.21) has a solution. x is said to be feasible for(AVI) if it satis�es (2.21). Notice that if x solves (AVI), then0 2 Ax� a+NC(x); x 2 Cthat is �(Ax � a) 2 NC(x) � (recC)o; x 2 CIn another words (Ax� a) 2 (recC)D; x 2 CSo, every solution of (AVI) is feasible.As a special case of Theorem 2.11, we have the following result for copositive{plus matrices.Corollary 2.12 Suppose C = fz j Bz � b;Hz = hg and A is copositive{plus withrespect to recC and invertible on the lineality space of C. Then exactly one of thefollowing occurs:� The method given above solves (AVI)� the following system has no solutionAx� a 2 (recC)D; x 2 C (2.26)Proof Obvious, in view of Lemma 2.10. Q.E.D.We can also prove Theorem 2.3 as a special case of Theorem 2.11 by using thefollowing lemma.



50Lemma 2.13 Suppose AC is coherently oriented. Thena) ArecC is coherently oriented;b) A is an L{matrix with respect to recC.Proof a ) This follows from the proof of [43, Theorem 4.3].b ) By the �rst part, ArecC is coherently oriented, so by [43, Theorem 4.3] itis a Lipschitzian homeomorphism, and hence ArecC(x) = q has a unique solutionfor all q. Therefore part 1 and 2 of the de�nition of L{matrix are trivially satis�edby the unique solution 0. Q.E.D.2.4 Invariance Properties of L{matricesIn this section we show that the property of L{matrix with respect to a polyhedralconvex cone is invariant under the two reductions presented in Section 2.2. Webegin with the following technical lemmas.Lemma 2.14 Let C, ~C, and �C be as in (AVI), (2.3) and (2.11); V and Y be asin (2.5) and Lemma 2.4. ThenrecC = V (rec ~C) (2.27)rec ~C = Y (rec �C) (2.28)and V T ((recC)D) = (rec ~C)D (2.29)Y T ((rec ~C)D) = (rec �C)D (2.30)Furthermore V T (ri((recC))D) = ri(rec ~C)D (2.31)Y T (ri(rec ~C)D) = ri(rec �C)D (2.32)



51Proof (2.27) and (2.28) are obvious from de�nition.Based on these two equations and [45, Corollary 16.3.2], we have(recC)D = �(recC)o = �(V rec ~C)o= �(V T )�1(rec ~C)o = (V T )�1(rec ~C)Dwhere Ko = �KD is the polar cone of K and (V T )�1 is the inverse image of thelinear map V T (also see [45]). Similarly(rec ~C)D = (Y rec �C)D = (Y T )�1(rec �C)DSo we have proven (2.29) and (2.30).(2.31) and (2.32) can be obtained from (2.29) and (2.30) by applying [45,Theorem 6.6]. Q.E.D.Lemma 2.15 For z 2 recC, ~z 2 rec ~C, and �z 2 rec �C, de�neD(z) : = nd 2 (recC)D j hd; zi = 0o~D(~z) : = � ~d 2 (rec ~C)D ��� D ~d; ~zE = 0��D(�z) : = n �d 2 (rec �C)D ��� D �d; �zE = 0oThen ~D(~z) = V TD(V ~z) (2.33)�D(�z) = Y T ~D(Y �z) (2.34)where V and Y are as in (2.5) and Lemma 2.4.Proof~D(~z) = � ~d 2 (rec ~C)D ��� D ~d; ~zE = 0� = n ~d 2 V T (recC)D ��� D ~d; ~zE = 0o= V T nd 2 (recC)D ��� DdT ; V ~zE = 0o = V TD(V ~z)The other equation can be proven similarly. Q.E.D.



52Actually, for z 2 recC, D(z) is the set of vectors de�ning faces of recC con-taining z, a vector z0 is in every face of recC containing z if and only if hd; z0i = 0for all d 2 D(z). Similar observations can also be made for the set ~C and �C.Lemma 2.16 For w 2 (recC)D, ~w 2 (rec ~C)D, and �w 2 (rec �C)D, de�neR(w) : = fr 2 recC j hr; wi = 0g~R( ~w) : = n~r 2 rec ~C j h~r; ~wi = 0o�R( �w) : = n�r 2 rec �C j h�r; �wi = 0oThen V ~R(V Tw) = R(w) (2.35)Y �R(Y T ~w) = ~R( ~w) (2.36)where V and Y are as in (2.5) and Lemma 2.4.Proof R(w) = fr 2 recC j hr; wi = 0g = nr 2 V (rec ~C) j hr; wi = 0o= V n~r 2 rec ~C ��� D~r; V TwE = 0o = V ~R(V Tw)The other equation can be proven similarly. Q.E.D.Similar to the case of Lemma 2.15, for w 2 (recC)D, R(w) is the set of vectorsde�ning faces of (recC)D containing w, a vector w0 is in every face of (recC)Dcontaining w if and only if hr; w0i = 0 for all r 2 R(z). The situation is similarfor the set ~C and �C.Now, we come to the invariance of the L{matrix property.



53Lemma 2.17 Given the problems (2.3) and (2.11), suppose ~A is an L{matrixwith respect to rec ~C. Then �A is an L{matrix with respect to rec �C.Proof For �z 2 rec �C, Y �z 2 rec ~C. For any �q 2 ri(rec �C)D, there exists ~q 2ri(rec ~C)D such that �q = Y T ~q due to (2.32). If �A�z + �q 2 (rec �C)D thenY T ~AY �z + Y T ~q 2 (rec �C)Dby de�nition of �A. HenceD ~AY �z + ~q; Y �zE = DY T ~AY �z + Y T ~q; �zE � 0; 8�z 2 rec �CIt follows from (2.28) thatD ~AY �z + ~q; ~zE � 0; 8~z 2 rec ~CThus ~AY �z + ~q 2 (rec ~C)DTherefore �z satis�es�z 2 rec �C; �A�z + �q 2 (rec �C)D; and �zT ( �A�z + �q) = 0 (2.37)with �q 2 ri(rec �C)D, implies Y �z satis�esY �z 2 rec ~C; ~AY �z + ~q 2 (rec ~C)D; and (Y �z)T [ ~A(Y �z) + ~q] = 0 (2.38)with ~q 2 ri(rec ~C)D. Thus, the solution Y �z of (2.38) is contained in lin ~C = f0g,which implies that �z = 0. Thus the solution set of (2.37) is f0g � lin �C.For any 0 6= �z 2 rec �C such that�A�z 2 (rec �C)D and �zT �A�z = 0



54we have, 0 6= Y �z 2 rec ~C, and~AY �z 2 (rec ~C)D and (Y �z)T ~A(Y �z) = 0So, there exists 0 6= ~z 2 rec ~C such that ~z is contained in every face of rec ~Ccontaining Y �z, and � ~AT ~z is contained in every face of (rec ~C)D containing ~AY �z.That is D ~d; ~zE = 0 8 ~d 2 ~D(Y �z)D~r;� ~AT ~zE = 0 8~r 2 ~R( ~AY �z)Consequently, there exists 0 6= �z0 2 rec �C such that ~z = Y �z0. For any �d 2 �D(�z),�d = Y T ~d for some ~d 2 ~D(Y �z). HenceD �d; �z0E = DY T ~d; �z0E = D ~d; Y �z0E = 0So, �z0 is contained every face of rec �C containing �z. Moreover, for any �r 2 �R( �A�z)D�r;� �AT �z0E = DY �r;� ~ATY �z0E = DY �r;� ~AT ~zE = 0since Y �z 2 ~R( ~AY �z). We see that � �AT �z0 is contained in every face of (rec �C)Dcontaining �A�z. Thus �A is an L{matrix with respect to �C. Q.E.D.Lemma 2.18 Given the problems (NE) and(2.3), suppose A is an L{matrix withrespect to recC. Then ~A is an L{matrix with respect to rec ~C.Proof For any ~z 2 rec ~C, V ~z 2 recC andU ~z = (V �W (W TAW )�1W TAV )~z = V ~z �W (W TAW )�1W TAV ~z 2 recCsince W (W TAW )�1W TAV ~z 2 lin C. For any ~q 2 ri(rec ~C)D, there exists q 2ri(recC)D such that ~q = V T q. If ~A~z + ~q 2 (rec ~C)D thenUTAU ~z + V T q 2 (rec ~C)D; q 2 (recC)D



55by de�nition of ~A. ButUTAU = V TAU � V TATW (W TAW )�TW TAU = V TAUsince W TAU = 0, as can be directly veri�ed. ThusV T (AU ~z + q) = V TAU ~z + V T q 2 (rec ~C)D; q 2 (recC)Dwhich implieshAU ~z + q; V ~zi = DV T (AU ~z + q); ~zE � 0; 8~z 2 rec ~CIt follows from (2.27) thathAU ~z + q; zi � 0; 8z 2 recCThus AU ~z + q 2 (recC)DAlso (U ~z)T [A(U ~z) + q] = ~zT ~A~z = 0Therefore ~z satis�es~z 2 rec ~C; ~A~z + ~q 2 (rec ~C)D; and ~zT ( ~A~z + ~q) = 0 (2.39)with �q 2 ri(rec ~C)D implies U ~z satis�esU ~z 2 recC; AU ~z + q 2 (recC)D; and (U ~z)T [A(U ~z) + q] = 0 (2.40)with q 2 ri(recC)D. Hence the solution U ~z 2 lin recC = lin C. But thenV ~z 2 W (W TAW )�1ATV ~z + lin C � lin C



56which, by the de�nition of V , implies ~z = 0. This shows that the solution set of(2.39) is contained in lin ~C = f0g.For any 0 6= ~z 2 rec ~C such that~A~z 2 (rec ~C)D and ~zT ~A~z = 0we have 0 6= U ~z 2 recC, andV TAU ~z = UTAU ~z = ~A~z 2 (rec ~C)Dwhich implies A(U ~z) 2 (recC)D. We also have(U ~z)TA(U ~z) = ~zT ~A~z = 0So, there exists 0 6= z0 2 recC such that z0 is contained in every face of recCcontaining U ~z, and that �AT z0 is contained in every face of (recC)D containingA(U ~z). That is hd; z0i = 0 8d 2 D(U ~z)hr;�Az0i = 0 8r 2 R(AU ~z)Consequently, there exists 0 6= ~z0 2 rec ~C, such that z0 = V ~z0, and for any ~d 2~D(~z), we have ~d = V Td, for some d 2 D(V ~z), but since d 2 (recC)D, W Td = 0,therefore hd; V ~zi = hd; U ~zi, so d 2 D(V ~z) implies d 2 D(U ~z), henceD ~d; ~z0E = DV Td; ~z0E = hd; V ~z0i = hd; z0i = 0So, ~z0 is contained in every face of rec ~C containing ~z. For any ~r 2 ~R( ~A~z)D~r;� ~AT ~z0E = D~r;�UTATU ~z0E = D~r;�UTATV ~z0E = D~r;�UTAT z0E= D~r;�V TAT z0E = DV ~r;�AT z0E = Dr;�AT z0E = 0since r = V ~r 2 R(AU ~z) as a result of (2.36). This proved that � ~AT ~z0 is containedin every face of (rec ~C)D containing ~A~z. Q.E.D.



572.5 Pc MatricesUsing a geometric approach, we generalize both the notion of P matrices forarbitrary polyhedral convex sets in IRn, and the termination results for Lemke'spivotal method on P{matrices. These termination results can be generalized to amuch broader class of matrices known as L as demonstrated by the work of Eaves( see [12] and [13] ) and our work earlier in this chapter. Another approach forgeneralizing the termination results for Lemke's pivotal method on P{matrices isthrough the notion of P0 matrices and the work of Cottle et.al. in [1] and [9].In this section, we explore the possibility of generalizing the notion of P0 forpolyhedral convex sets. We begin with an analysis on the standard LCP. Our studyfocuses on geometric and topological properties of the sets K(M) and SOL(q;M)that are crucial in analyzing termination behavior of Lemke's algorithm. We provethat the convexity of K(M) and the connectedness of the set SOL(q;M) for allq are su�cient conditions for Lemke's algorithm to terminate at a solution ofLCP(q;M). We study those matrices M for which SOL(q;M) is connected for allq 2 IRn as a matrix class. We denote this matrix class as Pc. We show that Pcis a subclass of semi{monotone matrices. We also show that this class is not asubclass of P0, but it contains at least a substantial portion of it, e.g. it containsall the column su�cient matrices. The question of whether P0 is subclass of Pc isstill unknown.As we know, (LCP) is a special case of (NE). We have F � M , a linear map,and C = IRn+. The normal equation isMIRn+(x) + q = 0or equivalently Mx+ + x� x+ + q = 0



58De�ne a PL function F : (N;N )! IRn (where IRn is regarded as a PL manifoldof one cell) by: F (x; �) =MIRn+(x) + (q + �e)We shall consider solutions x(�) of F (x; �) = 0; it is clear from (NE) that x(0)will solve our problem.We use the path following algorithm of Section 2.1 to �nd x(0). In order to�nd a starting ray, consider w(�) = �q � �e. It is clear that sincew(�) = ��[e + ��1q] (2.41)for large positive �, w(�) lies interior to the cell IRn� of NIRn+. Therefore (w(�); �)lies interior to the cell IRn��R+ of (N;N ), and so it is a regular point of (N;N ).Further, for such � we have �IRn+(w(�)) = 0, so thatF (w(�); �) = �q � �e� (q + �e) = 0Therefore for some �0 � 0, F�1(0) contains the ray f (w(�); �) j � � �0 g.In analyzing the termination behavior of our algorithm, we assume that M isin Q0, that is, LCP(q;M) is solvable whenever it is feasible ( see Section 1.6 ).Our main result is summarized in the following theorem.Theorem 2.19 Suppose M is in Q0 \ Pc. Letq 2 K(M) = pos(I;�M)Then, the algorithm given in Section 2.1 terminates at a solution of LCP(q;M).We �rst introduce a series of technical tools before proving the theorem.



59Lemma 2.20 Given a Q0 matrix M andq 2 K(M) = pos(I;�M)there exists a set of n linearly independent vectors fy1; y2; � � � ; yng � IRn such thatq + yi 2 intK(M) for all 1 � i � n.Proof First we notice that intK(M) � IRn++ 6= ;.For any q 2 intK(M), the lemma is trivially true by selecting the set of vectorsf�ei j 1 � i � ngfor some � > 0 su�ciently small.For any other vector q 2 K(M), we can �rst choose a vector q0 2 intK(M)and a set of linearly independent vectors fy1; y2; � � � ; yng � IRn such that q0+yi 2intK(M) for all 1 � i � n. Letzi = yi + q0 � q 1 � i � nthen z1; z2; � � � ; zn are linearly independent andq + zi = yi + q0 2 intK(M) 1 � i � n Q.E.D.Lemma 2.21 Given a Q0 matrixM and a vector q 2 K(M) = pos(I;�M), thereexists a matrix Y of order n having linearly independent columns and q + yi 2K(M) for all 1 � i � n, where yi is the i{th column of Y . Let [�] be the vector(�; �2; � � � ; �n)T , then q + Y [�] 2 K(M) for � > 0 su�ciently small.Proof Choose a set of vectors fy1; y2; � � � ; yng as speci�ed by Lemma 2.20. Formthe matrix Y by using yi as the i{th column, for 1 � i � n.



60We observe that for any � > 0q + Y [�] = q + E nXi=1 �iEyi= E( qE + nXi=1 �iEyi)= E nXi=1 �iE � q + EyiEwhere E = Pni=1 �i.We notice that E < 1 when � is su�ciently small. Hence q + Eyi 2 K(M) byconvexity ofK(M) and q+EyiE 2 K(M) by the fact thatK(M) is a cone. ThereforenXi=1 �iE � q + EyiE 2 K(M)as a convex combination of q+EyiE 's, andq + Y [�] = E nXi=1 �iE � q + EyiE 2 K(M)since K(M) is a cone. Q.E.D.Now, we are ready to prove the main theorem.Proof We wish to solve F (x; �) = 0. Unfortunately, 0 may not be a regularvalue of F . Thus we use Algorithm 2 from Chapter 1 which permits solving theperturbed system F (x; �) = Y [�]We choose �Y and � according to Lemma 2.20 and Lemma 2.21 so that Y is ofrank n and q�Y [�] 2 K(M) for all small non{negative �. That is Y [�] is in F (N)for all small non{negative �. Hence, by Theorem 1.6, Y [�] is a regular value of F



61for each small positive �. It then follows by Theorem 1.6 that for such �, F�1(Y [�])is a 1-manifold neat in N . Furthermore, we have (w(�) + Y [�]; �) 2 F�1(Y [�]),for su�ciently large �.Now, assume that the algorithm starts with the rayf(w(�) + Y [�]; �) j � su�ciently largeggenerates a sequence of points (x1; �1), (x2; �2), � � �, (xk; �k) and terminates atstep k with a ray di�erent from the starting one. Let W (�) be the route formedby the set of chords traversed by the the algorithm. Then, due to the ray start,W (�) cannot be homeomorphic to a circle, and therefore it is homeomorphic toan interval.Upon ray termination, � is non{decreasing on the terminating ray. Thus, theset � = f� j (x; �) 2 W (�)gadmits a minimum 0 < �� = inff� 2 �g which is achieved on (xj; �j) for some1 � j � k. Let S = fx j (x; ��) 2 W (�)gthen F (x; ��) = Y [�] for x 2 S. HenceS � SOL(q � Y [�] + ��e;M)But SOL(q� Y [�] + ��e;M) cannot contain any other point z1 such that (z1; ��) =2W (�), otherwise, by our hypothesis on the connectedness of the solution set, thereis a continuous path map z : [0; 1]! SOL(q � Y [�] + ��e;M) with z(1) = z1 andz(0) = z0 for any z0 2 S. Thusf(z(t); ��) j 0 � t � 1g � F�1(Y [�])
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Figure 2: The path connecting z1 to S forms a branch of W

W
Sz1

But this contradicts the fact that F�1(Y [�]) is a 1{manifold, since (z0; ��) containsa neighborhood not homeomorphic to an interval ( see Figure 2 ).Thus S = SOL(q�Y [�] + ��e;M) is a connected set. It is either a single point,or the union of �nite number of consecutive chords in W (�). In particular, S isclosed.Considering that K(M) is convex and that SOL(q � Y [�] + �e;M) 6= ; for� = �� and for � = 0 SOL(q � Y [�] + �e;M) 6= ;for all 0 � � < ��. Consider a strictly increasing sequence f�j j j = 1; 2; � � �g with�1 < �� and limj!1 �j = ��. Assume that x(�j) 2 SOL(q � Y [�] + �e;M). Then,(x(�j); �j) 2 F�1(Y [�]), hence each (x(�j); �j) 2 F�1(Y [�]) is contained in a 1{chord of F�1(Y [�]). Since the 1{manifold F�1(Y [�]) is �nite, there exists a chordd such that (x(�j); �j) 2 d for in�nitely many j, and without loss of generality we
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Figure 3: The chord d forms a branch of W

W
Sd

can assume that (x(�j); �j) 2 d for all j. Therefore d contains the setn(x(�); �) 2 F�1(Y [�]) j ��� � � � < ��ofor some � > 0. Thus d contains a point (w(��); ��) with w(��) 2 S. On the otherhand, by de�nition of �� (w(�); �) =2 W (�)for any � < ��. Hence d is not a subset of W (�), and d forms a branch fromS � f��g ( see Figure 3 ). This is in contradiction to the fact that F�1(Y [�]) is a1{manifold.So the algorithm terminates at a point at the boundary, that is a solution ofF (x; 0) = Y [�].Now in practice the algorithm does not actually use a positive �, but onlymaintains the information necessary to compute W (�) for all small positive �,employing the lexicographic ordering to resolve possible ambiguities when � =



640. Therefore after �nitely many steps it will actually have computed x0 withMIRn+(x0) + q = 0. Q.E.D.By reference to Theorem 1.15, we obtain the termination property of the piv-otal algorithm for su�cient matrices.Corollary 2.22 Suppose M is a column su�cient matrix and M is in Q0. Letq 2 K(M) = pos(I;�M)Then, the algorithm given in Section 2.1 terminates at a solution of LCP(q;M).Proof SinceM is column su�cient, SOL(q;M) is convex, and is hence connectedfor all q. The corollary now follows from Theorem 2.19. Q.E.D.Now that we know our new matrix class contains a substantial portion of P0,e.g. column su�cient matrices, we will be interested to �nd out how is it related toP0 itself. The following example indicates this new matrix class is not a subclassof P0. Note that this example also shows that a matrix M being in Pc does notguarantee that M is Q0.Let M = 0B@ 0 11 0 1CA



65Then, M is not a P0 matrix. But for any q 2 IRn, we have
SOL(q;M) =

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:
f(0; 0)g if q1 > 0; q2 > 0; if q1 > 0; q2 < 0; if q1 < 0; q2 > 0f(�q2;�q1)g if q1 < 0; q2 < 0f(0; y) j y � 0g if q1 > 0; q2 = 0f(x; 0) j x � 0g if q1 = 0; q2 > 0f(0; y) j y � �q1g [ f(x;�q1) j x � 0g if q1 < 0; q2 = 0f(x; 0) j x � �q2g [ f(�q2; y) j y � 0g if q1 = 0; q2 < 0We see that SOL(q;M) is connected for all q. Now that P0 does not contain Pc,does Pc contains P0? According to a result in [23, Theorem 2], originally due toCottle and Guu, SOL(q;M) contains either 0, 1, or in�nitely many points, giventhat M is a P0 matrix. Hence, SOL(q;M) is connected when it has �nitely mayelements. The question whether SOL(q;M) is connected when it has in�nitelymany elements remains open.2.6 An Implementation in MATLABThe algorithm described in this chapter has been implemented in MATLAB [34].Copies of the code and the testing script �les are available.The algorithm NEPOLY is implemented as three function �les in MATLAB . Thedevelopment of the code is exactly as outlined in Section 2.2. The �rst functionremoves the lineality of the set C, then calls the second routine which proceedsto determine an extreme point and factor out the equality constraints. Havingaccomplished this, the third routine then executes the pivot steps. We note inparticular, that Lemke's original pivot algorithm can be carried out just using the



66third routine, since the de�ning set C = IRn+ has no lines, no equality constraintsand a single extreme point 0.We now present two tables of our results of applying this algorithm to somesmall quadratic programs. In Table 1 we present a comparison of NEPOLY tothe standard QP solver that is available as part of the optimization tool box ofMATLAB . This QP solver is an active set method, similar to that described in [21].Further details are available in [34].The problems that we generate are of the formmin 12xTQx + cTx+ 12yTy (2.42)subject to Ax+By = b; x � 0 (2.43)where Q 2 IRn�n, A 2 IRp�n and B 2 IRp�m. The minimum principle generatesan a�ne variational inequality which under convexity is equivalent to (2.42). Ingeneral, the variational inequality represents necessary optimality conditions for(2.42).We generate Q as a random sparse symmetric matrix. Unfortunately, theMATLAB QP solver did not solve (2.42) unless Q was positive semi-de�nite, so inTable 1, Q was generated positive semi-de�nite. The matrices A and B weregenerated using the MATLAB random generator, the feasible region was guaranteedto be non{empty by randomly generating a feasible point (x0; y0) and settingb = Ax0 +By0.MATLAB 4.0 was used with dedicated access to a Hewlett Packard 9000/705workstation. The times reported are elapsed times in seconds using the built{instopwatch timer of MATLAB . The ordering of entries in the table is by total problemsize. Since the problems are convex, both codes always found the solution of (2.42).The constraint error was always less than 10�14. All MATLAB codes reported here



67do not use the sparse matrix facility of MATLAB .m n p NEPOLY time MATLAB QP time10 10 10 0.3 0.820 10 10 0.2 0.230 20 10 0.3 0.310 40 10 3.4 10.510 10 50 0.6 5.720 20 30 1.2 4.610 60 20 5.8 45.170 10 30 0.8 0.940 40 40 4.6 14.3100 10 10 0.5 0.610 10 100 3.1 9.810 100 10 28.0 121.150 30 40 7.9 6.840 100 60 32.4 208.580 40 100 10.2 37.460 60 100 13.3 114.5Table 1: NEPOLY and MATLAB QPNotice that NEPOLY solves all but one of these instances more quickly than theMATLAB code. On the bigger problems, NEPOLY is much quicker that QP. Theseresults are averaged over 10 randomly generated problems of the given size. Thetimes vary slightly for di�erent random problems of the same dimension, but themain conclusion is that NEPOLY outperforms MATLAB QP.



68In Table 2, we present similar results comparing NEPOLY with a standard Lemkecode. As outlined above, NEPOLY is easily adapted to generate the Lemke path asa special case. In order to carry out this comparison, we reformulate (2.42) as thefollowing quadratic program:min 12xTQx + cTx+ 12(z � e�)T (z � e�)subject to Ax+B(z � e�) � b;eT (Ax+B(z � e�)) � eT b;x; z; � � 0:The necessary optimality conditions for this problem give rise to a standard formLCP to which Lemke's method can then be applied. Table 2 reports the iterationcount and elapsed time for problems of various sizes. In all cases, the problemswere solved to high accuracy (constraint errors less than 10�14).Notice on some of the problems, one or other of the codes failed (denoted by Fin the table). This is because for these experiments, Q was generated sparse andsymmetric but not positive de�nite. The convergence theory does not guarantee�nding a solution in these case, but note that the number of failures are small forNEPOLY . The number of failures can be made large by testing problems with largen since the failures are entirely due to the inde�niteness of Q. However, it is easyto infer that NEPOLY is signi�cantly quicker than the standard Lemke code.
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NEPOLY Lemkem n p iter time iter time10 10 10 8 0.3 46 2.610 10 10 9 0.3 69 3.520 10 5 0 0.1 64 4.010 14 24 9 0.5 75 7.713 26 10 37 2.4 80 11.313 26 10 29 2.3 114 16.513 26 10 18 2.1 F20 40 20 32 4.6 126 46.520 40 20 23 2.8 173 62.610 50 30 F F30 30 30 20 2.1 168 60.850 30 40 10 8.1 196 109.610 50 70 F F40 70 50 40 13.5 298 471.240 100 60 55 33.8 323 1199.580 40 100 29 21.9 349 860.7Table 2: NEPOLY and Lemke code



Chapter 3
Lineality Space
The pivotal method for solving the normal equationAC(x) = adescribed in the last chapter depends on a non{singularity property of A withrespect to the lineality of C. In this chapter, we prove that if A is copositive{plus,we can remove the lineality space in the absence of such non{singularity assump-tion. For convenience of terminology, we refer to AC(x) = a as a copositive{plusnormal equation when the matrix A is copositive{plus.Recall that the property of being copositive{plus is de�ned with respect to acone. The bigger the cone, the stronger is the assumption of being copositive{plus. For example, a matrix is positive semi{de�nite when it is copositive{pluswith respect to IRn, on the other hand, any matrix in IRn�n is copositive{pluswith respect to f0g. The analysis of this chapter requires that the matrix A becopositive{plus with respect to a cone K with non{empty interior. In the contextof a normal equation AC(x) = a, we assume that K � recC. When int recC 6= ;,the assumption that A is copositive{plus on recC will su�ce.70



713.1 Basic TechniquesWe introduce a standard form of the normal equation AC(x) = a by using areduction procedure similar to the one described in the paper [43, Proposition4.1]. For easy reference, we summarize the relevant results from [43, Proposition4.1] as follows.Lemma 3.1 Let C be a nonempty polyhedral convex set in IRn and A be a linearmap. Let �C = C \ (lin C)? so that C = lin C + �C. Let fe1; e2; � � � ; ejg be a basisof lin C, and fej+1; ej+2; � � � ; eng be a basis of (lin C)?, and let A be the matrixthat represent the linear map A with respect to this basis. Let � = f1; 2; � � � ; jg,� = fj + 1; j + 2; � � � ; ng and A = 0B@ A�� A��A�� A�� 1CAAssume that A�� is non{singular. Let A=A�� be the Schur complement of A�� inA, i.e. A=A�� = A�� � A��A�1��A��and let �a = a� � A��A�1��a�Then the normal equation AC(x) = ais equivalent to (A=A��) �C(x) = �ain the sense that for any �x = (�x�; �x�) satisfying the former, �x� satis�es the latter,and for any �x� that solves the latter, there exists an �x� such that (�x�; �x�) solvesthe former.



72Proof By selection of basis, we haveC = IRj � �CIf �x = (�x�; �x�) solves AC(x) = a, then �x� 2 �C and for any y� 2 �C,A���x� + A���x� � a� = 0hA���x� + A���x� � a�; y� � �x�i � 0Therefore we have, from the �rst equation,�x� = �A�1��(A���x� � a�)and, applying this to the second equationh(A=A��)�x� � �a; y� � �x�i � 0for any y� 2 �C. It follows that x� solves (A=A��) �C(x) = �a.Conversely, if �x� solves (A=A��) �C(x) = �a, then�x = (�A�1��(A���x� � a�); �x�) 2 IRj � �C = Cit is now easy to verify that x solves AC(x) = a. Q.E.D.This type of reduction can be carried out with respect to any principal sub-matrix of A��. In particular, we have the following corollary.Corollary 3.2 Let C be a nonempty polyhedral convex set in IRn in the form ofC = IRj � �C with lin �C = f0g. Let A be a linear transformation from IRn toIRn, and AC be the corresponding normal map. Let � � f1; 2; � � � ; jg and A��non{singular and C(�) = C \ felg?l2�. Denote�� = f1; 2; � � � ; ng n �



73let (A=A��) = A���� � A���A�1��A���and a(�) = a�� � A���a�Then AC(x) = ais equivalent to (A=A��)C(�)(x) = a(�)Proof Similar to that of Lemma 3.1. Q.E.D.It is a crucial fact that the property of copositive{plus is invariant under suchreductions. In fact, we have the following theorem.Theorem 3.3 Let C be a nonempty polyhedral convex set in IRn and A a lineartransformation from IRn to IRn. Assume that the matrix A is copositive{plus withrespect to recC, where C = IRj � �C with lin �C = f0g. Let � � f1; 2; � � � ; jg andA�� be non{singular and let C(�) = C \ felg?l2�,�� = f1; 2; � � � ; ng n �Then (A=A��) = A���� � A���A�1��A���is copositive{plus over recC(�).Furthermore, if K is any cone containing recC, K(�) = K \ felg?l2�, and Ais copositive{plus with respect to K, then A=A�� is copositive{plus with respect toK(�).



74Proof For any z 2 recC(�)zT (A=A��)z= zT (A���� � A���A�1��A���)z= � wT zT �0B@ A�� A���A��� A���� 1CA0B@ wz 1CAwhere w = �A�1��A���z. By our assumption on the structure of C, we haveC = IRj�j � C(�)It follows from z 2 recC(�) that (w; z) 2 recC. Therefore, by assuming Acopositive{plus with respect to recC, we havezT (A=A��)z = � wT zT �0B@ A�� A���A��� A���� 1CA0B@ wz 1CA � 0For any z 2 recC(�) such that zT (A=A��)z = 0we have � wT zT �0B@ A�� A���A��� A���� 1CA0B@ wz 1CA = 0where w = �A�1��A���z. Hence0B@ A�� A���A��� A���� 1CA0B@ wz 1CA+ 0B@ A�� A���A��� A���� 1CAT 0B@ wz 1CA = 0 (3.1)due to A is copositive{plus with respect to recC. In particularA��w + A���z = 0AT��w + AT���z = 0A���w + A����z + AT���w + AT����z = 0



75where the �rst equation is due to the de�nition of w, the second equation followsfrom the �rst and (3.1). By using the �rst two equations on the third(A���� � A���A�1��A���)z + (A���� � A���A�1��A���)T z = 0That is (A=A��)z + (A=A��)T z = 0Thus (A=A��) is copositive{plus with respect to recC(�).The conclusion regarding K and K(�) can be proven in a similar way. Q.E.D.3.2 Copositive{plus Normal EquationsIn this section we show that the invertibility assumption over the lineality space isunnecessary in the case that A is copositive{plus with respect to a cone K � recCwith intK 6= ;. The proof of this result requires two separate reductions whichwe give as Lemma 3.6 and Lemma 3.7, which lead to the results in Theorem 3.8.The main theorem follows as Theorem 3.9. We �rst state some technical results.Lemma 3.4 ([37, Result 1.6]) Let M be a positive semi-de�nite matrix, andassume M = 0B@ 0 uT0 M 0 1CAthen u = 0.Consequently, we have the following corollary.Corollary 3.5 Let M be an n� n positive semi-de�nite matrix, and let
 � f1; 2; � � � ; ngAssume M�
 = 0, then M
� = 0.



76Proof Apply the previous Lemma to each index of 
. Q.E.D.Lemma 3.6 describes the �rst of our reductions. Essentially we make a changeof variables over the lin C which transforms the submatrix A��, which correspondsto the lineality space, into a matrix of the form0B@ D0 00 0 1CAwhere D0 is a positive de�nite matrix. This form will be exploited in Lemma 3.7.Lemma 3.6 Given a normal equation AC(x) = a, where A and C are as inLemma 3.1. Then, there exists a linear transformationx = Uysuch that the restriction of U to L? = (lin C)? is the identity. This transformationmaps C onto itself. Let �AC(y) = �a be the representation of AC(x) = a in thevariable y. Then, we can choose U such that �A is in the form�A = 0B@ D �A���AT�� �A�� 1CA ; �a = UTa (3.2)where D is given by D = 0B@ D0 00 0 1CA (3.3)with D0 being a positive de�nite matrix. Furthermore, if A is copositive{plus withrespect to a cone K containing recC, then �A is copositive{plus with respect to K.Proof Since A is copositive with respect to recC = IRj�j � �CxT�A��x� = � xT� 0 �0B@ A�� A��A�� A�� 1CA0B@ xT�0 1CA � 0



77for all x� 2 IRj�j. That is, A�� is positive semi{de�nite. Consider a QR factor-ization of A�� A�� = Q��Rwhere R = 0B@ R00 1CAHere, R0 is an upper triangular matrix whose row rank equals the rank of A��.By orthonormality of Q��, QT��A��Q�� = Dwhere D = RQ��. Furthermore D is of the formD = 0B@ D00 1CAand D is positive semi{de�nite, andrankD0 = rankR = rankR0Thus, D is a matrix in the form of (3.3) due to Corollary 3.5.Let U = 0B@ Q�� I 1CAthen U is orthonormal and the transformationx = Uymaps C onto itself. The linear transformation A is represented by UTAU withrespect to the variable y, and therefore the normal map will be �AC(y) as claimed.The veri�cation that �A is copositive{plus with respect toK is straight forward.Q.E.D.



78In the following lemma, we reduce the problem resulting from Lemma 3.6 byeliminating the variables associated with the positive de�nite matrix D0. Thestatement of the result is somewhat technical, but this reduction is crucial stepfor establishing our main result in Theorem 3.9. The proof of Lemma 3.7 reliesheavily on Corollary 3.2 and Theorem 3.3.Lemma 3.7 Given a normal equation AC(x) = a, where A is as in (3.2) and Cis as in Lemma 3.1 and suppose that A is copositive{plus with respect to a coneK � recC, intK 6= ;. Let � = f1; 2; � � � ; kg be the set of indices for the submatrixD0 in (3.3), and C(�) be as in Theorem 3.3. Then, the given normal equation isequivalent to �AC(�)(x) = �a where�A = 0B@ 0 �A�0��A��0 �A�� 1CA = 0B@ 0 �A�0�� �AT�0� �A�� 1CA (3.4)where �0 = � n �. Furthermore, �A is copositive{plus with respect to K(�).Proof By Corollary 3.2, AC(x) = a is equivalent to �AC(�)(x) = �a, where�A = 0B@ 0 �A�0��A��0 �A�� 1CAFurthermore, it is easy to see that K(�) � recC(�). For any x = (x�0 ; x�) 2 K(�)� xT�0 xT� �0B@ 0 �A�0��A��0 �A�� 1CA� x�0 x� � � 0That is xT� ( �AT�0� + �A��0)x�0 + xT� �A��xT� � 0 (3.5)for all x�0 2 IRj�0j.



79If �AT�0� + �A��0 6= 0then dim ker( �AT�0� + �A��0) < j�j = dimK(�). Hence there exists an �x� 2 K(�)such that ( �AT�0� + �A��0)�x� 6= 0Let x�0 = ��( �AT�0� + �A��0)�x�then �xT� ( �AT�0� + �A��0)x�0 + �xT� �A���xT� < 0for su�ciently large �, a contradiction to (3.5). So we have�AT�0� + �A��0 = 0The last statement follows easily from Theorem 3.3. Q.E.D.The following theorem summarize the outcome of the two reduction steps de-scribed in Lemma 3.6 and Lemma 3.7 which lead to a standard form for copositive{plus normal equations.Theorem 3.8 Given a normal equation AC(x) = a, where A is copositive{pluswith respect to a polyhedral convex cone K � recC such that intK 6= ;, there isan equivalent normal equation �A �C(x) = �a, where �A is copositive{plus with respectto rec �C. Furthermore �C = 8><>:x ������� � 0 �B �0B@ x�x� 1CA � �b9>=>;and �A = 0B@ 0 �A��� �AT�� �A�� 1CA



80Proof We can �rst perform a transformation as given in Lemma 2.4, so that Cis in the form C = 8><>:x ������� � 0 B �0B@ x�x� 1CA � b9>=>;The theorem now follows by applying Lemma 3.6 and Lemma 3.7. Q.E.D.Given a normal equation in standard form, we are able to reduce it to onewhose feasible set has zero lineality. This is the subject of our main result of thischapter.Theorem 3.9 Consider a normal equation AC(x) = a, where A and C is givenby A = 0B@ 0 A���AT�� A�� 1CAand C = 8><>:x ������� � 0 B �0B@ x�x� 1CA � b9>=>;Suppose A is copositive{plus with respect to recC, let�A = A�� �a = a�and ~C = fx� j Bx� � b; A��x� = a�gThen, AC(x) = a is equivalent to �A ~C(x) = �a, in the sense that for any �x =(�x�; �x�) satisfying AC(x) = a, �x� satis�es �A ~C(z) = �a, and for any �x� satisfying�A ~C(z) = �a, there exists an �x� such that (�x�; �x�) satis�es AC(x) = a. Moreover,�A is copositive{plus with respect to rec ~C.



81Proof Let �C = fx� j Bx� � bg. Notice that �x� 2 ~C satis�es �A ~C(z) = �a if andonly if A���x� � a� 2 N ~C(�x�)Notice that ~C = �C \ fz j A��z = bg and by reference to [45, Corollary 23.8.1], wehave A���x� � a� 2 N �C(�x�) + imAT��or A���x� � a� � AT���x� 2 N �C(�x�) (3.6)for some �x�. Hence �x�, together with �x�, satis�es�x� 2 fx� j Bx� � bgA���x� � a� = 0A���x� � a� � AT���x� 2 N �C(�x�)that is (�x�; �x�) 2 C0B@ 0 A���AT�� A�� 1CA0B@ �x��x� 1CA� 0B@ a�a� 1CA 2 NIRj�j� �C(�x�; �x�)or A�x� a 2 NC(x)Therefore x = (x�; x�) solve AC(x) = a.It is obvious that �A is copositive{plus with respect to �C, and ~C � �C. Hence,�A is copositive{plus with respect to ~C. Q.E.D.



82Notice that � can be determined easily from a single QR factorization ( seeSection 2.2 ). Thus �A and ~C can be easily formed. Furthermore, the path followingalgorithm of Chapter 2 can be used to solve this problem, starting at stage 2. Thefact that �A is copositive{plus with respect to ~C guarantees that the algorithmwill process the normal equation. Given a solution �x� of �A ~C = �a, a solution ofAC(x) = a can be constructed from (3.6), which is equivalent toA���x� + a� � AT���x� = BTAu; u � 0that is AT���x� +BTAu = A���x� � a�u � 0So, x can be constructed from x� by solving a linear program.Theorem 3.9 is actually a variant of the results regarding augmented LCPdiscussed by Eaves in [14], also see [24].



Chapter 4
Monotonicity and Interior PointMethods
Given a variational inequality VI(F;C) where F is a continuous mapping fromIRn to IRn, and C be a non{empty closed convex set in IRn. We say that VI(F;C)is monotone if F is a monotone mapping, that ishF (x2)� F (x1); x2 � x1i � 0for any x1; x2 2 IRn. In particular, the a�ne variational inequality AVI(q;M;X),where M is an n�n matrix and X is a polyhedral set in IRn, is monotone if M ispositive semi-de�nite. In this chapter, we investigate monotone a�ne variationalinequalities from the perspective of maximal monotone multifunction theory.We begin with a few basic concepts from the theory of monotone multi-functions. A multifunction from IRn to IRm is a subset of IRn � IRm. For anyT � IRn � IRm and x 2 IRn we de�neT (x): = fy 2 IRmj(x; y) 2 Tg83



84and T�1(y): = fx 2 IRnj(x; y) 2 TgIn particular, T�1(0) is called the zero set of T .A multifunction, T , from IRn to IRn is said to be monotone if for each pair(x1; y1); (x2; y2) of points in T ,hx1 � x2; y1 � y2i � 0T is said to be maximal if it is not properly contained in any other monotonemultifunction. Also, T is said to be a�ne if T is an a�ne subset of IRn to IRn.For each monotone multifunction T and � > 0 de�neJ� = (I + �T )�1and J� is called the resolvent of T . The following theorem due to Minty charac-terize a maximal monotone multifunction in terms of its resolvent J�.Theorem 4.1 ([35]) Suppose that T is a monotone multifunction from IRn toIRn. T is maximal monotone if and only if domJ� = IRn.We refer readers to [2] for a comprehensive treatment of the theory of maximalmonotone multifunctions.Given a monotone multifunction T we can de�ne a complementarity problemof �nding (x; y) such that(x; y) 2 T; (x; y) � 0 and xT y = 0 (4.1)We call it the generalized linear complementarity problem when T is a�ne andmaximal monotone (see [25]).



85In Section 4.1, we will show how AVI(q;M;X) is related to a generalized linearcomplementarity problem and how interior point methods can be used for solvingmonotone a�ne variational inequalities. In Section 4.2, we try to address somerelated computational issues.4.1 Generalized Linear Complementarity Prob-lemIt is well known (see [27]) that AVI(q;M;X) is equivalent to the following com-plementarity problem(s; x; u) 2 IRp � IRn � IRm+H(s; x; u) = 0BBBBB@ 0 �B 0BT M AT0 �A 0 1CCCCCA0BBBBB@ sxu 1CCCCCA+ 0BBBBB@ dqb 1CCCCCA 2 f0g � f0g � IRm+(s; x; u)TH(s; x; u) = 0 (CP)
Furthermore, this complementarity problem can be put into the framework of(4.1).Theorem 4.2 Suppose that M is positive semide�nite. Then, the problem (CP)is a generalized linear complementarity problem withT = n(u; v) 2 IRm � IRm ���v = b� Ax;Bx = d;Mx + ATu+BT s+ q = 0o (4.2)Proof Obviously T is a�ne. It su�ce to show that T is maximal monotone.For any (ui; vi) 2 T , i = 1; 2,�u = u2 � u1; and �v = v2 � v1



86and some appropriate �s and �x satisfy the following homogeneous equation0BBBBB@ BT AT 0 M0 0 I A0 0 0 B 1CCCCCA0BBBBBBBB@ �s�u�v�x
1CCCCCCCCA = 0 (4.3)

Therefore �uT�v = �xTMT�xIt follows from the positive semi-de�niteness of M that�uT�v � 0 (4.4)which implies that T is a monotone multifunction.In showing that T is maximal, we may assume without loss of generality thatb = 0, d = 0, and q = 0. By Minty's Theorem, it su�ces to show that the rangeof I + T is IRm. Let z 2 IRm be arbitrary. We show the existence of (u; v) 2 Tsuch that z = u+ v. It follows from (4.2) that this is equivalent to the solvabilityof the system u+ v = zBx = 0Ax + v = 0Mx + ATu+BT s = 0Equivalently the systemBx = 0; Mx + AT (Ax+ z) +BT s = 0 (4.5)



87must be solvable for (x; s). Let C 2 IRn�n�p be a matrix such that kerB = imC.Letting x = Ct, (4.5) reduces to the system(M + ATA)Ct+ AT z 2 imBT = kerCTor CT (M + ATA)Ct+ CTAT z = 0Since z is arbitrary, we must showimCTAT � imCT (M + ATA)Cwhich is in turn equivalent to the statementker(CT (MT + ATA)C) � ker(AC)To prove the last statement, assume that CT (MT + ATA)Cw = 0. Then,wTCT (MT + ATA)Cw = 0or wTCT (MT )Cw + kACwk22 = 0But M is positive semi{de�nite, hence wTCT (MT )Cw = 0 and ACw = 0. Theclaim is proved. Q.E.D.Now that we know that T is maximal monotone, the following result ([25,Corollary 2.1]) illustrates the connection between (CP) and a class of horizontalLCP as de�ned in [48].Theorem 4.3 Let T be an a�ne multifunction on IRm, T is maximal monotoneif and only if there exist matrices H1, H2 2 IRm�m and a 2 IRm such that the pair



88H1 and H2 is column monotone, i.e. H1+H2 = I, HT1 H2 is positive semi{de�nite,and T = f(u; v) j H1u�H2v = agWith T represented as in Theorem 4.3, (CP) is equivalent to the followinghorizontal LCP (see [48])H1u�H2v = a; u; v � 0; uTv = 0 (4.6)The pair H1 and H2 is column monotone due to the maximality of T , thereforefollowing theorem ([48, Theorem 7]) applies.Theorem 4.4 Given H1 and H2 column monotone, then, for any a 2 IRm (4.6)is equivalent to LCP(C�1D;C�1a), where C and D are column representatives(see [48]) of H1 and H2 and C�1D is positive semi{de�nite.Since (CP) is equivalent to a standard monotone LCP, interior point algo-rithms, e.g., the path following algorithm in [29], the potential reduction algorithmin [30], and the infeasible path following algorithm in [50] and [3], can be appliedto provide polynomial algorithms for (CP) and hence for (AVI). In the next sec-tion, we show that the path following and the potential reduction algorithms canbe carried out without speci�cally reducing (CP) to a monotone LCP.4.2 Interior Point AlgorithmsSection 4.1 shows that (CP) is equivalent to a standard LCP. However, directlyreducing (CP) to a standard LCP using the method outlined in the last section willnot provide a practical algorithm. We now show how to exploit the structure of theproblem (CP) in applying the path following and potential reduction algorithms.



89We assume that all elements of the matrixQ = 0BBBBB@ M qA bB d 1CCCCCAare integers. The size of the problem (AVI) is de�ned byL = 1 + log(m+ n + p)2 + bm+n+pXi=1 n+1Xj=1 log(1 + jqijj)cwhere qij's are element of the matrix Q.To solve (CP) using path following method, we begin with an initial point(s0; u0; v0; x0) which is close to the central path, that is, a point in the setS�: = �(s; u; v; x) 2 S ���� u; v > 0; kUV e� �ek2 � ��; where � = 1muTv� (4.7)At each step, Newton's step for the nonlinear equationF (s; u; v; x; �) (4.8)= (UV � �e;Mx + q +BT s+ ATu; v + Ax� b; Bx� d) (4.9)= 0 (4.10)is used to compute a new point in S� such that � is reduced from the previousvalue by a constant factor. The algorithm terminates when � is su�ciently small.Given a point (s0; u0; v0; x0) 2 S�, here is the algorithm:
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Algorithm 31. Choose 0 < � � 110 , let � = �1�� , and let k = 0.2. If ukT vk < 2�4L, then stop.3. Let � = ukT vk=m� = (1� �=m 12 )�(s; u; v; x) = (sk; uk; vk; xk)4. Compute (�s;�u;�v;�x) by constructing a Newton step for thenonlinear equation (4.8), that is, solving0BBBBBBB@ 0 V U 0BT AT 0 M0 0 I A0 0 0 B
1CCCCCCCA0BBBBBBB@ �s�u�v�x

1CCCCCCCA = 0BBBBBBB@ UV e� �e000
1CCCCCCCA (4.11)and set(sk+1; uk+1; vk+1; xk+1) = (s; u; v; x) � (�s;�u;�v;�x)5. Set k = k + 1, and go to Step 2.

There are two crucial issues concerning the validity of the algorithm, one isthe solvability of (4.11), and the other is the justi�cation that each new iterate



91stays in S� and that � is reduced. In fact, by the analysis from the last section,(4.11) is equivalent toH1�u�H2�v = 0; V�u+ U�v = UV e� �e (4.12)Hence, (�u;�v) is uniquely solvable from (4.11) by the maximality of T ( see[25, Theorem 2.1] ). Furthermore, in view of Theorem 4.4, the step computedfrom (4.11) is the same as the interior step used by Kojima et.al. in [29] forLCP(C�1D;C�1a). Therefore we have the following theorem.Theorem 4.5 Let (s; u; v; x) 2 S with u, v > 0 satisfykUV e� �ek2 � �� with � = 1muTvfor � 2 (0; 110). Let � = (1� �=m 12 )�Suppose (�s;�u;�v;�x) is a solution of (4.11), and(�s; �u; �v; �x) = (s; u; v; x)� (�s;�u;�v;�x)Then, (�u; �v) > 0, and 


 �U �V e� ��e


2 � ����� = 1m �uT �v � (1� �6m 12 )�As a result of this theorem, Algorithm 3 stops in O(m 12L) iterations, eachof which requires O((m+ n+ p)3) operations to compute a new point. Therefore,the number of arithmetic operations needed for �nding a point f(sk; uk; vk; xk)gsuch that ukTvk < 2�4L is no more than O(m 12 (m + n + p)3L). Furthermore, an



92exact solution of AVI(q;M;X) can be constructed from such a point in no morethan O((m+ n + p)3) arithmetic operations by using a technique similar to thatof [29].Potential reduction algorithms start with a point inS0: = f(s; u; v; x) 2 S j u; v > 0gsuch that f(u; v) does not exceed O(m 12L), where the potential function f isde�ned byf(u; v) = pm log uTv � mXi=1 log(uivi)�m logm for (s; u; v; x) 2 S0 (4.13)The algorithm is as follows.



93
Algorithm 41. Choose (s0; u0; v0; x0) 2 S0, such that f(u; v) does not exceedO(m 12L), and let k = 0.2. Let (s; u; v; x) = (sk; uk; vk; xk), if f(uk; vk) < �4m 12L, then stop.3. Let w = (pu1v1;pu2v2; � � � ;pumvm)W = diagfwgz = W�1e� ((n+pn)= kwk22)w4. Compute (�s;�u;�v;�x) by constructing a Newton step for thefunction F, that is, solving0BBBB@ BT AT 0 M0 0 I A0 0 0 B 1CCCCA0BBBBBBB@ �s�u�v�x

1CCCCCCCA = 0 (4.14)W�1(U�v + V�u) = zkzk2and set(sk+1; uk+1; vk+1; xk+1) = (s; u; v; x) � (�s;�u;�v;�x)5. Set k = k + 1, and go to Step 2.



94We notice that the system (4.14) is equivalent toH1�u�H2�v = 0; U�v + V�u = W zkzk2 (4.15)A reference to Theorem 4.4 and [30, Theorem 2.2] leads to the following result.Theorem 4.6 (�u;�v) is uniquely determined by (4.14) and at each iterationwe have f(uk+1; vk+1) < f(uk; vk)� 0:2Similar to case of Algorithm 3, Theorem 4.6 guarantees that the number ofarithmetic operations needed by the potential reduction algorithm for �nding asolution of AVI(q;M;X) is bounded by O(m 12 (m + n+ p)3L).4.3 An Implementation IssueAlthough (�u;�v) can be uniquely determined from the system (4.12) or (4.15),in practice we are dealing with (4.11) or (4.14). The task of of computing (�u;�v)can be signi�cantly simpli�ed if solution to each of these systems is unique. Ournext lemma shows that the following assumptionrank0BBBBB@ 0 �BBT M0 �A 1CCCCCA = n+ p (4.16)guarantees the uniqueness of solution for (4.11) and (4.14). The general case willbe dealt with in the rest of this section.



95Lemma 4.7 Suppose that the condition (4.16) holds. Then, for any positive di-agonal matrices D1, D2, and r 2 IRm, the equation0BBBBBBBB@ 0 D1 D2 0BT AT 0 M0 0 I A0 0 0 B
1CCCCCCCCA
0BBBBBBBB@ �s�u�v�x

1CCCCCCCCA = 0BBBBBBBB@ r000
1CCCCCCCCAhas a unique solution.Proof It su�ces to show that the homogeneous system0BBBBBBBB@ 0 D1 D2 0BT AT 0 M0 0 I A0 0 0 B

1CCCCCCCCA
0BBBBBBBB@ �s�u�v�x

1CCCCCCCCA = 0 (4.17)
has a unique solution.Suppose (�s;�u;�v;�x) is a solution, thenD1�u+D2�v = 0hence D�u+D�1�v = 0where D = (D1D�12 ) 12 . ThereforekD�uk22 + 2(D�u)T (D�1�v) + 


D�1�v


22 = 0Notice that (D�u)T (D�1�v) = �uT�v � 0 as a result of (4.4), so we havekD�uk2 = 0; kD�1�vk2 = 0



96It follows that �u = 0; �v = 0Consequently, �s = 0 and �x = 0 since rank0BBBBB@ 0 �BBT M0 �A 1CCCCCA = n+ p. Q.E.D.In general, a problem in the form of (CP) can be reduced to a smaller problemsatisfying (4.16). De�ne the feasible set of (CP) byS: = n(u; v) ��� u; v � 0; v = Ax� b; Bx� d = 0;Mx + ATu+BT s+ q = 0o(4.18)Then the lineality space (see [45]) of S isL(S) = n(s; 0; 0; x) ��� BT s+Mx = 0;�Ax = 0;�Bx = 0oSo, L(S) = f0g if and only if (4.16) holds.For convenience of notation, de�neQ = 0B@ 0 �BBT M 1CA C = � 0 A �(CP) can be reformulated as
(CP0)(z; u) 2 IRp+n � IRm+H(z; u) = 0B@ Q CT�C 0 1CA0B@ zu 1CA+ 0B@ q0b 1CA 2 f0g � IRm+(z; u)TH(z; u) = 0where z = 0B@ sx 1CA and q0 = 0B@ dq 1CA.



97
Suppose L(S) 6= f0g, then the columns of the matrix 0B@ Q�C 1CA are linearlydependent. There exist index sets � and � such that0B@ Q�C 1CA = 0B@ Q�� Q���C�� �C�� 1CAand 0B@ Q���C�� 1CA is a maximum subset of linearly independent columns of the matrix0B@ Q�C 1CA. Thus 0B@ Q���C�� 1CA = 0B@ Q���C�� 1CAP (4.19)for some j�j � j�j matrix P .The following lemma will be useful as a technical tool.Lemma 4.8 Let M be an n � n positive semi-de�nite matrix, and 
; �; � be apartition of f1; 2; � � � ; ng, so thatM = � M�
 M�� M�� �Assume that M�
 =M��Pfor some j�j � j
j matrix P , thenM
� = P TM��Proof0BBBBB@ I �P T 00 I 00 0 I 1CCCCCAM 0BBBBB@ I 0 0�P I 00 0 I 1CCCCCA = 0BBBBB@ I �P T 00 I 00 0 I 1CCCCCA� 0 M�� M�� �



98
= 0BBBBB@ I �P T 00 I 00 0 I 1CCCCCA0BBBBB@ 0 M
� M
�0 M�� M��0 M�� M��

1CCCCCA
= 0BBBBB@ 0 � �0 M�� M��0 M�� M��

1CCCCCA
= 0BBBBB@ 0 0 00 M�� M��0 M�� M��

1CCCCCAwhere the last equality follows from Lemma 3.4. It now follows thatM = 0BBBBB@ I P T 00 I 00 0 I 1CCCCCA0BBBBB@ 0 0 00 M�� M��0 M�� M��
1CCCCCA0BBBBB@ I 0 0P I 00 0 I 1CCCCCA= 0BBBBB@ P TM��P P TM�� P TM��M��P M�� M��M��P M�� M��
1CCCCCAtherefore M
� = � P TM��P P TM�� P TM�� �= P T � M��P M�� M�� �= P TM�� Q.E.D.



99The method of reducing (CP) to a smaller problem satisfying (4.16) is derivedfrom the following two lemmas.Lemma 4.9 Let �, � and P be as in (4.19), � 6= ;. If (CP 0) is solvable, thenthere exists a solution (�z; �u) such that �z� = 0.Proof Let (�z; �u) = (�z�; �z�; �u) be a solution of (CP 0), then it is clear that (�z� +P �z�; 0; �u) is the desired solution. Q.E.D.Lemma 4.10 De�ne (CP 00) by(w; u) 2 IRp+n�j�j � IRm+~H(w; u) = 0B@ Q�� (CT )���C�� 0 1CA0B@ wu 1CA+ 0B@ q0�b 1CA 2 f0g � IRm+(w; u)T ~H(w; u) = 0 (CP00)
Then (z; u) is a solution of (CP 0) with z� = 0 if and only if (z�; u) is a solutionof (CP 00).Proof If (z; u) is a solution of (CP 0) with z� = 0, then it is easily veri�ed that(z�; u) is a solution of (CP 00).If (z�; u) is a solution of (CP 00), thenQ��z� + (CT )��u+ q0� = 0 (4.20)� C��z� + b 2 IRm+ (4.21)and uT (�C��z� + b) = 0 (4.22)



100
Moreover, since the matrix 0B@ Q CT�C 0 1CA is positive semi-de�nite, we can applyLemma 4.8 to (4.19) resulting in� Q�� Q�� (CT )�� � = P T � Q�� Q�� (CT )�� �Also, taking into account (4.20), we have� Q�� Q�� (CT )�� �0BBBBB@ z�0u 1CCCCCA+ q0�

= P T � Q�� Q�� (CT )�� �0BBBBB@ z�0u 1CCCCCA+ q0�= q0� � P T q0�If q0� � P T q0� 6= 0, then the system0B@ Q�� Q�� (CT )��Q�� Q�� (CT )�� 1CA0BBBBB@ z�0u 1CCCCCA+ 0B@ q0�q0� 1CA = 0is inconsistent, a contradiction to the solvability of (CP 0) and Lemma 4.9. Henceq0� � P T q0� = 0Let z0 = (z�; 0), thenH(z0; u) = 0BBBBB@ 00�C��z� + b 1CCCCCA 2 f0g � IRm+



101follows from (4.20), (4.21). We also have (z0; uT )H(z0; u) = 0 by reference to(4.22). Q.E.D.By de�nition, we can writeQ�� = 0B@ 0 � �B�BT �M 1CA C�� = � 0 �A �for appropriate submatrices �A, �B, and �M of A, B, and M respectively. Note that�M is positive semi-de�nite and the matrix0BBBBB@ 0 � �B�BT �M0 � �A 1CCCCCAhas full column rank. Therefore (CP 00) is equivalent to AVI(�q; �M; �X) where�X = ny ��� �Ay � �b; �By = �doand �q, �b, and �d are vectors which consist of appropriate components of q, b and drespectively.The procedure of reducing AVI(q;M;X) to AVI(�q; �M; �X) can be carried outby using Gaussian elimination and deleting rows and columns from a matrix. Asolution of AVI(�q; �M; �X) is found by solving (CP 00). A solution of (CP), andhence a solution of AVI(q;M;X), can then be constructed from that of (CP 00) byapplying Lemma 4.10. Therefore these operations will not increase the order ofcomplexity.



Chapter 5
Monotone Variational Inequalities
The proximal point algorithm is an iterative method for solving the generalizedequation 0 2 T (x) (5.1)for x 2 IRn, where T is a maximal monotone multifunction on IRn. The iteratesare constructed by xk+1 = J�k(xk) = (I + �kT )�1(xk) (5.2)where J�k = (I + �kT )�1 is called the resolvent of T . The well known Minty'stheorem ( see Theorem 4.1 ) guarantees that such a sequence fxkg is well de�nedgiven any starting point x0. Basic convergence results are summarized in thefollowing theorem (cf. [46]).Theorem 5.1 Suppose that T is a maximal monotone operator from IRn to IRnwith 0 2 imT . Let fxkg be generated by (PP) using a sequence of positive numbersf�kg such that P1n=0 �2k = 1. Then fxkg converges to a point �x such that 0 2T (�x). 102



103In the case of convex programming, the minimization problemminx2C f(x) (5.3)where f is a proper closed convex function and C is a closed convex set in IRn, isequivalent to (GE) with T = @f +N(� j C)The �nite termination of (PP) is studied in [18] and [4] in conjunction with thenotions of weak sharp minima and minimum principle su�ciency (see [19] and[6]). We proceed to extend some of these results to the case of general maximalmonotone multifunction and show how these results can be applied to monotonevariational inequalities.5.1 Finite TerminationWe begin with the de�nition of a sharp zero set for a maximal monotone multifunc-tion. The concept of sharp zero set is crucial in generalizing the �nite terminationresults in [18] to a generalized equation in the form of (5.1).De�nition 5.2 Given a maximal monotone multifunction T . The set Z = T�1(0)is called a sharp zero of T if Z 6= ; and there exists a � > 0 such that�B \N(z j Z) � T (z) 8z 2 Z (5.4)The constant � is called the modulus of sharpness.As an example, consider the case where T = @f + N(� j C) [18, Theorem 2]shows that a sharp zero set of T = @f + N(� j C) is a set of weak sharp minimafor the convex program (5.3).



104T is assumed to have a sharp zero set throughout the rest of this chapter. Our�rst step is to establish a result similar to that of [18, Lemma 4] for (5.1).Lemma 5.3 Let � be the modulus of sharpness for T and 0 < � < �. Supposey = � z � �Z(z)kz � �Z(z)kand y 2 T (w) for some w 2 Z, then y 2 T (�Z(z)).Proof By the de�nition z� �Z(z) 2 N(�Z(z) j Z), hence y 2 �B \N(�Z(z) j Z)since � < �. Therefore y 2 T (�Z(z)) by (5.4). Q.E.D.The next lemma is similar to [18, Lemma 5].Lemma 5.4 Let � and � be as in Lemma 5.3. If w 2 T (z) and kwk < �, thenz 2 Z.Proof If z 6= �Z(z), theny = � z � �Z(z)kz � �Z(z)k 2 T (�Z(z))by Lemma 5.3. It follows from monotonicity of T that0 � hz � �Z(z); w � yiBy de�nition of y �kz � �Z(z)k hz � �Z(z); z � �Z(z)i= hz � �Z(z); yi� hz � �Z(z); wi� kz � �Z(z)k kwkConsequently, kwk � �, a contradiction. Q.E.D.



105Now, we are ready to present the main theorem of this section.Theorem 5.5 Suppose Z is sharp zero set of T with modulus �. Let f�kg be anysequence of positive number which is bounded below and let x0 2 IRn. The (PP)terminates in a �nite number of iterations.Proof For any 0 < � < �, we have�B \N(z j Z) � T (z)for all z 2 Z.Let �k � � > 0 for the given sequence. Then, for any z 2 Z we know that thesequence fkxk � zkg is bounded and hence converges (see [47]). FurthermorekxK+1 � zk2 + KXk=0�2k kvkk2 � kx0 � zk2where vk 2 T (xk) and xk+�k�1vk = xk�1. Since fkxk � zkg is bounded, it followsthat KXk=0�2k kvkk2 �Mfor some constant M . Hence�2k kvK+1k2 (K + 1) �MTherefore, there exists a su�ciently large K such thatkvK+1k2 � M�2(K + 1) < �2by the non-increasing property of kvK+1k (see [47]). It follows from Lemma 5.4that xK+1 is in the solution set. Q.E.D.



106Corollary 5.6 Suppose Z is a sharp zero set of T with modulus �. Let f�kg beany sequence of positive number which is bounded below by � > 0. Then for anygiven x0 2 IRn, (PP) terminates in one iteration for a su�ciently large choice of�.Proof See the proof of [18, Theorem 8]. Q.E.D.5.2 An Equivalence RelationIn the studying the connection between weak sharp minima and �nite terminationof (PP), the equivalence between�B \N(x j Z) � T (x)and �B \ [x2ZN(x j Z) � [x2Z T (x)where T = @f + N(� j C) and Z = T�1(0), plays an important role. We extendit to the case where T is a maximal monotone multifunction with the furtherassumption that Z is polyhedral. Such a generalization turns out to be usefulin establishing the connection between �nite termination of (PP) and minimumprinciple su�ciency for monotone variational inequalities.Since T is maximal monotone, the set Z = T�1(0) is closed convex. Thefollowing result is a direct consequence of the monotonicity of T .Lemma 5.7 Suppose T is maximal monotone, Z = T�1(0), thenT (x) � N(x j Z) for all x 2 Z (5.5)



107Proof Let x be any point in Z, u 2 T (x). For all z 2 Z, we have, 0 2 T (z).So, by monotonicity, h0� u; z � xi � 0, i.e. hu; z � xi � 0, which implies thatu 2 N(x j Z). Q.E.D.For those points not in Z, their images under T also possess interesting prop-erties.Lemma 5.8 For any points x; y 2 IRn, 0 � � � 1, we haveT (x) \ T (y) � T (�x+ (1� �)y) (5.6)In general, for any xi 2 IRn, �i � 0, i = 1; : : : ; k, and Pki=1 �i = 1k\i=1T (xi) � T ( kXi=1 �ixi) (5.7)Assume that Z 6= ;. Then, for x 2 IRn, d 2 recZ; � > 0T (x) \ fdg? � T (x+ �d) (5.8)Proof Let u 2 T (x) \ T (y), then for any z 2 IRn and w 2 T (z)hu� w; �x+ (1� �)y � zi= � hu� w; x� zi+ (1� �) hu� w; y � zi� 0So u 2 T (�x+ (1� �)y) by maximality of T .(5.7) can be proven by using induction on (5.6).To prove (5.8), let z 2 IRn, �x 2 Z, v 2 T (z), thenhd; vi = � lim�!+1 1� hz � (�x + �d); v � 0i � 0 (5.9)since T is monotone, �x + �d 2 Z, 0 2 T (�x+ �d), and v 2 T (z).



108If u 2 T (x)\ fdg?, z 2 IRn; v 2 T (z) then hu� v; x� zi � 0 by monotonicityof T . Knowing that u 2 fdg? and hd; vi � 0, it follows thathu� v; x+ �d� zi � 0Hence, u 2 T (x + �d) by maximality of T . Q.E.D.We further claim that the inequalities of Lemma 5.7 hold as equalities if T �N(� j Z).Lemma 5.9 For any points x; y 2 Z, 0 < � < 1, we haveN(x j Z) \N(y j Z) = N(�x + (1� �)y j Z) (5.10)For xi 2 IRn, �i > 0, i = 1; : : : ; k, and Pki=1 �i = 1k\i=1N(xi j Z) = N( kXi=1 �ixi j Z) (5.11)For any �x 2 Z, d 2 recZ, and � > 0N(�x j Z) \ fdg? = N(�x + �d j Z) (5.12)Proof In view of Lemma 5.7, the only thing needed to prove (5.10) isN(x j Z) \N(y j Z) � N(�x + (1� �)y j Z)Let u 2 N(�x + (1� �)y j Z), then for any z 2 Zhu; z � xi = 1� hu; �z � �xi= 1� hu; �z + (1� �)y � (�x+ (1� �)y)i� 0



109since u 2 N(�x + (1 � �)y j Z) and �z + (1 � �)y 2 Z. Thus, u 2 N(x j Z).Interchanging the roles of x and y, we see that u 2 N(y j Z).(5.11) follows from induction on (5.10).To prove (5.12), it is su�cient to show thatN(�x j Z) \ fdg? � N(�x + �d j Z)Let u 2 N(�x+�d j Z), then hu; z � (�x + �d)i � 0 for any z 2 Z. By taking z = �xand z = �x+ 2�d, it follows that hu; di = 0. Hencehu; z � �xi = hu; z � (�x + �d)i � 0We now have u 2 N(�x j Z) \ fdg?. Q.E.D.Lemma 5.10 Suppose x; y 2 Z, thenN(x j Z) \N(y j Z) = 8><>: N(x j Z)a subset of rbdryN(x j Z) (5.13)Proof Suppose that N(x j Z) \ N(y j Z) does not equal N(x j Z), so that wecan �nd u 2 N(x j Z) nN(y j Z). For any point v 2 N(x j Z)\N(y j Z), we havehv; x� yi = 0since v 2 N(x j Z) implies hv; y � xi � 0and v 2 N(y j Z) implies hv; x� yi � 0Knowing that u 2 N(x j Z), we have hu; x� yi � 0. We further claim thathu; x� yi > 0, since if hu; x� yi = 0, then for all z 2 Zhu; z � yi = hu; z � x+ x� yi (5.14)



110= hu; z � xi (5.15)� 0 (5.16)and hence u 2 N(y j Z), a contradiction to u =2 N(y j Z). It follows thathv + �(v � u); y � xi = � hu; x� yi > 0for all � > 0. Hence v + �(v � u) =2 N(x j Z), which implies v =2 riN(x j Z).Therefore v 2 rbdryN(x j Z). Q.E.D.With these four lemma as technical tools, we are now ready to establish ourmain result. Note that the converse statement is obvious, even without polyhe-drality of Z.Theorem 5.11 Let T be maximal monotone and Z = T�1(0) be polyhedral. If�B \ [x2ZN(x j Z) � [x2Z T (x) (5.17)then Z is a sharp zero set of T with modulus �. That is�B \N(x j Z) � T (x) (5.18)for all x 2 Z.Proof i) Assume that Z contains no lines. We �rst show (5.18) for an extremepoint of Z, then show it for a convex combination of extreme points, and �nallyshow it for an arbitrary point in Z.Suppose that z is an extreme point of Z, then according to [45, Theorem 18.6and Corollary 19.1.1], z is also an exposed point, i.e. there exists c 2 IRn suchthat hc; w � zi < 0



111for all w 2 Z n fzg. So, c 2 N(z j Z), but c =2 N(w j Z). HenceN(z j Z) \N(w j Z) 6= N(z j Z)It follows, by Lemma 5.10 , thatN(z j Z) \N(w j Z) � rbdryN(z j Z) (5.19)for all w 2 Z n fzg.If there exists v 2 (�B \ riN(z j Z)) n T (z). Then, because of (5.17), thereexists w 2 Z such that v 2 T (w) � N(w j Z)and then v 2 N(z j Z) \N(w j Z)But since we have shown (5.19), there must bev 2 rbdryN(z j Z)a contradiction to v 2 riN(z j Z). So(�B \ riN(z j Z)) n T (z) = ;Therefore T (z) � �B \ riN(z j Z)But since T is maximum monotone, T (z) is closed; consequently T (z) � �B \N(z j Z).Now let x = Pki=1 �ixi, where xi's are extreme points of Z, �i > 0 for i =1; 2; : : : ; k, and Pki=1 �i = 1, we have, according to previous lemma�B \N(x j Z) = �B \N( nXi=1 �ixi j Z)



112= n\i=1(�B \N(xi j Z))� n\i=1T (xi)� T ( nXi=1 �ixi)= T (x)According to [45, Theorem 18.5, pp. 166], any polyhedral convex set containingno lines equals the convex hull of all its extreme points and extreme directions.Therefore, for any y 2 Z, we can write y = x + �d, for some x as a convexcombination of extreme points, d 2 recZ and � > 0. It follows that�B \N(y j Z) = �B \N(x + �d j Z)= �B \N(x j Z) \ fdg?� T (x) \ fdg?� T (x+ �d)= T (y)ii) Let L be the lineality space of Z, then Z can be decomposed asZ = L + (Z \ L?)with no lines in Z \L?. Furthermore, L is perpendicular to T (z) for any z 2 IRn.We can see this by looking at any d 2 L, we know that �d 2 recZ, and therefored?T (z) by (5.9).Since T (z) � L?, for all z 2 IRnT � IRn � L?



113By restricting the domain of T to L?, we obtain a multifunctionTjL? : = T \ (L? � IRn)� (IRn � L?) \ (L? � IRn)= L? � L?which is a multifunction from L? to L?. Moreover, it is monotone due to mono-tonicity of T .Let z 2 IRn, d 2 L, and � > 0, then since �d 2 recZ, and T (z) � L?, itfollows from (5.8) that T (z) = T (z) \ L?� T (z) \ fdg?� T (z + �d)and T (z + �d) � T (z + �d) \ f�dg?� T (z + �d+ �(�d))= T (z)Thus T (z) = T (z + �d)We see that T is constant on any direction d 2 L. HenceT = TjL?b�L?(�) (5.20)where �L?(�) is the linear projector onto L?.We also claim that TjL? is maximal. Otherwise, there will be some monotonemultifunction Tm from L? to L? properly containing TjL?. Thus T will be properly



114contained in the multifunction Tmb�L?(�). Furthermore, for any x, y 2 IRn, wehave x = �L(x) + �L?(x)and y = �L(y) + �L?(y)Hence hTmb�L?(x)� Tmb�L?(y); x� yi= hTmb�L?(x)� Tmb�L?(y); �L(x)� �L(y)i+ hTmb�L?(x)� Tmb�L?(y); �L?(x)� �L?(y)iBut the second term is non{negative due to the monotonicity of Tm and we havehTmb�L?(x)� Tmb�L?(y); x� yi � hTmb�L?(x)� Tmb�L?(y); �L(x)� �L(y)iThe right hand side is 0 since imTm � L?, �L(x) � �L(y) 2 L and L is perpen-dicular to L?. Thus hTmb�L?(x)� Tmb�L?(y); x� yi � 0for all x, y 2 IRn. In another words, Tmb �L?(�) is monotone. But the properinclusion of T in Tmb�L?(�) contradicts the maximality of T . So, we know thatTjL? is a maximal monotone.We also observed that the zero set of TjL? is Z \ L?, and for any x 2 Z \ L?N(x j Z \ L?) = N(x j Z) (5.21)with the �rst normal cone taken with respect to L?.Now, by using (5.20), we can reduce (5.17) into�B \ [x2Z\L?N(x j Z) � [x2Z\L? T (x)



115which is, by (5.21), equivalent to�B \ [x2Z\L?N(x j Z \ L?) � [x2Z\L? TjL?(x)By applying the result of i) on the multifunction TjL?, we have�B \N(x j Z) = �B \N(x j Z \ L?) � TjL?(x) = T (x) (5.22)for all x 2 Z \ L?.We further conclude that (5.18) is true for all x 2 Z based on (5.20), (5.21)and (5.22). In fact, for any x 2 ZT (x) = TjL?(�L?(x))� �B \N(�L?(x) j Z \ L?)= �B \N(�L?(x) j Z)= �B \N(x j Z)where the inclusion on the second line follows from (5.22) due to �L?(x) 2 Z \L?and the last equality is true because N(� j Z) is constant along any direction of Ljust like T . Q.E.D.The method used in part i) of the proof can be used on another class of maximalmonotone multifunctions to obtain a result similar to that of the proceeding the-orem. A set C � IRn is called strictly convex, if for any x; y 2 C and 0 < � < 1,�x + (1 � �)y 2 riC. The following Corollary is a consequence of Lemma 5.8,Lemma 5.9 and the method mentioned above.Corollary 5.12 Let T be maximal monotone, and Z = T�1(0). Assume that Zis strictly convex, and �B \ [x2ZN(x j Z) � [x2Z T (x) (5.23)



116then �B \N(x j Z) � T (x) (5.24)for all x 2 Z.5.3 An Application to Monotone Variational In-equalitiesConsider a monotone variational inequality0 2 f(x) +N(x j X) (5.25)where f is a monotone, continuous function from IRn to IRn, X is a polyhedralset. The solution set Z is the zero set of the maximal monotone multifunctionT = f(�) +N(� j X)We prove that a necessary condition for T to be a sharp zero set of T is thatZ is an exposed face of X.Before presenting our main results, we need the following lemmas.Lemma 5.13 If x0 2 riF for some face F of a polyhedral convex set C, thenN(x0 j C) = N(x0 j C \ F?) \ F? (5.26)Proof We �rst observe that N(x0 j C) � F?due to x0 2 riF . We also knowN(x0 j C) � N(x0 j C \ F?)



117from C \ F? � C. ThereforeN(x0 j C) � N(x0 j C \ F?) \ F? (5.27)If there exists v 2 N(x0 j C \ F?) \ F? n N(x0 j C), then we can �nd c 2 F?such that c strongly separates v from N(x0 j C). That ishc; vi > 0 and hc; yi � 0 (5.28)for all y 2 N(x0 j C). That is to sayc 2 (N(x0 j C))o = coneC � x0 (5.29)Furthermore, because c 2 F?c 2 coneC � x0 \ F?= cone(C \ F?)� x0= N(x0 j C \ F?) \ F?)oThe last equality is due to the fact N(x0 j C \ F?) \ F? is the normal cone ofC \ F? at x0 with respect to F? as opposed to IRn, which is the case in (5.29).But we assumed v 2 N(x0 j C \ F?) \ F?, thereforehc; vi � 0contradicting (5.28). So we see thatN(x0 j C \ F?) \ F? nN(x0 j C) = ;which, together with (5.27), leads toN(x0 j C) = N(x0 j C \ F?) \ F? Q.E.D.



118Lemma 5.14 Let Z = T�1(0), thenhf(x1); x2 � x1i = 0 (5.30)for any x1; x2 2 Z.If Z is a sharp zero set, then a�Z \X = Z (5.31)Proof Let x1; x2 2 Z, we havehf(x1); x2 � x1i � 0If hf(x1); x2 � x1i > 0, thenhf(x2); x1 � x2i < �hf(x1)� f(x2); x1 � x2i � 0contradicting the fact that x2 2 Z. Hencehf(x1); x2 � x1i = 0for all x1; x2 2 Z.Assume Z 6= ; satis�es (5.18). It is obvious thatZ � a�Z \X � a�Zbecause Z is contained in both a�Z and X. Thus riZ � ri(a�Z \X).Suppose x 2 ((a�Z) \X) n Z and �x 2 riZ. Let� = supf0 � �j�x+ (1� �)�x 2 Zgthen, because Z is closed x� = �x + (1� �)�x 2 Z



119hence � < 1. Also notice that �x 2 riZ � ri(a�Z \X), we havex� 2 ri(a�Z \X)Therefore N(x� j X) � (a�Z \X)? � Z? = (a�Z)?, which then impliesdimN(x� j X) � n� dim(a�Z) (5.32)where dim denotes the dimensionality of a set.On the other hand, for any � > 0x� � �(�x� x�) = (1 + �)x� � ��x= (1 + �)�x+ (1� (1 + �)�)�x =2 Zby the de�nition of �. Thus x� =2 riZ. So x� is in riF for some face F of Z (see[45, Theorem 18.2]) with dimF < dimZ = dim(a�Z)We now show that dimN(x� j Z) = n� dimFIn fact, x� is an extreme point of Z \ F?. Otherwisex� = �x1 + (1� �)x2where 0 < � < 1, x1; x2 2 Z \ F?. But given that x1; x2 2 Z, x� 2 ri[x1; x2],and x� 2 F , we conclude that x1; x2 2 F by the fact that F is a face of Z.Consequently, x1; x2 2 F \ F? = fx�g, a contradiction. Now that x� is anextreme point of Z \ F? dim(x�jZ \ F?) = dimF?



120where the normal cone is taken in F?, or equivalentlydim(N(x� j Z \ F?) \ F?) = dimF?with the normal cone taken in IRn. This in turn givesdimN(x� j Z) = dim(N(x� j Z \ F?) \ F?)= dimF?= n� dimFby virtue of (5.26). Combining this with (5.32)dimN(x� j Z) = n� dimF> n� dim(a�Z)= dimN(x� j X)which makes �B \N(x� j Z) � T (x�) = f(x�) +N(x� j X)impossible and hence contradicts (5.18). We therefore conclude that((a�Z) \X) n Z = ;or equivalently a�Z \X = Z Q.E.D.Theorem 5.15 Let Z be a sharp zero set of T , then Z is an exposed face of X,and furthermore Z = fxjx 2 X; hf(�x); x� �xi = 0g (5.33)for �x 2 riZ.



121Proof We �rst prove (5.33). Note that if Z = X, then (5.33) holds trivially. Sowe assume Z 6= X. Let S be the right hand side of (5.33), then Z � S is a directconsequence of Lemma 5.14 (see (5.30)).To prove S � Z, we notice that since �x 2 riZ,N(�x j Z) = fa�Zg?By the fact that Z is a sharp zero set�B \ fa�Zg? � T (�x) = f(�x) +N(�x j X) (5.34)for some � > 0. Considering that N(�x j X) � N(�x j Z) = fa�Zg?�f(�x) + �B \ fa�Zg? � N(�x j X) � fa�Zg?It follows that a�N(�x j X) = fa�Zg? and�f(�x) 2 riN(�x j X)For any x 2 X, we can writex� �x = �a�Z(x� �x) + �fa�Zg?(x� �x)where �L(�) denotes the linear projection onto a subspace L.Knowing that �f(�x) 2 riN(�x j X) � N(�x j Z) � fa�Zg?D�f(�x); �fa�Zg?(x� �x)E = h�f(�x); x� �xi � 0If x 2 X nZ, then x =2 a�Z by (5.31), hence we have �fa�Zg?(x� �x) 6= 0. In thiscase, we claim thatD�f(�x); �fa�Zg?(x� �x)E = h�f(�x); x� �xi < 0



122otherwise from �f(�x) 2 riN(�x j X) and �fa�Zg?(x � �x) 2 fa�Zg?, there existsan � > 0 such that �f(�x) + ��fa�Zg?(x� �x) 2 N(�x j X)and so D�f(�x) + ��fa�Zg?(x� �x); x� �xE � 0which is reduced toD�f(�x) + ��fa�Zg?(x� �x); �fa�Zg?(x� �x)E � 0by orthogonality between a�Z and fa�Zg?. But we assumed thatD�f(�x); �fa�Zg?(x� �x)E = h�f(�x); x� �xi = 0so we have 0 < � D�fa�Zg?(x� �x); �fa�Zg?(x� �x)E � 0a contradiction.Hence h�f(�x); x� �xi < 0 (5.35)for all x 2 X n Z. This proves (5.33). (5.33) and (5.35) show that Z is the setof maxima for the linear function h�f(�x); � � �xi over X and is hence an exposedface of X. Q.E.D.A stronger version of (5.33) turns out to be a su�cient condition as demon-strated by the following theorem.Theorem 5.16 Let Z = T�1(0). Assume thatZ = fxjx 2 X; hf(�x); x� �xi = 0g (5.36)for each �x 2 Z. Then Z is a sharp zero set of T .



123Proof We can actually writeZ = fx 2 Xj hf(z); x� zi � 0gfor any z 2 Z, which impliesN(z j Z) = coneff(z)g+N(z j X)Let F be the set of all faces of Z, then[z2ZN(z j Z) = [F2FN(F j Z)= [F2Ffconeff(z)g+N(F j X)gwhere z 2 riF . We can choose a �nite set of z 2 Z, and an � > 0 such that�B \ fconeff(z)g+N(F j X)g � f(z) +N(F j X) for all F 2 FThen �B \ [z2ZN(z j Z) = �B \ [F2F N(F j Z)= �B \ [F2Ffconeff(z)g+N(F j X)g� [F2Fff(z) +N(F j X)g� [z2Zff(z) +N(z j X)gi.e. Z satis�es (5.17). But Z is polyhedral, hence Z sharp zero set of T byTheorem 5.11. Q.E.D.
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