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Abstract

Both complementarity problems and variational inequalities are tools for expressing the

equilibrium conditions in diverse engineering and economic systems. They also play

an important role in constrained optimization problems, encompassing the optimality

conditions for linear and nonlinear programs and are necessary and sufficient conditions

for convex problems. This thesis is concerned with enhancing and designing solvers with

large-scale computing capability to process classes of the above two types of problems

respectively.

One aspect of this research aims at enhancing the efficiency and reliability of PATH,

the most widely used solver for mixed complementarity problems. A key component

of the PATH algorithm is solving a series of linear complementary subproblems with

a pivotal scheme. Improving the efficiency of the linear system routines (factor, solve,

and update) required by the pivotal scheme is the critical computational issue. We

incorporate two new options besides the default LUSOL package in PATH for such

functionality. One of the options employs the UMFPACK package for factor and solve

operations. UMFPACK is known to be both time and memory efficient in finding the

solution of large sparse sets of unsymmetric linear equations and it has been incorporated

as a built-in operator in MATLAB for this purpose. To provide the update operation to

this option, we implement a stable and efficient block-LU updating scheme, which can

also be combined with other factor and solve packages for more general use. This option

leads to a significantly more effective version of PATH for solving many large-scale sparse

systems. The other option exploits the COIN-OR utilities enhanced by adapting the
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linear refinement and scaling schemes used in the COIN-LP routines. This alternative is

motivated by COIN-LP’s better performance than the LUSOL-based MINOS/SNOPT in

solving linear programs. The COIN option is effective in solving smaller-scale systems

but less competitive on large-scale cases. These options are incorporated in the new

GAMS/PATH distribution.

As more variational inequalities have been recognized within applications such as

Nash equilibrium problems, electricity pricing and traffic equilibrium models, the need

for a robust large-scale variational inequality solver has grown more pressing. This

research therefore is also concerned with building a new large-scale affine variational in-

equality solver (PathAVI). Current methods for processing affine variational inequalities

involve transforming the problem into a linear complementarity problem and solving the

equivalent transformed problems using an existing complementarity solver. However of-

ten the original problem structure is lost during this transformation and in some cases,

the resulting problem is hard or even unsolvable for existing solvers. PathAVI is designed

to exploit the special structure of the underlying polyhedral set and is able to process a

class of models (formulated as AVIs) whose equivalent complementarity reformulations

cannot be processed by existing complementarity solvers. It constructs a piecewise lin-

ear path in the normal manifold associated with the polyhedral set to find a zero of

the normal map induced by the AVI. Theoretical justifications are given to show that

this algorithm is guaranteed to either find a solution or determine infeasibility in finite

number of steps for problems involving matrices that are copositive-plus with respect to

the recession cone of the polyhedral set. The central component of the algorithm is to

employ a pivotal strategy to construct the piecewise linear path. Therefore it critically

relies on linear system packages for its performance. Similar to the PATH case, sparse
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linear system packages and updating schemes are incorporated into the new solver and

comparisons among different basis options are presented. Development of this new solver

for solving affine cases is the key building block for a nonlinear variational inequality

solver. Extension of the PathAVI scheme to solving nonlinear variational inequalities is

proposed.

Finally, this research presents a MATLAB implementation for solving parametric

monotone linear complementarity problems. The problem is to consecutively solve a

sequence of linear complementarity problems as the parameter value varies over a feasible

range determined by the solution of two linear programs. The algorithm is based on

the Lemke’s method and underlying theoretical justifications are also given. Application

of this algorithm to portfolio selection and other problems is described in detail. Since

linear complementarity problems are equivalent to affine variational inequalities, instead

of solving a sequence of linear complementarity problems we can solve a parametric linear

complementarity problem as a sequence of affine variational inequalities. For certain

classes of problems, this alternative is potentially advantageous.
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Chapter 1

Introduction

Complementarity and variational inequality are often recognized as the first order opti-

mality conditions for linear and nonlinear programs. In fact the study of complemen-

tarity originated from the Karush-Kuhn-Tucker conditions in linear programming and

quadratic programming [54, 56]. Besides this feature, complementarity problems and

variational inequalities are closely related and are prominently used to express system

equilibrium. Some of the earliest studies of such properties and algorithm development

for solving these systems are associated with game theory [11, 57, 58], following which the

scope of complementarity and variational inequality expanded extensively to numerous

applications from engineering, economics and finance. A number of review documents of

these applications and developments have appeared over the years [10, 12, 28, 29, 36, 49].

Therefore there is a great deal of practical interests in developing robust and efficient

algorithms for processing these problems.

This research is mainly concerned with two classes of problems from the above cat-

egories, namely mixed complementarity problems and affine variational inequalities.

For mixed complementarity problems, a number of environments have been made

available for general users and researchers to express and solve such problems. For ex-

ample, modeling languages such as AMPL [41] and GAMS [3] provide natural facilities

for expressing mathematical programs including mixed complementarity problems; other
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tools such as MATLAB [60] and NEOS [13, 33] can also be used to represent comple-

mentarity relationships. The most widely used mixed complementarity solver, capable

of supporting all of the above environments, is called the PATH solver [22, 34]. PATH

is a generalized Newton method for solving mixed complementarity problems and has

been effective at solving relatively difficult problems (see, for example, [2, 69]). For

larger problems, however, the numerical linear algebra is inadequate to obtain good per-

formance. Therefore one aspect of this research is focused on enhancing the efficiency

and reliability of PATH. Since PATH essentially solves a linear complementarity problem

using Lemke’s method at each generalized Newton step, a key computational issue is the

efficiency of the linear algebra routines (factor, solve and update) required by the pivotal

method. We thus enhance PATH by incorporating new basis options containing these

necessary linear algebra routines based on efficient linear system packages and updating

schemes.

Current methods for processing an affine variational inequality problem are gener-

ally based on a transformation of the original problem into an equivalent linear com-

plementarity problem. The resulting problem is then processed by complementarity

solvers. This method encounters difficulties for certain classes of affine variational in-

equalities because the transformation to some extent ignores the underlying structure of

the original problem and generates an equivalent linear complementarity problem which

is much harder for existing complementarity solvers to process. Variational inequalities

(or equivalently generalized equations) are closely related to the well-known minimum

principle optimality conditions of linear and nonlinear programming. The advantage

of using variational inequalities to express the optimality conditions is clear if we con-

sider the constraint set as a geometric object, in that, a specifically designed variational

inequality solver will exploit this object explicitly. In the case of a complementarity
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reformulation, extra parameters are introduced. Therefore the transformation changes

the feasible set of the problem and expresses the original structure implicitly. From a

primal-dual perspective, a variational inequality solver only searches in the primal space

while a complementarity solver looks for solutions in an augmented primal-dual space.

Besides its use in expressing the optimality conditions of a single problem, variational

inequality is especially useful for applications concerning system equilibrium, where a

set of objectives need to be optimized at the same time, for example the Nash game

and electricity pricing models. Due to the above advantages of (affine) variational in-

equalities, more interest has been shown for a new solver specifically designed to exploit

the structure of such problems. Cao and Ferris proposed a scheme for solving affine

variational inequalities [5] based on a realization of a more general scheme due to Eaves

[25], which can also be considered as a generalization of Lemke’s pivotal method. This

method is further extended by Cao and Ferris in [4] to remove certain invertibility as-

sumptions made upon the problem matrix. Unfortunately, due to the reduction schemes

employed by this method, the solver, which is an implementation in MATLAB, is ineffi-

cient as the problem size becomes larger. Therefore this thesis is also concerned with the

development of a robust large-scale affine variational inequality solver, which is proven

to be able to process as wide a class of affine variational inequality problems as the Cao

& Ferris method does.

This chapter begins with the definition of the mixed complementarity problems to-

gether with a list of special cases in Section 1.1.1. The definition of affine variational

inequalities follows in Section 1.1.2 and the relationship between these two classes of

problems is then discussed in Section 1.1.3. A bimatrix game is given in Section 1.2.

It serves as an example for both classes of problems and also gives a more concrete

illustration to their relationship. Both methods for processing mixed complementarity
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problems and affine variational inequality problems rely heavily on their equivalent rep-

resentation as an unconstrained system of nonsmooth equations using the normal map

[24], and on the normal manifold [66] associated with their underlying set structures.

These notions are the topics of Section 1.3 and Section 1.4 respectively. Finally, Section

1.5 outlines the remainder of this thesis.

Before proceeding, we briefly explain some notation used in this thesis. We use I to

denote an index set. To avoid confusion, an identity matrix will be denoted by I. Index

sets named I and A are related to inactive and active constraint sets respectively.

1.1 Definitions

1.1.1 Complementarity

The Mixed Complementarity Problem (MCP) is defined by the set B := {z ∈
Rn| l ≤ z ≤ u} with bounds li ∈ R ∪ {−∞} and ui ∈ R ∪ {∞} such that li ≤ ui for all

i = 1, . . . , n, and a function F : B 7→ Rn. A vector z ∈ Rn is a solution of MCP (F, [l, u])

if and only if one of the following holds for each i = 1, . . . , n:

li ≤ zi ≤ ui and Fi(z) = 0

zi = li and Fi(z) > 0

zi = ui and Fi(z) < 0.

(1.1.1)

Note that if li = ui, then zi = li = ui is a fixed value and any Fi(z) satisfies (1.1.1).

We denote this relationship in short by

l ≤ z ≤ u ⊥ F (z),

where ⊥ is used to express orthogonality.

Special cases of mixed complementarity problems include:
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• System of Equations F (z) = 0, when B = Rn;

• Nonlinear Complementarity Problem, when B = Rn
+;

• Linear Complementarity Problem, when B = Rn
+ and F is affine, that is

F (z) = Mz + q

0 ≤ z ⊥ F (z) ≥ 0

with M ∈ Rn×n and q ∈ Rn.

Here Rn
+ is the positive orthant {z|zi ≥ 0 , i = 1, · · · , n}.

1.1.2 Variational Inequality

A Variational Inequality can be defined as follows. Consider a nonempty set C ⊂ Rn

and a function F := Rn 7→ Rn, V I(F, C) is to find a z ∈ C such that

〈F (z), y − z〉 ≥ 0, ∀y ∈ C. (1.1.2)

In this thesis we will only consider V I(F, C) with a continuously differentiable F over

a nonempty, closed and convex set C. In particular, we are mostly interested in solving

Affine Variational Inequality AV I(M, q, C) on a polyhedral set C, namely F (z) =

Mz − q is an affine map on set C = {z ∈ Rn|Bz ≥ b,Hz = h}. The study of the affine

case is important since it is the key building block of the nonlinear cases.

The variational inequality defined in (1.1.2) is equivalent to a Generalized Equa-

tion:

0 ∈ F (z) + NC(z), (1.1.3)

where NC(z) is the Normal Cone to C at z.

NC(z) :=




{x ∈ Rn| for each y ∈ C, 〈x, y − z〉 ≤ 0} if z ∈ C
∅ if z 6∈ C
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Take a simple example with the box constraints B := {z ∈ Rn| l ≤ z ≤ u}, the

normal cone to the set is then comprised of a Cartesian product:

NB(z) =
n∏

i=1

Ni(zi).

where each component depends upon the values of zi vis-a-vis its bounds li and ui:

Ni(zi) =





R if li = zi = ui

R− if li = zi < ui

{0} if li < zi < ui

R+ if li < zi = ui

∅ otherwise .

Here R− and R+ denote the negative and positive half lines respectively.

Let us consider a slightly more complicated example with a polyhedral set C = {z ∈
Rn|Bz ≥ b}. A Face Fi of set C is described by a set of Active Constraints associated

with some particular z value:

A := {j ∈ {1 · · ·n} |Bj,· z = bj},

where the subscript (j, ·) means the jth row of the matrix. Therefore face i of the set C
can be written as:

Fi = {z|BAz = bA, BIz ≥ bI},

where I is the complement of A. The normal cone to the relative interior of this face

can be described as:

NFi
= {−B>u|uA ≥ 0, uI = 0}.

The relative interiors of the faces form a partition of C. The normal cone to the set C
at a particular point z is thus

NC(z) = NFi
(z),
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where Fi is the face that contains z in its relative interior.

1.1.3 Relationship Between AVI and MCP

An affine variational inequality problem can be reformulated as an LCP, which is a

special case of the mixed complementarity problem listed above. To illustrate, we use

an affine variational inequality defined with F (z) = Mz − q and a polyhedral set C =

{z ∈ Rn|Bz ≥ b}. An equivalent linear complementarity problem to AV I(M, q, C) can

be constructed by introducing a variable u:

0 = Mz − q −B>u ⊥ z free

0 ≤ Bz − b ⊥ u ≥ 0.

This linear complementarity problem can be written in the form of an augmented gen-

eralized equation:

0 ∈




M −B>

B







z

u


−




q

b


 + NRn×Rm

+
(




z

u


),

with correspondingly an augmented set Rn × Rm
+ .

This transformation allows problems originally formulated as affine variational in-

equalities to be processed by existing linear or mixed complementarity solvers. However

it may sometimes be less desirable because the original structure of the polyhedral set is

lost and the transformed problem with an augmented and unbounded set may be harder

to solve. Therefore an algorithm specifically designed to exploit the original underlying

structure of affine variational inequalities is studied in this thesis.
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1.2 A Bimatrix Game

An interesting application arises from a simple case of Nash games, which is also known

as the bimatrix game: two players have I and J pure strategies and they determine the

probability with which each of their pure strategies is played to minimize their costs (or

maximize their profits), a so-called mixed strategy. The player’s mixed strategies are

denoted by p and q that belong to unit simplex 4I and 4J respectively. That is

4I = {p ∈ RI |
I∑

i=1

pi = 1, pi ≥ 0 ∀i}

and similarly for 4J . Furthermore, let their loss matrices be A ∈ RJ×I and B ∈ RI×J ,

where Aji is the cost incurred by the first player if he/she chooses pure strategy i and the

second player chooses pure strategy j, and Bij is the cost incurred by the second player.

The expected costs for the first and the second players are q>Ap and p>Bq respectively.

A Nash equilibrium is reached by the pair of strategies (p∗, q∗) if and only if

p∗ ∈ arg min
p∈4I

〈Aq∗, p〉 and q∗ ∈ arg min
q∈4J

〈B>p∗, q〉.

Combining the KKT conditions of both systems gives a mixed linear complementarity

problem as follows:

0 ≤ Aq − eIu ⊥ p ≥ 0

e>I p = 1 ⊥ u free

0 ≤ B>p− eJv ⊥ q ≥ 0

e>J q = 1 ⊥ v free

where eI and eJ are vectors of ones and u and v are scalar parameters.

A reduction method is generally used in the literature for solving this special instance,
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which considers the following standard linear complementarity problem:

0 ≤ Aq − eI ⊥ p ≥ 0

0 ≤ B>p− eJ ⊥ q ≥ 0.

The solution to the original game (p∗, q∗) is recovered by normalizing the solution (p◦, q◦)

obtained from the above reduced system:

p∗ =
p◦

e>I p◦
, q∗ =

q◦

e>J q◦
.

The AVI formulation of the optimality conditions on the other hand arises naturally

from this bimatrix game. We express the optimality conditions of the above set of linear

programs by generalized equations:

−Aq∗ ∈ N4I
(p∗) and −B>p∗ ∈ N4J

(q∗).

Therefore the corresponding VI is affine and can be written as:

0 ∈




0 A

B> 0







p

q


 + N4I×4J







p

q





 . (1.2.1)

Note that in more general settings, for example

min
p

θ1(p, q) min
q

θ2(p, q)

s.t. p ∈ K1 s.t. q ∈ K2

where the cost function θ1 contains other linear function terms that are only associated

with variable p (and similarly for θ2 with variable q) and K1, K2 are intersections of the

unit simplex with other polyhedral constraint sets. The optimality conditions expressed

as a KKT system is an augmented linear complementarity problem over an augmented

feasible set, to which the reduction method cannot be applied. The AVI formulation
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on the other hand still works on the original feasible set K1 ×K2. More generally still,

θ1 and θ2 could be convex functions of p and q respectively and K1 and K2 are convex

sets, and then solving V I(F, C) with

F :=



∇p θ1(p, q)

∇q θ2(p, q)


 , C = K1 ×K2

is equivalent to solving the game. Note that ∇ denotes the gradient.

When the number of players in a Nash game increases to 3 or more, the corresponding

complementarity and variational inequality formulations of its optimality conditions are

no longer affine. In general, Nash games are proven to be hard problems with complexity

PPAD-Complete [7, 8, 15, 16].

1.3 Normal Map

The Normal Map is defined as:

FC(x) := F (πC(x)) + (x− πC(x)) (1.3.1)

where F := Rn → Rn and C is a non-empty, closed, convex set. Note that πC(·) is the

Euclidean projection onto C, defined by

πC(x) = arg min
x
{||x− z||2 | z ∈ C}.

Both algorithms considered in this thesis process MCP and AVI problems by exploit-

ing their reformulations via normal maps, due to the following results.

Solving an MCP (F, [l, u]) is equivalent to finding a zero of the normal map with

C = [l, u] a box set, in particular we have

Theorem 1.3.1. Let MCP (F, [l, u]) be given, then the following hold:
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• if x ∈ Rn is a zero of the normal map such that

F[l,u](x) = 0,

then z := π[l,u](x) solves MCP (F, [l, u]);

• if z solves MCP (F, [l, u]), then x = z−F (z) is a zero of the normal map (1.3.1).

Solving an AV I(M, q, C) or its corresponding generalized equation (1.1.3) is equiva-

lent to finding a zero of its normal map with a polyhedral set C, in that

Theorem 1.3.2. Let AV I(M, q, C) be given, then the following hold:

• if x ∈ Rn is a zero of normal map, then z := πC(x) solves AV I(M, q, C);

• if z solves AV I(M, q, C), then x = z − (Mz − q) is a zero of the normal map

(1.3.1).

Note that the domain of the normal map (1.3.1) is the whole space, whereas the

original problem is defined over a subset in the whole space.

1.4 Normal Manifold

A key feature of the algorithms we employ in this thesis is their ability to exploit the

geometric structure of the underlying box constraint set in the mixed complementarity

problem case and polyhedral set in the affine variational inequality case. An important

notion is the Normal Manifold [66].

Let C ∈ Rn be a nonempty polyhedral convex set. As before, let {Fi|i ∈ F} be

the nonempty faces of C. The relative interiors of these faces Fi form a partition of

C. For i ∈ F, the normal cone NFi
is constant on the relative interior of face Fi. Let
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σi := Fi + NFi
, the normal manifold NC of C is comprised of the collection of these

polyhedral sets σi and it covers Rn. Each σi is called a cell of NC and NC is a subdivided

piecewise linear manifold of dimension n.

For example, when the feasible set is the positive orthant Rn
+, NRn

+
is comprised of

the orthants of Rn. In the case of a polyhedral set C = {z ∈ Rn|Bz ≥ b}, the normal

manifold NC covers the whole space, and the relative interiors of the faces Fi index a

partition of the normal manifold. In particular, each cell σi is generated corresponding

to the active set Ai that defines Fi and NFi
:

Fi = {z|BAi
z = bAi

, BIi
z ≥ bIi

},

NFi
= {−B>u|uAi

≥ 0, uIi
= 0}.

In addition, when the function F is affine, the normal map FC will agree in each cell

of the normal manifold with an affine map. Both algorithms for dealing with the com-

plementarity problems and affine variational inequalities essentially traverse the normal

manifold, as each pivot corresponds to entering a new cell and therefore changing the

affine map that currently represents the normal map. We show in the sequel the form

of these changes and how to implement them efficiently.

1.5 Outline

We have presented the definitions of the mixed complementarity problems and the affine

variational inequality problems and discussed their relationships, together with a bima-

trix game example from the application point of view. We also illustrated that a method

for processing these classes of problems is to solve their corresponding normal map equa-

tions, based on the properties of their associated normal manifolds.
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The remainder of this thesis is focused on the solvers for the two classes of problems,

namely the existing PATH solver for mixed complementarity problems and the new

PathAVI solver for affine variational inequalities.

Both solvers essentially involve a sequence of pivots, so a key component of the

solvers is a basis package which contains all the linear system routines (factor, solve

and update) required by the pivotal method. In order to enhance the performance of

both solvers, we consider a variety of basis package options supported by different linear

system packages. This is motivated by the work in enhancing the PATH solver, which is

the topic of Chapter 3. The descriptions of the basis package and the different options we

consider are contained in Chapter 2. In particular, LUSOL and two new basis options

(UMFPACK and COIN) for sparse systems, together with a Dense option for dense

systems are presented.

Chapter 3 gives a description of the PATH algorithm in more detail and docu-

ments our work in enhancing the efficiency and reliability of PATH. As mentioned

before, improving the efficiency of the basis package routines required by the pivotal

method is the critical computational issue. We compare the default LUSOL option in

PATH with two new options (UMFPACK and COIN). Computational results show that

PATH/UMFPACK option is more efficient than PATH/LUSOL at solving most large-

scale complementarity problems, whereas PATH/COIN is effective at solving smaller-

scale systems but surprisingly is less effective than the other options in solving large-scale

problems.

The new solver (PathAVI) for processing affine variational inequalities is the subject

of Chapter 4. It employs a path-following method originally proposed by Cao and

Ferris [5]. A review of the original Cao & Ferris method together with the underlying

theory is presented, which motivates the development of a new solver that is more
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appropriate for solving large-scale instances. As mentioned before, the solution path is

generated by a pivotal strategy similar to Lemke’s method. Therefore the new solver also

relies on the same basis packages for all the necessary linear system operations. This

feature constitutes an important factor in enhancing the efficiency of the new solver.

Performance of different basis options is compared.

In Chapter 5, we consider an application of the two classes of problems (mixed com-

plementarity problems and affine variational inequalities) in a slightly different context,

namely the solution of parameterized linear complementarity problems. In particular, a

sequence of related linear complementarity problems (and in some cases affine variational

inequalities) needs to be solved. We present in detail an implementation which solves

parameterized linear complementarity problems for all feasible values of the parameter

automatically, together with some theoretical justification.
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Chapter 2

Basis Packages

The main algorithms for processing both mixed complementarity problems and varia-

tional inequalities essentially employ a generalized Lemke’s method, which involves a

sequence of complementary pivotal steps. Therefore the key issue in both of the solvers

lies in factoring and solving linear systems of equations and performing rank-one updates

efficiently. We briefly illustrate these operations associated with the pivotal steps using

a simplified version of the mixed linear complementarity systems (3.1.6) in the main

PATH algorithm. The construction of this system will be described later in Chapter 3.

Mz(t) + q − w(t) + v(t)− (1− t)r = 0

0 ≤ w ⊥ z ≥ l

0 ≤ v ⊥ z ≤ u

z ∈ [l, u], w ≥ 0, v ≥ 0.

(2.0.1)

This system has a complementary triple (z, w, v) and it is parameterized by t ∈ [0 1].

The algorithm constructs an initial guess for the basis using the active set corresponding

to the starting point or the active set computed from the crash process (which will be

discussed in Chapter 3). The variables (z, w, v) are partitioned into three sets according

to the active set. Suppose the dimension of the problem is n,

1. W = {i ∈ {1, · · · , n} | z̃i = li and w̃i > 0}

2. V = {i ∈ {1, · · · , n} | z̃i = ui and ṽi > 0}
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3. Z = {1, · · · , n} \W ∪ V .

Since (z̃, w̃, ṽ) are complementary, W ∩ V ∩ Z = ∅ and W ∪ V ∪ Z = {1, · · · , n}.
Therefore we determine the initial basis by

• taking the Z column set from M , namely M·Z , associated with inactive z variables

(that is z strictly in between bounds);

• taking the W column set from −I, namely −I·W , associated with strictly positive

w variables;

• taking the V column set from I, namely I·V , associated with strictly negative v

variables.

In the end the initial linear system of equations corresponding to the above basis selection

is

[M·Z − I·W I·V ]




zZ

wW

vV




= −q + (1− t) r.

With an advanced (regular) start, the algorithm chooses a vector r to make the system

feasible with t = 0. We factor the initial basis in order to provide starting factors for

subsequent updates and to report possible singularities. We postpone the discussion of

the recovery of an invertible basis to Chapter 3. The algorithm then starts by letting

t enter the basis with the goal of increasing it to 1, which will correspond to a com-

plementary solution to the system (2.0.1). As t changes (increasing from 0 up to 1),

at each subsequent pivot, a basic variable hits its bound and leaves the basis, and its

complementary variable enters the basis. The above pivotal step is achieved by a column

replacement in the basis which requires rank-one update and solve routines. Explicitly,
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let {W̃ Ṽ Z̃} denote the new basic column set after a single pivot, the new basis matrix

can be expressed as follows:

[M·Z̃ − I·W̃ I·Ṽ ] = [M·Z − I·W I·V ] + ab>

where a is a column vector denoting the difference between the entering and leaving

basic columns and b is a unit vector representing the location of this update in the basis.

Similarly the main algorithm of the new AVI solver also requires factor, solve and update

functionalities for performing the pivotal scheme on its complementarity system. These

routines are contained in a basis package which is in part common to both solvers.

Section 2.1 describes the factor, solve and update operations in general and the func-

tions contained in the basis object. A variety of linear algebra packages are considered

as the providers. The details of their implementations in the basis package are discussed

in each of the following sections respectively.

2.1 Basis Operations

In order to solve a basis system Ax = b, an LU triangular factorization of A is often

performed, followed by forward and backward substitutions with triangular matrices in

finding the solution x. In many applications, instead of a single system, a sequence of

related systems needs to be solved, in which each A is subject to a rank-one modification

from its predecessor. The most important type of modification is a column replacement

in the basis. Besides its application in the complementarity pivots employed by the

solvers for processing MCPs and AVIs, column replacement is critical to a number of

other applications, including the simplex method for linear programming [14], reduced-

gradient method for linearly constrained optimization problems [70] and fixed-point

algorithms for solving nonlinear equations, etc. The central idea for solving a sequence
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of linear systems with rank-one updates efficiently is to modify the existing factors of

the initial basis subsequently instead of refactoring the new basis after each update. A

refactorization is only needed after a certain number of updates have been taken due to

accuracy and/or storage considerations.

Different approaches in performing efficient factor, solve and update operations for

linear systems have been studied. In the scope of this thesis we consider four basis

package options for providing certain functionality expressed via the following functions:

Basis Factor(): Factors the given basis matrix.

Basis Solve(): Uses the factors to solve a linear system of equations.

Basis Replace(): Replaces a column of the basis matrix.

Basis NumSingular(): Indicates the singular row(s) and column(s) of the basis matrix

when singularity is detected. The purpose of this operation is that when the initial

basis is singular, we can substitute the singular column(s) by column(s) from an

identity matrix to recover an invertible basis. This identity matrix corresponds

to a set of artificial variables added to the (mixed) linear complementarity system

that are fixed at zero. This addition will be illustrated later in Chapter 3 and

Chapter 4.

2.2 LUSOL

The LUSOL routines [44] are based on a Markowitz factorization and a Bartels-Golub

update [1, 64, 65]. They are used within optimization packages MINOS and SNOPT, and

complementarity packages MILES and PATH to provide linear algebra functionalities
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associated with the basis systems. The major functions provided by the LUSOL routines

are as follows:

Factor For a given sparse matrix Am×n, computes a factorization A = LU by Gaussian

elimination with a Markowitz pivotal strategy to choose permutations P and Q,

so that PLP ′ is lower triangular and P ′UQ is upper triangular (when m = n) or

upper trapezoidal (when A is rectangular).

Solve For a given vector bm, uses the LU factors to find a vector xn that solves the

linear system Ax = b.

Update Modifies L and U to obtain a new factorization A = LU when A is updated.

The updates include addition, deletion, replacement of a column or row of matrix

A and rank-one modification.

If matrix A is singular or ill-conditioned, the return status from the factorization

routine will indicate the detection of singularity. Since the dimensions and condition

of A are almost always reflected in U , the number of “apparent” singularities is taken

to be the number of the “small” diagonals of the permuted U . This number, together

with the positions of such elements, is also returned by the factorization routine. The

Basis NumSingular() routine is designed to use this information to determine the

corresponding singular row(s) and column(s) of A.

2.3 UMFPACK

UMFPACK is a set of routines for solving unsymmetric sparse linear systems [17, 18,

19, 20]. It is based on the unsymmetric multifrontal method and direct sparse LU
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factorization. The primary UMFPACK routines required to factorize A and/or solve

Ax = b are as follows:

Factor For a given sparse matrix A, performs a column preordering to reduce fill-in and

a symbolic factorization. Then performs a numerical factorization, PAQ = LU ,

PRAQ = LU or PR−1Q = LU , where R is a diagonal matrix of scale factors, P

and Q are permutation matrices, L is lower triangular, and U is upper triangular

or upper trapezoidal when A is rectangular, using the earlier symbolic ordering

and analysis.

Solve Solves a square sparse linear system Ax = b, using the numeric factorization

computed by factorization routines.

The UMFPACK package only provides the factor and solve functionalities required. In

our implementation of the UMFPACK basis option, we exploit a stable and efficient

block-LU updating method, proposed in [26] and [42]. This part of our C code is based

on a Fortran code LUMOD, originally developed by Saunders [68]. The implementation

of this updating routine can be combined with other factor and solve packages (besides

UMFPACK) and be used more generally in other linear system operations where such

functionalities are required.

2.3.1 Block-LU Update

A sequence of rank-one modifications in the form of column replacement occurs when

we perform complementary pivots. For the sake of simplicity, let us express the linear

system in a general form:

Hy = h, y ∈ B (2.3.1)
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with B a certain box set. Suppose H0 is the basis matrix corresponding to a basic

feasible solution of the above system (2.3.1), whose LU factorization is computed. At

each subsequent pivot a rank-one modification is made to the basis matrix. After a

certain number of updates, let Vk contain the columns from H that have newly become

basic since the factorization of H0; let Uk contain unit vectors representing the locations

of the columns being updated, with k referring to the number of columns in Uk. (Note

that k is not necessarily equal to the number of updates performed since the factorization

of H0.) Hence the above matrices have the following dimensions: H0 is n×n, Vk is n×k,

and Uk is n× k. The new basis matrix Ha can be expressed as

Ha = H0 + (Vk −H0Uk)U
>
k ,

and it is easy to see that the system Ha y = ha is equivalent to



H0 Vk

U>
k 0







y1

y2


 =




ha

0


 (2.3.2)

with the solution y = y1 + Uk y2.

The matrix in (2.3.2) has the following block-triangular factorization:



H0 Vk

U>
k


 =




H0

U>
k −Ck






I Yk

I


 ,

where

H0Yk = Vk, Ck = U>
k Yk.

The solution to (2.3.2), and hence Ha y = ha may be obtained by

H0w = ha,

Cky2 = U>
k w,

y1 = w − Yky2.
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All updating information is carried along via the Schur-complement Ck(= U>
k H−1

0 Vk)

and the matrix of transformed columns Yk. Rather than modifying the factors of H0,

we can now carry out the updates on the factors of a much smaller matrix Ck, which

has dimension k independent of the size of the original matrix H0. The LU factors of

H0 can be used without modification for many iterations.

In our implementation, the maximum size of Ck is set to be 100. As long as the

dimension of Ck doesn’t exceed this number, no refactorization is performed. (The

maximum size is set to be an option so that the user can modify this option to control

the refactorization frequency.)

Depending on which columns enter and leave the basis at each pivot, four different

types of updates to matrices Ck and Yk are performed:

Case 1 Add a row (r>) to U>
k , and add a column (w) to Yk, resulting in adding a row

and a column to Ck:

U>
k+1 =




U>
k

r>


 and Yk+1 = (Yk w)

Ck+1 = U>
k+1H0

−1Vk+1 =




Ck U>
k w

r>Yk r>w


 .

Case 2 Replace a column of Yk by w, and replace a column of Ck by U>
k w. Uk is

unchanged.

Case 3 Replace a row of U>
k by r>, and replace a row of Ck by r>Yk. Yk is unchanged.

Case 4 Delete a row from U>
k , and delete a column from Yk, resulting in deleting a row

and column from Ck.
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The updates of Ck are carried out on the LU factors of Ck, in a slightly different form:

LCCk = UC , where UC is an upper triangular matrix and LC is a square matrix. LC

and UC are stored as dense matrices, since the size of Ck is relatively small. At each

update, the method is able to maintain the dense factors of Ck efficiently using sweeps

of stabilized elementary transformations [9, 43]. Note that Uk is maintained as a vector

rather than in matrix from. In solving Cky2 = U>
k w, only a matrix-vector multiplication

with LC and U>
k w and a backward triangular solve with UC are required. Therefore the

updates can be achieved at a much lower cost than performing a full factorization at

every pivot. A detailed description of how to store Yk efficiently with dense and sparse

parts can be found in [26].

We denote the initial set of basic variables by B0 and its complement by N0, and

give a description of how the above update cases to Ck and Yk correspond to the types

of variables entering and leaving the basis.

• If the entering column (c) is from N0 and the leaving column is from B0, perform

Case 1 with r = ep and w = H−1
0 c, where ep is a unit vector corresponding to the

position of the leaving column from H0 and w is already available from the last

solve in finding the new direction.

• If the entering column (c) is from N0, and the leaving column is from N0, perform

Case 2 with the already available w(= H−1
0 c).

• If the entering column is from B0, and the leaving column is from B0, perform

Case 3 with r = ep.

• If the entering column is from B0, and the leaving column is from N0, perform

Case 4 with the corresponding row and column.
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After a number of iterations, the scheme performs a factorization of the current basis

Ha and redefines it to be H0.

When the matrix being factorized is singular or ill-conditioned, UMFPACK routines

do not provide the same singularity information (such as the number of apparent sin-

gular elements and their locations in U) as the LUSOL routines. Therefore the upper

triangular matrix U needs to be extracted from the object returned by UMFPACK to-

gether with the permutation matrices P and Q. Corresponding routines are supplied

to determine the singular row(s) and column(s) of the original matrix. The threshold

number used by LUSOL to determine “small” elements in U is adopted for the factors

obtained from the UMFPACK routines.

2.3.2 Extensions of Block-LU

The rest of this section is devoted to a description of how to extend the block-LU method

to perform extra types of updates, in particular deletion and addition.

As before, we start from an initial basis system H0 whose LU factors are available.

We consider the type of update where a column (q) and a row (p) need to be deleted

from H0 at the same time. Suppose the new reduced system after this deletion is

Hax = ha, (2.3.3)

the computation can be equivalently carried out by solving an augmented system:




H0 ep

e>q 0







y

z


 =




h̃a

0


 .

The bottom equation forces the qth element of y to be 0, which corresponds to the removal

of column q from H0. Adding epz to H0 is equivalent to adding an unconstrained scalar z
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to the pth equation, which essentially frees up the pth equation. Correspondingly, the pth

element in h̃a can take any scalar value and the rest of the elements in h̃a are the same

as those in the original ha. Therefore the remaining equations are equivalent to (2.3.3).

We can carry out a block-triangular factorization of the above augmented system in a

similar fashion to the block-LU method discussed before.

Solving a new system with a column (q) and a row (p) added to the previous system

H0 can be achieved by essentially attaching the row and column to the previous system

and therefore forming an augmented system naturally. A more extensive explanation of

the addition operation will be given in Chapter 4.

We postpone a detailed illustration of the corresponding updates to Ck and Yk to

Chapter 4, where it will be clear how these additional types of updates are induced by

our special treatment to the basis systems in that context. We still maintain Uk in vector

form, but in this case it contains both positive index number (which denotes the index

of an actual row from the original system) and negative index number (which marks the

position of a replaced or deleted column). Since the augmented rows may be actual rows

from the original system, the lower right-hand-side of the augmented system (2.3.2) may

contain nonzero element(s).

In summary, constructing special augmented matrices and extending the block-LU

method enable us to perform operations such as deletion and addition of a row and a

column at the same time.

2.4 COIN

The COIN-OR utilities [59] are a collection of open source utilities written in C++, which

support COIN-LP and many other optimization projects in the COIN-OR repository.
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Factor, solve, and update are contained in a set of “CoinFactorization” routines, based

on a Markowitz factorization and a Forrest-Tomlin update [40].

Factor For a sparse matrix A given as triplets, computes a factorization by exploiting

the “CoinFactorization::factorize” routines in the COIN-OR utilities. The factor

process starts from a sparse factor routine. Conditioning on the number of elements

in the selected pivotal row and column, the factor process continues in one of four

different sparse subroutines. At every pivot iteration, a check is performed in

order to determine whether to switch to a dense factor routine provided by either

a Fortran code from LAPACK (preferred) or the COIN-OR utilities.

Solve For a given vector b, uses the existing LU factors of A to solve Ax = b with the

“CoinFactorization::updateColumnFT” routine of the COIN-OR utilities. The

resulting solution vector is permuted by the permutation matrix from the above

factor routines.

Update Exploits the “CoinFactorization::replaceColumn” routine in the COIN-OR util-

ities to obtain a new factorization when matrix A is updated.

The COIN-OR utilities alone are able to provide the factor, solve and update function-

alities required by the basis package. To improve the accuracy and stability of COIN,

we adapted the linear refinement and scaling used by COIN-LP routines. These extra

procedures however may cost more solves and factorizations.

If matrix A is singular or ill-conditioned, the factorization routine will indicate the

detection of singularity on exit. The columns that are left unpivoted will be marked by

−1 in the permutation matrix (in vector form) returned. The Basis NumSingular()

and Basis GetSingular() routines are modified to exploit this information and deter-

mine the corresponding singular row(s) and column(s) of the matrix.
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2.5 Dense

Besides the three basis packages designed for sparse systems, another option is sup-

ported by a set of dense factorization utilities. The dense routines exploit the updating

procedure proposed by Fletcher and Matthews [39] and provide the following major

functionalities.

Factor For a given dense square matrix An×n, computes a factorization PAQ = LU by

Gaussian elimination with a complete pivoting strategy. The permutation matrices

P and Q are chosen so that L is unit lower triangular and U is upper triangular.

Solve For a given vector bn, solves the two triangular systems with the L, U matrices

using forward and backward substitutions to find a vector xn that solves the linear

system Ax = b.

Update Updates L and U in a stable manner to obtain a new factorization when a

rank-one update is performed on A.

Despite the simplicity of the dense routines, we do not recommend it in our applications

because we generally deal with large sparse systems, especially within the complementary

pivoting process. In the dense case, only the singularity message is returned, but no

actual Basis NumSingular() routine is supplied.

2.6 Summary

This chapter discussed the linear algebra operations, in particular, factor, solve and rank-

one update associated with the basis system. They are first coded in a basis package

in the PATH solver [34] and the efficiency of the basis package has a significant impact
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on the efficiency of both of the solvers we consider in this thesis. This will be discussed

further in the next chapter.

Descriptions of four interchangeable basis package options were given, amongst which

LUSOL is the original option set as the default in PATH. The motivations for consid-

ering other new basis options, namely UMFPACK and COIN, and their performance

comparisons will be given in the next chapter. More emphasis was given to the block-LU

updates, since the sparse linear factorization package UMFPACK alone does not provide

update routines and the extension of this method is essential to one of the basis options

employed by the new affine variational inequality solver. The extension scheme is sug-

gested by Saunders and also appears in the thesis of Huynh [50]. The use of this method

associated with the special basis structure of the AVI system is new to this thesis.
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Chapter 3

Linear Algebra Enhancements to

PATH

The PATH algorithm processes mixed complementarity problems by solving their corre-

sponding normal map equations using a nonsmooth Newton method [51, 52, 53]. It then

performs Lemke’s method [57, 58] to solve the resulting linear complementarity problem

after each linearization. More details of the PATH algorithm are provided in Section 3.1.

As discussed in Chapter 2, the pivotal scheme requires linear system routines (factor,

solve and update), which are contained in a basis package. LUSOL basis package is

the default option currently used by PATH for the factor, solve and update routines.

This chapter describes our experiences using two other options: UMFPACK and COIN.

Section 3.2 motivates exploring these new basis options by first providing some statis-

tics demonstrating that most of the computational effort in PATH is spent in the basis

package. We then show that UMFPACK package is considered as an alternative because

it is more effective than LUSOL for factoring and solving certain linear large-scale sys-

tems. We also present some successes obtained by the COIN-LP solver to motivate our

choice of the COIN-OR utilities as the other candidate for improving PATH. Computa-

tional results comparing the basis packages in PATH are given in Section 3.3. Finally,

Section 3.4 summarizes our conclusions.
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3.1 PATH Algorithm

PATH is a generalized Newton method for solving the normal map equation that is

globalized via a nonmonotone search using a smooth merit function. Because the merit

function is smooth, a steepest descent direction can be used when the search using the

Newton point fails to yield a new iterate satisfying the nonmonotone search criteria.

This algorithmic framework is well defined with global convergence and locally fast

convergence rates [30, 63]. The implementation contains the following parts:

1. Preprocess the mixed complementarity problem to fix variables, improve bounds,

and eliminate redundancy [35].

2. Identify an approximation to the active set at the solution using a crash technique.

3. Linearize the normal map at the current iterate. Solve the linearization by con-

structing a piecewise linear path between the current iterate and the solution.

Then search using the generated path to determine a new iterate satisfying the

nonmonotone search criteria.

Details for the crash method, forming and solving the linearizations, and the nonmono-

tone search criteria are given in the following sections.

3.1.1 Merit Function

When solving a nonlinear system of equations, a search along the Newton direction is

performed to find a new iterate that sufficiently decreases the chosen merit function

value. In the implementation of Newton’s method in PATH, this search uses nonmono-

tone descent criteria [31, 47, 48] with a watchdog technique [6]. The current default
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merit function is based on the Fischer-Burmeister function [38], φ : R2 → R, defined as

φ(a, b) :=
√

a2 + b2 − a− b.

Any zero of the Fischer-Burmeister function is known to satisfy the complementarity

conditions:

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

With this property, a general mixed complementarity problem in the form of (1.1.1)

can be reformulated into a system of equations Φ(z) = 0, with Φ : Rn → Rn defined

componentwise as

Φi(z) :=





φ(zi − li, Fi(z)) if −∞ < li < ui = +∞
−φ(ui − zi,−Fi(z)) if −∞ = li < ui < +∞
φ(zi − li, φ(ui − zi,−Fi(z))) if −∞ < li < ui < +∞
−Fi(z) if −∞ = li < ui = +∞
0 otherwise

for i ∈ {1, . . . , n}. The merit function is

Ψ(z) :=
1

2
‖Φ(z)‖2. (3.1.1)

The advantage of using Ψ over other classical merit functions such as the norm of the

normal map residual is that Ψ is continuously differentiable with gradient ∇Ψ(z) =

∂Φ(z)T Φ(z). Note that Φ is nondifferentiable in general; hence ∂Φ(z) is the generalized

Jacobian of Φ(z). Detailed formulas for calculating the gradient of the merit function

can be found in [30].
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3.1.2 Crash Method

The crash method is a way to compute a good active set. It is based on a projected

Newton method. First the active set at the initial point z0 = πB(x0) is identified. The

corresponding index set of variable z is denoted by A, where

A := {i ∈ {1, . . . , n}|{zi = li, Fi(z) ≥ 0} or {zi = ui, Fi(z) ≤ 0}}.

The Newton direction for a reduced system is then computed:

(∇FII(zk) + εI) dI = FI(zk), (3.1.2)

where I = {1, . . . , n}\A and ε is a perturbation parameter (see below). We then set

dA = 0 and compute an α ∈ (ᾱ, 1] such that the new iterate

zk(α) = (1− α)zk + απB(zk − d)

with the default line search or

zk(α) = πB((1− α)zk + α(zk − d))

with an arc search decreases the merit function

Ψ(z(α)) ≤





Ψ(zk)− σ∇Ψ(zk)T (zk − zk(α)),

if ∇Ψ(zk)T (zk − zk(α)) < 0

(1− ασ)Ψ(zk), otherwise

where ᾱ is a constant minimum step size and Ψ(z) defined in (3.1.1) is chosen as the

merit function. In solving the reduced system in (3.1.2), the perturbation parameter ε

is zero, unless the reduced matrix ∇FII(zk) is rank deficient, in which case we choose

a large enough ε such that ∇FII(zk) + εI is numerically nonsingular. Then ε is reduced

at subsequent crash steps based on the residual of the merit function. Since the crash
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method does not guarantee convergence, we terminate the process if any of the following

criteria is satisfied: the number of iterations exceeds a maximum value; the step length is

too small; not enough changes of the active set have been made consecutively for several

iterations; or the perturbation scheme is not successful. If the crash iterates manage to

converge to a small enough merit function value, the original MCP is solved solely in the

crash process. Some benefits of using the crash technique and its convergence properties

can be found in [23].

3.1.3 Linearization

Newton’s method for smooth functions linearizes the function at the current iterate

and solves a linear system of equations to obtain a direction. The normal map FB(x)

defined in (1.3.1) is nonsmooth, however, because of the projection operator πB(·), and

a linearization of FB(x) is not available. Rather, the following piecewise affine map

approximates the function around xk:

Lk(x) := (∇F (πB(xk)) + εI)(πB(x)− πB(xk)) + F (πB(xk)) + x− πB(x), (3.1.3)

with a perturbation parameter ε similarly defined and updated as in the crash procedure.

This approximation is solved by constructing a parametric piecewise linear path pk(t)

for t ∈ [0, T k], with T k ∈ (0, 1] satisfying

pk(0) = xk, (3.1.4)

Lk(p
k(t)) = (1− t)FB(xk). (3.1.5)

The Newton point xk
N is defined as pk(T k), which solves the linearization if T k = 1.

These conditions ensure that the path starts at the current point xk and the norm of

the approximation function decreases at least linearly in 1 − t on the path. Note that

p(t) may not be single valued because the path can make turns.



34

Instead of constructing the path directly using (3.1.4)–(3.1.5), a pivotal technique

is used to solve an equivalent linear mixed complementarity problem as follows. Let

z(t) = πB(x(t)), v(t) = (x(t) − z(t))+ and w(t) = (z(t) − x(t))+. Then, pk(t), can be

expressed as

pk(t) = z(t)− w(t) + v(t) ∀ t ∈ [0, T k].

Using the transformation above, together with the definition of the piecewise affine map

in (3.1.3), we can express (3.1.5) as

Mz(t) + q − w(t) + v(t) = (1− t)r,

where M = ∇F (πB(xk)) + εI, q = F (πB(xk)) − ∇F (πB(xk))πB(xk), and r = FB(xk).

In the actual implementation, we scale the covering vector r in the above equation by

a scalar s. We also augment the system by incorporating a vector of artificial variables

(a) to help construct an invertible basis under possible rank deficiency. In particular,

the linear complementarity problem becomes

Mz(t) + q − w(t) + v(t) + a− (1−t)(sr)
s

= 0

0 ≤ w ⊥ z ≥ l

0 ≤ v ⊥ z ≤ u

z ∈ B, w ≥ 0, v ≥ 0, a ≡ 0, t ∈ [0, 1].

(3.1.6)

A guess of the initial basis of the above system follows the active set approximation

resulting from the crash process. We rely on the factorization routines to detect possible

rank deficiency and identify linearly dependent rows and columns in the initial basis.

The basis is then defined appropriately based on the singularity information, so that the

system (3.1.6) has an invertible basis at the starting point. A pivotal technique similar

to Lemke’s method with specific entering and leaving pivotal rules can then be used to

construct the path. Each pivot leads to a new piece on the path. If, in the end, the
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pivots terminate with t leaving the basis at 1, the linear complementarity problem is

solved successfully, and the Newton point xk
N = pk(1) is generated from (z(1), w(1), v(1)).

When ray termination or cycling occurs, the path generation will terminate at a point

pk(T k) with T k < 1. More details on constructing an invertible basis and pivotal rules

can be found in [22] and [34].

3.1.4 Nonmonotone Search

The nonmonotone descent scheme implemented in the PATH algorithm distinguishes

among m-steps, d-steps, watchdog steps [6], and projected gradient steps.

The merit function value at the Newton point zk(Tk) is checked by a nonmonotone

descent criteria during m-steps. In particular, given a reference value R, the point is

acceptable if

Ψ(zk(Tk)) ≤





R− σ∇Ψ(zk(0))T (zk(0)− zk(Tk)),

if ∇Ψ(zk(0))T (zk(t)− zk(Tk)) < 0

(1− σ)R, otherwise

(3.1.7)

The reference value is decreased as the algorithm proceeds. If the Newton point satisfies

this criteria, we save it as a check point for use with the watchdog strategy. Every

time the check point is updated, the corresponding Newton point xk(Tk) comprising

(zk(Tk), w
k(Tk), v

k(Tk)) and the Newton point obtained at the next iteration (zk+1(Tk+1)

and xk+1(Tk+1)) are saved so that regeneration of the path will not be necessary if we

have to go back to this check point.

A d-step is acceptable if the Newton point zk(Tk) is close enough to the current point

zk(0). In particular, the point is accepted if

||zk(Tk)− zk(0)|| ≤ ∆
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and the merit function does not become too large, where ∆ is initialized to a preset value

and is decreased as the algorithm progresses. If, at the same time, the nonmonotone

descent criterion is satisfied, the current point is saved as a check point. If the d-step

conditions are not satisfied, the nonmonotone criterion is checked. Moreover, after every

n̄ d-steps, the nonmonotone descent criterion is checked.

If the nonmonotone descent criterion is violated in an m-step or if the merit function

value would increase too much over the current reference value when accepting a d-step,

a watchdog step is taken. The watchdog step retrieves the most recent check point

saved consisting of the four points zk̃(0), xk̃(0), zk̃(Tk̃), and xk̃(Tk̃) for some k̃. With

these points, a search is performed to find a new point satisfying the nonmonotone

descent criterion. The user can select to search along the line segment connecting the

two projected points

zk̃(α) = (1− α)zk̃(0) + αzk̃(Tk̃) (3.1.8)

or the projected arc connecting the two Newton points

zk̃(α) = πB((1− α)xk̃(0) + αxk̃(Tk̃)). (3.1.9)

In either case, we find a step length α ∈ (ᾱ, 1) iteratively such that

Ψ(zk̃(α)) ≤





R− σ∇Ψ(zk̃(0))T (zk̃(0)− zk̃(α)),

if ∇Ψ(zk̃(0))T (zk̃(0)− zk̃(α)) < 0

(1− ασ)R, otherwise,

(3.1.10)

where ᾱ is a constant minimum step size and R is the current reference value. The

default search type in the PATH solver is a line search.

If the step size in the search becomes too small without finding a point satisfying the

nonmonotone descent criterion, a monotone projected gradient step with our smooth
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merit function Ψ is taken as follows. We first move back to the best point, which is the

check point with the smallest merit function value, say k̄. Then a step length α ∈ (ᾱ, 1)

is determined such that

Ψ(zk̄(α)) ≤





Ψ(zk̄(0))− σ∇Ψ(zk̄(0))T (zk̄(0)− zk̄(α))

if ∇Ψ(zk̄(0))T (zk̄(0)− zk̄(α)) < 0

(1− ασ)Ψ(zk̄(0)), otherwise,

(3.1.11)

with

zk̄(α) = (1− α)zk̄(0) + απB(zk̄(0)−∇Ψ(zk̄))

when using a line search and

zk̄(α) = πB((1− α)zk̄ + α(zk̄ −∇Ψ(zk̄)))

when using an arc search. The default gradient search type in PATH is an arc search.

3.1.5 Summary

A summary of the main PATH algorithm is as follows:

PATH CODE

Step 1 Initialization: let z0, n̄ ≥ 1,4 = 4̄ > 0, β ∈ (0, 1) be given:

set k = 0, check point = 0, best point = 0; j = 0, b = 0,40 = 4,R0 = Ψ(z0).

Step 2 If Ψ(zk) = 0, stop.

Step 3 Update the perturbation parameter ε. Using the linearization approximation

Lk, apply the transformation and generate a path from zk to the solution of the

linear complementarity subproblem: [0, Tk] 7→ B, Tk ∈ (0, 1] satisfying (3.1.6).
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Step 4 If (k < check point + n̄) then

d-step:

if (||zk(Tk)− zk(0)|| < 4), the step is small enough; accept it:

set zk+1(0) = zk(Tk);

set 4 = 4 ∗ β;

if the nonmonotone descent criterion in (3.1.7) is satisfied,

update check point;

increment k and go to Step 2.

if Ψ(zk) > LargeConstant ∗ Rj,

perform a watchdog step;

else, the step is too big; perform an m-step.

else

m-step:

if the monotone descent criterion in (3.1.7) is satisfied with the reference value Rj,

accept the step:

set zk+1(0) := zk(Tk);

else perform a watchdog step:

set k = check point,4 = 4j;

if α ∈ (ᾱ, 1) can be found satisfying the condition in (3.1.10) with

reference value Rj, by conducting a line or arc search in (3.1.8)-(3.1.9),

set zk+1(0) := zk(α);
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else perform a projected gradient step:

set k = best point,4 = 4b;

find α ∈ (ᾱ, 1) satisfying (3.1.11);

update check point:

increment j; update Rj; set 4j = 4;

set check point = k + 1;

update best point if Ψcheck point < Ψbest point, by cloning the check point

info to the best point;

Step 5 Increment k, and go to Step 2.

At the beginning of Step 3, with zk ∈ B given, the initial values for wk and vk need to

be supplied. In other words, we need to calculate a corresponding xk, whose projection

is zk and which has the best normal map residual. We do so by solving the following

optimization problem (omitting the superscripts):

minw,v ||x− z + F (z)||

s.t. x = z − w + v

πB(x) = z

w ≥ 0, v ≥ 0, wT v = 0.

In practice, this problem is solved simply as





if zi ≤ li and fi > 0 xi = li − fi, wi = fi, vi = 0

else if zi ≥ ui and fi < 0 xi = ui − fi, wi = 0, vi = −fi

else xi = zi, wi = vi = 0
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for i ∈ {1, . . . , n}.
Some “safeguard” steps are omitted from the algorithm summary. For example, to

determine whether we should perform a watchdog step directly, we always check first if

the normal map function FB is defined at the newly generated point zk.

3.2 UMFPACK and COIN-OR Utilities

The key to obtaining efficiency in the PATH algorithm depends on solving a series of

subproblems in the form of linear mixed complementarity problems (3.1.6) using an

adaptation of Lemke’s method. We call each iteration of PATH a major iteration and

each pivotal step in solving the linear MCP a minor iteration. At each major iteration,

factorization of the current basis matrix, which corresponds to the active set at the

current point, together with rank-one updates (corresponding to the pivotal steps) is

required. In the crash procedure described before, a Newton system as in (3.1.2) needs

to be solved at each iteration, which also requires routines capable of factoring and

solving linear systems.

A test run on the MCPLIB problems with PATH/LUSOL suggests that on average,

74% of the total solving time is spent on factoring, solving, and updating linear systems.

Moreover, as we can see below, using a dynamic game (dyngame), the proportion of time

spent on these routines (contained in the basis package) increases significantly as the size

of the system grows. The dynamic game also provides better means for comparing the

performance of the LUSOL basis option with one of its alternatives – the UMFPACK

option.

Dynamic games are mathematical models of the interaction between independent
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agents controlling a dynamical system. Such situations occur in military conflicts, eco-

nomic competition, and parlor games such as chess or bridge. The actions of the agents

(also called players) influence the evolution over time of the state of the system. The dif-

ficulty in deciding what should be the behavior of these agents stems from the fact that

each action an agent takes at a given time will influence the reaction of the opponent(s)

at later times. The specific model considered here is a game played on a grid based on

the model of dynamic competition in an oligopolistic industry [27, 61]. This model has

been used extensively in applications such as advertising, collusion, mergers, technology

adoption, international trade, and finance and has become a central tool in analysis of

strategic interactions among forward-looking players in dynamic environments.

Here we present the formulation of this particular dynamic game (dyngame) as a

complementarity problem. Two firms are considered as players in a dynamic Cournot

competition with learning and investment. During a period of time, each firm can be in

one of S states, s = 1, 2, . . . , S, therefore forming a grid. In each period, the two firms

engage in quantity (output) competition. In particular, let qi denote firm i’s production

quantity for i = 1, 2. The total output is

Q = q1 + q2.

The price for a given total quantity is defined by a linear inverse demand function

P (Q) = A−Q,

where A is a scalar. Firm i’s production cost function is a quadratic function in this

model:

CPi(q) = a1q1 + q2
1.
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During each period, the firms choose q to maximize their profits f(q1, q2) defined as:

fi(q1, q2) = qiP (q1 + q2)− θi(a1qi + q2
i ), (3.2.1)

where parameter θi denotes firm i’s efficiency level which is computed based on the state

the firm is in.

The state of the game is the firms’ production costs. In the next period, each firm

is able to transit from the current state s to state s − 1, s + 1 or remain in s. The

dynamic setting obeys the “law of motion”, that is the state follows a controlled discrete-

time, finite-state, fist-order Markov process with transition probability Pr(s′|u, s), where

the ith component of s′ is si − 1, si + 1 or si for firm i in the next period and u(=

(u1, u2)) denotes the actions of the firms. In our example, we consider a special case

with independent transitions:

Pr(s′|u, s) = Pr1(s
′
1|u1, s1)Pr2(s

′
2|u2, s2),

with the action of firm i (ui) being its investment effort. Moreover the transition proba-

bility is a combination of the individual probabilities associated with the following three

forces:

Probability of Successful Learning : Current output may lead to lower production

cost due to successful learning.

Probability of Successful Investment : Firms can make investment expenditures

to reduce cost when successful.

Depreciation : Shock to efficiency may increase cost.

Suppose the investment expenditure is also quadratic:

CIi(ui) = biui + diu
2
i (3.2.2)
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for i = 1, 2. Let Vi(s1, s2) be the expected net present value (NPV) of firm i when the

firms are in the current states (s1, s2) respectively. Due to Bellmann equation [27, 61],

Vi can be written as:

Vi(s1, s2) = max
ui

{
fi − CIi + βEs′1,s′2{Vi(s

′
1, s

′
2)|u1, u2, s1, s2}

}
.

The first two components to the right-hand-side of the above equation are the profit

functions (3.2.1) and the investment costs (3.2.2) respectively. The last term is the

expected future costs and revenues in the next period discounted at a common rate

β < 1. The expectation can be computed by

Es′1,s′2{Vi(s
′
1, s

′
2)|u1, u2, s1, s2} = Σs′1,s′2 Pr1(s

′
1|u1, s1) Pr2(s

′
2|u2, s2) Vi(s

′
1, s

′
2),

where s′i can take values at si − 1, si + 1 and si.

The optimality conditions for this dynamic game can be written as

Vi(s1, s2) = fi − CIi + βEs′1,s′2{Vi(s
′
1, s

′
2)|u1, u2, s1, s2} ⊥ Vi(s1, s2) free (3.2.3)

0 ≤ −∇ui

{−CIi + βEs′1,s′2{Vi(s
′
1, s

′
2)|u1, u2, s1, s2}

} ⊥ ui ≥ 0 (3.2.4)

0 ≤ −∇qi
fi ⊥ qi ≥ 0 (3.2.5)

for i = 1, 2 and si = 1, . . . S, that is a total of 6S2 complementarity equations. In (3.2.4),

f is dropped when computing the derivative with respect to u, since it does not contain

u variables. The complementarity system in (3.2.5) denotes the optimality conditions

for maximizing the profits (3.2.1) over the output quantities.

Figure 1 is the nonzero structure of the initial basis matrix of the dyngame problem.

The size of the matrix is 1600 × 1600, with 16, 656 nonzero elements. Hence the basis

matrix is rather sparse, with density equal to 0.65%.

Figures 2 and 3 are the fill-in of the summations of the lower and upper triangular

matrices obtained from the LU factorization computed by the LUSOL factor routines
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Figure 1: Initial basis matrix of dyngame for γ = 1 and N = 20

Figure 2: L + U obtained from the LU
factorization by the LUSOL routine

Figure 3: L + U obtained from the LU
factorization by the UMFPACK routine
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and UMFPACK routines, respectively. LUSOL computes lower and upper triangular

matrices L and U which satisfy LU = PBQ, where B is the original matrix and P,Q

are the permutation matrices. The L and U matrices obtained from the UMFPACK

routines satisfy LU = PB̃Q, where P, Q are the permutation matrices and B̃ is the

original matrix after certain row scaling. The number of nonzero elements is 68, 203 in

Figure 2 and 66, 684 in Figure 3. Hence the densities of the matrices are 2.66% and 2.6%

in Figure 2 and Figure 3 respectively. The densities of the LU matrices resulting from

the two factorization routines are also similar when the size of the problem increases, as

seen in Table 1, where Dim is the dimension of the basis matrix and Nnz is the number

of nonzero elements in L + U .

Table 1: Density of the L + U Matrices from Factorization
Problem LUSOL UMFPACK

N Dim Nnz Density Nnz Density
20 1600× 1600 68,171 2.66% 66,684 2.60%
50 10, 000× 10, 000 587,112 0.59% 658,755 0.66%
100 40, 000× 40, 000 2,773,928 0.17% 2,778,235 0.17%

Table 1 shows that the densities of the resulting L + U matrices do not increase as

the size of the problem grows. However, the time taken to perform the basis package

functionalities when using LUSOL grows significantly with the increase of the problem

size, as seen in Table 2 (Basis is the time spent in the basis package routines; Total is

the total CPU time taken in the whole PATH code; Pct is the percentage of the total

time spent in the basis package), whereas a rather moderate growth in the time spent

in the basis routines is observed when using the UMFPACK package. Note that the

dyngame example is solved in the crash procedure alone, therefore only factor and solve

operations are involved. Table 2 again indicates that the major computational issue in



46

PATH lies in performing the basis routines efficiently, since most of the time is spent in

the basis routines. One might postulate that the dramatic time increase in the LUSOL

case is due to more irregular data access, but we have not demonstrated this rigorously

at this stage. Clearly, however, if we can carry out the basis routines efficiently, we are

potentially able to substantially improve the efficiency of the PATH algorithm.

Table 2: Time Spent in Basis Routines vs Total Time Taken in PATH
Problem LUSOL UMFPACK

N Basis Total Pct Basis Total Pct
20 0.13 0.18 72.2% 0.09 0.14 64.3%
50 2.66 2.99 89.0% 0.86 1.18 72.9%
100 16.55 17.92 92.4% 4.41 5.78 76.3%

COIN-OR is a collection of open source routines for solving linear, mixed integer,

nonlinear, and mixed integer nonlinear programming problems. It also contains basis

factorization utilities designed to support many of the projects in the COIN-OR reposi-

tory, including the COIN-LP solver. The results of solving several moderate-sized linear

programs (LPs) using different solvers are presented in Table 3. The size of each model

is given by its number of rows, columns, and number of nonzeros (Row, Col and Nnz ).

The CPU-seconds (Time) spent in solving these LPs using various LP solvers are pre-

sented under each solver name for comparison. The examples in Table 3 show that the

COIN-LP solver is comparable to the CPLEX solver, which is widely considered to be

the best LP solver. COIN-LP is also shown to be much more efficient than the MINOS

and SNOPT solvers, whose basis routines are supported by the LUSOL package. Since

COIN-LP depends on the COIN-OR utilities to process its linear systems, these results

lead to the assumption that the COIN-OR utilities may provide a more efficient basis

package than LUSOL. This assumption may fail, because the COIN-LP solver may rely
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on its pivotal scheme instead of linear system routines to achieve the efficiency exhibited

here.

Table 3: LP Examples
Problem Time

Name Row Col Nnz CPLEX COIN-LP MINOS SNOPT
storm 14388 34115 114974 0.61 1.25 15.19 16.45
pds-06 9882 28656 82270 0.24 0.34 18.68 19.29
pds-10 16559 48765 140064 0.56 0.71 155.94 126.14

3.3 Computational Results

The results obtained from using the LUSOL, UMFPACK, and COIN basis packages

on the dyngame problem are presented in Table 4. The problem size containing the

dimension of the basis matrix (Dim) and the number of nonzero elements (nnz ) is listed

in the first column of Table 4. We then report the time spent in the basis package

(Basis) corresponding to different data parameter γ, and the final residuals (Residual)

when using the LUSOL, UMFPACK and COIN options.

The CPU time spent in the basis package in Table 4 shows clearly that the UMF-

PACK basis package is significantly more efficient than LUSOL. The final residuals

suggest that the UMFPACK basis package leads to increased accuracy. Arguably, the

UMFPACK basis package also improves the reliability of the MCP solutions, not only

because of the reduced residuals, but also because for γ = 3 with N = 200 and N = 300

the time spent on LUSOL is significantly longer than for γ = 2, while experiences from

the rest of the smaller problems indicate that the case with γ = 3 should take a similar

amount of time to solve as with γ = 2, which is precisely the situation with UMFPACK.
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Table 4: Results of the dyngame Problem
Problem Size γ LUSOL UMFPACK COIN

Basis Residual Basis Residual Basis Residual

N = 20 1 0.13 2.8× 10−9 0.09 2.0× 10−9 0.17 2.0× 10−9

Dim = 2,400 2 0.14 3.6× 10−9 0.09 1.6× 10−9 0.17 1.6× 10−9

Nnz = 19,856 3 0.07 3.3× 10−9 0.08 9.7× 10−10 0.08 9.8× 10−10

N = 50 1 2.66 2.0× 10−8 0.86 2.0× 10−9 4.80 2.0× 10−9

Dim = 15,000 2 0.93 1.3× 10−8 0.55 1.6× 10−9 1.32 2.5× 10−9

Nnz = 127,616 3 0.86 4.8× 10−9 0.49 1.0× 10−9 1.34 1.0× 10−9

N = 100 1 16.55 6.9× 10−7 4.42 2.1× 10−9 ∗ ∗
Dim = 60,000 2 6.07 5.4× 10−7 2.03 1.7× 10−9 ∗ ∗

Nnz = 5,152,216 3 9.28 6.0× 10−9 1.87 1.1× 10−9 18.61 1.1× 10−9

N = 200 1 93.52 3.7× 10−7 23.48 2.4× 10−9 - -
Dim = 240,000 2 29.07 7.8× 10−8 8.72 1.9× 10−9 - -
Nnz = 2,070,416 3 92.88 1.5× 10−7 8.45 1.4× 10−9 135.8 1.4× 10−9

N = 300 1 258.8 2.8× 10−7 63.01 2.9× 10−9 - -
Dim = 540,000 2 69.41 3.0× 10−7 22.13 2.2× 10−9 - -
Nnz = 4,665,616 3 329.8 5.5× 10−7 21.72 5.3× 10−7 352.7 5.3× 10−7

The COIN basis package, on the other hand, is successful only in solving a subset of

the dyngame problems. For the instances marked with “∗”, COIN encounters accuracy

issues when solving the linear systems. For example, in solving the problem with γ = 1

and N = 100, the inf-norm of the residual from computing the first crash iteration is

checked. The residual obtained from using the COIN basis package is as big as 5.91×102,

whereas LUSOL solves the system with a residual equal to 1.88× 10−9, and UMFPACK

solves the system with a residual equal to 2.27 × 10−13. We report this error but do

not want to change COIN-OR source, so we can use the updated versions of COIN-OR

utilities as they are available. The problems marked with “−” are too big for COIN

to factor. On the successfully solved instances, COIN takes much more time than both

LUSOL and UMFPACK, especially as the problem size grows. The number of major,

minor, and crash iterations taken to solve each problem (successfully) is identical for all
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three basis packages.

Except the option setting for choosing among different basis packages, the default

settings have been used for all the problems in Table 4 but one. For the last problem

with N = 300 and γ = 3, the search type in the crash scheme is set to be arc search,

since the default line search with both basis packages takes enormous amount of time

to solve.

As expected, it is important to exploit sparse factoring and solving routines on the

dyngame problem rather than the dense basis routines. This is clearly seen from the

results in Table 5, obtained by solving dyngame with the dense basis option. The

Table 5: CPU Time Spent in the Basis Package for Solving dyngame Using Dense Option
Problem Size γ Basis Time Residual

N = 20 1 61.37 2.0× 10−9

Col/rows = 2,400 2 60.51 1.6× 10−9

Nnz = 19,856 3 51.63 9.7× 10−10

time taken by the dense option is hundreds of times slower than the sparse options

(UMFPACK and LUSOL). It takes more than 2400 CPU-seconds to solve the first crash

step of dyngame with N = 50; hence the time for solving larger size problems is not

shown.

The new basis packages are also tested on the MCPLIB [21] problems (1005 MCPs).

The models which all basis packages succeed or fail to solve are not reported here. Ta-

ble 6 only lists the models whose solution status is different for different basis packages.

The total number of solves with different starting points for each problem is listed in the

second column. Under each basis package name, the number of failures is shown. Com-

paratively, LUSOL has the most failures in solving these relatively difficult problems.

UMFPACK does slightly better than LUSOL. COIN has the fewest failures among the
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three options. The summation of CPU times (basis and total), together with the total

Table 6: Comparative Results on MCPLIB Models
Model No. of Solves LUSOL UMFPACK COIN
cgereg 22 1 1 0

duopoly 1 0 1 1
fixedpt 2 0 2 0
fried8 5 2 0 0
jiangqi 3 1 0 0

kyh 2 0 0 1
kyh-scale 2 1 1 0
pgvon105 6 1 0 0
pgvon106 6 1 1 1
tiebout1 2 0 1 0
tinsmall 64 0 0 1
venables 2 2 0 0

fails count 9 7 4

of the major and minor iteration numbers for solving this MCP test set is presented

in Table 7. In order to make the computation time comparable, only the problems

that are solved successfully by all the options are considered (972 MCPs). We set the

LUSOL statistics to be the base value (i.e., letting them be 100%) and compute the

relative ratios of the other options’ statistics to the base value. As we can see in Table 7,

LUSOL outperforms both UMFPACK and COIN slightly in time. However, since the

total time in solving these problems is under 2 minutes for all the basis options, both

UMFPACK and COIN are still comparable in time to LUSOL in dealing with these

relatively smaller-scale problems. Note that as we improve the numerical stability of

COIN by incorporating linear refinement and scaling process, COIN does achieve more

successes as shown in Table tab:diff but takes more solving time.

Table 8 contains all of the problems in MCPLIB whose sizes can be increased. The
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Table 7: Sum of Iterations and Time Spent on MCPLIB Problems
Basis Package Major (ratio%) Minor (ratio%) Basis (ratio%) Total (ratio%)

LUSOL 10110 (100) 188720 (100) 93.64 (100) 119.59 (100)
UMFPACK 10448 (103) 224354 (119) 102.46 (109) 135.97 (114)

COIN 11434 (113) 180530 (96) 107.69 (115) 133.03 (111)

CPU-seconds spent in the basis package using UMFPACK, LUSOL, and COIN in solv-

ing each instance are listed in Table 8. For most of these problems (bai haung, bratu,

dirkse2, dongbai, obstacle, and opt cont), as the problem size increases, the advantage

of UMFPACK in reducing the solving time over LUSOL becomes more significant. For

the other problem (bert oc), time reduction using the UMFPACK basis package is not

observed. Nevertheless, the UMFPACK basis package can be used as an alternative to

LUSOL without much loss of efficiency on this problem. The COIN option in general

takes more time than LUSOL except for the dirkse2 and dongbai problems. The COIN

basis time marked by ∗ suggests that COIN may have accuracy issues because it takes

different PATH steps from LUSOL and UMFPACK. COIN cannot process the problems

marked with “−” because the problems sizes are too big. For the largest instance of the

dongbai problem, UMFPACK essentially takes 19 Newton steps to solve (time marked

with “¦”), whereas LUSOL and COIN both take 20, which may suggest that UMFPACK

solves this system with better accuracy than LUSOL and COIN.

A closer examination of the distribution of the basis time taken by the UMFPACK

and LUSOL options is given in Table 9, in which we randomly generate three sets of

LCPs and total the basis time for each set. The two options take a similar number

of iterations to solve each LCP in the test sets. (The COIN option is not compared

here because, in general, it performs more solves and factors than the other options.)

Problem Set I is comprised of 50 LCPs of relatively smaller-scale (average number of
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Table 8: Comparative Results on Enlarged MCPLIB Problems
Test MCP Basis Time

Problem Name Size Density % LUSOL UMFPACK COIN
bai haung 4,900 0.10 0.10 0.04 0.18

19,600 0.03 1.25 0.21 15.70
78,400 0.01 9.16 1.06 552.07
313,600 0.00 103.47 6.12 -

bert oc 5,000 0.05 0.02 0.05 0.02
50,000 0.01 0.29 0.56 0.44
500,000 0.00 5.56 8.47 26.91

bratu 5,625 0.09 0.95 0.54 2.33
22,500 0.02 16.60 5.29 97.54
90,000 0.01 278.58 49.71 5918.56∗

dirkse2 64,001 0.00 29.45 17.90 26.52
216,001 0.00 395.49 261.64 363.42
512,001 0.00 2287.89 1461.80 2181.53

dongbai 7500 0.08 4.64 0.60 2.21
14,700 0.04 51.97 2.59 43.89∗

30,000 0.02 658.19 10.42¦ 255.01
opt cont 288 5.59 0.002 0.007 0.005

8,192 0.21 0.12 0.17 0.15
32,032 0.05 0.57 0.76 0.82
160,032 0.01 5.17 4.95 9.27
320,032 0.01 17.32 12.52 30.66
480,032 0.00 31.47 22.51 -

obstacle(1) 10,000 0.05 0.33 0.31 0.64
(2) 0.85 0.39 1.40
(3) 0.67 0.63 1.45
(4) 0.75 0.64 36.46∗

(5) 0.87 0.35 1.69
(6) 1.25 0.65 154.19∗

(7) 1.06 0.59 29.08∗

(8) 1.17 0.43 3.05
obstacle(1) 40,000 0.01 5.61 3.16 22.98

(2) 8.74 3.54 48.76
(3) 11.28 5.65 3402.44∗

(4) 12.15 5.65 1746.77∗

(5) 8.39 2.62 52.92
(6) 31.46 9.00 262.90
(7) 18.34 5.74 2272.43∗

(8) 10.69 2.44 120.46
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cols/rows = 1168) and higher density (average density = 4.5%). While LUSOL spends

slightly more time in the factor and update routines, its speed in the solve routines

outweighs the other statistics and makes it more efficient than UMFPACK. When the

problem size increases in Set II (20 LCPs with average number of cols/rows = 3795

and density = 4.4%), the advantage of UMFPACK over LUSOL in factor and update

routines becomes more significant, and it outperforms LUSOL. The problems in Set III

are generated with the same size as Set II problems but with reduced density (of 0.3% on

average). For these systems, LUSOL works better than UMFPACK because the factor

time taken by these two options is comparable, and even though LUSOL takes more

time performing updates, it is much faster in its solve routines. Similar observations are

obtained of the distribution of the basis time with the MCPLIB problems. In particular,

LUSOL spends 82%, 13%, and 5% of basis time in factor, update, and solve routines,

where UMFPACK spends 51%, 4%, and 45% of basis time in these routines, respectively.

Table 9: Distribution of Basis Time for Randomly Generated LCPs
LUSOL UMFPACK

Set Factor/Update/Solve Basis Time Factor/Update/Solve Basis Time
I 22.89/7.00/2.26 32.15 17.24/1.67/20.66 39.57
II 821.16/642.69/47.75 1511.61 172.59/88.18/324.08 584.85
III 1.11/11.14/2.86 15.08 1.86/4.39/33.56 39.77

3.4 Summary

We have shown that incorporating the UMFPACK package as an alternative to the

LUSOL basis package in PATH improves the solution of large-scale problems in that
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the time spent in the basis package (hence in the overall program) is reduced and the

reliability or accuracy of the solution is increased. This advantage is most significant

when the solution process is dominated by the crash procedure. However, on general

sparse problems requiring large number of pivots in the complementarity subproblems

(such as the LCP examples) or on small problems, the LUSOL basis package tends to

be more reliable and more efficient than UMFPACK, in part due to the efficiency of

the solve routines in LUSOL. Therefore, the LUSOL basis package remains the default

basis option in the PATH code. Nevertheless UMFPACK is still comparable to LUSOL

in these cases and its large-scale computing capability does not cost us much loss of

efficiency.

The alternative of using the COIN basis package is motivated by COIN-LP’s better

performance than the LUSOL-based MINOS/SNOPT in solving LPs. In solving the

MCPLIB problems, the COIN basis package is the most effective of the three options in

the number of successes with the help of the linear refinements and scaling procedures.

The trade-off, however, is an increase in the solution time. It is possible that utilizing

these methods more generally within PATH would improve robustness with other basis

routines. In solving large-scale systems, COIN is less efficient than LUSOL and UMF-

PACK; and for several large instances, we observe numerical instability with COIN. As

an open source code, COIN-OR utilities have the advantage of being under constant

modification and improvement. Hence we believe that the COIN has the potential to

perform better in the future.

Our purpose in enhancing the PATH solver is to solve general MCPs with better ef-

ficiency and not for any specific structured MCPs. Therefore it is advantageous to have

interchangeable basis packages in PATH, since their performances vary with different
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problem characteristics. The new options are based on open source linear system pack-

ages. The basis package structure in PATH allows easy updates to the newest version of

these packages as they are available, without having to change either the PATH source

or the linear system packages.
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Chapter 4

A New AVI Solver

We have shown in Chapter 1 the relationship between AVI and complementarity prob-

lems: any AVI can be reformulated as a linear complementarity problem. However, this

conversion may at times make the resulting LCP harder for currently available LCP or

MCP solvers to solve. Therefore it is important to design a new solver (PathAVI) which

is able to exploit the structure of the original AVIs. We first show several examples that

motivate the development of the new solver in Section 4.1. The new solver is based on

a scheme originally proposed by Cao and Ferris [5], which was further extended in [4].

Section 4.2 gives a brief description of Cao & Ferris algorithm, together with some key

results of its termination properties. Unfortunately Cao & Ferris method becomes cum-

bersome as the problem size grows larger. Therefore it is important that the new solver

is designed to be efficient at solving large-scale problems. Section 4.3 gives a detailed

description of the implementation of the new solver and some theoretical justifications

underlying this scheme. Since a key issue of our solver is to have an efficient linear

system package to implement the pivotal scheme, we devote the rest of Section 4.4 to

a description of a number of different options for performing necessary linear algebra

functionalities. Computational results with comparisons between different basis options

are presented in Section 4.5. Finally, we conclude this chapter with some discussion on

an algorithm framework for general nonlinear variational inequalities as an extension of

PathAVI.
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Before proceeding, we give a few words about a basis of a vector space used in this

chapter. It is defined as a linearly independent subset of the vector space that spans (or

generates) the vector space.

4.1 Motivation

We know from the discussion in Chapter 1 that an affine variational inequality problem

(AVI) can be expressed in terms of a generalized equation as follows:

0 ∈ Mz − q + NC(z), (4.1.1)

with M ∈ Rn×n and C = {z |Bz ≥ b}. This problem can be reformulated as a linear

complementarity problem by introducing a variable u:

0 = Mz − q −B>u ⊥ z free (4.1.2)

0 ≤ Bz − b ⊥ u ≥ 0. (4.1.3)

We also mentioned in Chapter 1 that this transformation is sometimes less desirable

especially when the underlying polyhedral set of the original AVI is bounded. This

situation happens for example when we express the first order optimality conditions for

a quadratic program:

min
z

1

2
z>Mz − z>q

s.t. z ∈ C := {z|Bz ≥ b}, bounded,

using an AVI:

0 ∈ Mz − q + NC(z).
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The new AVI solver (PathAVI) is able to exploit the structure of C and only generates

feasible points in the bounded set. Moreover, PathAVI is proven (in the following sec-

tions) to be able to process AVIs associated with copositive-plus matrices with respect to

the recession cone of C, and hence is guaranteed to solve AVIs over a bounded polyhedral

set. The LCP formulation of the optimality condition on the other hand is

0 ∈




M −B>

B







z

u


−




q

b


 + NRn×Rm

+







z

u





 , (4.1.4)

which is over an unbounded set Rn×Rm
+ and is harder to solve (requiring more restrictive

properties on M) for existing LCP solvers. We have discussed and shown by Nash

equilibrium problems in Chapter 1 that AVI is preferably used to express many standard

problems arising from applications where system equilibrium is the concern.

We now present a few concrete AVI examples to compare the PathAVI solver on

the original AVIs and PATH on their LCP reformulations. We start with a simple AVI

example with

M =



−2 1

1 −2


 , q =




1

1


 , B =




1 0

0 1

−1 −1




, b =




0

0

−1




.

Note that the polyhedral set is a unit simplex and hence bounded. PathAVI is able to

solve this problem in 3 pivots. This AVI can be reformulated equivalently as a standard

LCP:

0 ≤ Mz − q −B>
3·u ⊥ z ≥ 0

0 ≤ B3·z − b ⊥ u ≥ 0,

with B3· being the 3rd row of matrix B. When processing the above LCP using the

traditional Lemke’s Method, the scheme determines a ray termination and fails to find
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a solution. With the more effective PATH solver however, a solution to this LCP is

obtained also in 3 pivots. The advantage of PATH over the traditional Lemke’s method

is in part due to the fact that PATH does an advanced (regular) start instead of a

standard all slack ray start.

A few more slightly bigger AV I(M, q, C) examples are generated to show that the

LCP transformation of certain classes of AVIs makes the problem harder to solve. The

AVIs are constructed with Mn×n symmetric and having approximately 20% negative

eigenvalues. The underlying polyhedral sets are generated as bounded sets, where B

has dimension m × n. Table 10 lists the results of comparing the PathAVI solver on

the original AVIs with the PATH solver on their equivalent LCP reformulations. Status

indicates whether the solver succeeds (S) or fails (F) to solve the problem instance.

Iter is the number of pivots taken. Time is the CPU-seconds spent on the problems. In

general, PathAVI and PATH take similar amount of iterations. For the problems marked

by ∗, PathAVI takes significantly fewer pivots than PATH on their LCP reformulations.

The highlighted cases suggest that PATH fails to solve the LCP reformulations after

a huge number of iterations (it terminated in both cases due to exceeding an iteration

limit), while PathAVI solves these problems quite effectively.

Table 10: PathAVI on AVI vs PATH on Their LCP Reformulations
PathAVI PATH

Size (m,n) Status Iter Time Status Iter Time
(180, 60) S 48 0.005 S 56 0.013

S 83 0.006 S 148 0.02
S 103∗ 0.008 S 1816∗ 0.11
S 193 0.03 F 10176 0.88

(360, 120) S 183∗ 0.05 S 5986∗ 1.01
S 263 0.06 S 86 0.05
S 148 0.04 S 167 0.08
S 1516 0.36 F 10594 2.33
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It is clear from the above examples that it is necessary to develop a new solver

designed to exploit the underlying structure of affine variational inequalities.

Furthermore, the above transformation between AV I(M, q, C) and the linear comple-

mentarity problem (4.1.4) is a special case of a reduction method proposed by Robinson

[67]. In general, the reduction method can be applied to variational inequalities having

the following form:

0 ∈




0 A

−A> 0







p

y


 +



−d(p)

f


 + NP×Y







p

y





 , (4.1.5)

where A is an m × n matrix, f ∈ Rn, d(p) ∈ Rm, and where P and Y are nonempty

polyhedral convex subsets of Rm and Rn respectively.

Assuming that Y is a cone and Y ◦ is the polar cone of Y :

Y ◦ = {y∗ | 〈y∗, y〉 ≤ 0, ∀y ∈ Y }.

Let Z = {p |A>p − f ∈ Y ◦}. The solution to the above variational inequality (4.1.5)

can be equivalently obtained by solving the following reduced generalized equation of p:

0 ∈ −d(p) + NP∩Z(p),

and recovering y from the corresponding normal cone expression.

The linear complementarity problem in (4.1.4) can be written as:

0 ∈




0 −B>

B 0







z

u


 +




Mz − q

−b


 + NRn×Rm

+







z

u





 .

Therefore by letting −d(p) = Mz − q, f = −d, P = Rn and Y = Rm
+ , this problem can

be reduced to the original AVI 4.1.1:

0 ∈ Mz − q + NC(z).
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This reduction method can be applied to more general variational inequalities in

the form of (4.1.5) with Y a cone, and is not limited to complementarity problems over

orthant Rm
+ . It is able to achieve large reductions in numbers of variables, hence reducing

the search space for solutions. (An even more general reduction scheme not restricted to

Y being a cone is also proposed in [67].) Once again the reduction method suggests that

it is worthwhile developing a new solver for solving variational inequalities over general

polyhedral sets, since methods restricted to complementarity formulations are incapable

of taking advantage of this reduction procedure.

4.2 Cao & Ferris Method

Cao & Ferris algorithm [5] is the basis for building the new solver. The central idea of

the scheme contains the following stages:

Stage I Remove possible lines in the polyhedral set using a factorization procedure.

Stage II Construct an extreme point (xe), and reduce the problem further by removing

equality constraints.

Main Algorithm Assuming the resulting AVI from the first two stages can be ex-

pressed via a normal map reformulation as follows:

MC(x) = 0

C = {z ∈ Rn|Bz ≥ b},

where MC(x) = MπC(x)− q +x−πC(x) is the normal map, choose a vector e from

the interior (int) of NC(xe) and construct a piecewise-linear (n + 1)-manifold M
in Rn+1 by forming the Cartesian product of each cell of the corresponding normal
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manifold NC with R+. Define a piecewise linear (PL) function F : M→ Rn by

F (x, µ) = MC(x)− µe. (4.2.1)

We apply the algorithm of Eaves [25] to the PL equation F (x, µ) = 0, using a ray

start at (w(µ), µ), with w(µ) defined as

w(µ) = xe + (q −Mxe) + µe.

For large positive µ, w(µ) lies interior to the cell {xe + NC(xe)} of NC. The

algorithm then proceeds in the direction (−e,−1) until it either generates, in

finitely many steps, a zero (x∗, µ∗) of the PL function F (x, µ) with µ∗ = 0, or

determines infeasibility. In the first case it is clear that x∗ satisfies MC(x∗) = 0,

hence solves the original AVI.

More details of these parts are presented in the rest of this section, together with

some discussion on the properties of the algorithm. We start by assuming a general

formulation of AV I(M, q, C) with

C = {z ∈ Rn|Bz ≥ b,Hz = h}.

4.2.1 Stage I

As explained in [66] (Proposition 4.1), we compute the basis for the lineality space of C
defined as

linC = ker




B

H


 ,
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by performing a QR factorization. Suppose [W V ] denotes its basis and its orthogonal

complement, the reduced problem after removing lines is AV I(M̃, q̃, C̃) where

M̃ = U>MU, q̃ = V >(I−MZ)q,

C̃ = {z̃|B̃z̃ ≥ b, H̃z = h}, B̃ = BV, H̃ = HV,

and

Z = W (W>MW )−1W>, U = (I− ZM)V.

We consider the original solution pair expressed as (x, z), where x is a zero of the normal

map, and z = π(x) is the solution to the AVI. They can be recovered from the solution

(x̃, z̃) to the reduced problem by

xl = Z(q −MV z̃)

x = xl + V x̃

z = xl + V z̃.

Note that in order for Stage I of Cao & Ferris method to work, a necessary condition

is that W>MW is invertible, i.e. the matrix M is invertible in the lineality space of C.

Otherwise, a different scheme needs to be exploited [4], which will be discussed further

later.

4.2.2 Stage II

In Stage II, the algorithm tries to find an extreme point z̃e in C̃, that is a basic feasible

solution of the following system:



B̃ −I
H̃ 0







z

s


 =




b

h


 , s ≥ 0, z free.
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The reduction in Stage I guarantees full column rank of




B̃

H̃


 and this matrix is usually

nonsquare (with more rows than columns). In finding a basic feasible solution, a QR

factorization is computed, followed by a sequence of updates to the resulting QR factors.

In particular, the following auxiliary problem is constructed

min
z,zaux,s

zaux

subject to




B̃ −I
H̃ 0







z

s


 +







b

h


−




B̃

H̃


 y∗


 zaux =




b

h




s ≥ 0, z free, zaux ≥ 0.

Note that by letting y∗ = [1 · · · 1]>, z = [1 · · · 1]>, zaux = 1, s = 0 constitute an initial

feasible point for this problem, with basic variables (z, zaux). A QR factorization of

the corresponding initial nonsquare basis matrix needs to be computed (instead of an

LU factorization on a square system). The algorithm then proceeds by performing the

revised simplex method on the above linear program. At each pivot, the dual variable

and the incoming column are computed in the least square sense using the currently

available QR factors; and the basis matrix is then updated either by a rank-one update

to the QR factors or by adding a column to the factors. The details of this updating

technique can be found in Golub and Van Loan [45].

After acquiring an extreme point z̃e (with zaux = 0 at the solution of the above linear

program), Cao & Ferris algorithm reduces the problem further by forcing the iterates to

lie in the affine space generated by the equality constraints. In particular, it finds the

basis Y for ker(H̃) by a QR factorization, then reduces the problem to AV I(M̄, q̄, C̄)

with

M̄ = Y >M̃Y, q̄ = Y >(q̃ − M̃z̃e)
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and

C̄ = {z̄ | B̄z̄ ≥ b̄}, B̄ = B̃Y, b̄ = b− B̃z̃e.

This process retains the full column rank property of B̄ after the transformation and an

extreme point of the new set C̄ is z̄e = 0 ([5]). The solution pair (x̃, z̃) prior to Stage II

can be recovered from the solution (x̄, z̄) to AV I(M̄, q̄, C̄) by

x̃ = z̃e + Y x̄

z̃ = z̃e + Y z̄.

4.2.3 Main Algorithm

Stage I and II ensure that at the beginning of the main algorithm, the reduced AV I(M̄, q̄, C̄)

is over a polyhedral set containing no lines, having an extreme point and only inequality

constraints. In this section, we focus our discussion on the implementation of the Main

Algorithm outlined previously, where a path is generated using a pivotal scheme. From

here on we drop the “bar” notation on variables x and z, but they are in fact contained

in a reduced space rather than the original problem space.

Here we are concerned with solving the PL equation F (x, µ) = 0 defined in (4.2.1),

which can also be expressed as

x− z + M̄z − q̄ − µe = 0. (4.2.2)

We start the path from the cell σ1 = FA + NFA of the normal manifold associated

with C̄. It is defined by the face containing the extreme point z̄e in its relative interior.

In particular, the corresponding active set A is used to defined the face FA and normal

cone NFA .



66

Based on Lemma 3.4 from [5], the interior of NC̄(z̄e) is not empty due to the fact that

B̄ has full column rank. Therefore a point e can be chosen from the interior of NC̄(z̄e).

Since NC̄(z̄e) can be expressed as

{−B̄>
Au |u ≥ 0},

for uniformity and concreteness, we choose

e = −B̄>
A




1

...

1




.

A better choice of e may be a topic of interest in future research.

A piece of the path contained in σA can be expressed as (x, z, uA, sI , µ) satisfying

B̄Az = b̄A

B̄Iz − sI = b̄I , sI ≥ 0 (4.2.3)

x− z = −B̄>
AuA, uA ≥ 0

µ ≥ 0.

By combining equations (4.2.2), (4.2.3) and removing the x variable, we have:

M̄z − q̄ − µe = B̄>
AuA + B̄>

I uI

B̄Az − sA = b̄A

B̄Iz − sI = b̄I

µ ≥ 0, uA ≥ 0, uI = 0, sI ≥ 0, sA = 0.

We add the variables that are set to zero for completeness. As we move along the

direction of (−e,−1), the path changes its direction whenever it enters a new cell, which

corresponds to a complementary pivot on the (u, s) pair.
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The system is further reduced by considering the first cell corresponding to the

extreme point and substituting z by the following expression:

z = B̄−1
A (sA + b̄A).

In the end we are able to apply Lemke’s method on the following complementary prob-

lem:

M̄B̄−1
A (sA + b̄A)− q̄ − µe = B̄>

AuA + B̄>
I uI

B̄IB̄−1
A (sA + b̄A)− sI = b̄I

µ ≥ 0, uA ≥ 0, uI = 0, sI ≥ 0, sA = 0

0 ≤ u ⊥ s ≥ 0.

4.2.4 Property of the Algorithm

To summarize, we present some definitions and cite some theoretical results on the

termination properties of this algorithm.

We first introduce some extensions of certain matrix classes by defining them with

respect to a cone.

Let K be a given closed convex cone. A matrix A is said to be copositive with

respect to K if

z>Az ≥ 0, ∀z ∈ K.

A matrix A is said to be copositive-plus with respect to K if it is copositive with

respect to K and

z>Az = 0, z ∈ K ⇒ (A + A>)z = 0.



68

In the case of AV I(M, q, C), we are interested in the recession cone of C: for a

nonempty, closed convex set C in Rn,

rec C := {d ∈ Rn | x + λd ∈ C, ∀x ∈ C, ∀λ ≥ 0}.

The dual cone associated with set C is defined as:

CD := {z∗ | y>z∗ ≥ 0, ∀y ∈ C}.

Then the key result from Cao and Ferris [5] (Corollary 4.5) states:

Theorem 4.2.1. Cao & Ferris method is guaranteed to either solve the AV I(M, q, C)

or determine that the problem is infeasible in finitely many steps, if M is copositive-plus

with respect to rec (C) and invertible in the lineality space of C. In the latter case, the

problem being infeasible means the following system has no solution

Mz − q ∈ (rec C)D, z ∈ C.

Furthermore, Cao & Ferris method claims that in practice, nondegeneracy can be

assumed under lexicographical ordering [5].

4.3 PathAVI

From the description of Cao & Ferris method in the last section, we see that a lot

of computational effort is spent in Stage I and Stage II with QR factorizations and

updates. Another drawback of the algorithm is that the sparsity structure of the original

problem is typically lost after these transformations. Substituting out the z variable

involves extra matrix and matrix multiplications (M̄B̄−1
A and B̄IB̄−1

A ), which is also

computationally expensive. In this section, we present a new solver that is essentially a
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large-scale implementation of Cao & Ferris method. It avoids all the costly operations

aforementioned and performs the pivotal scheme with efficient basis routines.

Same as before, we assume the general expression of AV I(M, q, C) with C = {z ∈
Rn|Bz ≥ b,Hz = h}. The new solver essentially contains two parts:

Phase I Find a basic feasible solution in C by a revised simplex method.

Main Algorithm Perform complementary pivots on the original system with no re-

ductions.

Details of these steps and relevant proofs are provided in the rest of this section.

4.3.1 Phase I

The revised simplex method is generally used in linear programming. We employ this

technique to obtain a basic feasible solution for the constraints in C. More details for

the revised simplex method can be found in [32].

We first find a basis for the column space of the constraint matrix




Bp×n

Hq×n


 and a

basis for its row space by an LU factorization, namely index sets I ∈ {1, · · · , p}, J ∈

{1, · · · , q} and K ∈ {1, · · · , n} such that




BIK

HJK


 is square and invertible and

rank







B

H





 = |K| = |I|+ |J |. (4.3.1)

The linearly independent free variables are zK and the dependent free variables are zK̄ ,

where K̄ = {1, · · · , n}\K. We then obtain the value for zK by

zK =




BIK

HJK




−1 


bI

hJ


 ,
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and fix dependent variables zK̄ at zero.

To set up the Phase I problem, we may need to introduce artificial variables to make

the constraints feasible with the current value of z. In particular, for equality constraints,

we only need to introduce artificial variables for the indices j ∈ {1, · · · , q}\J :

HjKzK + djaj = hj,

where

dj =




−1, if HjKzK ≥ hj

1, if HjKzK < hj

, aj = |HjKzK − hj|.

For inequality constraints, we have

BIKzk − IIKsI = bI

BĪKzk − IĪKsĪ = bĪ

with Ī denoting the complement of set I. We add the slack variables that are required to

be nonnegative for Phase I problem. It is clear that sI = 0, but sĪ may not be feasible.

In that case, an extra artificial variable â needs to be added, as in a standard linear

programming Phase I process.

The Phase I problem therefore is to minimize the nonnegative artificial variables:

min
z,s,a,â

∑

j∈J̄

aj + â

subject to BIKzK − IIKsI = bI

HJKzK = hJ

BĪKzk − IĪKsĪ + eâ = bĪ

HJ̄KzK + Da = hJ

zK free, s ≥ 0, a ≥ 0, â ≥ 0.
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Here e is a column vector with 0, 1 elements associated with the artificial â; D is a

diagonal matrix with elements dj; J̄ is the complement to J . The initial basic variables

thus are (zK , sĪ , a). Note that the dependent zK̄ variables never enter the basis in the

subsequent simplex pivots and the free variables zK never leave.

At the end of Phase I, if the objective value is zero, the original AVI is feasible and

we are ready to enter the main algorithm (extra pivots might be needed, which will be

illustrated in the following text). If the objective value is positive, we declare infeasibility

of the original AVI and quit.

We make a few observations and remarks on the final status of Phase I. During Phase

I pivots, if an artificial variable leaves the basis, it is fixed at zero and never reenters

the basis. If at the end of Phase I, there exist artificial variables in the basis, we take

extra steps to pivot them out of the basis until all of them are nonbasic or we encounter

zero pivots. We claim that if there exist artificial variables that cannot be pivoted out

of the basis, they can only be artificial variables associated with equality constraints.

This happens when the rows in the pivoting tableau corresponding to these variables

contain only zeros. If the value of this artificial variable is zero, this equality constraint

is linearly dependent upon the rest of the constraints and can be removed from the rest

of the computation; if this artificial variable has nonzero value, the AVI is infeasible.

We now justify the claim we made earlier.

Lemma 4.1. Assuming there are no empty constraints, the artificial â introduced for

inequality constraints can always be pivoted to the top of the tableau, i.e. leaving the

basis.



72

Proof. : For simplicity we consider the Phase I problem with only inequality constraints:

min â

subject to Bz − Is + eâ = b

z free, s ≥ 0, â ≥ 0.

Suppose at the end of Phase I, the basic variables are (z, sĪ , â). (Note that sĪ actually

only contains |Ī| − 1 elements.) Correspondingly, the basis of the system (denoted by

A·B) at the end of the Phase I is

A·B =




BI

BĪ E


 , with E =




−1 1

. . .
...

−1 0

1




,

after a rearrangement of rows and columns. The last column in E is associated with the

artificial variable, containing 0, 1 elements. The values of these basic variables are




z

sĪ

â




=




BI

BĪ E




−1 

II

0


 sI + A−1

·B b

=




B−1
I

−E−1BĪB
−1
I E−1






II

0


 sI + A−1

·B b

=




B−1
I

−E−1BĪB
−1
I


 sI + A−1

·B b. (4.3.2)

We only need to prove that the row corresponding to â in the pivoting tableau contains

nonzero element(s), therefore â can always be pivoted out of the basis. In particular, we



73

examine the last row of the matrix in (4.3.2). Since

E−1 =




−1 −1

. . .
...

−1 0

1




,

the last row of E−1BĪ is in fact the last row of BĪ , which by our assumption is nonempty.

The last row of E−1BĪB
−1
I is thus also nonempty. Therefore there exists nonzero pivot(s)

corresponding to â.

Note that in the above and the following proofs, for simplicity we assume that B has

full column rank, so that all z variables are in the basis. Removal of this assumption

does not affect the proofs. We sometimes denote a set of rows (I) of a matrix by BI

instead of BI· when there is no confusion.

Another observation of the basis system at the end of Phase I is:

Lemma 4.2. The final basis




B1
I

H1
J

B1
Ī
−I1

Ī

H1
J̄

E1




corresponding to the basic feasible so-

lution (after a certain rearrangement of rows) contains an invertible matrix




B1
I

H1
J


.

Proof. Since we apply the simplex method to find a basic feasible solution of the Phase

I problem, at the end of the pivots, the basis is invertible. It suffices to prove that, in

the final basis




B1
I

H1
J


 is square. We obtain this result by proving that after each pivot,

the block matrix of interest is always square.
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Suppose we have an invertible basis at the kth pivot with square matrix




BIk

HJk


.

The artificial variables are fixed at zero once they leave the basis, so the next entering

variable is an s variable, say sIk(c). Two types of pivots may occur:

• if sIk(c) interchanges with sĪk(r), after this pivot, the new set Ik+1 becomes

Ik+1 = (Ik\{c}) ∪ {r}

Īk+1 = (Īk ∪ {c})\{r}

• if sIk(c) interchanges with artificial(r), after this pivot,

Ik+1 = (Ik\{c})

Jk+1 = Jk ∪ {r}.

In both cases, the cardinality of |Ik+1| + |Jk+1| remains the same as |Ik| + |Jk|, hence


BIk+1

HJk+1


 remains square after a simplex pivot.

We conclude this section by presenting the final basis of the Phase I process and a

discussion of its properties. The final basis of Phase I is:




BIK

HJK

BĪK −IĪ




,

corresponding to a basic feasible solution (zK , sĪ , zK̄ = 0), which contains no artificial

variables.

The upper left block of the basis is square and invertible (as proven in Lemma 4.2);

and the index sets I ∪ J and K correspond to the bases of the row space and column



75

space of




B

H


 (4.3.1) respectively. Thus we have

rank




B

H


 = rank




BIK

HJK


 = rank




BI·

HJ ·


 = rank




B·K

H·K


 , (4.3.3)

and




BI·

HJ ·


 has full row rank and




B·K

H·K


 has full column rank.

Note that the linear dependent equality constraints are removed from the final basis,

so we will remove the subscript J of matrix H in the rest of the illustrations. In the

special case when




B

H


 has full column rank, K = {1, · · · , n}.

Finally, we present a proposition which will be useful for the proofs in the next

section.

Proposition 4.3. Let A be a set of rows of B such that BA has full row rank and

rank (BA) = rank (B), then the following holds:

ker (B) = ker (BA).

Proof. Clearly y ∈ ker (B) ⇒ y ∈ ker (BA).

To prove the converse, let I be the complement of A, we have

BI = XBA with nonzero matrix X.

Then for any y ∈ ker (BA) and y 6= 0,

BIy = XBAy = 0.

Since BAy = 0, together with BIy = 0 in the above, we have y ∈ ker (B).
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4.3.2 Main Algorithm

Based upon the equations (4.2.2) and (4.2.3) introduced in Section 4.2.3, we consider

the following system in the Main Algorithm of PathAVI:

Mz − q − µe = B>
AuA + H>λ

BAz = bA

Hz = h (4.3.4)

BIz − sI = bI

z free, µ ≥ 0, uA ≥ 0, λ free, sI ≥ 0.

We compute the point e = B>
I d1+H>d2 using the final basis of Phase I, which is also used

to define the starting cell of the normal manifold in the Main Algorithm computation.

(This choice of the starting point is justified later in this section.) This constrained

system of equations (4.3.4) describes a piece of the path in a cell of the normal manifold

associated with the original polyhedral set. It is different from the system in the Cao

& Ferris Main Algorithm, in that it is formulated by the matrices in the original AVI

problem without any reductions or transformations and it does not remove equality

constraints or z variables. The new scheme still performs complementary pivots on the

(u, s) pairs, and simply treats z and λ as free variables and thus they never leave the

basis. In this section we discuss the equivalence of processing this system to the original

Cao & Ferris scheme by first comparing it to the system after Stage I reduction then

to the system after Stage II reduction. We then justify the choice of the starting basis,

which is obtained from the Phase I process.
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Consider the system after Stage I reduction discussed in Section 4.2.1:

M̃z̃ − q̃ − µ̃ẽ = B̃>
AũA + H̃>λ̃

B̃Az̃ = bA

H̃z̃ = h (4.3.5)

B̃I z̃ − s̃I = bI

z̃ free, µ̃ ≥ 0, ũA ≥ 0, λ̃ free, s̃I ≥ 0,

with ẽ = B̃>
I d1 + H̃>d2.

Lemma 4.4. Processing the system (4.3.4) generates the same path as processing the

system (4.3.5) after Stage I reduction.

Proof. The piecewise linear path is determined by the directions of the pieces and the

step lengths taken along the directions.

To compute a new direction of the path, the following systems of equations are solved,

with the original system (4.3.4):

M∆z −∆µe = B>
A∆uA + H>∆λ (4.3.6)

BA∆z = 0 (4.3.7)

H∆z = 0 (4.3.8)

BI∆z −∆sI = 0, (4.3.9)

and with the system (4.3.5) after the transformation:

U>MU∆z̃ −∆µ̃ẽ = V >B>
A∆ũA + V >H>∆λ̃ (4.3.10)

BAV ∆z̃ = 0 (4.3.11)

HV ∆z̃ = 0 (4.3.12)

BIV ∆z̃ −∆s̃I = 0 (4.3.13)
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respectively, with U = (I − ZM)V, Z = W (W>MW )−1W>, W being the basis of

ker(




B

H


) and V being the complement of W .

Let ∆z = (I − ZM)V ∆z̃, equation (4.3.7) and (4.3.8) are equivalent to the corre-

sponding equations in the reduced system (4.3.11 and 4.3.12), due to the fact that W is

in the kernel space. Equation (4.3.9) is equivalent to (4.3.13) with ∆sI = ∆s̃I .

Multiply [(I− ZM)V ]−1 on both sides of equation (4.3.6) gives:

U>MU∆z −∆µ(V >B>
I d1 + V >H>d2) = V >B>

A∆uA + V >H>∆λ,

due to the fact that Z>MZ = Z>. The above equation is therefore equivalent to (4.3.10)

in the reduced system with ∆uA = ∆ũA and ∆µA = ∆µ̃A.

Since both directions are uniquely determined by these systems of equations, we have

∆uA = ∆ũA, ∆sI = ∆s̃I and ∆µA = ∆µ̃A.

The ratio test for determining the largest step length before hitting a boundary of

the current cell is performed by finding the largest θ satisfying the following inequalities:

uA + θ∆uA ≥ 0

sI + θ∆sI ≥ 0

µ + θ∆µ ≥ 0.

Hence both the original and reduced methods obtain the same step length.

Now consider the initial pivot. It is easy to prove that the original system (4.3.4) is

equivalent to the reduced system (4.3.5) by letting

z = xl + V z̃,

with xl = Z(q −MV z̃) and the rest of the variables uA = ũA, λ = λ̃, µ = µ̃, sI = s̃I .
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The initial direction is determined in part by:




B̃I

H̃


 ∆z̃ = 0 ⇒ ∆z̃ = 0,

with the reduced system (4.3.5), since Stage I reduction ensures invertibility of the above

matrix. We then obtain ∆s̃ = 0 from equation (4.3.13). Equation (4.3.10) thus becomes

−∆µ̃ẽ = B̃>
I ∆ũA + H̃>∆λ̃.

We choose the first ∆µ̃ = −1 in order to force the path to move into the starting cell.

By plugging in the expression for ẽ,




B̃I

H̃




> 


∆ũA

∆λ̃


 =




B̃I

H̃




> 


d1

d2


 ⇒




∆ũA

∆λ̃


 =




d1

d2


 ,

due to invertibility of the matrix. The initial direction with the original system (4.3.4)

is determined in part by:




BI

H

BĪ −IĪ







∆z

∆s


 = 0 ⇒




∆z

∆s


 = 0.

This is true since the above matrix is the basis at the end of the Phase I process. At the

same time, Phase I guarantees that




BI

H


 has full column rank (4.3.3), so similarly

in equation (4.3.6) of the original system, by choosing the initial ∆µ = −1, we have

∆uA = d1 and ∆λ = d2.

We have proven that the pivots are precisely the same for the original system and

the reduced system after Stage I.
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Now we consider the second part of our equivalence statement, that is the pivotal

steps taken by solving the system after Stage I reduction are identical to those taken by

solving the system after Stage II reduction, which is

M̄z̄ − q̄ − µ̄ē = B̄>
AūA

B̄Az̄ = b̄A (4.3.14)

B̄I z̄ − s̄I = b̄I

z̄ free, µ̄ ≥ 0, ūA ≥ 0, s̄I ≥ 0

with ē = B̄>
I d1. We have the following Lemma:

Lemma 4.5. Processing the system (4.3.5) after Stage I generates the same path as

processing the system after Stage II reduction (4.3.14).

Proof. Similar logic employed in the proof of Lemma 4.4 can be used to prove that both

the general pivots taken during the process and the initial step are the same with both

systems.

Once again we consider the system of equations for computing the direction of the

path at each pivot, expressed as:

M̃∆z̃ −∆µ̃ẽ = B̃>
A∆ũA + H̃>∆λ̃ (4.3.15)

B̃A∆z̃ = 0 (4.3.16)

H̃∆z̃ = 0 (4.3.17)

B̃I∆z̃ −∆s̃I = 0 (4.3.18)

with system (4.3.5) after Stage I reduction, and the system of equations after Stage II
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reduction:

Y >M̃Y ∆z̄ −∆µ̄ē = Y >B̃>
A∆ūA (4.3.19)

B̃AY ∆z̄ = 0 (4.3.20)

B̃IY ∆z̄ −∆s̄I = 0 (4.3.21)

with Y being the basis of ker(H).

Let ∆z̃ = Y ∆z̄, equation (4.3.16) is equivalent to the corresponding equation (4.3.20)

in the further reduced system. Equation (4.3.17) gets removed since Y is in the kernel

space of H. Furthermore, equation (4.3.18) is equivalent to (4.3.21) with ∆s̃I = ∆s̄I .

Multiply Y > on both sides of equation (4.3.15) gives:

Y >M̃Y ∆z̃ − Y >(B̃>
I d1 + H̃>d2)∆µ̃ = Y >B̃>

A∆ũA + Y >H̃>∆λ̃,

which is reduced to

Y >M̃Y ∆z̃ − Y >B̃>
I d1∆µ̃ = Y >B̃>

A∆ũA,

due to the fact that Y is the basis of ker(H). This equation is equivalent to equation

(4.3.19) in the further reduced system with ∆ũA = ∆ūA and ∆µ̃ = ∆µ̄.

Since both directions are uniquely determined by these systems of equations, we have

∆ũA = ∆ūA, ∆s̃I = ∆s̄I and ∆µ̃ = ∆µ̄.

In determining the largest step length before any of the above variables hits its

boundary, ratio test is performed to find the largest θ satisfying the following inequalities:

uA + θ∆uA ≥ 0

sI + θ∆sI ≥ 0

µ + θ∆µ ≥ 0.
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Therefore both the systems obtain the same step length.

Now consider the initial pivot. It is easy to prove (by similar strategy as the above)

that the system (4.3.5) is equivalent to the further reduced system (4.3.14) by having

z̃ = z̃e + Y z̄,

and the rest of the variables ũA = ūA, λ̃ = λ̄, µ̃ = µ̄, s̃I = s̄I .

As seen in the proof of Lemma 4.4, the initial direction with the system after Stage

I reduction is determined as

∆z̃ = 0, ∆s̃ = 0, ∆µ̃ = −1,

and with ẽ = B̃>
I d1 + H̃>d2,

∆ũA = d1, ∆λ̃ = d2.

The initial direction with the system after Stage II reduction is determined by the

following equations. First note that the initial active set is determined by the final basis

of Phase I, namely A = I. Since B̄I has full column rank,

B̄I∆z̄ = 0 ⇒ ∆z̄ = 0,

and thus

B̄I∆z̄ −∆s̄I = 0 ⇒ ∆s̄I = 0.

Equation (4.3.19) thus becomes

−∆µ̄ē = B̄>
I ∆ūA.

By choosing ∆µ̄ = −1, we have ∆ūA = d1. Therefore the initial directions determined

by both systems are also equivalent independent of the choice for d2.

We have proven that the system after Stage I reduction and the system after Stage

II reduction generate the same path.
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We now make a few remarks on the choice of the starting point.

As proven before, the starting point e in the original space is equivalent to ẽ in the

reduced space after Stage I, and they both rely on the choice of




d1

d2


. After the

transformation in Stage II, which is essentially a projection onto the lineality space of

H̃, ẽ is equivalent to ē = B̄>
I d1 in the further reduced space.

As discussed in Section 4.2.3, d1 is chosen to be a vector of minus ones. Therefore

at the start of the Main Algorithm in the new solver, we choose the value for e by

letting d1 still be a vector of minus ones with proper dimension. Since d2 will always

be compressed during the removal of equality constraints, we simply choose d2 to be a

vector of zeros for our computation of a starting point.

We now focus our discussion on the initial basis of the Main Algorithm, which is

based on the final basis of the Phase I process. We simplify the notation by omitting

the H matrix since its rows are always contained in the active constraint set.




−B>
A M

BA

BI −II




The invertibility of the above initial basis matrix depends on its upper left block

matrix and we claim that

Lemma 4.6.



−B>

A M

BA


 is invertible if and only if W>MW is invertible.

Here B has dimension m× n, M has dimension n× n, Wn×k is the basis of ker(B)

and rank(BA) = rank(B).
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Proof. Proof of “only if”:



−B>

A M

BA







x

y


 = 0

⇐⇒ −B>
Ax + My = 0, y ∈ ker(BA)

⇐⇒ −B>
Ax + MWŷ = 0, assuming that y = Wŷ

(by Proposition 4.3)

⇐⇒ −W>B>
Ax + W>MWŷ = 0, y = Wŷ

⇐⇒ ŷ = 0 =⇒ y = 0 =⇒ x = 0.

Proof of “if”:


−B>

A M

BA


 invertible

=⇒ rank



IA

W


 = rank



−B>

A M

BA






IA

W




n = rank (B) + nullity (B) = rank (BA) + dimker (B) = |A|+ k

=⇒ rank



IA

W


 = n,

therefore

rank



−B>

A MW

BAW


 = rank [−B>

A MW ] = n

k = rank W> = rank W>[−B>
A MW ] = rank [W>MW ]

=⇒ W>MW invertible .
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Figure 4: A simple example for comparing the path of Cao & Ferris and PathAVI
.

A special case is when B has full column rank in the original system. It is easy to

see that the initial basis is invertible by a block partition.

Theorem 4.3.1. The new PathAVI is equivalent to Cao & Ferris method.

Proof. Obvious, from Lemma 4.4, Lemma 4.5 and Lemma 4.6.

Therefore this new PathAVI solver is able to either solve the AVI or determine infea-

sibility. In practice, since it follows the same path as Cao & Ferris method, degeneracy

issue can be resolved by always choosing the lexicographical minimum from the pivotal

choices that achieve ties as mentioned in Section 4.2.4.

We hereby present a simple concrete example to illustrate the equivalence of the new

method to the reduction method. Consider AV I(M, q, C) with

B =




1 1

−1 −1


 , b =




1

−2


 ,M =




1 0

0 1


 , q =




1

1


 .
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Set C is a stripe which contains lines as seen in Figure 4. Cao & Ferris method

computes the basis of ker (B) and its complement as:

[W V ] =



−
√

2
2

−
√

2
2

√
2

2
−
√

2
2


 .

By Stage I, the reduced problem is AV I(M̃, q̃, C̃) with

M̃ = [1], q̃ = −
√

2,

C̃ = {z̃ ∈ R| −
√

2 ≤ z̃ ≤ −
√

2

2
}.

After the reduction the problem space is one dimensional, lying on the new axis marked

by x̃ in Figure 4. It then finds an extreme point z̃0 = −
√

2
2

in Stage II. In the Main

Algorithm of Cao & Ferris method, the path goes from z̃0 to z̃1 (at −√2) in the reduced

1−D space.

Using the PathAVI solver, the Phase I stage ends with the final basis I = {1}, based

on which the Main Algorithm starts with an invertible initial basis and generates a path

from z0 = [0.5, 0.5]′ → z1 = [1, 1]′ in the original 2−D space. This path coincides with

the one generated by the reduction scheme.

4.3.3 Extension of PathAVI

In the previous section, we considered AVIs that are solvable by the Cao & Ferris method

illustrated in Section 4.2 and proved its equivalence to the new PathAVI solver. However

the above schemes fail to proceed when W>MW is not invertible. A different reduction

method is proposed by Cao and Ferris [4] to remove this assumption. It transforms the

original problem into one that can be processed by the aforementioned Cao & Ferris

method, thus two sets of reduction schemes have to be used consecutively in this case.
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Instead of incorporating this additional reduction scheme into our new solver, which

is inefficient for large-scale problems, we simply extend the current PathAVI method to

take this instance into consideration. In particular, the complementary system in the

Main Algorithm system of PathAVI is augmented by introducing artificial variables:

−B>u−H>λ + Mz + Ia− µe− q = 0

Bz − s = b (4.3.22)

Hz = h

z free, λ free, µ ∈ [0, 1], 0 ≤ u ⊥ s ≥ 0, a ≡ 0.

The artificial variables (a) are used to construct an initial invertible basis consistent with

the final basis obtained from Phase I. Once again, denote




BI

H


 in the final basis of

Phase I simply by BA, the initial basis in the Main Algorithm is then:




−B>
AK̄

MK̄K MK̄K̄

−B>
AK MKK MKK̄

BAK BAK̄

BIK BIK̄ −I




(4.3.23)

corresponding to variables (uA(λ), zK , zK̄ , sI).

When M is not invertible in the lineality space of C, by Theorem 4.2.1, matrix

(4.3.23) has no inverse. The basis at the end of Phase I suggests that its submatrix



−B>

AK MKK

BAK




is invertible. By substituting artificial variables in place of zK̄ , a full rank initial basis
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can be recovered:



−B>
AK̄

MK̄K IK̄

−B>
AK MKK

BAK

BIK −I




. (4.3.24)

Complementary pivots are performed subsequently on the (u, s) pairs as well as the

(a, z) pairs. In particular, when ai leaves the basis at a certain pivot, the corresponding

entering variable is zi, and once z variables enter the basis, they never leave.

The starting point (e) is constructed differently from before, in that we find e =

[e1 e2]> such that

−B>
AK̄uA + MK̄Kz0

K + µe1 = qK̄ (4.3.25)

−B>
AKuA + MKKz0

K + µe2 = qK (4.3.26)

uA ≥ 0.

Here z0
K is obtained from the Phase I process.

We first construct e2 from (4.3.26). B>
AK is known to be invertible from Phase I,

therefore we compute uA by

u0
A = −B−>

AK(−MKKz0
K + qK).

If u0
A is feasible, choose e2 to be a vector of zeros and the initial value of uA = u0

A.

Otherwise, we can obtain a feasible point by setting umax = max{−u0
A} (> 0) and

taking the following value for uA:

uA = u0
A + umaxd,
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with the elements of d defined as

dj =





1, if u0
Aj

< 0

0, if u0
Aj
≥ 0.

Hence e2 = −B>
AKumaxd and

e1 = B>
AK̄uA −MK̄Kz0

K + qK̄ . (4.3.27)

The initial value of µ0 is chosen to be 1.

Theorem 4.3.2. The extended PathAVI scheme is able to process (solve or determine

infeasibility) AV I(M, q, C), if M is copositive-plus with respect to the recession cone of

C.

Proof. Since a generalized Lemke’s method is exploited, and we have proven before

that PathAVI is able to process AVI with an invertible basis at the beginning of the

Main Algorithm, it suffices to prove that the extended PathAVI Main Algorithm with

an augmented system starts from a ray. That is, the system (4.3.24) is feasible for all

µ ≥ µ0(= 1), and we only need to prove this for the equations in (4.3.25) and (4.3.26).

For µ ≥ µ0 > 0,

uA = u0
A + µumaxd > u0

A + µ0umaxd ≥ 0.

By adding the artificial variables to equation (4.3.25), we have:

−B>
AK̄uA + MK̄Kz0

K + Ia + µe1 = qK̄ .

Plugging in uA = u0
A + µumaxd and rearranging the terms give us:

Ia + µ(e1 + e2) = t, (4.3.28)
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with t = B>
AK̄

u0
A −MK̄Kz0

K + qK̄ . When µ = µ0, the choice of e1 in (4.3.27) makes the

above equation feasible. For µ ≥ µ0 > 0, let a = −(e1 + e2)(µ− µ0) and a ∈ [l, u], such

that





if (e1 + e2)i = 0, li = ui = 0

if (e1 + e2)i > 0, li = −∞, ui = 0

if (e1 + e2)i < 0, li = 0, ui = ∞

When µ decreases to µ0 and the actual pivoting starts and proceeds, a ≡ 0.

4.4 Large-Scale Implementation

In our implementation of the Main Algorithm described above, we employ the basis

package described in Chapter 2 for the factor, solve and update routines required by

the pivotal technique. This enables the user to choose among a variety of sparse linear

system packages and it is done at link time without having to change other parts of the

code. We describe the use of three basis package options in this section. The first two

options directly adopt two of the basis packages used in the PATH solver. The third

basis option is new to the PathAVI solver. It essentially solves a reduced linear system,

which is subject to new types of updates besides column replacement at each pivot. The

last basis option is the main focus of this section.

As described in the previous section, the initial basis matrix of the main complemen-

tarity system




−B>
A M

BA

BI −II







uA

z

sI




=




q

bA

bI



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is associated with basic variables (uA(λ), z, sI). Similar to the PATH algorithm, each

subsequent complementary pivot corresponds to a solve and a rank-one update in terms

of a column replacement.

The first basis option in PathAVI exploits the LUSOL basis option, where the LUSOL

linear package alone is able to provide all the linear functionalities (factor and solve and

update) required by the pivotal routines.

The second basis option is the UMFPACK basis option, which once again relies on

the UMFPACK package for factor and solve operations and on the block-LU method

for rank-one updates.

The third basis package takes the idea of the aforementioned block-LU updating

scheme coupled with the UMFPACK package, and extends the method to maintain the

factors of a reduced matrix. In particular, a partition of the full basis matrix (H) can

be formed as:

H =




Hr

D −I


 ,

with Hr =



−B>

A M

BA


 and D =

[
0 BI

]
. In solving the system Hd = h in our

case, h corresponds to the entering column at each pivot, which always has the form


hr

0


. The solution of this system may be obtained by

Hrd1 = hr, d2 = Dd1.

Therefore by partitioning, only a reduced system needs to be solved at each pivot instead

of the full size basis system.
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The reduced system with Hr =



−B>

A M

BA


 only contains basic columns corre-

sponding to the basic variables (uA(λ, µ), z). Therefore besides replacing a column, a

number of other types of updates need to be considered depending upon the types of

variables leaving and entering the basis. In particular,

1. if ui enters the basis and uj leaves, replace a column in Hr.

2. if si enters the basis and uj leaves, delete a column and row from Hr.

3. if ui enters the basis and sj leaves, add a column and row to Hr.

4. if si enters the basis and sj leaves, replace a row in Hr.

Note that since addition(deletion) of a row and a column always occurs at the same

time, Hr remains square when it expands or shrinks in dimension.

As illustrated in Section 2.3.2, by constructing an augmented matrix and applying

the block-LU method to perform the deletion, addition and replacement we are able

to perform all types of updates on this reduced system, which has the potential of

speeding up our updates and improving the efficiency in large-scale problems. However,

a drawback of the scheme is that unlike updating the full scale basis matrix where the

column used in updating Yk is always readily available from the previous solve, we often

need an extra solve when updating the reduced system.

Let us recall the types of updates to matrices Ck and Yk performed in the block-LU

technique:

Case 1 Add a row (r>) to U>
k , and add a column (w) to Yk, resulting in adding a row
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and a column to Ck:

U>
k+1 =




U>
k

r>


 and Yk+1 = (Yk w)

Ck+1 = U>
k+1H0

−1Vk+1 =




Ck U>
k w

r>Yk r>w


 .

Case 2 Replace a column of Yk by w, and replace a column of Ck by U>
k w. Uk is

unchanged.

Case 3 Replace a row of U>
k by r>, and replace a row of Ck by r>Yk. Yk is unchanged.

Case 4 Delete a row from U>
k , and delete a column from Yk, resulting in deleting a row

and column from Ck.

Modifications to Ck and Yk corresponding to the above four types of basis updates

are illustrated one by one in the following subsections. In some cases, we will present

concrete examples based on a small AVI problem, namely AV I(M, q, C) defined over a

polyhedral set C = {z ∈ R2 |Bz ≥ b} with

B =




1 0

0 1

−1 −1




.

Suppose the initial active set is A = {1, 2}. The initial reduced system is then:

H0 =




M −B>
A

BA


 =




m11 m12 −1 0

m21 m22 0 −1

1 0

0 1




,
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corresponding to basic variables (z1, z2, u1, u2). The set of basic variables associated with

the full basis system is (z1, z2, u1, u2, s3). Note that we rearranged the columns in the

order of (z, uA) in the above matrix expression and for simplicity we assume that the

matrix is invertible. In the following illustration, we denote the active set associated

with the initial reduced system (H0) by B0 and its complement by N0. The initial active

set B0 corresponds to both the initial basic columns



−B>

A

0


 associated with basic

variables uA and the basic rows [BA 0] associated with the active constraints. In this

particular example, B0 = {1, 2} and N0 = {3}.

4.4.1 Replace a Column in Hr

Column replacement is the standard type of updates that is explained in detail in Section

2.3.1. We hereby give an example where the entering variable is µ (from N0) associated

with the ray column and the leaving variable is a u variable (from B0). This corresponds

to the first type of column replacement.

In our AVI example, the ray (or the starting point in the interior of the initial normal

cone) can be computed as

e = −B>
A




1

1


 =



−1

−1


 .

Suppose u1 is the basic variable that is being replaced by µ. This pivot corresponds to

replacing the 3rd column in H0 by c = [1 1 0 0]>, since we have −eµ in the main

PathAVI system (4.3.4). This update is accomplished by augmenting H0 by e>3 and
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column c and we obtain the following matrix:

H1 =




m11 m12 −1 0 1

m21 m22 0 −1 1

1 0

0 1

1




⇔




m11 m12 1 0

m21 m22 1 −1

1 0

0 1




,

where the highlighted row/column indicates the modification made upon the previous

basis. The matrix on the right-hand-side of “⇔” in the above expression is the actual

system that needs to be solved, whose third column is explicitly replaced by a new

column (c). If we denote this matrix by Ha, as explained in Section 2.3.1, the solution

to this modified system Hay = ha can be recovered from the solution of the following

system




H0 c

e>3 0







y1

y2


 =




ha

0


 (4.4.1)

by y = y1+e3 y2. We shall use this notation (⇔) in the following examples to denote this

equivalence relationship between an augmented system and the actual modified system.

The above update corresponds to a special instance of Case 1 in updating Yk and Ck,

that is

U1 = e3, Y1 = H−1
0 c, C1 = U>

1 Y1.

As mentioned before, in a real implementation, Uk only records the indices of the po-

sitions of the entering columns or the entering rows instead of the actual vectors. The

basic variables associated with the full basis system becomes (z1, z2, µ, u2, s3).
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4.4.2 Delete Row p and Column q from Hr

With different types of columns and rows being deleted from Hr, the corresponding

updates to Ck and Yk belong to one of the cases presented before. In particular:

Type I If the column (q) being deleted is from B0 and the row (p) being deleted is from

B0, perform Case 1 with r = eq and w = H−1
0 ep. This is precisely the instance we

have illustrated in Section 2.3.2.

Continuing from the previous example with H1, when u1 leaves the basis, its

complementary variable s1 enters the basis at the second pivot. Let us assume

that it drives u2 out of the basis. This basis change corresponds to deleting a

column (4th) and a row (3rd) from H1. To achieve this update, H1 is augmented

by a unit column and a unit row vector as follows:

H2 =




m11 m12 −1 0 1

m21 m22 0 −1 1

1 0 1

0 1

1

1




⇔




m11 m12 1

m21 m22 1

0 1




.

The basic variables becomes (z1, z2, µ, s1, s3) for the full basis system.

From here on we no longer assume that the following updates take place consec-

utively from previous pivots and we make up the pivots with the sole purpose of

illustrating more possible instances of updates.

Type II If the column being deleted is from N0, and the row (p) being deleted is from

B0, perform Case 2 with w = H−1
0 ep.
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We assume first that H2 is modified by adding the u1 column [−1 0 0 0]>

back together with a new row B3 · (corresponding to s3). The augmented matrix

becomes

H3 =




m11 m12 −1 0 1

m21 m22 0 −1 1

1 0 1

0 1

-1 -1

1




We will explain this addition update in the next section.

We now start from H3 and assume that another update to the current set of basic

variables (z1, z2, u1, µ, s1) occurs with s2 entering the basis and replacing variable

µ. This pivot corresponds to deleting a column from N0 and a row from B0. The

augmented matrix H3 is modified by replacing the newly incorporated column

(corresponding to µ) with a unit column vector marking the row that needs to be

removed, in particular,

H3 → H4 =




m11 m12 −1 0

m21 m22 0 −1

1 0 1

0 1 1

−1 −1

1




⇔




m11 m12 −1

m21 m22 0

−1 −1




.

Hence the size of the augmented matrix does not always increase at every update

and it stays the same in this particular example.
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To achieve this, Case 2 update is invoked to modify Yk and Ck. Specifically,

U3 is unchanged, Y3 is modified by replacing its first column by w = H−1
0 e4 and

consequently the first column of C3 is replaced by U>
3 w.

Type III If the column (q) being deleted is from B0, and the row being deleted is from

N0, perform Case 3 with r = eq.

Type IV If the column being deleted is from N0, and the row being deleted is from

N0, perform Case 4 with the corresponding row and column.

We add another example by assuming a slightly different pivot from the previous

case. Instead of s2 entering the basis and replacing µ, we have s2 replacing s3,

which corresponds to a newly added row B3 · ( contained in N0). An alternative

modification to H3 is carried out by removing the actual row and column.

H3 → H̃4 =




m11 m12 −1 0

m21 m22 0 −1

1 0 1

0 1

1




⇔




m11 m12 −1

m21 m22 0

0 1




The update to Yk and Ck then follows the Case 4 situation. A row is removed

from U>
3 , and a column is removed from Y3, thus a row and a column are removed

from C3.

4.4.3 Add a Column and Row to Hr

The type of updates to Ck and Yk depends on the type of row and column being added:
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Type I If the column (q) being added is from N0 and the row (p) being added is from

N0, perform Case 1 with r = eq and w = H−1
0 ep. This is precisely the instance

we have illustrated above.

Type II If the column (c) being added is from N0, and the row (p) being added is from

B0, perform Case 2 with already available w(= H−1
0 c).

Type III If the column being added is from B0, and the row (r) being added is from

N0, perform Case 3 with new row r.

We now go back to the above example and describe the update from H2 to H3

at the third pivot. With basic variables (z1, z2, µ, s1, s3) for the full basis matrix

at the end of the second pivot, or basic variables (z1, z2, µ) associated with the

reduced system, we assume next that u1 enters the basis and replaces s3, which

corresponds to column c(= −B>
1·) reentering basis and row r(= B3·) entering the

reduced system. Since u1 is in the initial basis B0 and s3 is from N0, this is a

Type III addition update. It is achieved by replacing the unit row (marking the

originally replaced column c) by the actual entering row, specifically:

H2 → H3 =




m11 m12 −1 0 1

m21 m22 0 −1 1

1 0 1

0 1

-1 -1

1




⇔




m11 m12 −1 1

m21 m22 0 1

−1 −1

0 1




.

The updates to Yk and Ck belong to Case 3 with a row replacement in U>
2 , hence

a row replacement in C2. Y2 is unchanged.



100

Type IV If the column being added is from B0, and the row being added is from B0,

perform Case 4 with the corresponding (unit) row and column.

4.4.4 Replace a Row in Hr

Replacing a row of H0 is achieved by modifying Ck and Yk as follows:

Type I If the entering row (r) is from N0 and the leaving row (p) is from B0, perform

Case 1 with new row r and w = H−1
0 ep.

Type II If the entering row (r) is from N0, and the leaving row is from N0, perform

Case 3 with the new row r.

Type III If the entering row is from B0, say the pth row, and the leaving row is from

B0, perform Case 2 with already available w(= H−1
0 ep).

Type IV If the entering row is from B0 (pth), and the leaving row is from N0, perform

Case 4 with the corresponding row and the pth column.

To summarize, we have presented a few examples to illustrate some typical types

of updates especially associated with addition and deletion. The rest types of updates

can be derived similarly. At each pivot, the augmented matrix is modified. The size

of the augmented matrix can increase, decrease or remain the same due to different

types of entering and leaving row/column. With each modification however, the block-

LU structure is preserved, therefore the block-LU scheme can be extended to all of the

above types of updates.
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4.5 Computational Results

Exploiting sparse linear system packages and updating schemes enables PathAVI to

process large-scale problems. The user can choose one of the basis options according to

the characteristics of the AVI. The following AVIs are generated randomly (based on

projection problems) and serve as a guideline as to which basis package might outperform

the others on different types of systems.

Table 11: Smaller-scale Mn×n positive definite, Bm×n randomly generated with density
10%. Average size n = 400, m = 768

Basis Option Factor Time Update Time Solve Time Total Time
LUSOL 5.12 12.91 3.73 22.04

UMFPACK 5.19 9.11 34.97 49.58
REDUCED 5.06 34.61 28.34 68.84

Table 11 contains a total of 50 problems, which suggest that in solving relatively

dense systems with medium size, LUSOL is most efficient among the three. UMFPACK

performs factors and updates faster but is slow in the solve process. Pivots with a reduced

system (with average size at most 2n) use less solution time compared to UMFPACK on

a full scale basis matrix (with average size = m + n). However as we mentioned earlier

in this section, each update of the reduced version might require an additional solve,

hence the total update time is much longer than the other two options.

Now we consider the total time of 20 larger-scale problems in Table 12 generated

by the (otherwise) same method as the above smaller instances. We see that when the

size of the problem increases, the UMFPACK basis package is faster than LUSOL with

both full and reduced basis matrix options, due to the fact that in larger-scale cases

UMFPACK performs factorizations much faster than LUSOL and with these relatively

dense instances, block-LU updates with the full scale basis is much more efficient than
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the LUSOL updates. More motivation and comparison results on the performance of

the LUSOL and UMFPACK basis packages can be found in Chapter 3.

Table 12: Larger-scale Mn×n p.d., Bm×n randomly generated with density 10%. Average
size of m = 2495, n = 768

Basis Option Factor Time Update Time Solve Time Total Time
LUSOL 180.72 1159.1 69.38 1410.5

UMFPACK 47.27 301.4 494.46 844.1
REDUCED 46.59 673.30 411.47 1138.8

The next two sets of problems are generated with sparser systems and the results

are summarized in Table 13. We generate the problem with m much larger than n, so

that UMFPACK on a full scale basis matrix would work with a matrix of size m + n

which is much larger than the reduced basis matrix with size at most 2n. (Average size

of small-scale cases is m = 768, n = 200; average size of large-scale cases is m = 2495,

n = 650.) In this case, the reduced basis package becomes competitive. However LUSOL

still outperforms the UMFPACK based options.

Table 13: Larger-scale Mn×n p.d., Bm×n randomly generated with density 1%
Basis Option Factor Update Solve Total Time

Total of 50 LUSOL 0.65 1.64 0.75 3.24
Small-scale UMFPACK 0.99 1.39 11.18 13.81
Instances REDUCED 0.91 5.90 5.09 12.56

Total of 20 LUSOL 9.81 40.68 12.34 63.66
Large-scale UMFPACK 6.78 32.77 150.22 190.54
Instances REDUCED 6.29 94.78 71.17 178.18

The computational results presented here suggest that the CPU time in PathAVI

is dominated by the linear algebra associated with the pivotal scheme. Incorporating
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the sparse linear system packages enables PathAVI to process large-scale instances ef-

ficiently. Overall, the LUSOL option is always much more efficient in performing the

solve functionality than the UMFPACK option at a cost during the factor and update

routines. For smaller-scale systems and large-scale but sparse systems, LUSOL is over-

all the most efficient, since the speed of the LUSOL solve routines outweighs the other

statistics. For large-scale problems when the system is relatively dense, the advantage

of the factor and update routines in the UMFPACK options (of both the full scale basis

and reduced basis) becomes more significant and they outperform the LUSOL option.

When the reduced basis is much smaller than the full size basis, UMFPACK with the

reduced options becomes competitive.

4.6 Discussion of a Nonlinear Extension

We have presented a new solver for solving affine variational inequalities together with

some theoretical justification and numerical results. In particular, it is able to process

a wide class of AVIs with the same convergence properties as the original Cao & Ferris

method; at the same time, the implementation is effective in dealing with large-scale

problems by avoiding costly algebraic operations and allowing easy inclusion of efficient

linear system packages.

Furthermore, it provides the foundation for future development of a nonlinear vari-

ational inequality solver. To conclude this chapter, we propose a scheme for processing

nonlinear VIs as an extension of PathAVI and discuss some issues and difficulties the

nonlinear solver may encounter.

For a nonlinear V I(f, C) with f := Rn 7→ Rn, its corresponding normal map equation

f(πC(x)) + (x− πC(x)) = 0 (4.6.1)
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can be solved by a generalized Newton Method similar to the PATH algorithm in Sec-

tion 3.1.3. Here we only consider nonlinear VI over polyhedral set C. Any nonlinear

constraints contained in the set can be treated by a complementarity reformulation with

multipliers.

At the kth iteration, AV I(Mk, qk, C) is constructed based on a piecewise affine ap-

proximation of the normal map at xk with:

Mk = ∇f(πC(xk)), qk = f(πC(xk))−∇f(πC(xk))πC(xk).

Now the procedure employed by the PathAVI solver can be used to solve this affine

variational inequality. As before, it constructs a parametric piecewise linear function

F (x(µ), µ) = MkπC(x) + qk + x− πC(x)− eµ.

A parametric piecewise linear path is thus generated, which leads to the Newton point

(xk
N , zk

N) at µ = 0.

A nonmonotone search similar to the PATH algorithm can be adopted, namely the

m-steps, together with d-steps and watchdog steps. Details of these steps are explained

in Section 3.1.4. We note a few differences in implementing these schemes in the case

of a nonlinear VI solver. They are in part due to the fact that the projection of a point

from Rn onto a polyhedral set is not as easy to compute as the projection onto the

positive orthant in the case of mixed complementarity problems.

First of all, the choice of merit functions might be limited. The Fischer-Burmeister

function is associated with the complementarity relationship and cannot be directly

adopted in the case of VI. A natural candidate for the merit function is the norm of the

normal map residual

Ψ(x) =
1

2
||fC(x)||2.
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A Newton point is acceptable when

Ψ(xk
N) ≤ (1− σ)R,

where σ is a small constant and R is a given reference value determined by former merit

function values. This merit function is no longer differentiable. Therefore, we cannot

perform the projected gradient scheme when the scheme fails to find a point satisfying

the nonmonotone descent criterion.

A nonlinear VI defined with f := Rn 7→ Rn and C = {z |Bz ≥ b, Hz = h} can be

transformed into a complementarity problem as follows:

0 = f(z)−B>u−H>λ ⊥ z free (4.6.2)

0 ≤ Bz − b ⊥ u ≥ 0 (4.6.3)

0 = Hz − h ⊥ λ free . (4.6.4)

Therefore a conjecture for another choice of the merit function is the residual of the

Fischer-Burmeister reformulation of this equivalent complementarity problem. Similar

to the discussion in Section 3.1.1, we define

Φi(z) :=





fi(z)− (B>)i· u− (H>)i· λ, for i ∈ (4.6.2)

φ(ui, Bi· z − bi), for i ∈ (4.6.3)

Hi· z − hi, for i ∈ (4.6.4)

with

φ(a, b) :=
√

a2 + b2 − a− b.

The merit function is thus Ψ(z) := 1
2
‖Φ(z)‖2, which has the appeal of being continuously

differentiable.
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Another issue occurs with the watchdog steps, where we search for a point satisfying

the nonmonotone descent criterion in between an earlier saved initial point and Newton

point. Originally, we have the choice of line search and arc search. In this case, the arc

search technique cannot be performed, since the projection of a point from Rn to the

polyhedral set C cannot be computed easily. Hence line search may be our only choice.

Despite the above limitations, an algorithm with a generalized Newton method and

a nonmonotone search scheme, combined with the new AVI solver can be adopted for

solving nonlinear variational inequalities. Further investigations on the choices of merit

functions and search schemes, and the global convergence property of the algorithm

associated with these choices are interests of future research.

For certain classes of nonlinear variational inequalities, solving them through a se-

quence of affine variational inequalities can be more advantageous than solving their

equivalent complementarity reformulation. Similar to what we have discussed before,

the nonlinear variational inequality solver would always generates points that are fea-

sible, while the complementarity solver searches for solutions in an augmented space

with both primal and dual variables. This property of the variational inequality solver

becomes even more important in nonlinear instances, since the complementarity solver

may start from a point that is not well-defined for the original problem. For example,

solving V I(f, C) with :

f(z) :=




log(2 + δ − z1)

log(2 + δ − z2)


 and C = {z ∈ Rn | 1 ≤ z1 + z2 ≤ 2}
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is equivalent to solving the following nonlinear complementarity problem:

0 =




log(2 + δ − z1)

log(2 + δ − z2)


−




1

1


 u1 +




1

1


 u2 ⊥




z1

z2


 free

1 ≤ z1 + z2 ⊥ u1 ≥ 0

−2 ≤ −z1 − z2 ⊥ u2 ≥ 0.

In order to find a zero of their associated normal maps, both solvers will start by

linearizing the normal map at an initial point x0:

fC(x) = f(πC(x0)) +∇f(πC(x0))(πC(x)− πC(x0)) + x− πC(x) = 0.

For any x0 ∈ R2, the VI solver will only evaluate the function at πC(x0), which is always

a well-defined point. In the case of the complementarity reformulation, the feasible set

is R2 ×R2
+ (for z and u variables). For an initial choice of x̃0 ∈ R4, the function will be

evaluated at its projection point, which may not be well-defined. For example, suppose

the initial point is x0 = (3, 3). In the VI problem over polyhedral set C, this point will be

projected onto z0 = (1, 1), which is well-defined for the log function. Correspondingly,

an initial choice of x̃0 = (3, 3, 0, 0) for the complementarity problem will be projected

onto itself, but is not well-defined for the log function anymore.
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Chapter 5

A Complementarity Pivoting

Method for Solving Parametric

LCPs

Parametric Linear Complementarity Problems (PLCPs) are a special set of linear com-

plementarity problems (LCPs) where the vector component generally denoted by q

changes with a parameter, thus resulting in different solutions as the parameter value

varies. Applications of PLCPs arise from diverse areas. Practical applications of PLCPs

in portfolio selection, structural engineering and actuarial graduation problems are dis-

cussed in [62]. Theoretically, PLCP can also be used to analyze some well-known traffic

paradoxes [12], arising from traffic equilibrium problem. Special-purpose algorithms

have been designed for solving special classes of PLCPs [62] based on a generalization

of existing algorithms such as Lemke’s method ([57], [58]), Cottle and Dantzig [11] al-

gorithm and Graves’ [46] principal pivoting algorithm. A more general review of these

PLCP schemes can also be found in [12]. In this chapter, we present an implementa-

tion of an extended Lemke’s method which solves a PLCP for all feasible values of the

parameter automatically (which is new to this thesis), together with some theoretical

justification. Furthermore, with each fixed parameter, the corresponding LCP is equiva-

lent to an affine variational inequality problem. For certain classes of PLCPs, it may be
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advantageous to consider solving the PLCP as a sequence of affine variational inequality

problems with the PathAVI solver proposed earlier.

We first introduce the definition of parametric linear complementarity problem. Let

M be a given square matrix of order n and let q, d be given column vectors in Rn. Let

Λ be a closed interval in R. We consider the following parametric LCP: find a vector z

satisfying

LCP(M, q + λd) : w = Mz + q + λd (5.0.1)

z ≥ 0, w ≥ 0, z>w = 0

as a function of λ, for λ ∈ Λ.

The scheme we are going to propose is based on Lemke’s method, which is effective

for solving linear complementarity problems, hence in Section 5.1, a brief review of

Lemke’s method for solving LCPs is presented. In Section 5.2, we will make some

theoretical justification on the existence of the solution, using the method we propose.

In Section 5.3, the outline of the scheme for solving parametric LCPs will be given,

together with some theoretical support on the applicability of Lemke’s method. A

simple PLCP example will be given in Section 5.4. Several applications of PLCP on

parametric Quadratic Programs (QP) and others are the subject of Section 5.5.

5.1 An Overview of Lemke’s Method

The first algorithm proposed to solve linear complementarity problems was the famous

pivotal algorithm of Lemke.

For positive semidefinite (PSD) M , Lemke’s method generates a finite sequence of

feasible, almost complementary pairs that terminates at a complementary pair or when
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there is an unbounded ray, the original LCP is determined infeasible. This result is

stated in [11]:

Theorem 5.1.1. If M ∈ Rn×n is positive semidefinite, then for each q ∈ Rn, Lemke’s

algorithm terminates at a solution of LCP(M,q) or at an unbounded ray. In the latter

case, the set {z|Mz + q ≥ 0, z ≥ 0} is empty, that is, there is no feasible pair.

Proof. (Cottle & Dantzig 1968).

The outline of Lemke’s algorithm is as follows [37].

Algorithm 5.1 (Phase I: Generating a feasible almost-complementary tableau).

1. If q ≥ 0, STOP: z = 0 is a solution of LCP (M, q), that is, (z, w) = (0, q) is a

feasible complementary pair.

2. Otherwise, add the artificial variables z0 and w0 that are constrained to satisfy the

following relationships:

w = Mz + ez0 + q, w0 = z0,

where e is a vector of ones in Rn. Create the initial tableau.

z z0 1
w M e q
w0 0 1 0

3. Pivot row selection: Make this tableau feasible by carrying out a Jordan exchange

on the z0 column and the row corresponding to the most negative qi. Without

removing the artificial variables from the tableau, proceed to Phase II.
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Algorithm 5.2 (Phase II: Generating a feasible complementary or unbounded tableau).

Start with a feasible almost complementary pair (z, w) and the corresponding tableau

in Jordan exchange form

wI1 zJ2 1
zJ1 HI1J1 HI1J2 hI1

wI2 HI2J1 HI2J2 hI2

Take note of the variable that became nonbasic (i.e., became a column label) at

the previous iteration. (At the first step, this is simply the component of w that was

exchanged with z0 during Phase I.)

1. Pivot column selection: Choose the column s corresponding to the complement of

the variable that became nonbasic at the previous pivot.

2. Pivot row selection: Choose the row r such that

−hr/Hrs = min
i
{−hi/His|His < 0}.

If all His ≥ 0, STOP: An unbounded ray has been found.

3. Carry out a Jordan exchange on element Hrs. If (z, w) is complementary, STOP:

(z, w) is a solution. Otherwise, go to Step 1.

5.2 Theoretical Justification

For a specific value of λ there may or may not exist a solution to the LCP (M, q + λd).

We are going to restrict our attention to the values of λ, for which there exist solutions

to the corresponding LCP.
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A solution to the parametric LCP (M, q + λd) must satisfy the linear feasibility

relations

q + λd + Mz ≥ 0, z ≥ 0, λ ∈ Λ. (5.2.1)

We define the set of z which satisfies the above conditions as FES(M, q + λd). It is

possible to find the largest and smallest value of λ for which (5.2.1) has a solution by

solving linear programs, and they are

λ∗ = inf{λ ∈ Λ : FEA(M, q + λd) 6= ∅}, (5.2.2)

λ∗ = sup{λ ∈ Λ : FEA(M, q + λd) 6= ∅}, (5.2.3)

and they can be used to refine the interval Λ. In general it is possible that either

λ∗ = −∞ or λ∗ = ∞, or both.

There is no point seeking solutions for λ values such that FES(M, q + λd) = ∅. The

following theorem indicates the existence of solutions to the parametric LCP (M, q+λd)

for all finite number λ ∈ [λ∗, λ∗].

Theorem 5.2.1. Let λ∗ and λ∗ be defined as in (5.2.2) and (5.2.3). The parametric

LCP (M, q + λd) has a solution for each finite number λ ∈ [λ∗, λ∗].

Proof. : We are given that for both λ∗ and λ∗, FES(M, q + λd) 6= ∅. Let z∗, z∗ be the

vectors in the feasible set corresponding to parameters λ∗ and λ∗. We have

Mz∗ + q + λ∗d ≥ 0, z∗ ≥ 0

Mz∗ + q + λ∗d ≥ 0, z∗ ≥ 0

Now take any λ ∈ [λ∗, λ∗], λ can be expressed as a linear combination of λ∗ and λ∗,

λ = aλ∗ + (1− a)λ∗, a ∈ [0, 1].
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We first prove FES(M, q + λd) 6= ∅.
Let z = az∗ + (1− a)z∗. Since z∗, z∗ ≥ 0, a ∈ [0, 1], we have z ≥ 0.

Mz + q + λd = aMz∗ + (1− a)Mz∗ + aq + (1− a)q + aλ∗d + (1− a)λ∗d

= a(Mz∗ + q + λ∗d) + (1− a)(Mz∗ + q + λ∗d) ≥ 0

Therefore z ∈ FES(M, q + λd). We have proven for any λ ∈ [λ∗, λ∗], there exists

a vector z which satisfies the feasibility condition. We also know that if M is positive

semidefinite and FES(M, q+λd) 6= ∅, there exists a solution to LCP (M, q+λd). Hence

the parametric LCP (M, q + λd) has a solution for each finite number λ ∈ [λ∗, λ∗].

5.3 Algorithm

5.3.1 Outline of the Algorithm

Step 1 Compute the lower and upper bounds for parameter λ that will generate feasible

solutions by solving linear programs,

min
λ,z

(max
λ,z

) λ

subject to Mz + q + λd ≥ 0

z ≥ 0, λ ∈ Λ.

Let λ = λ∗.

Step 2 Phase I, this is very similar to Alg 5.1 (Phase I) of Lemke’s method .

i. If q + λd ≥ 0, STOP: z = 0 is a solution of LCP (M, q + λd), that is, (z, w) =

(0, q + λd) is a feasible complementary pair.
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ii. Otherwise, add the artificial variables z0 and w0 that are constrained to satisfy

the following relationships:

w = Mz + ez0 + q + λd, w0 = z0,

where e is the vector of ones in Rn and create the initial tableau

z z0 1 λ
w M e q d
w0 0 1 0 0

iii. Pivot row selection: Carry out a Jordan exchange on the z0 column and row

corresponding to the most negative qi + λdi.

Step 3 Same as Alg. 5.2 (Phase II) of Lemke’s method .

Step 4 Determine the range [λL, λU ] on which the current solution is feasible and com-

plementary.

Step 5 If λU 6= λ∗, determine which component of q + λd becomes negative. Eliminate

column z0, and go to step 2. Otherwise, STOP, we have found all the feasible

complementary pairs for λ ∈ [λ∗, λ∗].

In the special case where λ∗ = −∞ and λ∗ < +∞, the algorithm starts from λ = λ∗

and subsequently decreases the value of λ until −∞. If both λ∗ and λ∗ are infinite,

the algorithm starts from the “middle” (at λ = 0) and first decreases λ until −∞ then

returns to the middle point and increases λ until +∞.

The MATLAB code can be found in the Appendix.
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5.3.2 Some Computation Considerations

In our algorithm, we choose the starting value of the parameter λ at the smallest feasible

value λ∗ and solve LCP (M, q+λ∗d) by essentially applying a series of Jordan exchanges

and column/row rearrangements on the original matrix M . The process terminates with

a set of basic feasible complementary variables and correspondingly a new matrix M ′.

We then increase the value of λ until the present complementary solution no longer

remains feasible. We use the new value λ′, at which the solution just becomes infeasible,

together with the current set of basic variables, to restart Lemke’s method and solve a

new LCP (M ′, q + λ′d). We shall increase the value of λ and perform the above steps

recursively until the value of λ reaches its upper bound λ∗. Therefore, each time the

process restarts, it will start from the current cell defined by the active set associated

with the final basis of the previous solve.

We know that Lemke’s method works for positive semidefinite matrix M . In order

to ensure that Lemke’s method is applicable to our scheme, we need to prove that at

the end of each solve (i.e. the start of the next LCP), the new transformed matrix M ′

remains positive semidefinite.

Theorem 5.3.1. Let M be the matrix corresponding to the complementary basic vari-

ables denoted by (w1, w2, ..., wn), and zj be the complement of wj, for j = 1, . . . , n. After

a series of Jordan exchanges and column/row rearrangements, we obtain a new comple-

mentary set of basic variables (y1, y2, ..., yn), where yj ∈ {wj, zj} for j = 1, . . . , n. Let

M ′ be the matrix corresponding to the vector y. If M is positive semidefinite, M ′ is also

positive semidefinite.

Proof. Let u = (u1, ..., un)T ∈ Rn. Define v = (v1, ..., vn)T by

v = Mu. (5.3.1)
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After a series of Jordan exchanges and rearrangements, we obtain a new vector ξ, with

ξj ∈ {uj, vj} for j = 1...n, and its corresponding complementary vector η, where ηj = uj

if ξj = vj and ηj = vj if ξj = uj. Since vj = Mj.u, as u varies over Rn, ξ also varies

over Rn. M ′, ξ and η are obtained from M, u and v by a series of Jordan exchanges and

column, row rearrangements, for any u and v defined by (5.3.1),

η = M ′ξ

also holds. Now,

uT Mu = uT v = ξT η = ξT M ′ξ.

These imply that ξT M ′ξ ≥ 0 for all ξ ∈ Rn iff uT Mu ≥ 0 for all u ∈ Rn. Hence M ′ is

PSD iff M is PSD.

Theorem 5.3.1 justifies the fact that we are able to use Lemke’s method to find a

solution every time we restart the process with a new value of λ.

5.4 A Simple Example

We will use a simple 2−D example to illustrate the algorithm.

Consider M =




1 −1

−1 1


, q =



−1

2


, d =




1

1


.

It’s easy to check that M is PSD.

1. Compute the lower and upper bounds for λ. We can obtain these bounds using

simply linear programming techniques and obtain λ∗ = −0.5 and λ∗ = ∞.

Starting from λ = −0.5, we shall find all the solutions to the parametric LCP corre-

sponding to the values of λ ∈ [−0.5,∞].

2. Apply Phase I of Lemke’s method. The initial tableau is the following.
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z1 z2 z0 1 λ
w1 1 −1 1 −1 1
w2 −1 1 1 2 1

In practice we don’t have to put row w0 in the tableau. At λ = −0.5, we first pivot

on the z0 column, and the first row.

z1 z2 w1 1 λ
z0 −1 1 1 1 −1
w2 −2 2 1 3 0

3. Apply Phase II of Lemke’s method and obtain the first complementarity solution

z = [1.5 0]>, with basic variables [z1 w2]
> = [1− λ 1 + 2λ]>.

w1 z2 1 λ
z1 1 1 1 −1
w2 −1 0 1 2

The solution is feasible and complementary for λ ∈ [−0.5, 1]. When λ exceeds 1, the

complementary pair are no longer feasible.

Note that the new square matrix remains PSD. Repeat step 2 and 3 with λ ≥ 1, we

obtain a new complementary solution, that is z = [0 0]>, with basic variables [w1 w2]
> =

[−1 + λ 2 + λ]>.

z1 z2 1 λ

w1 1 −1 −1 1

w2 −1 1 2 1
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This solution is feasible for all λ ≥ 1. We have thus found all the complementary

solutions for all the feasible values of λ.

5.5 Application to Parametric Convex Quadratic Pro-

gramming

An example of PLCP arises from solving the parametric convex quadratic programs

(QP). Parametric QP is defined as:

min
x

1

2
x>Dx + (c1 + λc2)>x

s.t. Ax ≥ b1 + λb2 (5.5.1)

x ≥ 0

where D is a symmetric positive semidefinite matrix of order n and λ belongs to a closed

interval in R similar to the case of PLCP. If either c2 or b2 is equal to 0, we have a special

case where the parameter only appears in the right hand side constant vector, or the

linear term of the objective function respectively.

Since D is positive semidefinite, the KKT point of (5.5.1) corresponds to its optimal

solution. The KKT conditions can be written as a parametric LCP(M, q + λd) with:

M =




D −A>

A 0


 , q =




c1

−b1


 , d =




c2

−b2


 .

Note that the matrix M constructed in this way is also a positive semidefinite matrix.

Therefore the PLCP can be solved by the scheme proposed before.

A well-known application of parametric QP arises from portfolio selection problem

[62]: let x = (x1, · · · , xn)> be the proportions of the investor’s wealth invested in n
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securities, which sum to 1. Let the security returns be represented by a vector of

random variables R = (R1, · · · , Rn)> with mean µ = (µ1, · · · , µn)> and covariance

matrix V = (σij)
n
i,j=1 where σij = Cov(Ri, Rj). The portfolio selection problem is to

find the value of x that will

min
1

2
x>V x− θµ>x

s.t. 0 ≤ x ≤ a

e>x = 1,

where e is a vector of all ones, a is a given positive vector denoting the upper bounds on

the proportions to be invested in the securities, and θ is the coefficient of risk aversion. By

varying θ from 0 to ∞, all efficient portfolios can be determined. The upper bounding

constraints exist for legal, personal or institutional reasons. Some component of the

vector a can be infinite. The covariance matrix V is symmetric positive semidefinite

under certain assumptions. The KKT conditions lead to the following PLCP:

0 ≤ V x− θµ− ue + v ⊥ x ≥ 0

e>x = 1 ⊥ u free (5.5.2)

x ≤ a ⊥ v ≥ 0.

The matrix in LCP(M, q + λd) thus has

M =




V −e I

e>

−I




.

In the above case, for each fixed parameter value, the PLCP (5.5.2) is equivalent to

an affine variational inequality problem, which can be written as:

0 ∈ V x− θµ + NC(x)
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with C = {x | 0 ≤ x ≤ a, e>x = 1}. To extend this result, a parametric QP in the

following form:

min
x

1

2
x>Dx + (c1 + λc2)>x

s.t. x ∈ polyhedral set C,

can be solved by a sequence of affine variational inequalities in a similar fashion as the

PLCP case. In particular, for a given feasible range of λ ∈ [λ∗, λ∗], start by solving an

AV I(D,−(c1 + λc2), C) with λ = λ∗. At the solution, compute the range for λ which

preserves the feasibility of the current AVI system. As λ exceeds this range, restart the

Main Algorithm of AVI in the current cell and find a new AVI solution corresponding

to a new range of λ and repeat, until λ∗ is reached. Similar to our previous discussion

in Chapter 4, solving a parametric QP over a bounded polyhedral constraint set (as in

the case of the portfolio selection problem), by parameterized AVI is potentially more

effective than by PLCP.

Another application of PLCP is solving multiple criteria problems with one quadratic

objective, several linear objectives, and a set of linear constraints. A reference direction

approach is employed for such problems and a PLCP formulation of the problem is

thus developed [55]. Extended portfolio selection problems and noise reduction design

problems are typical examples for such problems in practice. The problem is defined as:

min V (x) =
1

2
x>Dx

max l(x) = Cx (5.5.3)

Subject to: Ax ≤ b

x ≥ 0,

where D is a symmetric positive semidefinite matrix, C is a k×n matrix containing the
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coefficients of the linear objective functions. All linear objective functions need to be

maximized simultaneously.

By ignoring the quadratic objective, the rest multiple objective linear program can

be approached by investigating the following problem:

min ε

Subject to: Cx + εw ≥ g (5.5.4)

x ∈ X := {x |Ax ≤ b, x ≥ 0}, (5.5.5)

with an aspiration level vector g and a weighting vector w. These parameters are pro-

vided initially and will be updated iteratively.

Combining the quadratic objective with the above using a weighted sum, the problem

in (5.5.3) becomes:

min µ
1

2
x>Dx + (1− µ)ε

Subject to: Cx + εw ≥ g (5.5.6)

x ∈ X, µ ∈ (0, 1).

Furthermore, dividing the objective function of problem (5.5.6) by µ and letting

t = 1
µ
− 1 (t > 0) transform the above problem (5.5.6) into the following:

min
1

2
x>Dx + tε

Subject to: Cx + εw ≥ g (5.5.7)

x ∈ X.

Reference directions ∆t and ∆g (t + λ∆t > 0) are used to parameterize the vectors
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in system (5.5.7), in order to search for new solutions, namely,

min
1

2
x>Dx + (t + λ∆t)ε

Subject to: Cx + εw ≥ g + λ∆g (5.5.8)

Ax ≤ b, x ≥ 0,

and then they are used to update t and g respectively.

Now the system becomes a parameterized QP and can be solved via a standard

PLCP, that is

LCP







D −C> A>

−w>

C w

−A




,




0

t

−g

b




+ λ




0

∆t

−∆g

0







.

5.6 Summary

We have implemented a MATLAB code based on Lemke’s Method to compute PLCPs

automatically for all parameter values of interest. In order to complete the code, effective

techniques for testing whether the matrix in the PLCP is PSD and for breaking possible

ties after updating the parameter value need to be considered. In real applications, we

may not always have PSD matrices in PLCPs. For solving such problems, we hope to

enhance our scheme by incorporating some alternative LCP algorithms which deal with

a wider variety of matrix classes, for example the PATH solver. Another alternative is

to solve a PLCP as a sequence of equivalent AVIs. Similar to what we already discussed

before in Chapter 4, for a certain class of PLCPs, this alternative may be more efficient.

Furthermore, the AVI algorithm proposed in Chapter 4 can process PLCPs with less

restrictive matrices, for example copositive-plus matrices.
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Appendix A

Code for Solving Parametric LCPs

A.1 Main Code

% syntax: [s,err] = plemke(M,q,d,k_lo,k_up)

% PLEMKE - Solves parametric linear complementarity problems (PLCPs).

% A PLCP solves

% Mz + q + kd >= 0, z >= 0, z’(Mz + q + kd) = 0.

% k is the parameter varying from k_lo to k_up

% if k_lo or k_up or both are omitted, the default range is (-inf,inf).

%

% ERR returns an error condition:

% 0: Solution found

% 1: Maximum iterations exceeded

% 2: Unbounded ray termination

% If NARGOUT==1, a warning message is displayed instead.

%

% The algorithm determines the feasible range of parameter k

% then finds LCP solutions for all feasible values of k.

%

function [s,err] = plemke(M,q,d,k_lo,k_up)

n = length(q);
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% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%

% Construct LP to decide feasible range for the parameter%

% Determine k \in [lk, uk] %

% s.t. Mz + q + kd >= 0, z >= 0 %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%

A = [M d];

p = [zeros(n,1);1];

ub = inf*ones(n+1,1);

lb = [zeros(n,1);-inf];

ge = find(d<inf);

% Compute the lower bound on parameter

% min k

% s.t. Mz + q + kd >= 0, z >= 0

[obj,x,lambda,status] = cplexlp(p,A,-q,lb,ub,[],ge);

if status == 1

if nargin < 4

lk = x(n+1);

else

lk = max(x(n+1),k_lo);

end

elseif status == 2 % problem is unbounded

if nargin < 4

lk = -inf;

else

lk = max(-inf,k_lo);

end

elseif status == 3
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error(’problem is infeasible’);

elseif status == 4 % problem infeasible or unbounded

% recompute lp with zero objective

[obj,x,lambda,status] = cplexlp(zeros(n+1,1),A,-q,lb,ub,[],ge);

if status == 1 % problem is feasible therefore is unbounded

if nargin < 4

lk = -inf;

else

lk = max(-inf,k_lo);

end

else % problem is infeasible

error(’problem is infeasible’);

end

else

error(’problem is non-optimal’);

end

% Compute the upper bound on parameter

% max k

% s.t. Mz + q + kd >= 0, z >= 0

[obj,x,lambda,status] = cplexlp(-p,A,-q,lb,ub,[],ge);

if status == 1

if nargin < 5

uk = x(n+1);

else

uk = min(x(n+1),k_up);

end

elseif status == 2 % problem is unbounded
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if nargin < 5

uk = inf;

else

uk = min(inf,k_up);

end

elseif status == 3

error(’problem is infeasible’);

elseif status == 4 % problem infeasible or unbounded

% recompute lp with zero objective

[obj,x,lambda,status] = cplexlp(zeros(n+1,1),A,-q,lb,ub,[],ge);

if status == 1 % problem is feasible therefore is unbounded

if nargin < 5

uk = inf;

else

uk = min(inf,k_up);

end

else % problem is infeasible

error(’problem is infeasible’);

end

else

error(’problem is non-optimal’);

end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% Decide the starting value of parameter k %

% Start from a finite bound or zero %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

flag = 1;

sign = 0;



127

k = 0;

lk = max(lk,-inf);

uk = min(uk,inf);

if lk > -inf

k = lk;

sign = 1;

elseif uk < inf

k = uk;

sign = -1;

end

z = zeros(2*n,2);

% Determine initial basis

bas1=(n+1:2*n)’;

B1 = -speye(n);

x1 = [q d];

% Check if initial basis provides solution

if all(x1(:,1) + k*x1(:,2)>0)

z(bas1,:)=x1;

else

% Find a solution with the first value of the parameter

[x1,B1,bas1,err] = mainlemke(x1,k,M,B1,bas1);

if nargout<2 && err(1)~=0

ss=’Warning: solution not found’;

fprintf(’ for parameter k at %6.2f - ’,k);
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if err(1)==2

disp([ss ’Unbounded ray’]);

elseif err(1)==1

disp([ss ’Iterations exceeded limit’]);

end

return;

end

z(bas1,:) = x1;

end

numsol = 1;

% Check if given upper and lower bound are feasible

if (sign > 0) % check lower bound

if (nargin >= 4 && lk > k_lo) % given lower range is not feasible

s(numsol) = struct(’solution’,[],’range’,[k_lo,lk]);

numsol = numsol + 1;

end

elseif (sign < 0) % check upper bound

if (nargin >= 5 && uk < k_up) % given lower range is not feasible

s(numsol) = struct(’solution’,[],’range’,[uk,k_up]);

numsol = numsol + 1;

end

end

s(numsol) = struct(’solution’,z(1:n,:),’range’,[]);

% Find solutions to other values of the parameter

if sign ~= 0 % k starts from a finite bound

x = x1; B = B1; bas = bas1;
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while flag

z = zeros(2*n,2);

critical = -x(:,1)./x(:,2); % Find the next critical value of k

cand = find(sign*critical > sign*k && critical >= lk

&& critical <= uk);

if ~isempty(cand)

k1 = sign*min(sign*critical(cand));

s(numsol).range = [min(k,k1),max(k,k1)];

% Call mainlemke to found the solution at k1

[x,B,bas,err] = mainlemke(x,k1,M,B,bas);

if nargout<2 && err(1)~=0

ss=’Warning: solution not found’;

fprintf(’ for parameter k at %6.2f - ’,k1);

if err(1)==2

disp([ss ’Unbounded ray’]);

elseif err(1)==1

disp([ss ’Iterations exceeded limit’]);

end

return;

end

z(bas,:) = x;

numsol = numsol + 1;

s(numsol) = struct(’solution’,z(1:n,:),’range’,[]);

k = k1;

else % no more critical k in [lk, uk]

k1 = (sign+1)/2 * uk + (sign-1)/2 * lk;

s(numsol).range = [min(k,k1),max(k,k1)];

if (sign < 0) % check lower bound

if (nargin >= 4 && lk > k_lo)
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% given lower range is not feasible

numsol = numsol + 1;

s(numsol) = struct(’solution’,[],’range’,[k_lo,lk]);

end

elseif (sign > 0) % check upper bound

if (nargin >= 5 && uk < k_up)

% given lower range is not feasible

numsol = numsol + 1;

s(numsol) = struct(’solution’,[],’range’,[uk,k_up]);

end

end

disp(’solution for each feasible range of the parameter’);

for i = 1:numsol

fprintf(’\n range of parameter k :

[ %d, %d ]\n solution : \n’,s(i).range);

fprintf(’ [%6.2f] + k *[%6.2f]\n’,

s(i).solution(:,1), s(i).solution(:,2));

end

break;

end

end

else % k in (-inf,inf)

sign = -1; % k starts from zero and decrease first

x = x1; B = B1; bas = bas1;

while flag

z = zeros(2*n,2);

critical = -x(:,1)./x(:,2); % Find the next critical value of k

cand = find(sign*critical > sign*k && critical >= lk

&& critical <= uk);
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if ~isempty(cand)

k1 = sign*min(sign*critical(cand));

s(numsol).range = [k1,k];

% Call mainlemke to found the solution.

[x,B,bas,err] = mainlemke(x,k1,M,B,bas);

if nargout<2 && err(1)~=0

ss=’Warning: solution not found’;

fprintf(’ for parameter k at %6.2f - ’,k1);

if err(1)==2

disp([ss ’Unbounded ray’]);

elseif err(1)==1

disp([ss ’Iterations exceeded limit’]);

end

return;

end

z(bas,:) = x;

numsol = numsol + 1;

s(numsol) = struct(’solution’,z(1:n,:),’range’,[]);

k = k1;

else

s(numsol).range = [lk,k];

if (nargin >= 4 && lk > k_lo)

% given lower range is not feasible

numsol = numsol + 1;

s(numsol) = struct(’solution’,[],’range’,[k_lo,lk]);

end

break;

end

end
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sign = 1; % k starts from zero and increase

k = 0;

x = x1; B = B1; bas = bas1;

while flag

z = zeros(2*n,2);

critical = -x(:,1)./x(:,2); % Find the next critical value of k

cand = find(sign*critical > sign*k && critical >= lk

&& critical <= uk);

if ~isempty(cand)

k1 = sign*min(sign*critical(cand));

if k == 0

k = s(1).range;

s(1).range = [k(1),k1];

else

s(numsol).range = [k,k1];

end

% Call mainlemke to found the solution.

[x,B,bas,err] = mainlemke(x,k1,M,B,bas);

if nargout<2 && err(1)~=0

ss=’Warning: solution not found’;

fprintf(’ for parameter k at %6.2f - ’,k1);

if err(1)==2

disp([ss ’Unbounded ray’]);

elseif err(1)==1

disp([ss ’Iterations exceeded limit’]);

end

return;

end

z(bas,:) = x;
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numsol = numsol + 1;

s(numsol) = struct(’solution’,z(1:n,:),’range’,[]);

k = k1;

else

s(numsol).range = [k,uk];

if (nargin >= 5 && uk < k_up)

% given lower range is not feasible

numsol = numsol + 1;

s(numsol) = struct(’solution’,[],’range’,[uk,k_up]);

end

disp(’solution for each feasible range of the parameter’);

for i = 1:numsol

fprintf(’\n range of parameter k :

[ %d, %d ]\n solution : \n’,s(i).range);

fprintf(’ [%6.2f] + k *[%6.2f]\n’,

s(i).solution(:,1), s(i).solution(:,2));

end

break;

end

end

end

A.2 Subroutine for Performing a Modified Lemke’s

Pivotal Scheme

For fixed value of λ (or k as in the the code), compute the solution for the linear

complementarity problem.
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% Subroutine for finding a solution to the LCP

% corresponding to a fixed value of parameter k.

% Similar to the Lemke’s method, except pivoting on

% q and d vector in Tableau separately

function [x,B,bas,err] = mainlemke(x,k,M,B,bas)

n = length(x(:,1));

zer_tol = 1e-5;

piv_tol = 1e-8;

maxiter = min([1000 25*n]);

t = 2*n+1; % Artificial variable

entering=t; % is the first entering variable

% Determine initial leaving variable

[tval,lvindex]=max(-(x(:,1) + k*x(:,2)));

y = -x(lvindex,:);

leaving=bas(lvindex);

err=0;

bas(lvindex)=t; % pivot in the artificial variable

x(:,1)=x(:,1)-x(lvindex,1);

x(:,2)=x(:,2)-x(lvindex,2);

x(lvindex,:)=y;

B(:,lvindex)=-B*ones(n,1);

% Main iterations begin here

for iter=1:maxiter



135

% Check if done; if not, get new entering variable

if (leaving == t) break

elseif (leaving <= n)

entering = n+leaving;

Be = sparse(leaving,1,-1.0,n,1);

else

entering = leaving-n;

Be = M(:,entering);

end

d = B\Be;

% Find new leaving variable

j=find(d>piv_tol); % indices of d>0

if isempty(j) % no new pivots - ray termination

err=2;

break

end

theta=min((x(j,1)+k*x(j,2)+zer_tol)./d(j)); % minimal ratios, d>0

% indices of minimal ratios, d>0

j=j(find(((x(j,1)+k*x(j,2))./d(j))<=theta));

lvindex=find(bas(j)==t); % check if artificial among these

if ~isempty(lvindex) % Always use artifical if possible

lvindex=j(lvindex);

else % otherwise pick among set of max d

theta=max(d(j));

lvindex=find(d(j)==theta);

% if multiple choose randomly

lvindex=j(ceil(length(lvindex)*rand));

end
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leaving=bas(lvindex);

% Perform pivot

ratio=x(lvindex,:)./d(lvindex);

x(:,1) = x(:,1) - ratio(1,1)*d;

x(:,2) = x(:,2) - ratio(1,2)*d;

x(lvindex,:) = ratio;

B(:,lvindex) = Be;

bas(lvindex) = entering;

end % end of iterations

if iter>=maxiter & leaving~=t err=1; end

% z(bas,:) = x;

% z = z(1:n,:);

% Display warning messages if no error code is returned

if nargout<4 & err(1)~=0

s=’Warning: solution not found - ’;

if err(1)==2

disp([s ’Unbounded ray’]);

elseif err(1)==1

disp([f ’Iterations exceeded limit’]);

end

end

return;
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