
A LARGE SCALE INTEGER AND

COMBINATORIAL OPTIMIZER

By

Qun Chen

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Industrial Engineering)

at the

UNIVERSITY OF WISCONSIN – MADISON

2000

 Copyright by Qun Chen 2000

All Rights Reserved

i

Abstract

The topic of this thesis, integer and combinatorial optimization, involves minimizing

(or maximizing) a function of many variables, some of which belong to a discrete set,

subject to constraints. This area has abundant applications in industry. Integer and

combinatorial optimization problems are often difficult to solve due to the large and

complex set of alternatives.

The objective of this thesis is to present an effective solution to integer and combinato-

rial problems by using a traditional reliable branch-and-bound approach as well as a newly

developed fast adaptive random search method, namely Nested Partitions. The proposed

integer and combinatorial optimizer has two closely related components: FATCOP and

NP/GA. FATCOP is a distributed mixed integer program solver written in PVM for

Condor’s opportunistic environment. It is different from prior parallel branch-and-bound

work by implementing a general purpose parallel mixed integer programming algorithm

in an opportunistic multiple processor environment, as opposed to a conventional dedi-

cated environment. We show how to make effective use of opportunistic resources while

ensuring the program works correctly. The solver also provides performance-enhancing

features such as preprocessing, pseudocost branching, cutting plane generation, locking

of variables and general purpose primal heuristics. FATCOP performs very well on test

problems arising from real applications, and is particularly useful to solve long-running

hard mixed integer programming problems.

For many integer and combinatorial optimization problems, application-specific tun-

ing may be required. Users can supply combinatorial approximation algorithms which

exploit structure unique to the problem class. These can be run in conjunction with the

ii

system defaults or in place of them. In this thesis, we developed a new hybrid algorithm

NP/GA based on Nested Partitions and a Genetic Algorithms. This algorithm retains

the global perspective of the Nested partitions method and the local search capacities of

the Genetic Algorithm, and can be applied to any integer and combinatorial optimization

problems.

We applied our optimizer to product design problems from the marketing area. We

started with building NP/GA heuristic algorithms and showed that our algorithms out-

perform all previous approaches. Following that, we incorporated the heuristics to FAT-

COP and solved some reasonable size instances to optimality.

iii

Contents

Abstract i

1 Introduction 1

1.1 The Branch-and-Bound Method . 4

1.2 The Nested Partitions Method . 5

1.3 Scope of the Thesis . 7

2 FATCOP: Fault Tolerant Condor-PVM Mixed Integer Program Solver 8

2.1 Components of Sequential Program . 11

2.1.1 Branching rules . 14

2.1.2 Searching rule . 16

2.1.3 Preprocessing . 17

2.1.4 Cutting Planes . 19

2.1.5 Primal Heuristics and Variable Locking 20

2.2 Condor-PVM Parallel Programming Environment 21

2.3 Design of the the Parallel program . 26

2.3.1 Master-worker paradigm . 26

2.3.2 A Greedy heuristic to use resources 27

2.3.3 Worker grain size and default searching strategies 27

2.3.4 Global and local information . 29

2.3.4.1 Cutting Planes . 29

2.3.4.2 Pseudocosts . 30

iv

2.3.4.3 Heuristics . 30

2.3.4.4 Node preprocessing . 30

2.4 Implementation of the parallel program 31

2.4.1 The Master Program . 34

2.4.2 Worker Program . 38

2.5 Features and extensions . 38

2.5.1 Object oriented design . 38

2.5.2 Heterogeneity . 41

2.5.3 User defined heuristics . 42

2.6 Numerical Results . 43

2.6.1 Resource Utilization . 45

2.6.2 Assessing FATCOP strategies . 49

2.6.2.1 Assessing node preprocessing 49

2.6.2.2 Grain size and master contention 50

2.6.2.3 Search strategy effects 52

2.6.2.4 Heterogeneity . 52

2.6.3 Raw performance . 53

3 NP/GA: A New Hybrid Optimization Algorithm 59

3.1 The Nested Partitions method . 61

3.1.1 Algorithm . 62

3.1.2 Components of the NP algorithm 64

3.1.2.1 Partition . 65

3.1.2.2 Sampling . 70

3.1.2.3 Promising Index . 72

v

3.1.2.4 Backtracking . 74

3.1.3 Convergence . 75

3.2 Finite Time Behavior and Stopping Criteria of the NP method 75

3.2.1 Estimate expectation and variance of algorithm length 76

3.2.2 Stopping Criteria . 79

3.2.3 Hybrid NP/GA Algorithm . 82

3.2.3.1 NP/GA algorithm . 84

3.2.3.2 Global Convergence . 87

3.2.3.3 Convergency Speed . 88

4 Application to Product Design Problem 91

4.1 Mixed integer programming formulation 93

4.2 Previous Solution Methods . 95

4.3 Description of the Optimization Framework 98

4.3.1 A Generic NP Algorithm for Product Design 98

4.3.2 The NP/GS Algorithm . 101

4.3.3 The NP/DP Algorithm . 102

4.3.4 The NP/GA Algorithm . 102

4.3.5 The NP/GA/GS Algorithm . 103

4.4 An Illustrative Example . 103

4.4.1 A Generic NP Algorithm for the 3-Attribute Example 105

4.4.2 The NP/GS Algorithm for the 3-Attribute Example 107

4.4.3 The NP/DP Algorithm for the 3-Attribute Example 108

4.4.4 The NP/GA Algorithm for the 3-Attribute Example 109

4.4.5 The NP/GA/GS Algorithm for the 3-Attribute Example 109

vi

4.5 Numerical Results . 109

4.5.1 Product Line Design . 116

4.6 Mixed Integer Programming Solution . 118

4.6.1 User defined heuristics . 118

4.6.1.1 Upper bound through NP/GA 118

4.6.1.2 Priority Branching through Greedy Heuristics 118

4.6.1.3 Reformulation . 118

4.6.2 Numerical Results . 120

4.6.2.1 Effects of Heuristics . 120

4.6.2.2 Raw results and comparison to CPLEX 121

5 Conclusion and Future Research 124

Bibliography 128

A GS Sampling 134

B DP Sampling 136

C GA Search 139

D GAMS model for MIP formulation of single product design problem 141

vii

List of Tables

1 Average number of machines and suspensions for 4 FATCOP runs 48

2 Effect of node preprocessing, data averaged over 3 replications 49

3 Effect of varying worker grain size: results for vpm2 50

4 Effect of search strategy: comparison of the parallel solver and sequential

solver for tree size . 51

5 Effect of using heterogeneous machines: results for 10teams 52

6 Effect of using heterogeneous LP solvers: results for air04 53

7 Performance of FATCOP: min (max) refer to the minimum (maximum)

over five replications of the average number of processors (nodes, time) used 54

8 Summary of the test problems from real applications 56

9 Results for real applications obtained by FATCOP 57

10 Comparison of FATCOP and CPLEX for the real applications. Time unit

is hour. Both solvers have a time limit of 48 hours. “-” stands for no results 57

11 Data for algorithm length: M = d∗ = 10 80

12 Data for algorithm length: M = d∗ = 20 80

13 Data for algorithm length: M = d∗ = 30 80

14 Stopping criteria results for product design problem P1. 89

15 Stopping criteria results for product design problem P2. 90

16 Stopping criteria results for product design problem P3. 90

17 Comparison of NP-pure and NP/GA: estimation of p0 90

18 Comparison of all the algorithms . 111

19 Comparison of NP/GA/GS to heuristics without the NP framework. . . . 113

viii

20 Average performance for beta distributed customer preference 115

21 Product profiles for the K = L = 10 problem 116

22 Product profiles for the K = L = 20 problem 116

23 Comparison of NP-Line and BS for product line problems 117

24 Effects of Reformulation for the problem N = 50, K = L = 5 120

25 Effects of the proposed Heuristics for the problem N = 50, K = L = 5 . . 121

26 Tree size for the problems with N = 50 122

27 Tree size for the problems with K = 12, L = 3 122

ix

List of Figures

1 The procedure to apply the proposed optimizer 4

2 Branch-and-bound algorithm . 12

3 Architecture of Condor-PVM . 23

4 FATCOP overview . 33

5 Interactions among Condor, FATCOP and GAMS 34

6 Message passing inside FATCOP . 35

7 Object Oriented Design of FATCOP . 39

8 Without Rounding Heuristics . 44

9 With Rounding Heuristics . 44

10 Resource utilization for one run of FATCOP 46

11 Daily log for a FATCOP job . 47

12 Average number of processors participating in solving gesa2 o 55

13 Average worker efficiency during solution of gesa2 o 55

14 Flowchart of NP algorithm . 62

15 MPE problem . 65

16 Partition for MPE problem . 68

17 Partition for Weight Recovering problem 70

18 One iteration of tabu search to obtain better promising index for MPE

problem . 73

19 Partitioning tree for a simple product design example. 104

20 Performance of the GA, NP/GA, and NP/GA/GS algorithms as a function

of time for the 50 attribute, 20 level problem. 114

x

21 Performance of the GS, NP/GS, and NP/GA/GS algorithms as a function

of time for the 50 attribute, 20 level problem. 114

22 Comparison of FATCOP and CPLEX for the problem with K = 12, L =

3, N = 200 . 123

1

Chapter 1

Introduction

Integer and combinatorial optimization models, also known as discrete optimization mod-

els, represent critical decision problems in industry. These applications include opera-

tional problems such as production scheduling and machine sequencing, planning prob-

lems such as facility location, and design problems such as transportation network design

and product design.

Integer and combinatorial optimization models consist of maximizing or minimizing a

function of many variables subject to inequality or equality constraints, while some of the

variables are restricted to take on integer values. Some models have a linear objective

function with linear constraints. Others have either nonlinear objective functions or

nonlinear constraints or both. Within mathematical programming, the first class of

problems are referred to as linear integer problems (IP or ILP) that require all variables

to be integer, or mixed integer problems (MIP or MILP) that require only some of the

variables to take integer values. For the sake of generality, we view integer problems as

special cases of mixed integer problems. The second class of problems are referred to as

mixed integer nonlinear problems (MINLP). We will focus our attention on mixed integer

linear problems in this thesis although the proposed optimizer is not restricted to linear

problems.

Integer and combinatorial optimization algorithms span a range as wide as the models

2

they address. Among the best known algorithms, we cite branch-and-bound, branch-

and-cut, branch-and-price, and heuristic algorithms such as tabu search (TS), simulated

annealing (SA), genetic algorithms (GA), and nested partitions (NP). Of these methods,

the most popular general purpose method is clearly branch-and-bound. Many commercial

available codes implement branch-and-bound algorithms. Theoretically, the branch-and-

bound method can always find a provably optimal solution. However in practice many

difficult integer and combinatorial problems require lengthy branching and bounding

processes even to find good solutions. As a result, heuristic algorithms are often used to

find good solutions without any guarantee that the solutions are optimal. The NP method

has been developed recently for global optimization in the context of both deterministic

and stochastic problems. The method takes a global perspective and offers a framework

to incorporate various kinds of local search techniques. The NP method has been found

to be efficient for a variety of problems, such as the traveling salesman problem [61],

production scheduling problems [54] and a product design problem [62]. Furthermore,

the NP method does not have any requirement on the problem’s objective function, hence

can be used to solve nonlinear problems.

In this thesis, we develop an integer and combinatorial optimizer that has two related

components: FATCOP, and NP/GA. FATCOP is a distributed branch-and-bound based

MIP solver developed in an opportunistic multiple processor environment. MIP has

been a widely suggested application of parallel computing. Our solver is different from

prior parallel branch-and-bound work by implementing a general purpose parallel MIP

algorithm in an opportunistic environment, as opposed to the conventional dedicated

environment. An example of an opportunistic environment is a large heterogeneous

clusters of workstations connected through a fast local network. With the ever decreasing

cost of lower-end workstations, such an environments become very common today. In

3

this thesis we show how to develop an efficient and robust MIP solver in an opportunistic

environment with the help of Condor, a distributed resource management system.

NP/GA is a hybrid method that combines two heuristic algorithms: NP and GA.

The NP method is a randomized optimization method for global optimization. It can

be described as an adaptive sampling method that uses partitioning to concentrate the

sampling effort in those subsets of a feasible region that are considered the most promis-

ing. The GA is also a random search method, which is based on the concept of natural

selection. It starts from an initial population and then uses a mixture of reproduction,

crossover, and mutation to create new, and hopefully better, populations. Although the

GA works with a population of strings rather than a single string, the GA is essentially

a sequential heuristic and is not guaranteed to converge to a global optimum. The NP

method, on the other hand, maintains a global perspective in every iteration and con-

verges in finite time to a global optimum [64]. The NP/GA algorithm retains the global

perspective of the NP and the local search capabilities of the genetic algorithm.

We proposed the following procedure to use the new optimizer for any applicable

industrial application. A user starts with building a MIP model for one application and

solves the model using FATCOP. If FATCOP can not find a satisfactory solution, the

user may develop an NP/GA procedure for this application. The implementation of

the NP/GA procedure is problem dependent. We tried to facilitate use by providing

a NP/GA library that includes a set of C++ Nested Partitions objects and examples.

Users can implement NP/GA procedures on top of the NP/GA library by calling its

built-in routines. If some good solutions are found, the user can deliver the best solution

value to FATCOP and run the MIP solver again. The new solve can be used to measure

the quality of the solutions found by the NP/GA procedure and may possibly find better

solutions or even prove optimality. The above procedure is illustrated in Figure 1.

4

Formulate the application as a MIP

Deliver the MIP model to FATCOP

Start

Find Optimal
Solution?

Develop NP/GA procedure

Report best solution found

Stop

no

yes

Figure 1: The procedure to apply the proposed optimizer

1.1 The Branch-and-Bound Method

The branch-and-bound method was first described by Land and Doig [46], and further

developed by many researchers. We will describe the branch-and-bound algorithms for

MIP in Chapter 2. Here we give a brief introduction to the general branch-and-bound

method.

The branch-and-bound method can be viewed as an implicit enumeration method

to solve optimization problems by enumerating a finite number of solutions in their

feasible region. It consists of decomposing the feasible region into a number of subregions.

The decomposition often is called branching operation. The optimization problem in a

subregion is called a subproblem. Each subproblem is associated with a lower bound

5

or/and a upper bound by a bounding operation. If a subproblem is not solved directly,

a further branching operation will be applied to it to get more subproblems. However, a

subproblem need not be decomposed if one of the following statements is true.

1. The problem is solved, that is, it is either infeasible or an optimal solution is found.

2. Another subproblem has an optimal value that is not worse than its optimal value.

The branch-and-bound method thus consists of performing branching and bounding op-

eration as well as the elimination tests given above. The process of the method actually

builds a tree. The root of the tree is the original problem. The leaves of the tree are

the subproblems that have not been decomposed or will be eliminated. When all gen-

erated subproblems have been examined, the algorithm stops and the best bound of all

evaluated subproblems is the optimal value of the problem.

Branch-and-bound method is often effective in practice, but in the worst case an

explicit enumeration may be needed. A further difficulty is that unless there is some

special structure, such as all linear constraints, obtaining bounds may be as difficult as

solving the original problem.

1.2 The Nested Partitions Method

The Nested partitions method is an adaptive random search method recently proposed

by Shi and Olafsson [64]. The method originally was developed for discrete stochastic

optimization using simulation, but found to be also efficient for deterministic problems,

such as the traveling salesman problem [61], the production scheduling problem [54] and

a product design problem [62].

We describe the NP method for combinatorial problems. Note that the method can

6

also be extended to problems with infinite countable or bounded continuous feasible re-

gions. Like the branch-and-bound method, it partitions the feasible region into a number

of subregions. Instead of evaluating bounds as the branch-and-bound method does, the

NP method randomly selects samples to estimate the promising index for each region.

The region with the best promising index is further partitioned while the other regions

are aggregated into one region, called the surrounding region. The method then samples

in each of the newly partitioned regions as well as the surrounding region to decide which

region is best in this iteration. If one of the subregions is found best, this region becomes

the most promising region and will be partitioned and sampled in a similar fashion. If the

surrounding region has the best promising index, the method backtracks to a larger region

by some fixed rule. By nested partitioning the most promising region or backtracking

to a larger region, the NP method is able to concentrate computational effort in regions

that are promising while still taking all feasible solutions into consideration. To estimate

the promising index, the method can incorporate local search techniques. Because of

this attractive feature, the NP method can be used as an optimization framework to

incorporate any existing effective local search methods for a problem [62].

The traversal of promising regions in the NP method is shown to generate a Markov

chain. In a deterministic context the global optima are the only absorbing states. As the

Markov chain will eventually be absorbed, the method converges to a global optimum.

In this thesis, we exploit the Markov structure further to calculate expected time until a

global optimum is found under some assumptions.

7

1.3 Scope of the Thesis

The objective of this thesis is to develop a general and efficient integer and combinatorial

optimization tool by using new methodology and computational environments. It is ex-

pected that the new optimizer can be an important addition to the existing optimization

tools for integer and combinatorial optimization. The major contributions of this thesis

are:

1. development of a distributed branch-and-bound algorithm in an opportunistic en-

vironments and an MIP solver as its product;

2. development of a hybrid global optimization algorithm NP/GA;

3. refinement of the results to estimate the expected number of iterations until the

NP algorithm is absorbed in one global optimum and developed a stopping criteria

for the NP algorithm using the new results;

4. investigation of NP/GA and other hybrid algorithms of NP on the product design

problems that generate better solutions than previous methods;

5. development of a MIP solution to the product design problems based on FATCOP.

The remainder of the thesis is organized as the follows. In Chapter 2 we describe

the design, extension and performance of FATCOP. In Chapter 3 we first review the NP

algorithm through examples and investigate the finite time behavior of the NP Markov

chain, then present the new hybrid algorithm NP/GA. Chapter 4 discusses a detailed

application of FATCOP and NP/GA to the product design problems. This application

illustrates the general procedure to apply the optimizer proposed in this thesis. Finally,

Chapter 5 contains outlines of our future research.

8

Chapter 2

FATCOP: Fault Tolerant

Condor-PVM Mixed Integer

Program Solver

Many industrial engineering applications involve combinatorial optimization, that is, ob-

taining the optimal solution among a finite set of alternatives. Examples of such problems

abound in applications; for example scheduling and location problems, covering and par-

titioning problems and allocation models. While many of these problems also contain

nonlinear relationships amongst the variables, a large number of interesting examples

can be effectively modeled using linear relationships along with integer variables. Such

problems are typically called mixed integer programs (MIP) [53].

Mixed integer programming (MIP) problems are difficult and commonplace. For many

of these hard problems, only small instances can be solved in a reasonable amount of time

on sequential computers, resulting in mixed integer programming being a frequently cited

application of parallel computing. Most available general-purpose large-scale MIP codes

use branch-and-bound to search for an optimal integer solution by solving a sequence

of related linear programming (LP) relaxations that allow possible fractional values. In

this thesis we discuss a new parallel mixed integer program solver, written in PVM,

that runs in the opportunistic computing environment provided by the Condor resource

9

management system.

Parallel branch-and-bound algorithms for MIP have attracted many researchers (see

[18, 25, 55] and references therein). Most parallel branch-and-bound programs were

developed for large centralized mainframes or supercomputers that are typically very

expensive. Users of these facilities usually only have a certain amount of time allotted

to them and have to wait their turn to run their jobs. Due to the decreasing cost of

lower-end workstations, large heterogeneous clusters of workstations connected through

fast local networks are becoming common in work places such as universities and research

institutions. In this thesis we shall refer to the former resources as dedicated resources

and the later as distributed ownership resources. The principal goal of the research

outlined in this thesis is to exploit distributed ownership resources to solve large mixed

integer programs. We believe that a distributed branch-and-bound program developed

to use these types of resources will become highly applicable in the future.

A parallel virtual machine (PVM) is a programming environment that allows a hetero-

geneous network of computers to appear as a single concurrent computational resource

[23]. It provides a unified framework within which parallel programs for a heteroge-

neous collection of machines can be developed in an efficient manner. However PVM is

not sufficient to develop an efficient parallel branch-and-bound program in a distributed

ownership environment. The machines in such an environment are usually dedicated to

the exclusive use of individuals. The application programming interface defined by PVM

requires that users explicitly select machines on which to run their programs. Therefore,

they must have permission to access the selected machines and cannot be expected to

know the load on the machines in advance. Furthermore, when a machine is claimed by

a PVM program, the required resources in the machine will be “occupied” during the life

cycle of the program. This is not a desirable situation when the machine is owned by a

10

person different from the user of the MIP solver.

Condor [20, 48] is a distributed resource management system that can help to over-

come these problems. Condor manages large heterogeneous clusters of machines in an

attempt to use the idle cycles of some users’ machines to satisfy the needs of others who

have computing intensive jobs. It was first developed for long running sequential batch

jobs. The current version of Condor provides a framework (Condor-PVM) to run parallel

programs written in PVM in a distributed ownership environment. In such programs,

Condor is used to dynamically construct a PVM out of non-dedicated desktop machines

on the network. Condor allows users’ programs to run on any machine in the pool of

machines managed by Condor, regardless of whether the user submitting the job has an

account there or not, and guarantees that heavily loaded machines will not be selected

for an application. To protect ownership rights, whenever a machine’s owner returns,

Condor immediately interrupts any job that is running on that machine, migrating the

job to another idle machine. Since resources managed by Condor are competed for by

owners and many other Condor users, we refer to such resources as Condor’s opportunistic

resources and the Condor-PVM parallel programming environment as the Condor-PVM

opportunistic environment.

FATCOP represents a first attempt to develop a general purpose distributed solver

for mixed integer programs in Condor’s opportunistic environment. It is written in the

C++ programming language with calls to PVM library. It is designed to make best use

of participating resources managed by Condor while handling resource retreat carefully

in order to ensure the eventual and correct completion of a FATCOP job. Key features

of FATCOP include:

• parallel implementation under Condor-PVM framework;

11

• greedy utilization of Condor’s opportunistic resources;

• the use of heterogeneous resources;

• the use of multiple LP solvers (CPLEX, OSL and SOPLEX);

• advanced MIP techniques including pseudocost estimation searching, preprocessing,

and cutting plane generation;

• the ability to process MPS [51], AMPL [22] and GAMS [7] models;

• object oriented design

We begin in Section 2.1 with a review of the standard MIP algorithm components

of FATCOP that are implemented to ensure the branch-and-bound algorithm generates

reasonable search trees. Section 2.2 introduces the Condor-PVM parallel programming

framework. In section 2.3 we outline the design of the parallel program. We present the

parallel implementation of FATCOP in section 2.4 and discuss features and extensions

in section 2.5. In section 2.6, a variety of tests are carried out on a representative set of

MIP test problems and some real applications.

2.1 Components of Sequential Program

For expositional purposes, we review the basic sequential implementation of a BB MIP

solver. A MIP can be stated mathematically as follows:

min cT x

s.t. Ax ≤ b

l ≤ x ≤ u

xj ∈ Z ∀j ∈ I

12

Figure 2: Branch-and-bound algorithm

where Z denotes the integers, A is an m×n matrix, and I is a set of distinguished indices

identifying the integer variables.

Most integer programming textbooks [1, 52] describe the fundamental branch-and-

bound algorithm for the above MIP problem. Basically, the method explores a binary

tree of subproblems. The key steps of BB are summarized below and the algorithm

flowchart can be found as Figure 2.

Algorithm Branch-and-Bound:

Step 0. Initialization:

Set iteration count k = 0 and incumbent (or upper bound of the MIP) Z∗ = ∞.

Put the initial problem in the work pool containing subproblems that are not

13

fathomed yet.

Step 1. Branching:

Among the remaining subproblems in the work pool, select one according to

some search order. Among the integer-restricted variables that have a nonin-

teger value in the optimal solution for the LP relaxation of this subproblem,

choose one according to some branching rule to be the branching variable. Let

xj be this variable and denote by x∗
j its value in the aforementioned solution.

Branch from the node for the subproblem to create two new subproblems by

adding the respective constraints xj ≤ ⌊x∗
j⌋ and xj ≥ ⌊x∗

j⌋ + 1.

Step 2. Bounding:

For each new subproblem, obtain its bound by applying the simplex method

(or the dual simplex method when reoptimizing) to its LP relaxation and use

the value of ZLP for the resulting optimal solution. The minimum value of such

bounds associated with subproblems in the work pool is referred to as lower

bound of the MIP.

Step 3. Fathoming:

For each new subproblem, apply the three fathoming tests given below, and

discard those subproblems that are fathomed by any of the tests.

Test 1: Its bound ZLP ≥ Z∗.

Test 2: Its LP relaxation has no feasible solutions.

Test 3: The optimal solution for its LP relaxation has integer values for the

integer-restricted variables. If this solution is better than the incumbent, it

becomes the new incumbent and Test 1 is reapplied to all unfathomed sub-

problems with the new Z∗.

14

Step 4. Optimality test:

Stop when there are no remaining subproblems. The current incumbent (if

any) is optimal. Otherwise, go to step 1.

The above description makes it clear that there are various choices to be made during

the course of the algorithm. We hope to find robust strategies that work well on a wide

variety of problems. The reminder of this section describes the algorithm components

that refines this basic framework and FATCOP’s interfaces.

2.1.1 Branching rules

If there are many fractional variables in the solution to the LP relaxation, we must choose

one variable to be the branching variable. Because the effectiveness of the branch and

bound method strongly depends on how quickly the upper and lower bounds converge,

we would like to branch on a variable that will improve these bounds.

Several reasonable criteria exist for selecting branching variables. FATCOP currently

provides three variable selection options: pseudocost, maximum integer infeasibility and

minimum integer infeasibility. Maximum integer infeasibility will generate two branches

that are more likely to differ from the current solution than other branch alternatives.

The underlying assumption is that the objective function values are more likely to de-

grade on both branches. Hence such a branch would represent an influential variable.

Minimum integer infeasibility will generate one branch very similar to the current solu-

tion and one branch very different from the current solution. The underlying assumption

is that the similar branch is where a solution lies and that the different branch will prove

uninteresting [1]. Pseudocost attempts to estimate the change rate in objective function

value associated with a particular branch. Since the pseudocost method is widely used

15

and known to be efficient [47], we set it as the default branching strategy and briefly

describe the method here.

We associate two quantities φ−
j and φ+

j with each integer variable xj that attempts to

measure the per unit decrease in objective function value if we fix xj to its rounded down

value and rounded up value, respectively. Suppose that xj = ⌊xj⌋ + fj , with 0 < fj < 1.

Then by branching on xj , we will estimate a decrease of D−
j = φ−

j fj on the down branch

and a decrease of D+
j = φ+

j (1 − fj) on the up branch . The way to obtain the objective

change rate φ−
j and φ+

j is to use the observed change in objective function value:

φ−
j =

Z−
LP − ZLP

fj

and φ+
j =

Z+
LP − ZLP

1 − fj

where ZLP is the LP relaxation solution value, and Z+
LP and Z−

LP are the LP relaxation

solution values at up and down branches respectively. Note that the above discussion is

for a particular node.

In the course of the solution process, the variable xj may be branched on many times.

The pseudocosts are updated by averaging the values from all xj branches. The remaining

issue is to determine to what values should the pseudocost be initialized. The question of

initialization is important, since the branching decisions made at the top of the tree are

the most crucial. If similar MIP problems have been solved before, we can use the previous

results to initialize pseudocosts for integer variables. If previous results are not available,

we can explicitly solve LPs to compute pseudocosts for candidate branching variables

which have not been branched yet. Another simple way is to initialize the pseudocost xj

with its corresponding coefficient in the objective function ci. When taking a branching

decision for subproblem P, the algorithm calculates a score sj for each xj as suggested in

[18]:

sj = α0pj + α1D
+
j + α2D

−
j ;

16

where pj is the user specified priority for xj , pj = 0 if the priority is not specified. α0,

α1,α2 are some constants. α0 usually is very big so that user specified priorities are

predominant. Normally the branching candidate variable with highest priority will be

selected.

2.1.2 Searching rule

FATCOP provide four options for selecting a node from the remaining nodes:

1. Depth-first: The depth-first rule selects the node that was created most recently.

The depth-first rule has the advantage that it needs very small memory and usually

finds a feasible solution quickly.

2. Best-first: The best-first rule, as its name suggests, always selects the current node

to be the one whose LP solution is the smallest. Since the best-first rule always

selects the most attractive subproblem, it will improve the algorithm’s convergence

speed.

3. Pseudocost-estimation: An estimation for the optimal value of an integer solution

for a node can be obtained from its LP solution and its branching candidates’

pseudocost:

E = ZLP +
∑

j∈{all branching candidates}

min{D+
j , D−

j }

The pseudocost-estimation strategy selects the node with the best estimation from

the remaining nodes. Like depth-first search, it requires small memory and usually

can find good feasible solutions quickly. Therefore, pseudocost-estimation is often

used for complex MIP problems when the provable optimal solution is hard to

obtain.

17

4. Deepest-first: This rule selects the node in the bottom of the tree with the expec-

tation that the subtree rooted at this node is likely be fathomed, thus leading to a

decrease in the size of the work pool.

We shall discuss FATCOP’s default searching rules later in this Chapter.

2.1.3 Preprocessing

Preprocessing refers to a set of simple reformulations performed on a problem instance

to enhance the solution process. In linear programming this typically leads to problem

size reductions. FATCOP identifies infeasibilities and redundancies, tighten bounds on

variables, and improves the coefficients of constraints [60]. At the root node, FATCOP

analyzes every row of the constraint matrix. If, after processing, some variables are fixed

or some bounds are improved, the process is repeated until no further model reduction

occurs. We briefly discuss the techniques here.

Without loss of generality we assume that the inequality currently under consideration

is of the form:

∑

j

ajxj ≤ b

Define:

lj The lower bound of variable xj ;

uj The upper bound of variable xj ;

Lmin The minimum possible value for left hand side of the constraint ;

Lmax The maximum possible value for left hand side of the constraint ;

Lk
min The minimum possible value for left hand side of the constraint without the

term akxk;

18

Lk
max The maximum possible value for left hand side of the constraint without the

term akxk;

The following techniques may allow problem reduction:

1. Simple presolving methods:

• remove empty row or column

• check infeasible or fixed variable: lj > uj or lj = uj

• remove singleton row and modify the corresponding bounds.

2. Identification of infeasibility:

Lmin > b

3. Identification of redundancy:

Lmax ≤ b

4. Improvement of bounds: For each variable xk in the constraint, we have:

Lk
min + akxk ≤

∑

j

ajxj ≤ b

Then:

akxk ≤ b − Lk
min

If ak > 0,

xk ≤ min{(b − Lk
min)/ak, uk}

If ak < 0,

xk ≥ max{(b − Lk
min)/ak, lk}

If xk is an integer constrained variable, the new upper and lower bounds should be

rounded down and up.

19

5. Improvement of coefficients: Define δ = b − Lk
max. If xk is a binary variable and

δ > 0, both ak and b can be reduced by δ. One can easily check the validity by

setting xk to 0 and 1 respectively.

In contrast to LP, preprocessing may reduce the integrality gap, i.e., the difference

between the optimal solution value and its LP relaxation as well as the size of a MIP

problem. For example, for the model p0548 from MIPLIB [6], an electronically available

library of both pure and mixed integer programs arising from real applications, the

FATCOP preprocessor can only remove 12 rows, 16 columns, and modify 176 coefficients

from the original model that has 176 rows, 548 columns and 1711 non zero coefficients,

but pushes the optimal value of the initial LP relaxation from 315.29 up to 3125.92.

2.1.4 Cutting Planes

If the solution to the linear programming relaxation does not satisfy the integrality

requirements, instead of generating new subproblems (branching), one may attempt to

find an inequality that “cuts off” the relaxed solution. That is, an inequality that is not

valid for the relaxed solution, but is valid for all integer solutions. Such an inequality is

called a cutting plane. Adding cutting planes to the relaxation can result in an improved

lower bound for the relaxation, which in turn may mean that the linear subproblem can

be fathomed without having to resort to branching.

There are many different classes of cutting planes. FATCOP includes two classes –

knapsack cover inequalities [14] and flow cover inequalities [57]. Knapsack covers and

flow covers inequalities are derived from structures that are present in many, but not all,

MIP instances. This implies that for some instances, FATCOP will be able to generate

useful cutting planes, and for other instances it will not. Both knapsack and flow cover

20

cuts are global valid.

The problem of finding a valid inequality of a particular class that cuts off the relaxed

solution is known as the separation problem. For both classes of inequalities used in

FATCOP, the separation problem is NP-Complete, so a heuristic procedure is used for

finding violated inequalities.

There are about 10 models out of 57 in MIPLIB for which knapsack cuts are useful.

We again take p0548 as an example; the FATCOP code can solve the model in 350 nodes

with knapsack cuts applied at each node. However, it is not able to solve the problem to

optimality in 100,000 nodes without knapsack cuts.

2.1.5 Primal Heuristics and Variable Locking

A heuristic is a procedure that attempts to generate a feasible integral solution. Feasible

solutions are important not only for their own sake, but also as they provide an upper

bound on the optimal solution of the problem. With this upper bound, subproblems may

be fathomed, and techniques such as reduced cost fixing can be performed.

There are very few general purposes heuristics for mixed integer programs. One sim-

ple, yet effective heuristic is known as the diving heuristic. In the diving heuristic, some

integer variables are fixed and the linear program resolved. The fixing and resolving is

iterated until either an integral solution is found or the linear program becomes infeasible.

We have included a diving heuristic in FATCOP. The diving heuristic can be quite

time consuming – too time consuming to be performed at every node of the branch

and bound tree. We shall discuss the strategy to perform diving heuristics later in this

chapter.

FATCOP also incorporates a standard reduced cost fixing procedure [18] that fixes

21

integer variables to their upper or lower bounds by comparing their reduced costs to the

gap between a linear programming solution value and the current problem best upper

bound.

2.2 Condor-PVM Parallel Programming Environment

Heterogeneous clusters of workstations are becoming an important source of computing

resources. Two approaches have been proposed to make effective use of such resources.

One approach provides efficient resource management by allowing users to run their jobs

on idle machines that belong to somebody else. Condor, developed at University of

Wisconsin-Madison, is one such system. It monitors the activity on all participating

machines, placing idle machines in the Condor pool. Machines are then allocated from

the pool when users send job requests to Condor. Machines enter the pool when they

become idle, and leave when they get busy, e.g. the machine owner returns. When an

executing machine becomes busy, the job running on this machine is initially suspended

in case the executing machine becomes idle again within a short timeout period. If the

executing machine remains busy then the job is migrated to another idle workstation

in the pool or returned to the job queue. For a job to be restarted after migration to

another machine a checkpoint file is generated that allows the exact state of the process

to be re-created. This design feature ensures the eventual completion of a job. There are

various priority orderings used by Condor for determining which jobs and machines are

matched at any given instance. Based on these orderings, running jobs may sometimes

be preempted to allow higher priority jobs to run instead. Condor is freely available and

has been used in a wide range of production environments for more than ten years.

Another approach to exploit the power of a workstation cluster is from the perspective

22

of parallel programming. Research in this area has developed message passing environ-

ments allowing people to solve a single problem in parallel using multiple resources. One

of the most widely used message passing environments is PVM that was developed at

the Oak Ridge National Laboratory. PVM’s design centers around the idea of a vir-

tual machine, a very general notion that can encompass a nearly arbitrary collection of

computing resources, from desktop workstations to multiprocessors to massively parallel

homogeneous supercomputers. The goal of PVM is to make programming for a het-

erogeneous collection of machines straightforward. PVM provides process control and

resource management functions that allow spawning and termination of arbitrary pro-

cesses and the addition and deletion of hosts at runtime. The PVM system is composed

of two parts. The first part is a daemon that resides on all the computers comprising the

virtual machine. The second part of the system is the PVM library. It contains user-

callable routines for message passing, process spawning, virtual machine modification

and task coordination. PVM transparently handles all message routing, data conversion

and task scheduling across a network of incompatible computer architectures. A similar

message passing environment is MPI [36]. Both systems center around a message-passing

model, providing point-to-point as well as collective communication between distributed

processes.

The development of resource management systems and message passing environments

have been independent of each other for many years. Researchers at the University of

Wisconsin have recently developed a parallel programming framework that interfaces

Condor and PVM [56]. The reason to select PVM instead of MPI is that the implemen-

tation of MPI has no concept of process control, hence cannot handle resource addition

and retreat in a opportunistic environment. Figure 3 shows the architecture of Condor-

PVM. There are three processes on each machine running a Condor-PVM application:

23

Figure 3: Architecture of Condor-PVM

the PVM daemon, the Condor process and the user application process. The Condor-

PVM framework still relies on the PVM primitives for application communication, but

provides resource management in the opportunistic environment through Condor. Each

PVM daemon has a Condor process associated with it, acting as the resource manager.

The Condor process interacts with PVM daemon to start tasks, send signals to suspend,

resume and kill tasks, and receive process completion information. The Condor process

running on the master machine is special. It communicates with Condor processes run-

ning on the other machines, keeps information about the status of the machines and

forwards resource requests to the Condor central manager. This Condor process is called

the global resource manager. When a Condor-PVM application asks for a host (we will

use host and machine interchangeably in the sequel), the global resource manager com-

municates with Condor central manager to schedule a new machine. After Condor grants

a machine to the application, it starts a Condor process (resource manager) and a PVM

24

daemon on the new machine. If a machine needs to leave the pool, the resource manager

will send signals to the PVM daemon to suspend tasks. The master user application is

notified of that via normal PVM notification mechanisms.

Compared with a conventional dedicated environment, the Condor-PVM opportunis-

tic environment has the following characteristics:

1. There usually are a large amount of heterogeneous resources available for an ap-

plication, but in each time instance, the amount of available resources is random,

dependent on the status of machines managed by Condor. The resources are com-

peted for by owners and other Condor users.

2. Resources used by an application may disappear during the life cycle of the appli-

cation.

3. The execution order of components in an application is highly non-deterministic,

leading to different solution and execution times.

Therefore a good Condor-PVM application should be tolerant to loss of resources (host

suspension and deletion) and dynamically adaptive to the current status of Condor pool

in order to make effective use of opportunistic resources.

PVM and Condor-PVM are binary compatible with each other. However there exist

some run time differences between PVM and Condor-PVM. The most important differ-

ence is the concept of machine class. In a regular PVM application, the configuration

of hosts that PVM combines into a virtual machine usually is defined in a file, in which

host names have to be explicitly given. Under the Condor-PVM framework, Condor

selects the machines on which a job will run, so the dependency on host names must be

removed from an application. Instead the applications must use class names. Machines

25

of different architecture attributes belong to different machine classes. Machine classes

are numbered 0, 1, etc. and hosts are specified through machine classes. A machine

class is specified in the submit-description file submitted to Condor, that specifies the

program name, input file name, requirement on machines’ architecture, operating system

and memory etc.

Another difference is that Condor-PVM has “host suspend” and “host resume” no-

tifications in addition to “host add”, “host deletion” and “task exit” notifications that

PVM has. When Condor detects activity of a workstation owner, it suspends all Condor

processes running there rather than killing them immediately. If the owner remains for

less than a pre-specified cut-off time, the suspended processes will resume. To help an

application to deal with this situation, Condor-PVM makes some extensions to PVM’s

notification mechanism.

The last difference is that adding a host is non-blocking in Condor-PVM. When

a Condor-PVM application requests a new host be added to the virtual machine, the

request is sent to Condor. Condor then attempts to schedule one from the pool of idle

machines. This process can take a significant amount of time, for example, if there are no

machines available in Condor’s pool. Therefore, Condor-PVM handles requests for new

hosts asynchronously. The application can start other work immediately after it sends

out a request for new host. It then uses the PVM notification mechanism to detect when

the “host add” request was satisfied. This feature allows our greedy host request scheme

to work well in practice.

Documentation and examples about these differences can be found at

http://www.cs.wisc.edu/condor/.

26

FATCOP was first developed as a PVM application, and modified to exploit Condor-

PVM.

2.3 Design of the the Parallel program

FATCOP introduces parallelism when building the branch-and-bound tree. It performs

bounding operations on several subproblems simultaneously. This approach may affect

the order of subproblems generated during the expansion of the branch-and-bound tree.

Hence more or fewer subproblems could be evaluated by the parallel program compared

with its sequential version. Such phenomena are known as search anomalies and examples

are given in later part of this Chapter.

2.3.1 Master-worker paradigm

FATCOP was designed in the master-worker paradigm: One host, called the master

manages the work pool, and sends subproblems out to other hosts, called workers, that

solve LPs and send the results back to the master. When using a large number of work-

ers, this centralized parallel scheme can become a bottleneck in processing the returned

information, thus keeping workers idle for large amounts of time. However this scheme

can handle different kinds of resource failure well in Condor’s opportunistic environment,

thus achieve the best degree of fault tolerance. The basic idea is that the master keeps

track of which subproblem has been sent to each worker, and does not actually remove

the subproblem out of the work pool. All the subproblems that are sent out are marked as

“in progress by worker i”. If the master is then informed that a worker has disappeared,

it simply unmarks the subproblems assigned to that worker.

27

2.3.2 A Greedy heuristic to use resources

Another design issue is how to use the opportunistic resources provided by Condor to

adapt to changes in the number of available resources. The changes include newly avail-

able machines, machine suspension and resumption and machine failure. In a conven-

tional dedicated environment, a parallel application usually is developed for running with

a fixed number of processors and the solution process will not be started until the required

number of processors are obtained and initialized. In Condor’s opportunistic environ-

ment, doing so may cause a serious delay. In fact the time to obtain the required number

of new hosts from Condor pool can be unbounded. Therefore we implement FATCOP

in such a way that the solution process starts as soon as it obtains a single host. The

solver then attempts to acquire new hosts as often as possible. At the beginning of the

program, FATCOP places a number of requests for new hosts from Condor. Whenever it

gets a host, it allocates work to this host then immediately requests a new host. Thus, in

each period between when Condor assigns a machine to FATCOP and when the new host

request is received by Condor, there is at least one “new host” request from FATCOP

waiting to be processed by Condor. This greedy implementation makes it possible for a

FATCOP job to collect a significant amount of hosts during its life cycle.

2.3.3 Worker grain size and default searching strategies

A critical problem in master-worker paradigm arises from contention issues at the master.

When designing FATCOP, we first let each worker solve two linear programs before

reporting back to the master. The master needs to deal with new information coming

from the problems the workers have solved, as well as issues related to the addition

or deletion of hosts from the virtual machine. When the linear program relaxations

28

are relatively time consuming, this contention is not limiting, but in many cases, the

relaxations solve extremely quickly due to advanced basis information.

To alleviate this problem, we defined a new notion of a worker and a task. A task is a

subtree for the worker to process, along with a limit on the number of linear programs that

can be solved, or a limit on the processing time. The rule to choose the an appropriate

grain size at worker is arbitrary. We shall present our numerical results on this issue

later in this chapter. The data associated with a task includes what subtree is to be

processed along with strategy information for processing this tree, such as the value of

the best feasible solution and the node and time limits for processing the task. Note that

the subtrees passed to each worker are distinct.

However, a worker now has to store all the MIP information itself, as well as the linear

program data. Thus, a worker has a state that consists of all this information (that is

passed to it when the worker is initialized), along with any extra information (such as

cuts or pseudocosts) that is generated by any task that runs on the worker.

The time limit feature generates new issues, namely how to pass back a partially

explored subtree to the master. In order to limit the amount of information passed back,

we use depth-first-search as the searching rule in the worker to explore the subtrees, since

then a small stack can be passed back to the master encoding the remaining unexplored

parts of the subtree. Furthermore, it is also easy to use the small changes to the LP

relaxations in such a search mechanism to improve the speed of their solution. Finally,

any “local information” that is generated in the subtree is valid and typically is most

useful in the subtree at hand. As examples of this last point, we point to the reduced

cost fixing and preprocessing techniques that we outline later in this Chapter.

The master solves the first linear programming relaxation. The optimal basis from this

relaxation is sent to all workers, so that they may solve all subsequent nodes efficiently.

29

Furthermore, whenever there are less than a certain number of nodes in the work pool,

we switch from a time limit in the worker to an LP solve limit of 1. This allows the work

pool to grow rapidly in size. Another important question to be addressed is whether we

need to save advanced linear programming basis for every node. The advantage of doing

this is that workers can solve root LP of a subtree very faster. However, the amount of

information passed back from a worker and stored in the master worker pool is now much

bigger. This makes it hard to store many nodes in master’s work pools due to the main

memory constraint. Therefore, we choose not to store advanced basis information for the

nodes and this saving in storage makes it possible to to use best bound as master’s default

node selection strategy. However when the size of the work pool reaches an upper limit,

we switch the node selection strategy to use “deepest-node” in tree, with the expectation

that the subtrees rooted at these nodes are likely to be completely explored by the worker,

thus leading to a decrease in the size of the work pool.

2.3.4 Global and local information

2.3.4.1 Cutting Planes

Cutting planes provide globally valid information about the problem that is locally gener-

ated. Namely, a cutting plane generated at one processor may be used to exclude relaxed

solutions occurring at another processor. The question arises of how to distribute the

cutting plane information. We have chosen to attach this information to the worker by

creating a cut pool on the worker. All newly generated cuts get sent to the master when a

task completes, but this information is only sent to new workers, not to existing workers.

Thus each worker carries cut information that was generated by the tasks that have run

on the worker, but never receives new cuts from the master.

30

2.3.4.2 Pseudocosts

Pseudocosts pose a challenge to FATCOP in exactly the same way as cutting planes, in

that they are globally useful information that is generated locally. As such, we choose to

distribute pseudocosts in a manner similar to that for cutting planes. All new pseudocosts

get sent to the master when a task completes, but this information is only sent to new

workers, not to existing workers.

2.3.4.3 Heuristics

We have included a diving heuristic in FATCOP. The diving heuristic can be quite time

consuming – too time consuming to be performed at every node of the branch and

bound tree. In FATCOP, since a task is to explore an entire subtree for a specified time

limit, this also gives a convenient way to decide from which nodes to perform the diving

heuristic. Namely, the diving heuristic is performed starting from the root node of each

task. The new integer solution found by the diving heuristic is a piece of globally valid

information, thus it is found locally (on the worker) and should be sent back to the

master. Preliminary testing revealed that for some instances this strategy for deciding

when to perform the heuristic was also too time consuming. Therefore, if the total time

spent in carrying out the diving heuristic grows larger than 20% of the total computation

time, the diving heuristic is deactivated. Once the time drops to below 10%, the diving

heuristic is reactivated.

2.3.4.4 Node preprocessing

It is usually advisable to preprocess the root problem, but it is not clear whether it

is beneficial to preprocess every node of the branch-and-bound tree. In a sequential

31

branch-and-bound MIP program, node preprocessing is usually considered too expen-

sive. However, in FATCOP, every worker explores a subtree of problems. The cost of

preprocessing is amortized over the subsequent LP solves. Preprocessing may improve

the lower bound of this subtree, and increase the chance of pruning the subtree locally;

however, the effects of node preprocessing are problem dependent. Therefore, we leave

node preprocessing as an option in FATCOP.

The key issue is that the search strategy in FATCOP generates a piece of work whose

granularity is sufficiently large for extensive problem reformulations to be effective and

not too costly in the overall solution process. All the approaches outlined above are

implemented to exploit the locality of the subproblems that are solved as part of a task,

and in our implementation are carried out at many more nodes of the search tree than is

usual in a sequential code. The benefits and drawbacks of this choice are further explored

in a later part of this chapter.

2.4 Implementation of the parallel program

FATCOP consists of two separate programs: the master program and the worker pro-

gram. The master program runs on the machine from which the job was submitted to

Condor. This machine is supposed to be stable for the life of the run, so it is generally

the machine owned by the user. The design of FATCOP makes the program tolerant to

any type of failures for workers, but if the machine running the master program crashes

due to either system reboot or power outage, the program will be terminated. To make

FATCOP tolerant even of these failures, the master program writes information about

subproblems in the work pool periodically to a log file on the disk. Each time a FATCOP

job is started by Condor, it reads in the MIP problem as well as the log file that stores

32

subproblem information. If the log file does not exist, the job starts from the root of the

search tree. Otherwise, it is warm started from some point in the search process. The

work pool maintained by the master program has copies for all the subproblems that

were sent to the workers, so the master program is able to write complete information

about the branch-and-bound process to the log file.

The worker program runs on the machines selected by Condor. The number of running

worker programs changes over time during the execution of a FATCOP job.

Master and workers communicate through tasks. A task from the master to a worker

is a subtree for the worker to process, other status and strategic information along with

a limit on the number of linear programs that can be solved, or a limit on the processing

time. A task from a worker to the master is a set of unsolved nodes as well as pseudocost,

cutting planes and possible new integer feasible solutions. A schematic figure showing

the basic flow of information and an overview of the implementation of FATCOP is given

in Figure 4. The figure shows that the flow of communication between the master and a

(prototypical) worker occurs only when the worker is initialized. Tasks run on a worker,

get their initial data (MIP problem, cuts and pseudocosts) from the worker they are

assigned to, and their specific task information (subtree to work on, incumbent solution)

directly from the master. New pseudocost and cut information from the task is saved on

the current worker and hence may be used by a new task that runs on this worker. The

task also sends solution information (and newly generated cuts and pseudocosts) back

to the master so that it can update its work pool, global cut and pseudocost pool, and

incumbent solution.

33

Communication Layer

Work Pool Solution
Incumbent

Global
PseudocostsGlobal Cut Pool

MIP Data

Worker
Cut Pool

Worker
Pseudocosts

initialize worker

task-initialize task-solved

Master

Task

Worker

reduced cost fixing
preprocessing
heuristic
while processing time < maximum allowed time

 solve nodes
 add cuts
end

 and the subtree is not completely explored

Figure 4: FATCOP overview

34

Figure 5: Interactions among Condor, FATCOP and GAMS

2.4.1 The Master Program

FATCOP can take MPS, GAMS and AMPL models as input. The interactions among

Condor, FATCOP and GAMS are as follows. A user starts to solve a GAMS model in

the usual way from the command line. After GAMS reads in the model, it generates an

input file containing a description of the MIP model to be solved. Control is then passed

to a PERL script. The script generates a Condor job description file and submits the

job to Condor. After submitting the job, the script reads a log file periodically until the

submitted job is finished. The log file is generated by Condor and records the status of

the finished and executing jobs. After completion, control is returned to GAMS, which

then reports the solution to the user. This process is depicted in Figure 5. The process

is similar for AMPL and MPS file input.

The master program first solves the LP relaxation of the root problem. If it is in-

feasible or the solution satisfies the integrality constraints, the master program stops.

35

Figure 6: Message passing inside FATCOP

Otherwise, it sends out a number of requests for new hosts, then sits in a loop that

repeatedly does message receiving. The master accepts several types of messages from

workers. The messages passing within FATCOP are depicted in Figure 6 and are ex-

plained further below. After all workers have sent solutions back and the work pool

becomes empty, the master program kills all workers and exits itself.

Host Add Message. After the master is notified of getting a new host, it spawns a

child process on that host and sends MIP data as well as a subproblem to the new child

process. The subproblem is marked in the work pool, but not actually removed from

it. Thus the master is capable of recovering from several types of failures. For example,

the spawn may fail. Recall that Condor takes the responsibility to find an idle machine

and starts a PVM daemon on it. During the time between when the PVM daemon was

started and the message received by master program, the owner of the selected machine

36

can possibly reclaim it. If a “host add” message was queued waiting for the master

program to process other messages, a failure for spawn becomes more likely.

The master program then sends out another request for a new host if the number of

remaining subproblems is at least twice as many as the number of workers. The reason for

not always asking for new host is that the overhead associated with spawning processes

and initializing new workers is significant. Spawning a new process is not handled asyn-

chronously by Condor-PVM. While a spawn request is processed, the master is blocked.

The time to spawn a new process usually takes several seconds. Therefore if the number

of subproblems in the work pool drops to a point close to the number of workers, the

master will not ask for more hosts. This implementation guarantees that only the top

50% “promising” subproblems considered by the program can be selected for evaluation.

Furthermore, when the branch-and-bound algorithm eventually converges, this imple-

mentation prevents the program from asking for excess hosts. However, the program

must be careful to ensure that when the ratio of number of remaining subproblems to

number of hosts becomes bigger than 2, the master restarts requesting hosts.

Solution Message. If a received message contains a solution returned by a worker,

the master will permanently remove the corresponding subproblem from the work pool

that was marked before. It then updates the work pool using the received results. After

that, the master selects one subproblem from the work pool and sends it to the worker

that sent the solution message. The subproblem is marked and stays in the work pool for

failure recovery. Some worker idle time is generated here, but the above policy typically

sends subproblems to workers that exploit the previously generated solution.

37

Host Suspend Message. This type of messages informs the master that a particular

machine has been reclaimed by its owner. If the owner leaves within 10 minutes, the

Condor processes running on this machine will resume. We have two choices to deal

with this situation. The master program can choose to wait for the solutions from this

host or send the subproblem currently being computed in this host to another worker.

Choosing to wait may save the overhead involved in solving the subproblem. However

the waiting time can be as long as 10 minutes. If the execution time of a FATCOP job

is not significantly longer than 10 minutes, waiting for a suspended worker may cause

a serious delay for the program. Furthermore, the subproblems selected from the work

pool are usually considered “promising”. They should be exploited as soon as possible.

Therefore, if a “host suspend” message is received, we choose to recover the corresponding

subproblems in the work pool right away. This problem then has a chance to be quickly

sent to another worker. If the suspended worker resumes later, the master program has

to reject the solutions sent by it in order that each subproblem is considered exactly once.

Host Resume Message. After a host resumes, the master sends a new subproblem

to it. Note that the master should reject the first solution message from that worker.

The resumed worker picks up in the middle of the LP solve process that was frozen when

the host was suspended. After the worker finishes its work, it sends the solutions back

to the master. Since the associated subproblem had been recovered when the host was

suspended, these solutions are redundant, hence should be ignored by the master.

Host Delete/ Task Exit Message. If the master is informed that a host is removed

from the parallel virtual machine or a process running on a host is killed, it recovers the

corresponding subproblem from the work pool and makes it available to other workers.

38

2.4.2 Worker Program

The worker program first receives MIP data, cuts, pseudocosts and strategic information

from the master. It then sits in an infinite loop to receive subproblems from the master.

For each subproblem, the worker explores it in a depth-first manner. After the subprob-

lem is solved or the resource limit on this worker is reached, it passes back the unexplored

parts of the subtree to the master in a compressed form, along with the newly generated

pseudocosts and cuts information. The worker program is not responsible for exiting its

PVM daemon. It will be killed by the master after the stopping criteria is met.

2.5 Features and extensions

2.5.1 Object oriented design

FATCOP is implemented using Condor-PVM, an extension of the PVM programming

environment that allows resources provided by Condor to be treated as a single (parallel)

machine. As outlined before, FATCOP utilizes the master-worker computing paradigm.

Thus many of the details relating to acquiring and relinquishing resources, as well as

communicating with workers are dealt with explicitly using specific PVM and Condor

primitives. Many of the features, and several extensions, of the resource management

and communication procedures in FATCOP have been incorporated into a new software

API, MW [29], that can be used for any master-worker algorithm. Since this abstraction

shields all the platform specific details from an application code, FATCOP was designed

to use this API, resulting in a much simpler, easier to maintain, object oriented code.

Other benefits also accrue that are pertinent to this work as well. First, MW pro-

vides the application (in this case FATCOP) with details of resource utilization that can

39

Figure 7: Object Oriented Design of FATCOP

40

be analyzed to improve efficiency. Secondly, new features of MW immediately become

available for use in FATCOP. As an example, a new instantiation of MW that is built

upon a communication model that uses disk files (instead of PVM messages) can now be

used by FATCOP without any change to the FATCOP source code. Since this instan-

tiation also uses standard Condor jobs instead of PVM tasks for the workers, facilities

such as worker checkpointing that are unavailable in the PVM environment also become

usable in the file environment. (Condor provides a checkpointing mechanism whereby

jobs are frozen, vacated from the machine, and migrated to another idle machine and

restarted.) Also, other potential instantiations of MW utilizing MPI or NEXUS for com-

munication or Globus for resource management are immediately available to FATCOP.

Thirdly, FATCOP can also drive new developments to MW, such as the requirement for

a broadcast mechanism in MW to allow dispersion of new cuts to all workers. Such an

extension would undoubtedly benefit other MW applications such as those outlined in

[29].

SOPLEX is an effective linear programming code, but commercial codes such as

CPLEX [40], OSL [39], and XPRESS [15] significantly outperform SOPLEX for solving

the LP problem relaxations. In many cases, several copies of these solvers are available to

a user of FATCOP and so we design the code to allow a variety of LP solvers to be used

interchangeably. We used a general LP solver interface LPSOLVER that was developed

at Argonne National Labs. The FATCOP code only needs to interact with LPSOLVER

while the implementation of each concrete LP solver is invisible to FATCOP.

We depict the object oriented design of FATCOP in Figure 7. There are five layers

of the software system. PVM sits upon network TCP and UDP protocol. Condor-PVM

is an extension to PVM. MW is an abstraction of master-worker algorithm in Condor-

PVM parallel programming environment. As an application of MW, FATCOP contains

41

the major MIP algorithms. Three industrial standard interfaces are available, namely

MPS, GAMS and AMPL, through which applications from different industries can be

modeled. FATCOP interacts with the abstract LPSOLVER interface, under which all

LP solvers are implemented.

2.5.2 Heterogeneity

The MW framework is built upon the model of requesting more resources as soon as

resources are delivered. In order to increase the amount of resources available to the

code, we exploited the ability of MW to run in a heterogeneous environment. In this

way, the code garnered computational resources from a variety of machines including

Sun SPARC machines running Solaris, INTEL machines running Solaris, and INTEL

machines running Linux. While INTEL machines running NT are in the Condor pool,

currently the MW framework is unavailable on this platform. To effect usage of workers

on different architectures, all we needed to do was:

1. Compile each worker program for the specific architectures that it will run on.

2. Generate a new “job description file” for FATCOP 2.0 that details the computa-

tional resources that are feasible to use.

Since the source code for the solver SOPLEX [65] is available, compiling the worker code

on several platforms is straightforward. The benefits of this increase in number of workers

is shown in the end of this Chapter.

We allow FATCOP to use several LP solvers. At any given time, some of the workers

may be using CPLEX, while others are using OSL and still others are using SOPLEX. The

LP interface deals carefully with issues such as how many copies of CPLEX are allowed

to run concurrently (for example if a network license is available), what machines are

42

licensed for XPRESS, and what architectures can OSL be run upon. If none of the faster

solvers are available, SOPLEX is used as the default solver.

2.5.3 User defined heuristics

In practice many problem specific heuristics are effective for finding near-optimal solu-

tions quickly. Marrying the branch-and-bound algorithm with such heuristics can help

both heuristic procedures and a branch-and-bound algorithm. For example, heuristics

may identify good integer feasible solutions in the early stage of the branch-and-bound

process, decreasing overall solution time. On the other hand, the quality of solutions

found by heuristic procedures may be measured by the (lower-bounding) branch-and-

bound algorithm. FATCOP can use problem specific knowledge to increase its perfor-

mance. Based on interfaces defined by FATCOP, users can write their own programs

to round an integer infeasible solution, improve an integer feasible solution and perform

operations such as identifying good solutions or adding problem specific cutting planes

at the root node. These user defined programs are dynamically linked to the solver at

run time and can be invoked by turning on appropriate solver options.

We demonstrate a user defined heuristics using the following set cover problem.

min cT x

s.t. Ex ≥ e

xj = 0 or 1

where E = (eij is an m by n matrix whose entries eij are 0 or 1, C = (cj), j = (1, 2, . . . , n)

is a cost row with positive components, and e is an m vector of 1′s. If the Ex ≥ e

constraints are replaced by the equalities: Ex = e, the integer program is referred to as

a set partition problem.

43

We implemented a standard rounding heuristic for set covering problem given in many

text books [59] and applied it to the problem with m = 300, n = 600. We called the

heuristic routine every 10 iterations after an LP relaxation was solved in the first run,

then solve the problem again with the rounding heuristic off. We show the progress of

the two runs in Figure 8 and Figure 9. In the figures, the horizontal axis is the number

of nodes FATCOP used, and the vertical axis is the current best solution value found.

The upper line represents the change of upper bound, and the lower line represents the

change of lower bound. Note the objective value of this problem is integer, so optimality

should be proved when the difference of the lower bound and upper bound is less than 1.

From the figures we can see that with the rounding heuristics, FATCOP found inte-

ger feasible solution in the first iteration and the optimal solution was found after 800

iterations. It took about 3300 iterations to prove the optimality. However, without the

rounding heuristics, FATCOP could not find a feasible solution until the 2600th iteration

and it took about 4400 iterations to prove the optimality.

2.6 Numerical Results

A major design goal of FATCOP is fault tolerance, that is, solving MIP problems cor-

rectly using opportunistic resources. Another design goal is to make FATCOP adaptive

to changes in available resources provided by Condor in order to achieve maximum pos-

sible parallelism. Therefore the principal measures we use when evaluating FATCOP are

correctness of solutions, and adaptability to changes in resources. Execution time is an-

other important performance measure. Due to the asynchronous nature of the algorithm,

the nondeterminism of running times of various components of the algorithm, and the

nondeterminism of the communication times between processors, the order in which the

44

0 500 1000 1500 2000 2500 3000 3500 4000 4500

15

20

25

30

35

40
Results without Rounding Heuristics

Number of Nodes

B
ou

nd
s

upper bound

lower bound

Figure 8: Without Rounding Heuristics

0 500 1000 1500 2000 2500 3000 3500
10

15

20

25

30

35

40
Results Using Rounding Heuristics

Number of Nodes

B
ou

nd
s

upper bound

lower bound

Figure 9: With Rounding Heuristics

45

nodes are searched and the number of nodes searched can vary significantly when solving

the same problem instance. Other researchers have noticed the stochastic behavior of

asynchronous parallel branch and bound implementations [18]. Running asynchronous

algorithms in the dynamic, heterogeneous, environment provided by Condor only in-

creases this variance. As such, for all the computational experiments, each instance was

run a number of times in an effort to reduce this variance so that meaningful conclusions

can be drawn from the results.

In this section we first show how FATCOP uses as many resources as it is able to

capture, and demonstrate how reliable it is to failures in its environment. Following that,

we assess different strategies for FATCOP and set up appropriate default strategies based

on the experiments. We conclude this section with numerical results on a variety of test

problems taken from the MIPLIB set and some real applications.

2.6.1 Resource Utilization

In Wisconsin’s Condor pool there are more than 100 machines in our desired architecture

class. Such large amounts of resources make it possible to solve MIP problems with fairly

large search trees. However the available resources provided by Condor change as the

status of participating machines change. Figure 10 demonstrates how FATCOP is able

to adapt to Condor’s dynamic environment. We submitted a FATCOP job in the early

morning. Each time a machine was added or suspended, the program asked Condor

for the number of idle machines in our desired machine class. We plot the number of

machines used by the FATCOP job and the number of machines available to the job in

Figure 10. In the figure, time goes along the horizontal axis, and the number of machines

is on the vertical axis. The solid line is the number of working machines and dotted line is

46

Figure 10: Resource utilization for one run of FATCOP

the number of available machines that includes idle machines and working machines used

by our FATCOP job. At the start, there were some idle machines in Condor pool. The

job quickly harnessed about 20 machines and eventually collected more than 40 machines

with a speed of roughly one new resource every minute. At 8 a.m. it became difficult to

acquire new machines and machines were steadily lost during the next four hours. There

were some newly available resources at 8:30 and 10:00 (see the peaks of the dotted lines),

but they became unavailable again quickly, either reclaimed by owners or scheduled to

other Condor users with higher priority. At noon, another group of machines became

available and stayed idle for a relatively long time. The FATCOP job acquired some

of these additional machines during that time. In general, the number of idle machines

in Condor pool had been kept at a very low level during life cycle of the FATCOP job

47

Figure 11: Daily log for a FATCOP job

except during the start-up phase. When the number of idle machines stayed high for

some time, FATCOP was able to quickly increase the size of its virtual machine. We

believe these observations exhibit that FATCOP can utilize opportunistic resources very

well.

We show a FATCOP daily log in Figure 11. The darkly shaded area in the foreground

is the number of machines used and the lightly shaded area is the number of outstanding

resource requests to Condor from this FATCOP job. During the entire day, the number of

outstanding requests was always about 10, so Condor would consider assigning machines

to the job whenever there were idle machines in Condor’s pool. At night, this job was

able to use up to 85 machines. Note that the Computer Sciences Department at the

University of Wisconsin reboots all instructional machines at 3 a.m. every day. This job

48

Run Starting time Duration P̄ Number of suspensions
1 07:50 13.5 hrs 32 145
2 12:01 14.9 hrs 29 181
3 16:55 11.1 hrs 40 140
4 21:00 10.1 hrs 49 118

Table 1: Average number of machines and suspensions for 4 FATCOP runs

lost almost all its machines at that time, but it quickly got back the machines after the

reboot.

To get more insight about utilization of opportunistic resources by FATCOP, we

define the average number of machines used by a FATCOP job P̄ as:

P̄ =

Pmax∑

k=1
kτk

T
, (1)

where τk is the total time when the FATCOP job has k workers, T is the total execution

time for the job, Pmax is the number of available machines in the Condor’s pool. We

ran 4 replications of a MIP problem. The starting time of these runs is distributed

over a day. In Table 1 we record the average number of machines the FATCOP job

was able to use and number of machines suspended during each run. The first value

shows how much parallelism the FATCOP job can achieve and the second value indicates

how much additional work had to be done. In general the number of machines used by

FATCOP is quite satisfactory. At run 4, this value is as high as 49 implying that on

average FATCOP used close to 50% of the total machines in our desired class. However,

the values vary greatly due to the different status of the Condor pool during different

runs. In working hours it is hard to acquire machines because many of them are used by

owners. After working hours and during the weekend, only other Condor users are our

major competitors. As expected FATCOP lost machines frequently during the daytime.

49

Table 2: Effect of node preprocessing, data averaged over 3 replications
Name Node preprocessing No node preprocessing

Nodes Time P̄ Nodes Time P̄
cap6000 119232 6530.2 30 129720 3317.0 30
egout 11 11.3 2 26 12.3 2
gen 7 14.2 3 19 195.5 4
l152lav 4867 222.6 17 6018 475.1 25
p0548 215 16.1 2 222 20.0 2
p2756 2447 928.5 19 3044 1058.4 36
vpm2 1070217 654.5 17 1897992 940.1 40

However during the runs at night FATCOP also lost many machines. It is not surprising

to see this, because the more machines FATCOP was using, the more likely it would lose

some of them to other Condor users.

2.6.2 Assessing FATCOP strategies

2.6.2.1 Assessing node preprocessing

It is well known that lifted knapsack covers, flow covers and diving heuristics are effective

in solving MIP problems [14, 57, 52]. However, the reported overall benefits of node

preprocessing are less clear due to the amount of computing time they may take. A key

issue is that node preprocessing is too expensive to carry out at every node. Since our

tasks now correspond to subtrees of the brand-and-bound tree, it makes sense in this

setting to experiment with preprocessing just at the root nodes of these subtrees. In this

section we report results for experiments that ran a number of MIP problems with node

preprocessing turned off and on, while all other advanced features (cutting planes, diving

heuristics, reduced cost fixing and root preprocessing) were turned on.

The algorithmic parameters that were used are as stated above. Each instance was

replicated three times. We report the number of nodes, the wall clock time and the

50

Table 3: Effect of varying worker grain size: results for vpm2
Grain size Ē Nodes Time P̄
2 0.16 809945 1335.8 45
100 0.64 1479350 743.9 25
200 0.61 1938241 1053.2 29

average number of processors P̄ used with and without node preprocessing in Table 2.

As expected, all the test problems were solved in less nodes with node preprocessing,

since the subtrees were pruned more effectively in the branch-and-bound process. An

interesting observation is that it took longer to solve cap6000 even though the search

tree is smaller with node preprocessing. In fact, node preprocessing combined with local

reduced cost fixing worked very effectively on this problem. After the first integer feasible

solution was found, preprocessing and reduced cost fixing usually can fix more than half

of the binary variables at the root node of a subtree. But the problem is that cap6000

has a very large LP relaxation. The cost to reload the preprocessed LP model into the

LP solver is significant compared with task grain size. This observation suggests a better

implementation for modifying a formulation in a LP solver is necessary. However, based

on this limited experimentation, FATCOP uses node preprocessing by default.

2.6.2.2 Grain size and master contention

A potential drawback of a master-worker program is the master bottleneck problem. When

using a large number of processors, the master can become a bottleneck in processing the

returned information, thus keeping workers idle for large amounts of time. In FATCOP ,

we deal with this problem by allowing each worker to solve a subtree in a fixed amount of

time. The rule to choose an appropriate grain size at worker is arbitrary. In this section

we show the results for FATCOP on vpm2 by varying worker grain size.

We ran FATCOP on vpm2 with worker grain size 2, 100 and 200 seconds respectively,

51

Table 4: Effect of search strategy: comparison of the parallel solver and sequential solver
for tree size

Problem Name sequential solver parallel solver
air04 3,606 3,666
air05 18,512 14,775
l1521av 4,046 4,702
pp08acuts 3,469,870 5,001,600
vpm2 626,358 1,088,824

under the proviso that at least one LP relaxation is completed. In each case, we ran three

replications employing all advanced features. The results are reported in Table 3. For

each test instance, we report average worker efficiency Ē, number of nodes, execution

time, and average number of processors P̄ . The average worker efficiency, Ē, was com-

puted as the ratio of the total time workers spent performing tasks to the total time

the workers were available to perform tasks. A grain size of two seconds had a very low

worker utilization. Each worker finishes its work quickly, resulting in a large amount of

result messages queued at the master. The node utilization corresponding to grain size

of 100 seconds is satisfactory. Increasing grain size does not improve node utilization fur-

ther. As stated in [9], all Condor-PVM programs risk losing the results of their work if a

worker is suspended or deleted from the virtual machine. Taking this into consideration,

we prefer a smaller worker grain size so that only small amounts of computation are lost

when a worker disappears from the virtual machine. We have found that a grain size of

around 100 seconds strikes a good balance between contention and loss of computation

and is appropriate for the default.

52

Table 5: Effect of using heterogeneous machines: results for 10teams
Machine architecture Nodes Time P̄
SUN4 16910 763.5 24
X86 20364 1290.5 16
SUN4 and X86 23840 636.7 38

2.6.2.3 Search strategy effects

The FATCOP parallel program uses different default search strategies in the master and

workers. Best bound searching rule is known to be the best rule to improve the branch-

and bound algorithms convergence speed. It is set as the default searching rule in the

master. However, in order to limit the amount of information passed from workers to the

master, we use depth-first-search as the searching rule in the workers. As a result, the

FATCOP parallel solver might need to explore a larger tree to solve a problem compared

with its sequential counterpart that uses best bound as its default searching rule. We ran

the FATCOP parallel and sequential solvers on a set of models from MIPLIB, and report

the tree size in Table 4. For all the test problems, except air05 that found good solution

quickly displaying a strong search anomaly [18], the parallel solver evaluated more nodes

than the sequential solver.

2.6.2.4 Heterogeneity

In this section we show how FATCOP exploits heterogeneous resources, including both

heterogeneous machines and LP solvers. We ran the problem 10teams on a pool of Sun

SPARC machines running Solaris (SUN4), a pool of INTEL machines running Solaris

(X86), and a pool of both types of machine. Note that the worker executables are

different on these different architectures. Each instance was replicated three times and

we report the results in Table 5. Clearly, FATCOP was able to get more workers when

53

Table 6: Effect of using heterogeneous LP solvers: results for air04
LP solver Nodes Time P̄
SOPLEX only 3623 19125.0 43
SOPLEX and CPLEX 3661 6626.2 16

requesting machines from two architecture classes.

We also ran some experiments to show the effects of heterogeneous LP solvers. We

solved the problem air04 with SOPLEX only, and both SOPLEX and CPLEX. We limited

the maximum number of CPLEX copies to 10 in the latter case. Results are shown in

Table 6. The problem air04 has very large LP relaxations, so the worker running SOPLEX

usually can only solve one LP in the specified grain size (120 seconds), while a worker

running CPLEX is able to evaluate a number of nodes in the depth first fashion outlined

previously. We notice from Table 6 that using CPLEX and SOPLEX the problem was

solved three times faster using less machines compared with using SOPLEX only.

2.6.3 Raw performance

Based on the experiments outlined above, we set appropriate choices of the parameters

of our algorithm. In this subsection, we attempt to show that FATCOP works well on

a variety of test problems from MIPLIB. Our test set is from MIPLIB. The selected

problems have relatively large search trees, so that some parallelism can be exploited.

In Table 7, for each test problem, we report the number of nodes, solution time,

average worker efficiency Ē, and average number of processors P̄ , averaged over the

five replications that were carried out. For each of these statistics, we also report the

minimum and maximum values over the five replications.

Figure 12 shows, for one particular trial and instance, the number of participating

processors. Figure 13 shows, for the same trial and instance, the instantaneous worker

54

Table 7: Performance of FATCOP: min (max) refer to the minimum (maximum) over
five replications of the average number of processors (nodes, time) used

Instance Statistic Ē P̄ Nodes Time
10teams average 64 44 9340 677

[min max] [49 79] [34 49] [8779 9655] [550 754]
air04 average 84 82 3666 2639

[min max] [79 89] [68 91] [3604 4019] [2308 3033]
air05 average 45 69 14755 1515

[min max] [41 54] [57 79] [9979 17419] [1353 2549]
danoint average 88 61 686680 60586

[min max] [71 95] [53 66] [630954 708513] [59514 60586]
fiber average 64 23 9340 125

[min max] [56 69] [19 29] [8779 9655] [108 143]
gesa2 average 60 53 7965014 2982

[min max] [50 66] [44 61] [7013876 8243657] [2768 3044]
gesa2 o average 91 78 2739772 1818

[min max] [82 94] [74 88] [2206782 4031245] [1642 2219]
l152lav average 51 16 4702 206

[min max] [43 58] [11 20] [3985 6381] [118 317]
modglob average 52 3 358 27

[min max] [42 58] [3 3] [21 953] [21 53]
p2756 average 51 14 2145 995

[min max] [44 62] [8 21] [1936 3115] [866 1216]
pk1 average 74 55 3047981 2800

[min max] [66 79] [37 70] [3018755 4148176] [2111 3567]
pp08aCUTS average 67 54 4213412 2038

[min max] [55 70] [47 61] [3785673 4648207] [1500 2353]
qiu average 61 23 9687 303

[min max] [49 71] [18 27] [6249 14115] [266 347]
rout average 91 94 4510670 42274

[min max] [89 94] [78 101] [4249369 4600843] [37697 45326]
vpm2 average 73 17 1088824 633

[min max] [65 79] [13 21] [974832 1344618] [453 701]

55

0

20

40

60

80

100

120

N
um

be
r

of
 P

ro
ce

ss
or

s

Time

Figure 12: Average number of processors participating in solving gesa2 o

0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 E
ffi

ci
en

cy

Time

Figure 13: Average worker efficiency during solution of gesa2 o

56

Name #rows #columns #nonzeros #integers application area
mcsched 2107 1747 8088 1731 Conference Scheduling

nsa 1297 388 4204 36 National Security Agency
sp97ic 1088 1662 53245 1662 Dutch Railway
sp98ar 4149 5478 211207 5478 Dutch Railway
sp98ic 2124 2508 122518 2508 Dutch Railway
t0415 1518 7254 48867 7254 Set Covering

Table 8: Summary of the test problems from real applications

efficiency, measured as
∑nt

k=1 ltk/nt, where nt is the number of processors participating at

time t and ltk is the load average of the processor k at time t. The load average, computed

using the UNIX command uptime, and number of participating processors were sampled

at 30 second intervals during the run.

The efficiency of a run may be less than “ideal” (1.0) due to

• Contention – The workers are idle during the time they send the results of their

task to the master until they receive the next task. If the master needs to respond

to many requests, workers may idle for long periods waiting for new work, thus

reducing efficiency.

• Starvation – There are not enough active tasks in the work pool for all the partic-

ipating workers.

• Inaccuracy of measurements – The load average reported by the UNIX operating

system is computed as the average number of processing jobs during the last minute,

so even though a processor is working on a task, the reported load average may be

less than 1.0.

The last experiment is to test FATCOP on some MIP models from real applications.

Problem size and application area for the test problems are summarized in Table 8. All

57

Name Execution time Tree size P̄ Solution Gap
mcsched 1.3 hrs 1,331,176 41 0%

nsa 31.8 hrs 255,854,364 111 0%
sp97ic 2.1 822,588 35 3%
sp98ar 1.1 hrs 147,597 33 3%
sp98ic 0.7 hrs 130,600 23 3%
t0415 30.6hrs 531,707 96 0%

Table 9: Results for real applications obtained by FATCOP

Name Solver 5% 3% 1% 0%
mcsched FATCOP 1.2 1.2 1.2 1.3

CPLEX - - - -
nsa FATCOP 18.6 24.5 29.2 31.8

CPLEX - - - -
sp97ic FATCOP 0.7 2.1 - -

CPLEX 3.2 - - -
sp98ar FATCOP 0.4 1.1 - -

CPLEX 2.4 3.8 - -
sp98ic FATCOP 0.3 0.7 - -

CPLEX 1.4 1.4 - -
t0415 FATCOP 8.5 13.4 13.4 30.6

CPLEX - - - -

Table 10: Comparison of FATCOP and CPLEX for the real applications. Time unit is
hour. Both solvers have a time limit of 48 hours. “-” stands for no results

58

these test problems are large scale hard mixed integer programs.

We tried to solve these problems using FATCOP with a time limit 48 hours. Of the

six problems, three of them were solved to optimality, and the others were solved to 3%

gap (the relative difference of the lower bound and upper bound of the branch and bound

algorithm). We report execution time, tree size, average number of machines used and

relative gap in Table 9.

We also compared FATCOP with the CPLEX MIP solver on these test problems.

We let both solvers run for 48 hours (can be less than 48 hours if a problem is solved to

optimality before the time limit) on each problem. FATCOP outperformed CPLEX for

the problems mcsched, nsa, sp97ic and t0415 in terms of solution quality. Both FATCOP

and CPLEX solved sp98ar and sp98ic to 3% gap in the given time, but FATCOP used

less time than CPLEX to achieve the gap. We report gap and solution time for FATCOP

and CPLEX in Table 10.

In one run of the nsa problem, FATCOP used 122 machines of three architectures,

26 of which were from a remote condor pool at University of New Mexico, 11 of which

were from a condor pool at National Center for Supercomputing Applications. Average

number of machine used is 111, wall clock time is 31.8 hours, total worker CPU time is

3014 hours and total worker suspension time is 40 hours.

59

Chapter 3

NP/GA: A New Hybrid

Optimization Algorithm

In the previous Chapter, we presented a branch-and-bound solution to applications that

involves discrete variables and can be modeled using mixed integer programs. However, in

many realistic problems, the size of the branch-and-bound tree is enormous, and requires

huge amounts of computing resources to solve the underlying program. Furthermore, due

to bounding and fathoming, the shape of the tree is generally very irregular and cannot

be determined a-priori. As such, it is important to develop effective heuristics for these

problems. These heuristics must generate solutions fast with cost close to the best, or

optimal, cost.

There are a number of general-purpose heuristic techniques that have proved useful

in industrial problems. Among them the most important class of techniques are referred

to as local search procedures. A procedure based on local search usually attempts to

find a solution better than the current one through a search in the neighborhood of the

current solution. Two solutions are neighborhood if one can obtained through a defined

modification of the other. Neighborhood search procedures that are currently popular

are simulated annealing [19], tabu search [26] and genetic algorithms [27]. Simulated

annealing is a search procedure that mimics the physical process of annealing in an

attempt to escape local optima. In simulated annealing moves to worse solutions are

60

allowed. The reason for allowing these moves is to give the procedure the opportunity to

move away from a local minimum and find a better solutions later on. The probability for

a non-improving move is lower in later iterations of the search process. Tabu search is in

many ways similar to simulated annealing. The procedure also moves from one solution

to another, with the next solution being possibly worse than the preceding solution. The

basic difference between tabu search and simulated annealing lies in the mechanism used

for approving candidate moves. In tabu search the mechanism is not probabilistic but

rather of a deterministic nature. Genetic algorithm is a search method based on the

concept of natural selection. It starts from an initial population and then uses a mixture

of reproduction, crossover, and mutation to create new populations. Unlike simulated

annealing and tabu search, a genetic algorithm works with a population of solutions in

order to get improvement.

All of above algorithms are sequential in the sense that they move iteratively between

single solutions or sets of solutions. However, in some applications it may be desirable

to maintain a more global perspective, that is, to consider the entire solution space

in each iteration. In this thesis we propose a new optimization algorithm (NP/GA) to

address the difficult combinatorial problems. The new method combines two optimization

algorithms: the Nested Partitions (NP) method and the GA.

The NP method is a randomized optimization method that has recently been de-

veloped for global optimization [64]. This method has been found to be promising for

difficult combinatorial optimization problems. The NP method may be described as an

adaptive sampling method that uses partitioning to concentrate the sampling effort in

those subsets of the feasible region that are considered the most promising. It combines

global search through global sampling of the feasible region, and local search that is used

to guide where the search should be concentrated. The method is flexible in that it can

61

be applied to a variety of optimization problems, and it can also be combined with other

methods. Although the GA method works with a population of strings rather than a

single string, it is essentially a sequential heuristic and is not guaranteed to converge to

a global optimum. The NP method, on the other hand, maintains a global perspective

in every iteration and converges in finite time to a global optimum [64]. The hybrid

algorithm proposed in this thesis retains the benefits of both methods.

In this Chapter we first describe the NP method: its algorithm, components and

convergence results. We then study the convergency speed of the NP method through

investigating the underlying Markov chain of the NP algorithm. Following that we present

the new hybrid algorithm NP/GA and show that NP/GA has faster convergency speed

than pure NP method through numerical results.

3.1 The Nested Partitions method

In this section we describe the NP method in the context of deterministic optimization

for combinatorial problems. We want to solve the following problem:

min
θ∈Θ

f(θ). (2)

where f : Θ → R is an objective function, Θ is a finite discrete feasible region. The

NP algorithm partitions the feasible region into several subregions and samples each

subregion in a random manner. It then determines which region is the most promising

based on sampling information. This most promising region is partitioned further and

the other regions are aggregated into one subregion called the surrounding region. Each

of these subregions is then randomly sampled. The most promising region hence receives

more computational effort while the surrounding region is still considered. The algorithm

62

Figure 14: Flowchart of NP algorithm

proceeds in this manner and can either identify a smaller most promising region or

backtrack to larger region dependent on the sampling results.

3.1.1 Algorithm

We define the following notations first, then describe a generic NP algorithm. The

flowchart of the this algorithm is given in Figure 14.

Σ = {σ ⊆ Θ|σ is a region constructed using a selected partitioning scheme }

σk = the most promising region in the k-th iterationσk ∈ Σ

63

σi
k = the i-th subregion of σk, σ

i
k ∈ Σ

dk = the depth of the nested partitions in the k-th iteration

d∗ = the maximum depth

θj
i = the i-th sample point in the j-th subregion

M = number of subregions to be partitioned

N = sample size

Z∗ = the best solution found so far

P̂ = Promising index function,P̂ : Σ → R

Algorithm Generic Nested Partitions:

step 0. Initialization:

Let k = 0, σk = Θ, Z∗ = infinity

step 1. Partition:

Check stopping condition. If the stopping criteria is met, the algorithms stops.

Otherwise, if dk = d∗, go to step 7, else partition σk into σ1
k, σ2

k, . . . , σM
k and

aggregate σM+1
k = Θ\σk

step 2. Sampling:

For each region σj
k, j = 1, 2, . . . , M + 1, randomly pick N points: θj

1, θ
j
2, ..., θ

j
N .

Calculate f(θj
1), f(θj

2), ..., f(θj
N), j = 1, 2, . . . , M +1. Then compute the promis-

ing index by

P̂ (σj
k) = min

i=1,2,...,N
f(θj

i), j = 1, 2, ..., M + 1, (3)

step 3. Calculating the Index of the Promising Region:

Update Z∗ if necessary.

Zk = min
j=1,...,M+1

P̂ (σj
k) (4)

64

If Zk < Z∗, let Z∗ = Zk. Then calculate the index of the most promising region

ĵk = arg min
j=1,...,M+1

P̂ (σj
k) (5)

step 4. Identify a smaller promising region:

If ĵk = M + 1, go to step 5. Otherwise, let σk+1 = σjk

k and dk+1 = dk + 1

step 5. Backtracking:

Let σk+1 = σk and dk+1 = dk − 1

step 6. Increase counter:

Let k = k + 1, go to step 1

step 7. Sample in the maximum depth:

The maximum depth region only contains a single point. Let f ∗ denotes

its objective value. Randomly pick N points in Θ: θ1, θ2, ..., θN . Calculate

f(θ1), f(θ2), ..., f(θN). Then compute the minimum sample values.

fmin = min
i=1,2,...,N

f(θi), (6)

If fmin < f ∗, let σk+1 = σk and dk+1 = dk − 1, then increase iteration counter

k = k + 1, go to step 1. Otherwise, repeat this step.

3.1.2 Components of the NP algorithm

The algorithm described above has four main steps: partition, sampling, calculation of

promising index, and backtracking. Each of these steps can be implemented in a generic

fashion, but can also be adapted to take advantage of any special structure of a given

problem. In the subsequent sections we illustrate the main steps through examples in

hope that better understanding about the NP algorithm can be accomplished.

65

Figure 15: MPE problem

3.1.2.1 Partition

The partitioning strategy chosen is very important for the convergence of the algorithm.

If the partitioning is such that most of the good solutions to the problem tend to be

clustered together in subregions, it is likely that the algorithm quickly concentrates the

search in these subsets of the feasible region. It should be noted that for problems with

finite discrete solution space such good partitioning always exists, but may not be easy

to identify.

We present two examples that illustrate how partition is accomplished. The first

example has finite discrete feasible region, while the second has bounded continuous

feasible region.

66

Example 3.1: Partitions for Minimum Perimeter Equi-partition problem Min-

imum Perimeter Equi-partition problem(MPE) is a graph partitioning problem that,

when restricted to rectangular grids, can be stated as follows: given a rectangular grid of

dimensions M*N and a number of processors P, where P divides MN, find the partition

of the grid that minimizes the total perimeter induced subject to the constraint that each

processor is assigned the same number of grid cells. Geometrically, the problem may be

thought of as partitioning the grid into P equi-area regions(each of area A := MN/P)

of minimum total perimeter. The problem is illustrated in Figure 3.1.2.1. An Integer

Programming formulation is given in [12].

min
M∑

i,i′=1

N∑

j,j′=1

P∑

p,p′=1,p 6=p′
xiji′j′x

p
ijx

p′

i′j′ (7)

s.t.:
M∑

i=1

N∑

j=1

xp
ij =

MN

P
(8)

P∑

p=1

xp
ij = 1 (9)

xp
ij ∈ B = 0, 1 (10)

where

ciji′j′ =







1 if |i − i′| = 1 and j = j′

1 if |j − j′| = 1 and i = i′

0 else

(11)

This formulation has an objective function that is the sum of quadratic terms. The

NP method however doesn’t have any requirement on the objective function. This impor-

tant feature distinguishes the NP method from gradient based searches. The objective

function is described by 3-dimensional variables:

xp
ij i = 1, 2, ..., M ; j = 1, 2, ..., N ; p = 1, 2, ...P

67

We can represent these variables in a 2-dimensional P × MN matrix:

R =













x1
11 x1

12 . . . x1
1N x1

21 x1
22 . . . x1

2N . . . x1
M1 x1

M2 . . . x1
MN

x2
11 x2

12 . . . x2
1N x2

21 x2
22 . . . x2

2N . . . x2
M1 x2

M2 . . . x2
MN

. . .

xP
11 xP

12 . . . xP
1N xP

21 xP
22 . . . xP

2N . . . xP
M1 xP

M2 . . . xP
MN













R is subject to two constraints: (1) the summation of each row is equal to MN/P due

to equation 8; (2) the summation of each column is equal to 1 due to equation 9. Note

that there is only one non-zero element in each column of R. We only need to know

the position of non-zero element in each column to represent a feasible solution. Thus a

1-dimensional array Y of size MN subject to constraint 8 is able to represent a feasible

solution.

Y = (y11 y12 . . . y1N , y21 y22 . . . y2N , yM1 y12 . . . yMN)

where each element in the array can take one of the values {1, 2, ..., P}. If M = N = P =

3 (usually referred to as MPE(3,3,3)), array (1 2 3 2 3 1 3 1 2) represents the following

feasible solution:

1 2 3

2 3 1

3 1 2

We can formally define the feasible region for MPE(M,N,P) problem as follow.

Θ = {θ = (y1, y2, . . . , yMN)|θ is a permutation of {

MN/P
︷ ︸︸ ︷

1 1 ... 1 ...

MN/P
︷ ︸︸ ︷

P P ... P}}(1) (12)

We consider the following approach to partition Θ. Given values of M, N and P, first

we divide Θ into P subregions by fixing y1 to be one of (1, 2, . . . , P). Then we further

partition each subregion into P smaller subregions by fixing y2 to be one of (1, 2, . . . , P).

68

Figure 16: Partition for MPE problem

This procedure can be repeated until the maximum depth is reached, that is, when all

cells have been assigned. Note that not all regions have P subregions because of constraint

8. Take MPE(3,3,3) as an example. If we partition a region with first three cells being

assigned processor 1, we only can partition this region into two subregions, that is fixing

y4 to 2 and 3 respectively. Let (1 1 1 ∗ ∗ ∗ ∗ ∗ ∗) represent the region to be partitioned,

where “*” means no processor is assigned to that cell. Then (1 1 1 1 ∗ ∗ ∗ ∗∗) cannot be

its subregion, because only 3×3
3

= 3 cells can be assigned processor 1. See Figure 16 for

this partition.

Example 3.2: Partitions for Weights Recovering Problem in Analytical Hi-

erarchy Process The Analytical Hierarchy Process (AHP) [58] is one of the most

69

influential methods in multiple criteria decision making. It involves the following opti-

mization problem to recover weights from a given preference matrix A = (aij).

min
n∑

i=1

n∑

j=1

(aij − wi/wj)
2 (13)

subject to:
n∑

i=1

wi ≤ 1, wi > 0 (14)

This constrained nonlinear programming problem has simple constraint but a non-convex

objective function. Existing nonlinear programing solvers such as MINOS5 can not guar-

antee an optimal solution. The NP method can be applied to this problem. A super

region of this problem is as follow.

Θ = {(w1, w2, ..., wn)|
n∑

i=1

wi ≤ 1, wi > 0} (15)

Θ is an n-dimensional simplex with vertices

v0
0 = (0, 0, . . . , 0), v0

1 = (1, 0, . . . , 0), . . . v0
n = (0, 0, . . . , 1)

To partition Θ, we define the center of Θ as:

v0
c =

1

n + 1

n∑

i=0

v0
i (16)

Let the simplex S1
k , k = 0, 1, 2, ..., n have the following vertices

v1
0 = v0

0, v1
1 = v0

1, . . . v
1
k = v0

c , . . . , v
1
n = v0

n

Then S1
k , k = 1, 2, ..., n constitute n+1 subregions of Θ. S1

k then can be further partitioned

by the same manner until sufficiently small subregions are obtained. See Figure 17 for a

2-dimensional example.

70

Figure 17: Partition for Weight Recovering problem

3.1.2.2 Sampling

Random sampling can be done in almost any fashion. The only condition is that each

solution in a given sampling region should be selected with a positive probability. This

condition is essential for the proof of convergency. Uniform sampling can always be

chosen as the generic option. However, it may often be worthwhile to incorporate special

structure into the sampling procedure. The goal of the random sampling is to select good

solutions with a higher probability than poor solutions.

Example 3.3: Random Sampling for MPE problem Recall in the MPE(M,N,P)

problem, a feasible solution can be represented by an array of size MN , while a region

can be represented by an array of size L that is less than MN . Take MPE(3,3,3) as an

71

example. Array (1 1 1 2 2 2 3 3 3) is a feasible solution, while (1 1 1 2) is a region with

the first four elements fixed and the last five elements undetermined. To random sample

in a region σ with the first L elements of each point in this region being fixed, we create

a feasible point in σ first, then permute the last MN −L elements to get a sample point.

Suppose we want to sample in region (1 1 1 2). We first create a feasible point:

(1112 22333),

then permute the last five elements (2 2 3 3 3) to get sample points.

Example 3.4: Random Sampling for the Weight Recovering Problem in AHP

Random sampling for weight recovering problem involves generating random vectors

inside of a simplex. The pdf of a random vector x uniformly distributed inside an n-

dimensional simplex

Sn = {(x1, x2, ..., xn)|
n∑

i=1

xi ≤ 1, xi ≥ 0} (17)

is

fX(x) =







n! if x ∈ Sn

0 otherwise
(18)

The density is a particular case of Dirichlet density

fX(x) =
Γ(v1 + ... + vn+1)

Γ(v1)...Γ(vn+1)
xv1−1

1 ...xvn−1
n (1 − x1 − ... − xn)vn+1−1 (19)

with parameters v1, v2, ..., vn, vn+1. Equation 17 equals 18 for v1 = v2 = ... = vn+1 = 1.

We shall denote the density 17 D(1,...,1,1). It is also known that if Yi, i = 1, 2, . . . , n + 1

are independent variables distributed according to gamma distribution with parameter

vi and 1, that is,

fYi
(y) =







yvi−1e−y

Γ(vi)
if y > 0, vi > 0

0 otherwise
(20)

72

The the random vector

X = (X1, ..., Xn) = (
Y1

∑n+1
i=1 Yi

, ...,
Yn

∑n+1
i=1 Yi

) (21)

is distributed D(v1, v2, ..., vn, vn+1). If v1 = v2 = ... = vn+1 = 1, fYi
(y) is distributed

exp(1). The algorithm for generating random variables from D(1,...,1,1) can be written

as follows:

Algorithm Uniform Sampling inside a n-dimensional simplex :

step 1. Generate n + 1 random variables (Y1, Y2, . . . , Yn, Yn+1) from exp(1).

step 2. Apply formula 21 and deliver X as a vector distributed from D(1,...,1,1).

3.1.2.3 Promising Index

The promising index of a region is calculated by using the samples obtained in this

region. It provides a measure on the “quality” of a region. The generic NP algorithm

given in the beginning of this Chapter uses the minimum sampling values as the estimate

of promising index. It is obvious that one can average the sampling values to estimate

the promising index. The NP method in fact offers a great deal of flexibility in this step.

The only requirement imposed on a promising index is that it agrees with the original

performance function on regions of maximum depth, i.e., on singletons. Due to such a

simple requirement, many heuristics can be used in this step to construct a promising

index.

Example 3.5: Promising index for MPE problem For the MPE(M,N,P) problem,

suppose we get a random sample θ in region σ where the first L−th elements are fixed. To

estimate the promising index of σ, we perform tabu search for a fixed number of iterations

using θ as starting point. We define the neighborhood of θ as the set of feasible solutions

73

Figure 18: One iteration of tabu search to obtain better promising index for MPE problem

obtained by swapping two adjacent cells. The key issue is that the new solution should

be also in σ, hence we let the swapping operations do not involve the fixed elements in

σ. For the MPE(3,3,3) problem, suppose we get a sample θ̂ = (1 1 1 2 3 2 3 2 3) in

region σ̂ = (1 1 1 2). The objective value of θ̂ is 10. We keep the first four elements

fixed and perform tabu search for 1 iteration. The resulting feasible solution in region σ̂

is (θ̂
′

= 1 1 1 2 2 2 3 3 3) with objective value 6. Therefore the promising index of σ̂ is

6. See 18 for the process of tabu search.

Example 3.5: Promising index for Weights Recovering Problem in AHP We

also can incorporate local search to estimate a promising index for Weights Recovering

problem in AHP. After we obtain a sample θ in region σ, we use θ as initial point and

perform a local search using steepest decent method. Again we must be careful to keep

the new solutions inside region σ. We let the steepest decent algorithm stop as soon as

the new solution is out of σ or a pre-defined number of iterations is reached.

74

3.1.2.4 Backtracking

If the surrounding region has the best promising index, the generic NP algorithm back-

tracks. This can be done in several manners. The NP algorithm given in the beginning

of this Chapter backtracks to the superregion of the current most promising region. An

alternative way can be backtracking all the way to the top, i.e., to the entire feasible

region, or or to any region that is between superregion and the entire feasible region. We

sometimes consider backtracking to a region containing the best solution found in the

surrounding region. In this case we can also retreat more than one depth.

The choice of backtracking scheme is important to developing efficient NP applica-

tions. The way of moving one depth back to the superregion of the current most promising

region requires much more transactions to escape from a suboptimal solution. On the

contrary, backtracking all the way back to the initial feasible region leaves the current

region in just one transaction, but dismisses the previous sampling effort immediately.

In our experience, for many problems it is efficient to backtrack to a superregion of the

maximum depth region which contains the best solution found in the current iteration.

One potential drawback to the generic NP algorithm is that it may get stuck for

considerable time at good but suboptimal solutions at the maximum depth. In other

words if σ is a singleton region that corresponds to a solution that is better than most

of the other solutions, it may take many iterations before the NP algorithm backtracks

from this region. More computational effort might be needed in the surrounding region to

quickly escape this suboptimal solution. Another approach to escape suboptimal solution

at maximum depth is making use of history information. The generic NP algorithm

only store the information about the current most promising region and the best found

solution. Those good but not optimal solutions may be used to come up with better

75

solutions and help the algorithm to backtrack quickly when the algorithm reaches the

maximum depth. We propose an approach to use history information in the hybrid

algorithm of NP and genetic algorithm in the next Chapter. There is not any general

scheme to use history information in the NP algorithm yet, and this issue deserves more

research.

3.1.3 Convergence

The NP algorithm for problems with finite discrete solution space converges to a global

optimum in finite time. Due to the randomness of sampling, the sequence of the most

promising region in each iteration is a stochastic process. Since the most promising region

in any iteration only depends on which region is the most promising in the previous

iteration, the sequence of the most promising region is a Markov chain. The optimal

solutions, as singleton regions in the Markov chain are the only absorbing states. All

other states are transient, hence can be visited a finite number of times. Since the number

of states is also finite, the absorbing time must be finite too. The Markov structure can

also be used to derive results about the expected number of iterations until the global

optimum is found. The results can be used as a basis for stopping criteria.

3.2 Finite Time Behavior and Stopping Criteria of

the NP method

In the last section we showed that the NP Markov chain will be absorbed at a global

optimum in finite time. It is of much more interest to answer questions such as:

How quickly does the algorithm converge to a global optimum?

76

The answer to this question can be used as a basis to decide when the NP algorithm

should stop. In this section we propose an approach to estimate expectation and variance

of algorithm length, the number of iterations until the NP Markov chain is absorbed. We

first summarize the notations used in this section.

notations

Θ : The initial feasible region.

Σ1 : The regions containing at least one optimal solution(not including Θ) .

Σ2 : The regions which do not contain any optimal solution.

Π : The set of all feasible regions. Π = Θ ∪ Σ1 ∪ Σ2.

d∗ : Maximum depth.

M : Number of partitions for each region

p0 : The probability moving in the correct direction(a move from η1 ∈ Σ1 to η2 ∈ Σ1,

or from η1 ∈ Σ2 to Θ.

p1 : The probability moving from η1 ∈ Σ1 to Θ. p1 < 1 − p0.

X : The number of iterations until the NP algorithm is absorbed at a global opti-

mum, referred to as algorithm length.

3.2.1 Estimate expectation and variance of algorithm length

Assume that:

A1: The problem only has a single global optimum.

A2: The NP algorithm backtracks all the way to the initial feasible region.

A3: p0 is the probability of the NP algorithm moving in the correct direction, i.e.,

backtracking if the optimum is not in the current most promising region and

77

selecting the correct subregion if it is in the current region. p0 is referred to as

success probability in the rest of this thesis.

A4: The probability of moving in a specific wrong direction is the same in all direc-

tions, and hence is given by (1− p0)/M . Recall M is the number of subregions

being partitioned.

Based on above assumptions, we state the following theorem.

Theorem 1 The expected number of iterations until the NP algorithm considers the global

optimum to be the most promising region is given by the following equation:

E(X) =
1 − p0p1 − pd∗

0 (1 − p0 − p1 + p2
0)

pd∗−1
0 (1 − p0)

(22)

proof: Assume that the NP algorithm starts from the initial feasible region Θ, then the

algorithm will move in either a correct or wrong direction in the next iteration. Define

Ek = E(X|from η ∈ Σ1and d(η) = k), k = 1, 2, . . . , d∗, and V = E(X|from η ∈ Σ2),

then conditioning on the first move we have:

E(X) = p0E1 + (1 − p0)V + 1 (23)

If the NP algorithm starts in a region η ∈ Σ2, it will move back to the initial region

Θ with probability p0 and move to one of subregions (still in Σ2) with probability 1− p0.

Therefore, the expected number of iterations the algorithm stays in Σ2 starting from a

region η ∈ Σ2 is 1/p0. Hence we have the following equation:

V = E(X) +
1

p0

(24)

If the NP algorithm starts in a region η ∈ Σ1 and the depth of η d(η) = k, 1 ≤ k ≤

d∗, then one of three events will occur, backtracking to the the initial region Θ with

78

probability p1, moving one depth further to a region in Σ1 with probability p0 (i.e. a

correct move), and moving one depth further to a region in Σ2 with probability 1−p0−p1.

Recall we define p1 as the probability of moving from η ∈ Σ1 to Θ, p1 < 1 − p0. Hence

we have the following conditional expectation equation:

Ek = p0Ek+1 + p1E(X) + (1 − p0 − p1)V + 1 k = 1, 2, . . . , d∗ − 1 and Ed∗ = 1 (25)

By induction from equation 25 we have E1 as follow:

E1 =
p1E(X) + (1 − p0 − p1)V + 1

1 − p0

+ pd∗−1
0 (1 −

p1E(X) + (1 − p0 − p1)V + 1

1 − p0

) (26)

Solving equations 23, 24 and 26 we can get equation 22. The proof is completed.

Still under the same assumptions, we state the following theorem for variance of

algorithm length.

Theorem 2 The variance of number of iterations until the NP algorithm considers the

global optimum to be the most promising region can be obtained by solving a system of

d∗ + 1 equations

proof: We use similar analysis as above to compute E(X2) first, then give an expression

for V ar(X). Define E
(2)
k = E(X2|from η ∈ Σ1and d(η) = k), k = 1, 2, . . . , d∗, and

V (2) = E(X2|from η ∈ Σ2), then by conditioning on the first move we have:

E[(X − 1)2] = p0E
(2)
1 + (1 − p0)V

(2) (27)

i.e.

E(X2) = p0E
(2)
1 + (1 − p0)V

(2) + 2E(X) − 1 (28)

79

By the same analysis as used to develop equation 24 and 26, we have the following

two equations about V (2) and E
(2)
k :

V (2) = E(X2) +
1

p0

(2V − 1) (29)

E
(2)
k = p0E(k+1)(2)+p1E(X2)+(1−p0−p1)V

(2)+2Ek−1 k = 1, 2, . . . , d∗−1 and E
(2)
d∗ = 1

(30)

There are d∗ + 1 unknowns E(X2), V (2) and E
(2)
k k = 1, 2, . . . , d∗ − 1, and d∗ + 1

equations in 28, 29 and 30 . An unique solution can be found for E(X2) for some proper

values of p0, p1 and d∗. The variance of the sample length V ar(X) can then be computed

by the following formula:

V ar(X) = E(X2) − [E(X)]2 (31)

The proof is completed.

3.2.2 Stopping Criteria

Using the results obtained in the last section, we can construct a confidence interval for

algorithm length. The following equation gives a 95% confidence interval for X (assume

X has normal distribution):

CI(95%) = [E(X) − 1.98
√

V ar[X], E(X) + 1.98
√

V ar[X]] (32)

We then can define the upper bound of the confidence interval

Imax = E(X) + 1.98
√

V ar[X]; (33)

as a good estimate of number of iterations for an NP application.

80

Success Probability (p0) Expectation standard deviation upper bound of 95% C.I.
0.5 3991 3983 11876
0.6 662 653 1955
0.7 157 149 452
0.8 50 42 133
0.9 21 11 40
0.99 11 0 11

Table 11: Data for algorithm length: M = d∗ = 10

Success Probability (p0) Expectation standard deviation upper bound of 95% C.I.
0.5 4141873 4141854 12342743
0.6 111909 111891 333452
0.7 5819 5801 17303
0.8 520 503 1516
0.9 79 63 202
0.99 23 4 30

Table 12: Data for algorithm length: M = d∗ = 20

Success Probability (p0) Expectation standard deviation upper bound of 95% C.I.
0.5 4.259176e+09 4.259176e+09 1.269234e+10
0.6 18621220 18621192 55491178
0.7 207817 207789 619238
0.8 4936 4910 14657
0.9 246 222 684
0.99 36 10 55

Table 13: Data for algorithm length: M = d∗ = 30

81

Based on assumption A4, we can let p1 = (1− p0)/M . We calculate the expectation,

standard deviation and upper bound of 95% confidence interval of algorithm length by

taking different input values of M , d∗ and p0. The results are shown in Table 11 - 13.

We observed from the tables that:

• Variance of the NP algorithm length is very big. That explains why we need to

construct a confidence interval to decide when to terminate the algorithm.

• For most problems, if the success probability p0 is less than 0.5, the NP algorithm

seems not very efficient. On the other hand, for a large range of success probability,

the NP algorithm is very efficient. For example, when M = d∗ = 20 and p0 = 0.7,

Imax equals to 17303. If we assume 10 samples from each region, then the expected

total number of samples is 17303 × 10 = 173030. We can think this application

corresponds to a problem with 2020 ≈ 1026 feasible solutions. Hence, only one out

of 1021 total points are expected to be evaluated to find a global optimum. If 0.01

seconds is needed to evaluate the objective function, the algorithm will stop in half

an hour.

So far we have not explained how to calculate p0. If we know where the true optimum

is we can estimate p0 with p̃0 using the following formula:

p̃0 ≈
1

n

n∑

i=1

zi, (34)

where n is the total number of iterations, zi is a binary integer. zi = 1 if the algorithm

moves to a region containing at least one of global optima in the i-th iteration, and zero

otherwise.

If the optima are not known, we can estimate p0 from the run time behavior of the

NP algorithm. We say that the algorithm changes direction if in the last iteration it

82

moved to a subregion and in the current iteration it backtracks, or if in the last iteration

it backtracked and in the current iteration it moves to a subregion. In n − th iteration,

we use the following formula to estimate p0:

p̃0 ≈ 1 −
cn

n
(35)

where cn is the number of times the algorithm changed direction in first n iterations.

Note that the results for algorithm length are obtained under the assumptions that the

NP algorithm backtracks to the initial feasible region. In many NP applications, we use

other backtracking rules such as retreating to a superregion of the maximum depth region

which contains the best solution found in the current iteration. In our experience, these

rules usually work better. Therefore, Imax can be viewed as a “conservative” stopping

criteria for NP applications.

3.2.3 Hybrid NP/GA Algorithm

We will combine the NP method with the GA as follows. First recall that when applying

GA each solution is assumed to have a given fitness value, and the GA search starts

with an initial population and imitates natural selection to improve the fitness of the

population with the overall goal of finding the fittest solution. Therefore, we let the

promising index of a region be the fitness value of the fittest solution in the region and

we use GA search to estimate the promising index, that is, to seek the fittest solution in

each region. The random sampling step then becomes equivalent to obtaining an initial

population for the GA search and the final population is used for the promising index

value. The partitioning and backtracking steps remain unchanged. This is a natural

combination of the two methods and the resulting hybrid algorithm retains the global

perspective of the NP method and the powerful local search capabilities of the GA.

83

We now describe the hybrid NP/GA algorithm in detail. In the k-th iteration we

assume that there is a subregion σ(k) ⊆ Θ of the feasible region that is considered to be

the fittest. Initially we assume that nothing is known about the fittest region so σ(0) = Θ.

The first step is to partition the fittest region into M disjoint subregions and aggregate

the surrounding region Θ \ σ(k) into one region. Hence, in each iteration we consider

a partitioning of the entire feasible region. The second step is to use some randomized

method to obtain an initial population of solutions or chromosomes from each region.

This should be done in such a way that each chromosome has a positive probability of

being selected in the initial population. The third step is to apply the GA search to

each initial population individually. This search should be constrained to stay within

the region where the initial population was obtained. The forth step is to calculate a

summary statistic of the final population in each region and use that as a measure of

the overall fitness of the region. This summary statistic is usually the performance of

the fittest chromosome in the final population. The fifth and final step is to determine

the fittest region for the next iteration. If one of the subregions is estimated to have the

best overall fitness, this region becomes the fittest region in the next iteration. The new

fittest region is thus nested within the last. On the other hand, if the surrounding region

is found to have the best overall fitness, the algorithm backtracks to a larger region that

contains the fittest chromosome in the surrounding region. The partitioning continues

until singleton regions are obtained and no further partitioning is possible.

A potential drawback to the pure NP method is that it may get stuck for considerable

time at good but suboptimal solutions at maximum depth. In other words if σ(k) is a

singleton region that corresponds to a solution that is better than most but not all of the

other solutions, it may take many iterations before the NP algorithm backtracks from

this region. In the hybrid NP/GA algorithm we avoid this problem as follows. We note

84

that once maximum depth is reached the surrounding region contains almost all of the

feasible points. Furthermore, in the first iteration the entire feasible region is sampled

with equal intensity. In this step, after applying GA search to each subregion we can

therefore take the best chromosome from each region and form a set of M high quality

chromosomes that, since they all come from different regions, are assured to have diverse

genetic material. These chromosomes can then be reproduced into the initial population

whenever the surrounding region of a maximum depth region is sampled. This helps the

algorithm to backtrack from suboptimal maximum depth regions.

3.2.3.1 NP/GA algorithm

To state the hybrid NP/GA algorithm more precisely we need a few definitions. First we

need to define the space of subregions on which the algorithm moves.

Definition 1 A region constructed using the partitioning scheme described above is called

a valid region given the fixed partition. The collection of all valid regions forms a space

of subsets, which we denote by Σ. Singleton regions are of special interest and we let

Σ0 ⊂ Σ denote the collection of all such valid regions.

Thus the hybrid NP/GA algorithm moves from one element on Σ to another, eventually

aiming at locating a singleton element, that is, an element in Σ0 that contains a global

optimum. To keep track of the status of the algorithm it is convenient to define the regions

by their depth in the partitioning tree and by how they are obtained by partitioning

regions of one less depth.

Definition 2 We call the singleton regions in Σ0 regions of maximum depth, and more

generally, talk about the depth of any region. The depth function, d : Σ → R, is defined

85

iteratively in the obvious manner, with Θ having depth zero and so forth. We assume

that the maximum depth is uniform, that is, d∗ = d(σ) for all σ ∈ Σ0.

Definition 3 If a valid region σ ∈ Σ is formed by partitioning a valid region η ∈ Σ, then

σ is called a subregion of region η, and region η is called a superregion of region σ ∈ Σ.

Using the notation and definitions above the hybrid NP/GA algorithm is given below.

Algorithm NP/GA

Step 0 Initialization. Set k = 0 and σ(k) = Θ.

Step 1 Partitioning. If d(σ(k)) 6= d∗, that is, σ(k) 6∈ Σ0, partition the fittest region,

σ(k), into Mσ(k) subregions σ1(k), ..., σMσ(k)
(k). If d(σ(k)) = d∗ then let Mσ(k) =

1 and σ1(k) = σ(k).

If d(σ(k)) 6= 0, that is, σ(k) 6= Θ, aggregate the surrounding region Θ \ σ(k)

into one region σMσ(k)+1(k).

Step 2 Initial Population. If d(σ(k)) 6= d∗ use a randomized method to obtain an ini-

tial population of Nj strings from each of the regions σj(k), j = 1, 2, ..., Mσ(k)+

1,

POP j
I =

[

θj1
I , θj2

I , ..., θ
jNj

I

]

, j = 1, 2, ..., Mσ(k) + 1. (36)

If d(σ(k)) = d∗ then obtain a population POP j
I0 of Nj − M strings as above

and let the initial population be POP j
I = POP j

I0
∪ POP0, where POP0 is the

diverse high quality population found in the first iteration (see Step 6). Note

that we implicitly assume that Nj > M .

Step 3 GA Search. Apply the GA to each initial population POP j
I individually,

obtaining a final population for each region σj(k), j = 1, 2, ..., Mσ(k) + 1,

POP j
F =

[

θj1
F , θj2

F , ..., θ
jNj

F

]

, j = 1, 2, ..., Mσ(k) + 1. (37)

86

If k = 0 then go to Step 6, otherwise go to Step 4.

Step 4 Overall Fitness. Estimate the overall fitness of the region by the performance

of the fittest chromosome in the final population. That is, the overall fitness of

each region is estimated by

F̂ (σj) = max
i∈{1,2,...,Nj}

f(θji
F), j = 1, 2, ..., Mσ(k) + 1. (38)

Step 5 Update Fittest Region. Calculate the index of the region with the best

overall fitness,

ĵk ∈ arg max
j∈{1,2,..,Mσ(k)+1}

F̂ (σj). (39)

If more than one region is equally fit, the tie can be broken arbitrarily, except at

maximum depth where ties are broken by staying in the current fittest region.

If this index corresponds to a region that is a subregion of σ(k), then let this be

the fittest region in the next iteration. That is σ(k + 1) = σĵk
(k) if ĵk ≤ Mσ(k).

If the index corresponds to the surrounding region, backtrack to a region η ∈ Σ

that is defined by containing the fittest chromosome in the surrounding region

and being of depth ∆ less than the current most promising region. Note that

this fittest chromosome θfit is known as the argument where the minimum (38)

is realized for j = Mσ(k) + 1. In other words, σ(k + 1) = η where

d(η) = d(σ(k)) − ∆, (40)

and

θfit ∈ η. (41)

This uniquely defines the next most promising region.

Let k = k + 1. Go back to Step 1.

87

Step 6 Initial Diverse Population. Let θj

îj
be the fittest chromosome from the j-th

region

îj = arg max
i∈{1,2,...,Nj}

θji
F , (42)

for j = 1, 2, ..., M . Let POP0 be the set of the fittest chromosome from each

region

POP0 =
[

θ1̂i1
F , ..., θMîM

F

]

. (43)

Go back to Step 4.

By Step 1 of the algorithm partitioning is performed if the current most promising region

is not of maximum depth. In practice we usually stop partitioning δ > 0 depth levels

above the maximum depth, that is, partition if and only if d(σ(k)) < d∗ − δ. The reason

for this is that close to the maximum depth the number of solutions in each subregion is

small and can be explored efficiently. We also note that due to its iterative nature, some

chromosomes may be generated more than once in Step 2 of the algorithm.

3.2.3.2 Global Convergence

We have presented global convergence for the pure NP algorithm in the last section.

We state the convergency results for the NP/GA algorithm in the following therom.

Theorem 3 The hybrid NP/GA algorithm converges to a global optimum in finite time.

That is, let S denote the set of strings that are globally optimal. Then with probability

one there exists θ ∈ S and k∗ < ∞ such that σ(k) = {θ}, for all k ≥ k∗.

Proof: Due to the random method of obtaining initial populations, and the randomness

involved in the GA search, the sequence of the fittest regions {σ(k)}∞k=0 is a stochastic

process. Furthermore, since the fittest region in any iteration only depends on which

region was the fittest in the last iteration, {σ(k)}∞k=0 is a Markov chain. It is also clear that

88

for any θ ∈ S, if σ(k1) = {θ} ∈ Σ0 for some k1 > 0, then since σ(k1) = {θ} ∈ Σ0 ∈ S is a

global optimum and ties at the maximum depth are broken by favoring the current fittest

region, σ(k) = {θ} for all k ≥ k1. Hence {θ} ∈ Σ0 is an absorbing state. Furthermore, if

θ ∈ Θ \ S and σ(k) = {θ}, then in the next iteration there is a positive probability that

the final population in the surrounding region contains a string from S and the algorithm

backtracks. Therefore, θ is not absorbing. Hence, the strings in S correspond to the only

absorbing states of the Markov chain and the chain will eventually be absorbed in one

of these states with probability one.

Finally, since all the non-absorbing states are transient each can only be visited a finite

number of times; and since there is a finite number of transient states the absorbing time

must be finite. Therefore, with probability one there exists θ ∈ S and k∗ < ∞ such that

σ(k) = {θ}, for all k ≥ k∗.

3.2.3.3 Convergency Speed

In this section we compare convergency speed of the pure NP algorithm and the NP/GA

algorithm, and test the stopping criteria proposed in this Chapter. We select the product

design problems [30, 31, 32] as our test problems. We shall discuss this class of problems

in more detail in the next Chapter. We select three small problems (P1, P2 and P3), the

optimal solutions of which can be found through exhaustive search.

Both the pure NP algorithm and the NP/GA algorithm use N = 20 sample points

from each region We let both algorithms backtrack to the initial region because the

stopping criteria is developed for this backtracking rule. Since the optima for the test

problems are known, we can use equation 34 to estimate p0. For each of algorithms

we ran for 10 iterations. Table 14 - 16 show the estimated success probability p̃0, the

observed number of iterations X,and 95% confidence interval of X under this estimated

89

Iteration NP-pure NP/GA
p̃0 X 95% C.I. p̃0 X 95% C.I.

1 0.074 162 (5,19277392) 1.000 5 (5,5)
2 0.089 269 (5,6520873) 1.000 5 (5,5)
3 0.058 119 (5,80467612) 1.000 5 (5,5)
4 0.077 168 (5,15768159) 1.000 5 (5,5)
5 1.000 5 (5,5) 0.875 7 (5,17)
6 1.000 5 (5,5) 1.000 5 (5,5)
7 0.039 542 (5,872542648) 1.000 5 (5,5)
8 0.065 614 (5,42676216) 0.875 7 (5,17)
9 0.037 3551 (5,1218469132) 1.000 5 (5, 5)
10 0.106 112 (5,2247070) 1.000 5 (5,5)

Table 14: Stopping criteria results for product design problem P1.

probability. If the lower bound of the confidence interval is negative, we set it to d∗

since it is the minimum number of iterations required for the NP applications to find an

optimum solution. We compare the estimate of success probability p̃0 for the pure NP

and the NP/GA algorithms in Table 17.

Our numerical results show that in each iteration both algorithms were absorbed to

the optimal region before the stopping criteria applied , and each of the observed value

of X falls into its 95% confidence interval. The observed value of X is much smaller than

Imax, the upper bound of 95% confidence interval of X. This can be explained by the

large variance of X. In order to get more tight confidence interval for X, we might need

to consider p0 as a function of depth d and refine the results we obtained in this Chapter.

This issue is left as our future research topic.

From Table 17 we observed that NP/GA has much larger mean and lower variance

for estimated success probability. The results indicate that the local search capacity of

GA increases the chance for the NP algorithm to move in the correct direction.

90

Iteration NP-pure NP/GA
p̃0 X 95% C.I. p̃0 X 95% C.I.

1 0.706 16 (6,89) 1.000 6 (6,6)
2 0.015 1997 (6, 1.78e+13) 0.889 8 (6,21)
3 0.022 696 (6, 1.21e+12) 0.800 9 (6,41)
4 0.048 788 (6, 5.23e+09) 0.889 8 (6,21)
5 0.031 260 (6, 1.01e+11) 1.000 6 (6,6)
6 0.189 52 (6, 426824) 1.000 6 (6,6)
7 0.224 75 (6, 135468) 1.000 6 (6,6)
8 0.021 1502 (6,1.68e+12) 1.000 6 (6,6)
9 0.156 134 (6, 1574478) 1.000 6 (6,6)
10 0.542 23 (6,433) 0.733 14 (6,71)

Table 15: Stopping criteria results for product design problem P2.

Iteration NP-pure NP/GA
p̃0 X 95% C.I. p̃0 X 95% C.I.

1 0.667 20 (7,195) 0.588 16 (7,465)
2 1.000 7 (7, 7) 1.000 7 (7,7)
3 0.094 993 (7, 7542537361) 0.442 94 (7,3570)
4 0.070 1188 (7, 5.45e+09) 1.000 7 (7,7)
5 0.043 2112 (7, 2.66e+11) 0.548 30 (7,762)
6 0.117 299 (7, 96565818) 1.000 7 (7,7)
7 0.737 18 (7, 99 0.650 19 (7,234)
8 0.392 50 (7,8650) 0.632 18 (7,284)
9 0.041 2298 (7, 3.91e+11) 0.545 21 (7,792)
10 0.041 1307 (7,3.91e+11) 0.733 14 (7,104)

Table 16: Stopping criteria results for product design problem P3.

Algorithm P1 P2 P3
Avg of p̃0 Std of p̃0 Avg of p̃0 Std of p̃0 Avg of p̃0 Std of p̃0

Generic NP 0.255 0.394 0.195 0.242 0.320 0.357
NP/GA 0.975 0.050 0.931 0.094 0.714 0.201

Table 17: Comparison of NP-pure and NP/GA: estimation of p0

91

Chapter 4

Application to Product Design

Problem

Product design optimization problems have received considerable attention in the liter-

ature. These problems may be divided into single product design problems where the

objective is to design the attributes of a single product [43, 3], and product line design

where multiple products are offered simultaneously [31, 44, 16, 50]. The product design

problem involves determining the levels of the attributes of a new or redesigned product in

such a way that it maximizes a given objective function. We assume that the part-worths

preferences of individual customers, or market segment, have been elicited for each level

of every attribute, for example using conjoint or hybrid conjoint analysis [66, 35]. These

part-worths preferences are assumed to be independent, but by a simple modification

of the objective function dependencies can also be accounted for in the new framework.

Furthermore, we assume that all product designs found by combining different levels of

each attribute are technologically and economically feasible, although the optimization

framework here can be easily adapted to handle infeasible designs. We also assume that

a customer will choose the offered product if its utility is higher than that of a competing

status quo product, which may be different for each customer. This problem is usually

referred to as the share-of-choices problem. On the other hand, if the objective is to

maximize the total utility of the customers or the firm’s marginal return, the problem is

92

called the buyers’ welfare problem, or seller’s welfare problem, respectively.

The product share-of-choices problem is very difficult to solve, especially as the prod-

uct complexity increases and more attributes are introduced. In fact, it belongs to

the class of NP-hard problems, for which efficient exact solution procedures do not ex-

ist [43]. This implies that for realistically sized problems exact solution methodologies

might not be feasible. Several heuristic method have therefore been suggested in the

literature. These methods are generally sufficiently fast to be applicable in practice,

but being heuristics they do not guarantee optimality and the product designs found by

these methods may sometimes be substantially suboptimal. In this Chapter we introduce

a new optimization framework (include the NP/GA algorithm) for product design and

present empirical results for numerical examples that are significantly larger than those

previously reported in the literature. These numerical examples indicate that the new

methodology performs well relative to earlier methods with respect to both speed and

solution quality, especially for very large optimization problems, which correspond to

complex product designs. We also introduce the mixed integer solution for single prod-

uct design problems. We incorporated the NP/GA algorithm and other problem specific

heuristics into the FATCOP’s branch-and-bound framework and solved some reasonable

size problems to optimality.

The remainder of this chapter is organized as follows. In Section 4.1 we state the

mixed integer formulation of the product design problems. We review the previous so-

lution methodologies in Section 4.2. In section 4.3, we introduce the new optimization

framework and show how to incorporate earlier heuristics into the methodology. To il-

lustrate the new framework, in Section 4.4 we analyze a simple design problem in detail.

In Section 4.5 numerical results are presented to demonstrate the performance of the

93

new method and a similar approach is applied to product line design problem. We il-

lustrate how users can supply problem specific heuristics to FATCOP and report some

successfully solved instances in section 4.6.

4.1 Mixed integer programming formulation

Mathematically, the single product design problem can be stated as follows. A product

has K attributes of interest, each of which can be set to Lk levels, k = 1, 2, .., K. When

the level of each attribute has been determined a complete product profile has been found.

If only some of the attributes have been determined, we call that a partial product profile.

There are N customers, or market segments, and each has given utilities for every level

of each attribute, and the problem is to select levels for each attribute to satisfy the

producers objective. Each customer i ∈ {1, 2, ..., N} is assumed to have a known utility

uikl associated with level l of the k-th attribute, 1 ≤ k ≤ K, 1 ≤ l ≤ Lk. Given these

utilities, the objective may be to maximize market share, profit, or customer utility. In

this thesis we will concentrate on the problem where the objective is to maximize market

share, namely the share-of-choices problem [43]. The other two objectives, although also

important, are not relevant to the treatment here as the single product design problem

is easily solved for those objectives [10]. We consider a status-quo brand for each buyer.

Let l∗k denote the level of attribute k that appears in the product profile of the status-quo

brand for buyer i. Let cikl = uikl − uikl∗
k

denote the part worth of level l of attribute

k relative to the part worth of level l∗k of attribute k for consumer i. A buyer selects a

product profile over status-quo only if its relative part worth utility is strictly positive.

Let each consumer’s interval-scaled part-worths be normalized to sum to 1. It follows

94

that each product profile has part-worths utility no larger than 1 and a relative part-

worths utility that lies between -1 and 1. To formulate the share-of-choices problem we

define the decision variables xkl,

xkl =







1, if attribute k is set to level l,

0, otherwise.

and auxiliary variable zi,

zi =







0, if customer i accepts the selected product,

1, otherwise.

where i = 1, 2, . . . , N .

Then we can formulate the problem as the following MIP:

min
∑

i

zi (44)

subject to:
Lk∑

l=1

xkl = 1, k = 1, 2, ..., K (45)

K∑

k=1

Lk∑

l=1

cikl · xkl + K · zi ≥ 0, i = 1, 2, ..., N (46)

Constraint 45 requires that only one level of an attribute be associated with a product.

Constraint 46 restricts zi to be 1 only if the product profile provides customer i no higher

utility than the status quo. The objective 44 is to minimize the number of customers

who reject the new product profile.

The product line design problem differs from the single product design problem by

selecting a line of products profiles. The objective then is to maximize the number of con-

sumers who will buy at least one product profile in the selected product line composition.

A MIP formulation for this problem is given in [44].

It will be convenient to write a product profile θ in terms of its K attributes as θ =

[l1 l2 . . . lK], 1 ≤ lk ≤ Lk, indicating which level is chosen for attribute k, 1 ≤ k ≤ K.

95

The share-of-choices problem (both single product design and product line design)

has been shown to be NP-hard [43], and is therefore usually solved using some heuristic

method [31, 16].

4.2 Previous Solution Methods

Several heuristic solution methodologies have been proposed for the share-of-choices prob-

lem as well as other product design problems. The greedy search (GS) heuristic and

dynamic programming (DP) heuristics are applied in [43] for the share-of-choices prob-

lem, and Balakrishnan and Jacob [3] apply a genetic algorithm (GA) approach for this

problem. Divide-and-Conquer (DC) is applied in [30]. Finally, in [50], a Beam Search

(BS) heuristic is proposed for the product line selection problem.

Variants of the GS heuristic have been used for the buyers’ and seller’s problem [31]

and for the share-of choices problem [43]. In this thesis we define this heuristic as follows.

For each attribute k, the overall relative utilities for all the customers is calculated, that

is

ukl =
M∑

i=1

uikl − uikl̃k
,

where l̃k is the level of the k-th attribute for the status-quo product. The GS heuristic

then selects the level l∗k for the k-th attribute that maximizes the relative utilities. Thus

the level of each attribute is determined independently of all other attributes. A detailed

algorithm for the GS heuristic is given in Appendix A.

The DP heuristic has been used for a variety of product design problems [42, 43, 44].

This heuristic treats attributes as stages in a dynamic program and the levels as states.

Thus similarly to the GS heuristic, in each iteration the DP heuristic sets one attribute

to its ‘best’ level and does not consider all the possible interactions between attributes.

96

For example, at the first stage the best level of the first attribute is determined for every

level of the second attribute. This generates L2 partial product profiles. At the next

stage, L3 partial profiles are generated by, for each level of the third attribute, finding

the best combination of levels for the first and second attribute from the previous stage.

This continues until all the attributes have been considered. At this point LK partial

product profiles have been identified, and we can select the best one from this set. A

detailed algorithm for the DP heuristic is given in Appendix B.

The DC heuristic was proposed for single product design and sequential product lines

design [33]. Variants of the DC were later employed by SIMOPT, a conjoint analysis

oriented, product positioning model [35]. One version of the DC method can be imple-

mented as follows. Suppose there are K attributes. The algorithm starts with T (≤ K)

attributes and finds their best combination through complete enumeration, conditioned

on randomly fixed levels for the remaining K-T attributes. The next T attributes are

then conditionally optimized. The algorithm continues in this manner until all attributes

have been completed. It then starts over based on current levels of all attributes, and

continue until there is no change in the objective function.

In [3] a GA approach is proposed for the single product design problem. The GA is a

random search method based on the concept of natural selection. It starts from an initial

population and then uses a mixture of reproduction, crossover, and mutation to create

new, and hopefully better, populations. The GA usually works with an encoded feasible

region, where each feasible point is represented as a string, which is commonly referred to

as a chromosome. Each chromosome consists of a number of smaller strings called genes.

The reproduction involves selecting the best, or fittest, chromosomes from the current

population, the crossover involves generating new chromosomes from this selection, and

finally mutation is used to increase variety by making small changes to the genes of a

97

given chromosome. The GA was originally proposed by Holland [38] and has been found

to be very effective for a variety of combinatorial optimization problems [27]. A detailed

algorithm for the GA method is given in Appendix C.

While many algorithms for single product design were proposed, there are only a

few algorithms for product line design. Kohli and Sukumar [43] developed DP based

heuristics for three standard formulations: share-of-choice, buyer’s welfare, and seller’s

return. Nair, Thakur, and Wen [50] presented Beam Search (BS) based heuristics for

these problems in 1995. They showed that beam search approaches perform better than

the DP based heuristics in all important performance measures.

Beam search originated from the Artificial Intelligence area. Simply put, it is a

breadth-first search with no backtracking. However at any level of the process, the

breadth is limited to the most promising b nodes, where b is called beam width. BS

heuristics for product line problem begin with K part-worths matrices, and systematically

prune unpromising attributes levels by iteratively combining pairs of work matrices, and

then selecting the b most promising combinations of levels. Thus we will now have at

most half the number of matrices we started with. The algorithm continue this procedure

until there only one work matrix remaining. We, then, have b product profiles for the

products in b product lines. For the second product in the product line, we reduce the

original data set to a smaller one by removing rows corresponding to customers who

decide to buy the first product. Similarly, we can design the remaining b − 1 product

lines.

98

4.3 Description of the Optimization Framework

All of the product design problems mentioned above, including the buyers’ welfare prob-

lem, seller’s welfare problem, and the share-of-choices problem for designing both single

products and product lines, can be formulated as an optimization problem where the

goal is to maximize an objective function, f : Θ → R, over a finite feasible region Θ

containing all the possible product profiles, that is,

max
θ∈Θ

f(θ). (47)

Here we describe a NP framework for solving any such problem that is capable of incor-

porating all of the previously suggested heuristic approaches, including greedy search,

dynamic programming, and genetic algorithms. As stated before, we focus on the share-

of-choices problem. However, this framework can be extended to the product line problem

and arbitrary objective functions that incorporate interaction effects such as cannibal-

ization.

4.3.1 A Generic NP Algorithm for Product Design

We now describe a generic implementation of the NP algorithm for the product design

problems in detail. Some of this material has appeared in Chapter 3, where the NP

method is given.

Partitioning: At each iteration the current most promising region is partitioned into

Lk∗ subregions by fixing the k∗-th attribute to one of its Lk∗ possible levels. This implies

that the maximum depth is d∗ = K. The sequence in which the attributes are selected

to be fixed is arbitrary, but may affect the performance of the algorithm. Intuitively the

‘most critical’ attributes should be fixed first, so if the attributes can be ranked in order

99

of importance this may be incorporated into the partitioning strategy. Here the ‘most

critical’ means the attribute with the largest effect on the performance function. Recall

that we can write a product profile θ ∈ Θ in terms of its K attributes as θ = [l1 l2 . . . lK],

and a region σ ∈ Σ of depth d(σ) is therefore determined by σ = {θ = [l1 l2 . . . lK] ∈

Θ : li = lσi , i = 1, 2, ..., d(σ)}, where li is a variable used to denote the level of the i-th

attribute in the product profile θ, and lσi is a fixed value for this variable for all the

attributes that are fixed in the region, 1 ≤ i ≤ K.

In general, the partitioning step involves partitioning a region σ ∈ Σ into Ld(σ)+1

subregions,

σj =
{

θ = [l1, l2, . . . , lK] ∈ Θ : lk = lσk , k = 1, 2, ..., d(σ), ld(σ)+1 = j
}

, j = 1, 2, ..., Ld(σ)+1,

and this can be done using the following algorithm.

Algorithm Partitioning

Step 1 Attributes that are fixed in σ are fixed to the same levels for each of the

subregions {σj}
Ld(σ)+1

j=1 . That is, let lk = lσk , for k = 1, 2, ..., d(σ).

Step 2 Fix the next attribute of each subregion to the corresponding level

ld(σ)+1 = j, j = 1, 2, ..., Ld(σ)+1, (48)

We now turn our attention to developing an efficient sampling procedure for Step 2 of

the NP algorithm.

Random Sampling: The set of Nσj(k) sample product profiles from a subregion σj ∈ Σ

can be selected by uniform or weighted sampling of the region. We note that σj is defined

by d(σj) of the K attributes being fixed to levels
[

l
σj

1 l
σj

2 ... l
σj

d(σj)

]

, that is, by a partial

product profile

σj =
{

θ = [l1 l2 ... lK] ∈ Θ : lk = l
σj

k , k = 1, 2, ..., d(σj)
}

.

100

Hence, the sampling procedure should select levels for the remaining K−d(σj) attributes.

By uniform sampling we mean that each of the Lk possible levels of the k-th attribute

has equal probability of being selected. A procedure for generating a uniform sample

product profile θs = [ls1 ls2 ... lsK] from a region σj ∈ Σ \ Σ0 is therefore given by the

algorithm below. The output of this algorithm is a single product profile θs, so it should

be repeated Nσj(k) times.

Algorithm Uniform Sampling

Step 0 For the attributes that are fixed by the partitioning let lsi = l
σj

i , for all i ≤ d(σj).

Set k = d(σj) + 1.

Step 1 Generate a uniform random variable u from U(0, 1).

Step 2 If i−1
Lk

≤ u < i
Lk

then set the k-th attribute to level i, i = 1, 2, ..., Lk, lsk = i.

Step 3 If k = K stop, otherwise let k = k + 1 and go back to Step 1.

Here U(0, 1) denotes the uniform distribution on the unit interval.

In Section 3.2 and Section 3.3 below, heuristic methods are used to derive weighted

sampling strategies that bias the sampling towards good product profiles.

Estimating the promising index: Given the sample profile in k-th iteration, we

estimate the promising index function I : Σ → R, for each region. Here we use the

following estimate

Î(σj(k)) = f
(

Hσj(k)

(

θj
))

(49)

where for each σ ∈ Σ, Hσ : ΘNσ → σ is a function that transforms the set of sample

profiles into a single profile representing the region. In its simplest form it could for

example simply be the best profile, that is,

Hσj(k)

(

θj
)

= argmax
{

f
(

θj1
)

, f
(

θj2
)

, ..., f
(

θjNσj(k)
)}

, (50)

101

for all j = 1, 2, ..., M . However, as will become clear later, the function H , and thus the

estimation of the promising index can also be used to incorporate local search heuristics

into the NP framework.

Backtracking: If backtracking is selected in Step 4 of the k-th iteration of the NP

algorithm, the algorithm moves to a larger region containing the current most promising

region. Several options exist, but here we backtrack to a region η ∈ Σ that is defined

by containing the best product profile in the surrounding region and being of depth ∆

less than the current most promising region. Note that this best product profile θbest is

known as the argument where the minimum (49) is realized for j = M . In other words,

σ(k + 1) = η where d(η) = d(σ(k)) − ∆, and θbest ∈ η. This uniquely defines the next

most promising region.

4.3.2 The NP/GS Algorithm

The greedy search (GS) heuristic can be incorporated into the NP framework by using

it to bias the sampling distribution used in Step 2 of the NP algorithm. Recall that

according to the greedy heuristic, each attribute k is set to the level l∗k that maximizes

the overall relative utility

l∗k = arg max
l=1,...,Lk

ukl =
M∑

i=1

(

uikl − uikl̃k

)

. (51)

Thus a GS sampling algorithm could select the level l∗k that satisfies equation (51) with a

given probability w1, and select any other level with uniform probability 1−w1

Lk−1
. This en-

sures that all product profiles are selected with positive probability, and product profiles

that are ‘close’ to the profile generated by pure GS are selected with higher probability.

This procedure is stated exactly in Appendix A. We will refer to the NP algorithm that

uses GS Sampling to randomly sample from each region as the NP/GS algorithm.

102

4.3.3 The NP/DP Algorithm

As with the GS heuristic the dynamic programming (DP) heuristic can be incorporated

in the sampling step. As before, the objective is to bias the sampling distribution towards

product profiles that are heuristically good. In the GS Sampling procedure described in

the last section, each attribute of a sample product profile was selected either greedily or

uniformly, that is, the attribute selection was randomized. Here, on the other hand, we

use a different approach: each sample product profile is selected according to a randomized

DP heuristic with a given probability, and uniformly with a given probability. Thus the

randomization is applied to entire product profiles rather than individual attributes.

Furthermore, if the profile is to be selected using the DP heuristic then it is randomized

by selecting a random order in which the DP heuristic fixed the attributes. In general,

different orders of attributes leads to different product profiles. This procedure selects

any product profile with a positive probability, but selects profiles found by applying the

DP heuristic to some order of the attributes with a higher probability. The details of

this procedure are described in Appendix B. We will refer to the NP algorithm that uses

DP Sampling to randomly sample from each region as the NP/DP algorithm.

4.3.4 The NP/GA Algorithm

We describe the NP/GA algorithm for the product design problems as follows. In Step 3

of the NP algorithm, once an initial population POP j
I has been obtained from a subregion

σj , then the GA search proceeds as follows. First the
Nj

2
fittest product profiles are

selected for reproduction from the population. These profiles will also survive intact in

the next population. Secondly, pairs of product profiles are selected randomly from the

reproduced profiles. Each attribute, that is not fixed in σj , of the selected pair has a given

103

probability of participating in a crossover, that is, being swapped with the corresponding

attribute of the other product profile. Finally, each profile may be selected with a given

probability as a candidate for mutation. If a product profile is mutated, an attribute

from that profile is selected at random and assigned a random level. As before, only

attributes that are not fixed in σj may be selected to be mutated. The algorithm in

Appendix C gives the exact procedure for the GA search in a region σj ∈ Σ.

4.3.5 The NP/GA/GS Algorithm

In this section we have described three methods of incorporating well known and effective

heuristics into the NP framework. In addition to the resulting NP/GS, NP/DP, and

NP/GA algorithms, it is also possible to incorporate more than one heuristic at a time

into the NP optimization framework. This results in the NP/GA/GS and NP/GA/DP

algorithms. The latter of these was found to have too much overhead to be efficient,

however, promising numerical results for the NP/GA/GS algorithm are reported in the

next section. This algorithm uses the GS Sampling algorithm for the random sampling

in Step 2 of the generic NP algorithm, and the GA Search algorithm to estimate the

promising index in Step 3 of the generic NP algorithm.

4.4 An Illustrative Example

To illustrate the NP optimization framework for product design, consider a small problem

with K = 3 attributes, L1 = 3, and L2 = L3 = 2. For some N = 3 individuals, let the

part-worths data matrices U(k) be given as follows, k = 1, 2, 3:

104

all product profiles

112 = (1 1 2)111 121 122 211 212 221 222 311 312 321 322= (1 1 1) = (1 2 1) = (1 2 2) = (2 1 1) = (2 1 2) = (2 2 1) = (2 2 2) = (3 1 1) = (3 1 2) = (3 2 1) = (3 2 2)

2= (1 ∗ ∗)1 3

11 12 21 22 31 32

= (2 ∗ ∗) = (3 ∗ ∗)

= (3 2 ∗)= (3 1 ∗)= (2 2 ∗)= (2 1 ∗)= (1 2 ∗)= (1 1 ∗)

σ σ σ

σσσσσ σ

σ σ σ σ σ σ σ σ σ σ σσ

Figure 19: Partitioning tree for a simple product design example.

U(1) =











1 1 3

1 4 1

2 2 0











, U(2) =











3 0

1 2

2 2











, U(3) =











1 1

1 4

3 1











.

Suppose the status-quo is represented by the values of level 1 for each attribute. Then

subtracting the first column from each column of U(k) gives relative parts-worth data

matrices Ũ(k), k = 1, 2, 3:

Ũ(1) =











0 0 2

0 3 0

0 0 −2











, Ũ(2) =











0 −3

0 1

0 0











, Ũ(3) =











0 0

0 3

0 −2











.

This allows us to calculate the performance of each design, that is, the expected number

of customers selecting the product, according to the MIP model given in the beginning

of this Chapter. We refer to this product design problem as the 3-Attribute example.

105

4.4.1 A Generic NP Algorithm for the 3-Attribute Example

Partitioning: The partitioning step can be demonstrated in 4.4. Here we assume at-

tribute 1 is the first attribute to be determined, followed by attribute 2, and finally

attribute 3. Changing the order would lead to a different partitioning, which in general

affects the performance of the method. This example has 22 (including the entire fea-

sible region) valid regions. The region containing all product profiles Θ ∈ Σ has three

subregions σ1, σ2, and σ3; and each of these subregions has two subregions of its own.

The maximum depth is d∗ = 3 and there are 12 regions of maximum depth, that is

|Σ0| = 12. Notice that these singleton regions define a complete product profile, whereas

every region η ∈ Σ such that 0 < d(η) < d∗ defines a partial product profile. Also note

that the maximum depth will always be equal to the number of attributes. The best

solution value is initialized as fbest = 0.

Random Sampling: The generic NP algorithm starts from the initial most promising

region, Θ (the entire region), and must determine which of its three subregions: σ1 =

{[l1 l2 l3] : l1 = 1, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2}, σ2 = {[l1 l2 l3] : l1 = 2, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2},

and σ3 = {[l1 l2 l3] : l1 = 3, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2}, will become the most promising

region in the next iteration. To determine this region, each of these subregions is sampled

by selecting the values of l2 and l3. This involves two steps. In the first step we generate

a uniform random variable u ∈ (0, 1). If u < 1
2

then we set l2 = 1, and if 1
2
≤ u < 1

then we set l2 = 2. In the second step we generate another uniform random variable

v ∈ (0, 1). If v < 1
2

then we set l3 = 1, if 1
2
≤ v < 1 then we set l3 = 2. For example,

when we sample in σ1, if u < 1
2

in the first step and 1
2
≤ v < 1 in the second step,

then the sample product profile generated is θ1 = [l11 l12 l13] = [1 1 2]. This procedure is

identical for each of the three regions. Suppose the other two samples from σ2 and σ3

106

are θ2 = [l21 l22 l23] = [2 1 1] and θ3 = [l31 l32 l33] = [3 2 2], respectively.

It should be noted that though in this thesis we assume that all product design

profiles constructed by combining different levels of each attribute are feasible, the NP

framework can be easily adapted to handle infeasible designs. This can be done through

the sampling procedure by only selecting feasible levels of each attribute.

Estimating the Promising Index: After we obtain one sample product profile from

each region currently under consideration, the next step is to estimate the promising

index of each region using the sample product profiles. Usually the number of samples in

each region should be larger than one. However, for ease of exposition, in this example

we use a single sample in each region and its objective value as estimated promising

index:Î(σ1) = f(θ1) = f([1 1 2]) = 1, Î(σ2) = f(θ2) = f([2 1 1]) = 1, Î(σ3) = f(θ3) =

f([3 2 2]) = 1. By breaking the tie arbitrarily the algorithm moves to region σ1 =

{[l1 l2 l3] : l1 = 1, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2} and we update the best solution value to

fbest = 1.

Backtracking: As σ1 is now the most promising region, the algorithm then samples the

subregions of σ1,

σ11 = {[l1 l2 l3] : l1 = 1, l2 = 1, 1 ≤ l3 ≤ 2}

and

σ12 = {[l1 l2 l3] : l1 = 1, l2 = 2, 1 ≤ l3 ≤ 2} ,

as well as the surrounding region Θ \ σ1. Suppose the surrounding region Θ \ σ1 has the

best estimation of promising index, the algorithm backtracks to a larger region. There

are many ways to backtrack, but here we assume the algorithm backtracks to a region

containing the best product profile found in this iteration and with depth of ⌊d∗

2
⌋ + 1,

where ⌊x⌋ denotes the largest integer smaller than or equal to x, for any x ∈ R. Therefore,

107

the most promising region will be set to σ31, and the best solution fbest = 2 is updated.

It can be shown by enumeration that 2 customers is the optimal solution for this data

set. The algorithm will continue in this manner until some predefined stopping criteria

is met.

We notice from this example that, unlike the dynamic programming or beam search

heuristics that only search the part of the feasible region considered promising, the NP

algorithm takes the entire feasible region, that is all possible product designs, into con-

sideration while focusing the computational effort on the promising part. Thus, as illus-

trated by this example, the algorithm may in the first iteration move to a region that does

not contain an optimal product profile, but can then backtrack to a region containing

the optimal product profile in the next iteration, since feasible product profiles in the

surrounding region still have a chance of being selected and evaluated.

4.4.2 The NP/GS Algorithm for the 3-Attribute Example

The NP/GS algorithm differs from the generic NP algorithm in the random sampling

step. For example, when sampling in the region

σ3 = {[l1 l2 l3] : l1 = 3, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2} ,

we first generate a uniform random variable u0 from U(0, 1). If u0 > w1, we generate

another uniform random variable u1 from U(0, 1). If u1 < 1
2

then l2 = 1, and if 1
2
≤ u1 < 1

then l2 = 2. Otherwise, we select a level for attribute 2 using the greedy heuristic. Since

column one of Ũ(2) has the larger column summation, l2 is set to one. This process is

repeated to set a level for attribute 3. In σ3, there are four feasible product profiles.

Each of them has equal probability 0.25 being selected by uniform random sampling.

It is easy to compute that using greedy heuristic sampling the optimal product profile

108

θ∗ = [3 1 2] has probability (0.5+ 0.5w1)
2 being selected. If we let w1 be equal to 0.9 (as

we did in the numerical experiments reported below), then the probability of selecting this

optimal product profile is 0.9025. Therefore, the greedy heuristic sampling can help the

NP algorithm to move in a correct direction, hence increasing the speed of convergence.

Note that here w1 ∈ (0, 1) is a control parameter and if w1 → 0 then this algorithm is

pure uniform sampling, and if w1 → 1 then this algorithm is simply the non-randomized

greedy heuristic.

4.4.3 The NP/DP Algorithm for the 3-Attribute Example

Alternatively, the NP/DP algorithm may incorporate the dynamic programming (DP)

heuristic in the sampling step. Lets again take the sampling in σ3 as an example. As

with greedy heuristics sampling, the algorithm first generates a uniform random variable

u0 from U(0, 1). If u0 > w2, it generates a uniform random sample as described in the

last section. Otherwise, it uses the DP heuristics with a randomized order to obtain a

sample. It is easy to verify that DP applied in this region is able to identify the optimal

product profile, θ∗ = [3 1 2], regardless of the order of the attributes. Therefore, similar

to NP/GS, NP/DP will select the optimal product profile with probability (0.5+0.5w2)
2.

If w2 is set to 0.9, this probability is 0.9025, which is much larger than the probability

to select the optimal product profile by uniform random sampling. As before w2 ∈ (0, 1)

is a control parameter and if w2 → 0 then this algorithm is pure uniform sampling, and

if w2 → 1 then this algorithm is a randomized DP heuristic. In practice, since the DP

heuristic is computationally more intensive than the greedy heuristic, we usually set w2

to a small value, for example w2 = 0.1 as we did in our numerical experiments reported

below.

109

4.4.4 The NP/GA Algorithm for the 3-Attribute Example

The NP/GA algorithm applies GA search in the step of estimating promising index

of a region. Again we illustrate how GA can be applied when evaluating the region

σ3. Instead of obtaining just one sample, we now sample two points since GA requires

at least two points in its initial population. Suppose we apply uniform sampling and

obtain two sample points: θ1 = [3 1 1] and θ2 = [3 2 2]. The GA is then applied to a

population consisting of these two points. Readers can verify that the optimal product

profile [3 1 2] is obtained immediately after the first iteration using the GA operators

defined in Appendix C. Therefore, in this example, with GA search the NP algorithm

directly moves to the right region with probability one.

4.4.5 The NP/GA/GS Algorithm for the 3-Attribute Example

The NP/GA/GS algorithm also applies GA search in the step of estimating promising

index of a region, but use greedy heuristics to select the initial population. As we

described before, if we set w1 = 0.9 and use a two point initial population, the optimal

product profile θ∗ = [3 1 2] will have probability of more than 0.9025 to be selected in

the initial population.

4.5 Numerical Results

We have introduced the NP optimization framework and several variants that incorporate

existing heuristics. In this section we evaluate each of these variants empirically, and

compare them with the pure GS, pure DP heuristic, and pure GA search. The primary

numerical results are for seven different problems, five small to moderately sized problems,

and two large problems. Due to the size of most of these problems it is not possible to

110

solve them exactly within a reasonable amount of time and the true optimum is therefore

unknown. All the problems have N = 400 customers and for simplicity we let all the

attributes have the same number of levels, that is, Lk = L for all k = 1, 2, .., K. The

part-worths preferences for each level of each attribute and the status quo prices are

generated uniformly for each customer. The details about how the simulated data sets

can be generated are described in [50]. All of the NP algorithms use N = 20 sample

points from each region, and our numerical experience indicates that the performance of

the algorithms is fairly insensitive to this number. If backtracking is chosen in the k-th

iteration then the algorithm backtracks ⌊d(σ(k))
2

⌋ steps, or to a depth that is half of the

current depth.

Our first set of experiments compares the performance of using the pure heuristic

methods of GS, DP, GA, and DC versus incorporating them into the NP optimization

framework. For the NP/GS algorithm, that uses the GS sampling algorithm, we let

w1 = 0.9 be the control parameter that determines the probability of an attribute being

set uniformly or greedily. Our numerical experiments indicate that this parameter should

be selected fairly large, for example at least w1 ≥ 0.5. For the NP/DP algorithm our

results indicate a smaller control parameter is warranted, and in the experiments reported

here we use w2 = 0.1, which implies that on the average 10% of the sample points were

obtained using the DP heuristic and 90% using uniform sampling. For the NP/GA

algorithm, which incorporates the GA search algorithm to estimate the promising index,

a total of ten GA search steps were used in each region. Both the NP/GA and the pure

GA had a 20% mutation rate. Note it is possible to incorporate GS sampling into pure

GA to select initial population, resulting a new hybrid algorithm GA/GS. Our numerical

results show that GA/GS is able to find better product profiles more quickly than pure

GA in most cases. However, the long-run performance of pure GA is slightly better than

111

K = L STAT GS DP GA DC NP-Pure NP/GS NP/DP NP/GA NP/GA
/GS

5 AVG. 219 228 238 233 238 238 238 238 238
S.E. 0.0 3.7 0.0 2.8 0.0 0.0 0.0 0.0 0.0

MAX. 219 235 238 235 238 238 238 238 238
6 AVG. 237 234 239 234 239 239 239 239 239

S.E. 0.0 3.1 0.0 4.5 0.0 0.0 0.0 0.0 0.0
MAX. 237 237 239 238 239 239 239 239 239

7 AVG. 225 231 241 229 239 241 241 241 241
S.E. 0.0 3.2 0.0 2.5 1.1 0.0 0.0 0.0 0.0

MAX. 225 236 241 233 241 241 241 241 241
8 AVG. 228 234 240 227 236 239 239 240 240

S.E. 0.0 6.0 0.0 3.6 2.0 0.4 0.8 0.0 0.0
MAX. 228 239 240 233 240 240 240 240 240

9 AVG. 223 235 245 235 240 244 245 247 247
S.E. 0.0 4.6 1.5 4.5 3.7 2.3 1.6 0.0 0.0

MAX. 223 241 247 240 245 247 247 247 247
10 AVG. 241 241 250 239 241 248 249 252 253

S.E. 0.0 4.8 1.3 5.5 4.6 3.5 2.6 1.0 0.0
MAX. 241 248 251 246 248 252 252 253 253

20 AVG. 237 247 261 246 248 256 258 266 269
S.E. 0.0 5.2 2.8 9.3 5.0 4.4 4.2 3.1 2.7

MAX. 237 259 263 257 258 264 265 269 272

Table 18: Comparison of all the algorithms

112

that of GA/GS. This is intuitively reasonable since the initial population selected by GS

sampling usually consists of better quality but more homogeneous product profiles than

randomly selected population. Therefore, the GA algorithm with this kind of population

seed tends to find good product profiles quickly, but converges prematurely.

The performance of each algorithm after a fixed CPU time is given in Table 18 for

ten replications of each algorithm, except for the GS algorithm, which is completely

deterministic and thus requires only one replication. These results indicate that for all

of the GS, DP, and GA method, it is beneficial to incorporate a heuristic into the NP

framework. The resulting NP/GS, NP/DP, and NP/GA algorithms perform no worse

than their pure counterpart heuristics in all cases. The overall percentage improvement

is showed in Table 19. For example, for the problem K = L = 10 the hybrid NP/GA/GS

algorithm has an average improvement of 4.6%. This implies that out of 400 potential

customers, an average of 18 more customers are anticipated to purchase the offered

product if the design found by the NP/GA/GS algorithm is used rather than the design

found by the pure GS algorithm. Furthermore, for all randomized algorithms, Table

18 shows that the corresponding NP algorithm has lower standard deviation than the

heuristic alone. This indicates that the product profile quality obtained using the NP

framework is more predictable.

In Table 18, results from implementation of pure NP are also provided. In the pure

NP algorithm, we use only uniform sampling scheme to select each product profile. The

data indicates that the pure NP performs well compared to GS and DP, but any hybrid

algorithm, such as NP/GS can produce more effective results.

All of the results above are based on a fixed CPU time comparison, that is, each

algorithm ran for the same given length of time. It is, however, also of interest to

consider how each algorithm evolves over time. In Figure 20, the pure GA, NP/GA, and

113

Problem Performance Improvement
K L over GS over DP over GA over DC
5 5 8.7% 4.4% 0.0% 2.2%
6 6 0.8% 2.1% 0.0% 2.1%
7 7 7.1% 4.3% 0.0% 5.2%
8 8 5.3% 2.6% 0.0% 5.7%
9 9 10.8% 5.1% 0.8% 5.1%
10 10 4.6% 4.6% 0.8% 5.4%
20 20 13.5% 8.9% 3.1% 9.4%

Table 19: Comparison of NP/GA/GS to heuristics without the NP framework.

NP/GA/GS are compared for a large problem that has 50 attributes, with 20 levels of each

attribute. For each algorithm, the left hand graph shows the replication that gave the best

results plotted against the CPU time used, the right hand graph contains the same graph

for the worst replication. These results indicate several noteworthy features. We see that

for this example the NP/GA/GS algorithm dominates the NP/GA algorithm for any

CPU time used. This implies that the NP/GA/GS algorithm is always preferable. The

pure GA search produces near optimal solutions sooner than the NP/GA and NP/GA/GS

algorithms, but seems to get stuck at a local optima and have difficulty improving the

solution. Thus in the long run, both the NP/GA and NP/GA/GS algorithms outperform

pure GA with a considerable margin.

The same comparison is made for the GS, NP/GS, and NP/GA/GS algorithms in

Figure 21. For this example the NP/GA/GS algorithm does not dominate the NP/GS

algorithm. The NP/GS algorithm appears to be faster and reports better solutions for

the first few hundred seconds. For this time it also outperforms the pure GS, and in fact

it has a considerable better solution quality from the first solution reported. Therefore, it

is preferable to use the NP optimization framework rather than one of the pure heuristics.

114

0 500 1000 1500 2000 2500
110

120

130

140

150

160

170

180

CPU Time

P
er

fo
rm

an
ce

Best replication found

GA
NP/GA
NP/GA/GS

0 500 1000 1500 2000 2500
110

120

130

140

150

160

170

CPU Time
P

er
fo

rm
an

ce

Worst replication found

GA
NP/GA
NP/GA/GS

Figure 20: Performance of the GA, NP/GA, and NP/GA/GS algorithms as a function
of time for the 50 attribute, 20 level problem.

0 500 1000 1500 2000 2500
140

145

150

155

160

165

170

175

CPU Time

P
er

fo
rm

an
ce

Best replication found

GS
NP/GS
NP/GA/GS

0 500 1000 1500 2000 2500
140

145

150

155

160

165

170

CPU Time

P
er

fo
rm

an
ce

Worst replication found

GS
NP/GS
NP/GA/GS

Figure 21: Performance of the GS, NP/GS, and NP/GA/GS algorithms as a function of
time for the 50 attribute, 20 level problem.

115

Problem Algorithm
K L GS NP/GS DP NP/DP GA NP/GA NP/GA/GS
5 5 217 237 235 237 237 237 237
10 10 236 249 240 251 253 255 255
20 20 238 255 250 258 263 268 270

Table 20: Average performance for beta distributed customer preference

To evaluate the robustness of the above results we repeat several of the comparisons

for part-worths customer preferences that follow a beta distribution rather than a uniform

distribution. In particular, we use a beta distribution with parameters β1 = β2 = 2, which

results in a symmetric concave function. Instead of repeating the experiments for all the

parameter settings, we restricted ourselves to K ∈ {5, 10, 20} and L = K. The results

can be found in Table 20 which indicates that the average performance benefits of the

NP framework is insensitive to the distribution of the part-worths preferences.

Finally, to gain some understanding into why the hybrid algorithms with heuristics

incorporated into the NP framework perform well, and in particular, why such algorithms

are not as prone to get stuck at a local optimum, we consider a few of the actual product

profiles found by the various algorithms. The results are reported in Table 21 for K =

L = 10 and in 22 for K = L = 20. Each table gives the actual product profile, objective

function value of that profile, that is the number of customers purchasing the offered

product, and the algorithm that found the given product profile. Indeed, the best profile,

which is found by NP/GA algorithms, has about the half of the same attribute levels

as the profiles found by the DP, NP/DP, and GA algorithms. For the larger problem,

however, the situation is quite different. The best profile, found by the NP/GA algorithm,

has only four out of twenty attributes in common with the second best profile found by

the pure GA algorithm. Similarly, the profile found by the NP/DP algorithm has only

116

Product profile Objective Algorithm
4 9 6 4 2 8 3 6 10 1 241 GS
6 8 6 3 10 2 2 6 2 1 250 NP/GS
4 3 6 4 2 2 3 6 10 6 248 DP
2 6 6 10 2 2 9 6 10 6 251 NP/DP
6 3 6 7 10 2 9 6 10 1 251 GA
6 8 6 10 10 2 9 6 2 1 253 NP/GA

Table 21: Product profiles for the K = L = 10 problem

Product profile Objective Algorithm
09 05 14 06 16 15 18 20 15 15 06 10 05 09 03 08 16 11 12 17 237 GS
09 04 14 06 16 15 17 20 15 15 06 20 05 11 03 08 10 11 12 02 263 NP/GS
18 05 17 19 19 17 12 12 13 04 15 18 07 05 03 10 12 12 14 17 254 DP
16 04 20 06 16 14 07 12 13 12 14 10 17 19 17 16 04 12 11 19 264 NP/DP
09 16 15 06 16 15 07 20 03 01 16 13 18 13 17 16 20 13 08 17 266 GA
14 05 20 09 12 14 07 08 13 15 06 10 14 13 03 16 10 11 12 17 271 NP/GA

Table 22: Product profiles for the K = L = 20 problem

one attribute in common with the profile found by the DP algorithm. This illustrates

the benefits of using global search when seeking the optimal product profile, since it

is capable of finding profiles that are very different from those found by a local search

heuristic, which iteratively move from one profile to another similar profile. The result

is an optimization framework that appears to be more effective for product design than

any of the previously proposed methods.

4.5.1 Product Line Design

The NP framework can also be applied to more important product line design problems.

We have shown that NP/GA/GS works best for single product design, so we choose it

as the base algorithm for product line design. For the sake of simplicity, we call the

117

Problem M=2 M=3 M=4
K L NP-Line BS δf NP-Line BS δf NP-Line BS δf
5 5 306 306 0.0% 341 336 1.5% 357 353 1.1%
6 6 312 310 0.7% 347 343 1.2% 365 360 1.4%
7 7 318 309 2.9% 350 344 1.7% 367 361 1.7%
8 8 321 308 4.2% 352 341 3.2% 369 361 2.2%
9 9 330 316 4.4% 365 355 2.8% 381 372 2.4%
10 10 328 319 2.8% 360 354 1.7% 378 370 2.2%
20 20 341 323 5.6% 375 363 3.3% 393 385 2.1%

Table 23: Comparison of NP-Line and BS for product line problems

NP/GA/GS based product line design algorithm the NP-Line algorithm. (Nair, Thakur,

and Wen 1995) have demonstrated that Beam Search (BS) dominated DP for product

line design using 435 simulated problems and a real data set. Thus, we compare NP only

with BS for product line design.

We use the same problem data sets described in the last section. For each dataset, we

set number of products in the product line to 2, 3 and 4, resulting in 21 test problems.

We ran 10 replications for each problem. The average performance is summarized in

Table 23.

By adopting a similar approach as is used in (Nair, Thakur, and Wen 1995) we can

obtain the second product in a production line by reducing the original data set to a

smaller data set and then applying NP-Line algorithm. Our numerical results demon-

strate that NP-Line ties with BS in the smallest problem, but dominates BS heuristics

in all other cases.

118

4.6 Mixed Integer Programming Solution

The mixed integer programming model of the single product design problem is difficult

to solve. In this section we incorporate several performance tuning heuristics into the

FATCOP branch-and-bound framework and provide provable optimal solutions for some

reasonable size product design problems. All these heuristics run through the standard

interfaces defined in FATCOP and dynamically linked to the solver at run time.

4.6.1 User defined heuristics

4.6.1.1 Upper bound through NP/GA

At the root node of each problem, we first run the NP/GA algorithm on the product

design problem. The best solution value found by the NP/GA algorithm is then delivered

to the FATCOP solver and set as the upper bound.

4.6.1.2 Priority Branching through Greedy Heuristics

There are two classes of variables in the mixed integer programming formulation given in

the beginning of this Chapter: xkl and zi. We set higher priority for the class of decision

variables xkl. Among the decision variables we use a greedy heuristic to set up priorities.

For level l of attribute k, we sum the part-worths across the customers to get skl. The

priority for xkl is given based on the value of skl. The decision variable with the highest

s value is assigned the highest priority.

4.6.1.3 Reformulation

The left hand of Constraint 46 has two items:
K∑

k=1

Lk∑

l=1
cikl ·xkl and K · zi. The first item is

the overall utility of customer i for a given product profile. If it is negative, zi is forced

119

to be 1 to make the constraint satisfied. Therefore we require that the coefficient of

zi should be big enough to make the constraint satisfied. Since a relative part-worths

utility is always bigger than -1, it is sufficient to set zi’s coefficient to K. However, for

many problems, zi’s coefficient is over set. In fact, the minimum possible value of zi’s

coefficient (Ci) is given by the following formula:

Ci = −
K∑

k=1

min
l

cikl

Consider a small problem with N = 1, K = 2, L1 = 3, and L2 = 2. let the part-worths

data matrices U(k) be given as follows, k = 1, 2:

U(1) =
[

0.3 0.2 0.5

]

, U(2) =
[

0.6 0.4

]

,

Suppose the status-quo is represented by the values of level 1 for each attribute. Then

subtracting the first column from each column of U(k) gives relative parts-worth data

matrices Ũ(k), k = 1, 2, 3:

Ũ(1) =
[

0.0 −0.1 0.2

]

, Ũ(2) =
[

0.0 −0.2

]

,

We can write constraint 46 for this problem as:

(0.0)x11 + (−0.1)x12 + (0.2)x13 + (0.0)x21 + (−0.2)x22 + 2 ∗ z1 ≥ 0

we have c1 = −(min {0, 0,−0.1, 0.2} + min {0, 0,−0.2}) = 0.3. Therefore we can

change the coefficient of z1 to 0.3. We can use the same idea to reformulate a subprob-

lem. For example, for the subproblem with x11 fixed to 1, we have c1 = −(0.0 ∗ 1 +

min {0, 0,−0.2}) = 0.2, so we can further change the the coefficient of z1 to 0.2. Note

that the smaller the coefficient of z1 is, the tighter the formulation is. We shall show

through numerical results that the new formulations have bigger LP relaxation values.

120

Node LP Relaxation
without reformulation with reformulation

0 1.58 1.73
1 1.73 4.12
2 2.85 4.63
3 1.74 5.43
4 2.23 4.86
5 1.74 6.13
6 2.87 5.30
7 1.74 5.06
8 2.97 5.14
9 3.22 7.82

Table 24: Effects of Reformulation for the problem N = 50, K = L = 5

4.6.2 Numerical Results

We have introduced several heuristics for single product design problems. In this section

we evaluate each of these heuristics empirically, and compare the FATCOP with CPLEX

MIP solver. We also report results for a commercial-size problem. The single product

design problem is formulated as a GAMS model given in Appendix D.

4.6.2.1 Effects of Heuristics

The selected test problem has sample size N = 50, and K = L = 5. The FATCOP

sequential solver is used in this section. We first assess the effect of reformulation. Each

node in the branch-and-bound tree was solved twice, one with reformulation and the other

without reformulation. We report the the LP relaxations of the first 10 nodes in Table

24. The results demonstrate that reformulation is able to increase the LP relaxation,

hence provides better lower bound.

We then evaluate effects of the heuristics by adding one heuristic each time. We test

on the same problem and report the tree sizes in Table 25. The numerical results show

121

without heuristics NP/GA NP/GA and NP/GA, Prio. Bran.
Prio. Bran. and reformulation

Tree size 3431 3095 3001 913

Table 25: Effects of the proposed Heuristics for the problem N = 50, K = L = 5

that each heuristic is able to enhance the performance of the FATCOP solver. Of them,

reformulation has most significant impact on the solver’s performance.

4.6.2.2 Raw results and comparison to CPLEX

The primary numerical results in this section are for two sets of randomly generated

problems. One set of problems has N fixed at 50, and the other set of problems has

K = 12, L = 3. We turn on and off the heuristics for the FATCOP sequential solver, and

run CPLEX with default settings on the test problems for comparison. In Table 26 and

Table 27 , for each test instance, we report the size of the search tree for each solver. For

all the test instances, FATCOP with user defined heuristics outperforms pure FATCOP

solver and CPLEX MIP solver. A product design problem with 12 attributes and 3 levels

in average is typically thought as a large commercial-size problem. FATCOP solved the

problem with K = 12, L = 3, N = 100 in less than 10 minutes CPU time.

However, a larger sample size is usually preferred in practice. Our last experiment

is to run FATCOP parallel solver on a problem with K = 12, L = 3, N = 200. We

use best-bound as our primary searching strategy, and as described in Chapter 2, all

workers explore a subtree in a depth first fashion. Knapsack cuts can be generated

to this problem, but our numerical experience showed that the cuts are not useful for

solving the problem. It is more beneficial to spend the cut generation time on branching

and bounding. Therefore we turned off all cutting planes. We also turned off diving

122

Problem FATCOP (without heuristics) FATCOP (with heuristics) CPLEX
K L
5 5 3,431 913 3,233
6 6 33,715 11,180 27,207
7 7 305,340 46,395 239,973

Table 26: Tree size for the problems with N = 50

Problem FATCOP (without heuristics) FATCOP (with heuristics) CPLEX
N
50 100,382 29,442 86,435
100 420,119 57,109 292,426

Table 27: Tree size for the problems with K = 12, L = 3

heuristics. NP/GA performed in the root node normally could find an optimal or near-

optimal solution. All the user defined heuristics described in this section are turned on.

The FATCOP job lasted 10.1 hours, evaluated 18,115,883 nodes and utilized 75 machines

in average. The solution found by NP/GA was proved to be the optimal solution.

In practice, decision makers often just want to see a good solution in a short time

and may only have a single machine available. It is also possible to quickly measure

quality of the solutions found by the NP/GA algorithm on a single machine using the

FATCOP sequential solver. We ran the FATCOP sequential solver on the same problem.

It proved the solution found by the NP/GA algorithm was at most 20% away from the

optimal solution in 45 minutes. We noticed that user defined heuristics (particularly

reformulation) helped to increase the lower bound quickly. On the other hand, CPLEX

could not solve effectively on this problem. We compared the FATCOP sequential solver

and CPLEX for this problem and depicted the bound changes in Figure 22.

123

0 1 2 3 4 5 6 7 8 9

x 10
4

0

10

20

30

40

50

60

70

80
Comparison of FATCOP and CPLEX for the Product Design Problem

Number of nodes

bo
un

ds

Lower bound obtained by CPLEX

Lower bound obtained by FATCOP

Upper bound found by heuristics

gap 20%

Figure 22: Comparison of FATCOP and CPLEX for the problem with K = 12, L =
3, N = 200

124

Chapter 5

Conclusion and Future Research

In this thesis we provide an integer and combinatorial optimization optimizer that has

two components: FATCOP and NP/GA. FATCOP is a parallel branch-and-bound imple-

mentation for MIP using distributed privately owned workstations. The solver is designed

in the master-worker paradigm to deal with different types of failures in an opportunis-

tic environment with the help of Condor, a resource management system. To harness

the available computing power as much as possible, FATCOP uses a greedy strategy to

acquire machines. FATCOP is built upon Condor-PVM and SOPLEX, both of which

are freely available. The results reported in this thesis show that FATCOP is both an

effective MIP solver for a variety of test problems arising in the literature, and an efficient

user of opportunistic resources.

NP/GA is a new optimization algorithm that combines a recently proposed global

optimization method called the Nested Partitions (NP) method and Genetic Algorithms

(GA) in a novel way. The resulting algorithm retains the benefits of both methods,

that is, the global perspective and convergence of the NP method and the powerful local

search capabilities of the GA. This new optimization algorithm was shown empirically to

be capable of outperforming pure GA search for a difficult product design problem. This

is especially true for very large problems where the global perspective of the NP method

is of particular importance.

As an application of our proposed optimizer, this thesis presented a new optimization

125

framework for constructing product profiles directly from part-worths data obtained from

market research. In particular we have focused on the share-of-choices problem, that is, to

maximize the number of customers that are anticipated to purchase the offered product.

The new methodology, the Nested Partitions (NP) method, consists of a global search

phase that involves partitioning and sampling, and a local search phase of estimating a

promising index used to guide the partitioning. The method is capable of incorporating

known heuristics to speed its convergence. In particular, any construction heuristic, that

is a heuristic that builds a single product profile, can be incorporated into the sampling

step. This was illustrated using the greedy heuristic and dynamic programming heuris-

tic. On the other hand, any improvement heuristic, that is a heuristic that starts with

a complete product profile or set of profiles and finds better product profiles, can be

incorporated by using it to estimate the promising index. This was demonstrated using

the genetic algorithm. Numerical examples were used to compare the new optimization

framework with existing heuristics, and the results indicated that the new method is

able to produce higher quality product profiles. Furthermore, these performance im-

provements were found to increase with increased problems size and we presented results

for examples that are considerably larger than those previously reported in the literature.

These results indicate that the new NP optimization framework is an important addi-

tion to the product design and development process, and will be particularly useful for

designing complex products that have a large number of important attributes. We also

provided a mixed integer programming solution to the single product design problems.

By incorporating some heuristics to the FATCOP solver, we successfully solved some

reasonable size product design problems.

There are numerous future research directions that may be pursued, both regarding

further development of the FATCOP, and further application of the NP method. We

126

outline these directions as follows.

1. Further experiments with FATCOP will be made to investigate how well the ideas

presented scale with an increased number of available resources. Also, we intend

to investigate the use of different cutting planes, as well as further exploitation of

the local nature of information when performing a task.

2. In this thesis we have solved some reasonable size single product design problems

through incorporating problem-specific heuristics into FATCOP. There are other

heuristics specific to product design problems. For instance, it is natural to re-

place the default binary branching by GUB branching [53] in order to have a more

balanced and small search tree. The default node selection rule (best-bound) only

utilizes the LP relaxation (lower bound) information. For product design problems,

we have developed a set of sampling schemes (uniform, GS, DP) in each subregion

(or node). Therefore, FATCOP could use both the lower bound information and

sample information that provides upper bounds to select the next node to evaluate.

In particular, we can use some convex combination of the lower bound and upper

bounds to estimate a node. Further experiments include testing some big single

product design problems and more difficult product line design problems.

3. In this thesis we have concentrated on designing a single product or product line

with the objective of maximizing market share. Several other objectives, such as

total buyers’ welfare or seller’s marginal return, should also be considered. Finally,

we plan to apply the new methodology to real data obtained from industry.

4. The results for algorithm length presented in Chapter 3 are based on the assumption

that success probability p0 does not dependent on the current most promising

127

region, or the depth of the region, i.e., the transition of the algorithm may be

described as iid Bernoulli random variables. Further research includes studying the

results for algorithm length under the assumption that p0 is dependent on current

most promising region.

5. The NP method is highly compatible with parallel computer structures. A par-

allel NP algorithm is developed to solve Traveling Salesman problem [61]. The

algorithm has each processor concentrate on one part of the feasible region, and

chooses the number of processors to coincide with number of partitions M . This

algorithm is not suitable for NP applications with small number of partitions, since

full utilization of available processors is not achieved. We shall investigate this issue

and develop other parallel NP algorithms for both deterministic and opportunistic

environments.

128

Bibliography

[1] M. Avriel and B. Golany. Mathematical Programming for Industrial Engineers. Mar-

cel Dekker, 1996.

[2] M. Avriel and B. Golany. Triangulation in Decision Support Systems: Algorithms

for Product Design. Decision Support Systems 14, 313-327 (1995).

[3] P.V. Balakrishnan and V.S. Jacob. Genetic algorithms for product design. Manage-

ment Science 42, 1105-1117 (1996).

[4] E. Balas and C.H. Martin. Report on the session on branch and bound/implicit

enumeration, in discrete optimization. Annals of Discrete Optimization, 5, 1979.

[5] M. Benichou and J.M. Gauthier. Experiments in mixed-integer linear programming.

Management Science, 20(5):736–773, 1974.

[6] R. E. Bixby, S. Ceria, C. M. McZeal, and M.W.P. Savelsbergh. MIPLIB 3.0.

http://www.caam.rice.edu/b̃ixby/miplib/miplib.html.

[7] A. Brook , D. Kendrick and A. meeraus. GAMS: Auser’s Guide. The scientific Press,

South San Francisco, CA, 1988.

[8] S. Ceria, C. Cordier, H. Marchand and L. A. Wolsey. Cutting planes for integer

programs with general integer variables. Mathematical Programming, 81(2):201-214,

1998.

[9] Q. Chen and M. C. Ferris. FATCOP: A fault tolerant Condor-PVM mixed integer

program solver. Mathematical Programming Technical Report 99-05, Computer

Sciences Department, University of Wisconsin, Madison, Wisconsin, 1999.

[10] Q. Chen, S. Ólafsson, and L. Shi, “Remarks on ‘Genetic Algorithms for Product

Design,” submitted to Management Science (1998).

[11] R. Cheng and M. Gen. Parallel machine scheduling problems using memetic algo-

rithms. Computers & Industrial Engineering 33, 761-764 (1997).

129

[12] I.T.Christou and R.R. Meyer. “Optimal equi-partition of rectangular domains for

parallel computation,” Technical Report95-04, Computer Science, UW-Madison

1995.

[13] Condor Group, UW-Madison. Condor Version 6.0 Manual. 1998.

[14] H. Crowder, E. L. Johnson, and M. W. Padberg. Solving large scale zero-one linear

programming problems. Operations Research, 31:803–834, 1983.

[15] Dash Associates, Blisworth House, Blisworth, Northants, UK. XPRESS-MP User

Guide. http://www.dashopt.com/.

[16] G. Dobson and S. Kalish. “Heuristics for Pricing and Positioning a Product Line

Using Conjoint and Cost Data,” Management Science 39: 160-175 (1993).

[17] D.L.Eager, M. Ferris and M.K. Vernon. “Optimal Regional Caching for On-Demand

Data Delivery,” Technical Report, Computer Science, UW-Madison 1998.

[18] J. Eckstein. Parallel Branch-and-bound Algorithm for General Mixed Integer Pro-

gramming on the CM-5. SIAM J. Optimization, 4(4):794–814, 1994.

[19] H.L. Emile Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley,

Chichester, 1989.

[20] D.H.Epema, M.Livny et al. A wordwide flock of condors: load sharing among work-

station clusters. Journal on Future Generations of Computer System,1996.

[21] J. Forrest et al. Practical solution of large scale mixed integer programming problems

with UMPIRE. Annals of Discrete Optimization, 5, 1979.

[22] R.Fourer, D.M. Gay and B. W. Kernighan AMPL: A Modeling Language For Math-

ematical Programming. Scientific Press, 1993.

[23] A. Geist, A. Beguelin et.al. PVM: Parallel Virtual Machine - A user’s Guide and Tu-

torial for Networked Parallel Computing. The MIP Press, Cambride, Massachusetts,

1994.

[24] M. Gen, G.S. Wasserman and A.E. Smith. Special issue on genetic algorithms and

industrial engineering. Computers & Industrial Engineering 30 (1996).

130

[25] B. Gendron and T. G. Crainic. Parallel Branch-and-Bound algorithms: survey and

systhesis. Operations Research, 42(6):1042–1060, 1994.

[26] F. Glover. Tabu search: A tutorial. Interfaces, 20(4):74-94, 1990.

[27] D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Reading, MA (1989).

[28] D. Gong, M. Gen, G. Yamazaki and W. Xu. Hybrid evolutionary method for capaci-

tated location-allocation problem. Computers & Industrial Engineering 33, 577-580

(1997).

[29] J.-P. Goux, J. Linderoth, and M. Yoder. Metacomputing and the master-worker

paradigm. Technical report, Argonne National Laboratory, 1999.

[30] P.E. Green and A.M. Krieger. Recent contribution to optimal product position-

ing and buyer segmentation. European Journal of Operations Research 41, 127-141

(1989).

[31] P.E. Green and A.M. Krieger. Models and Heuristics for Product Line Selection.

Marketing Science 4: 1-19 (1985).

[32] P.E. Green and A.M. Krieger. Recent Contributions to Optimal Product Positioning

and Buyer Segmentation. European Journal of Operations Research 41, 127-141

(1989).

[33] P.E. Green and A.M. Krieger. A simple heuristic for selecting ’good’products in

conjoint analysis. J. Advances in Management Science 5, R. Schultz (ed.), JAI Press,

Greenwich, CT (1987).

[34] P.E. Green and A.M. Krieger. An application of a product positioning model to

pharmaceutical products. Marketing Science 11: 117-132 (1992).

[35] P.E. Green and V. Srinivasan. Conjoint analysis in consumer research: new devel-

opments and directions. Journal of Marketing 54, 3-19 (1990).

[36] W. Gropp, E. Lusk, A. Skjellum. Using MPI : portable parallel programming with

the message-passing interface. The MIT Press, Cambridge, Massachusetts, 1994.

[37] Y.C. Ho, R.S. Sreenivas and P. Vakili. Ordinal optimization of DEDS. Discrete Event

Dynamic Systems: Theory and Applications 2, 61-88 (1992).

131

[38] J.H. Holland. Adaptation in natural and artificial systems. The University of Michi-

gan Press, Ann Arbor, MI (1975).

[39] M. S. Hung, W. O. Rom, and A. D. Warren. Handbook for IBM OSL. Boyd and

Fraser, Danvers, Massachusetts, 1994.

[40] ILOG CPLEX Division, Incline Village, Nevada. CPLEX Optimizer.

http://www.cplex.com/.

[41] S. Kekre and K. Srinivasan. Broad Product Line: A Necessity to Achieve Success?

Management Science 36: 1216-1231 (1990).

[42] R. Kohli and R. Khrisnamurti. A heuristic approach to product design. Management

Science 33, 1523-1533 (1987).

[43] R. Kohli and R. Khrisnamurti. Optimal product design using conjoint analysis:

computational complexity and algorithms. European Journal of Operations Research

40, 186-195 (1989).

[44] R. Kohli and R. Sukumar. Heuristics for Product-Line Design using Conjoint Anal-

ysis. Management Science 35: 1464-1478 (1990).

[45] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and archi-

tectures. Tech. Report TR 91-18, Department of Computer Science, University of

Minnesota, 1991.

[46] A. Land and A. Doig. An automatic method of solving discrete programming prob-

lems. Econometrika 28(3), 497-520 (1960).

[47] J. Linderoth and M.W.P. Savelsbergh. A Computational Study of Search Strategies

for Mixed Integer Programming. Report LEC-97-12, Georgia Institute of Technology,

1997.

[48] M.J.Litzkow, M.Livny et al. Condor - A hunter of idle workstations in Proceedings of

the 8th International Conference on Distributed Computing Systems, Washington,

District of Columbia, IEEE Computer Society Press, 108-111, 1988.

[49] T. Murata, H. Ishibuchi and H. Tanaka. Genetic algorithms for flowshop scheduling

problems. Computers & Industrial Engineering 30, 1061-1072 (1996).

132

[50] S.K. Nair, L.S. Thakur, and K. Wen. Near Optimal Solutions for Product Line

Design and Selection: Beam Search Heuristics. Management Science 41: 767-785

(1995).

[51] J. L. Nazareth. Computer Solution of Linear Programs Oxford University Press,

1987.

[52] G.L. Nemhauser, M.W.P. Savelsbergh, G.S. Sigismondi. MINTO, a Mixed Integer

Optimizer. Oper. Res. Letters, 15:47–58, 1994.

[53] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley,

New York, NY, 1988.

[54] S. Ólafsson and L. Shi. A method for scheduling in parallel manufacturing systems

with flexible resources. To appear in IIE Transactions (1998).

[55] E.A. Pruul and G.L. Nemhauser. Branch-and-Bound and parallel computation: a

historical note. Oper. Res. Letters, 7:65-69, 1988.

[56] J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cycles of

workstation clusters. Journal on Future Generations of Computer Systems, 12, 1996.

[57] T. J. Van Roy and L. A. Wolsey. Solving mixed integer 0-1 programs by automatic

reformulation. Operations Research, 35:45–57, 1987.

[58] T. L. Saaty. The Analytical Hierarchy Process. RWS Publications (1980).

[59] H. M. Salkin and K. Mathur. Foundations of Integer Programming. North-Holland

(1989).

[60] M.W.P. Savelsbergh. Preprocessing and Probing for Mixed Integer Programming

Problems. ORSA J. on Computing, 6: 445–454, 1994.

[61] L. Shi, S. Ólafsson and N. Sun. New parallel randomized algorithms for the traveling

salesman problem. To appear in Computers & Operations Research (1997).

[62] L. Shi and S. Ólafsson, and Q. Chen, “An optimization framework for product

design,” submitted to Management Science (1998).

[63] L. Shi and S. Ólafsson, and Q. Chen. A New Hybrid Optimization Algorithm. Com-

puters & Industrial Engineering 36, 409-426 (1999).

133

[64] L. Shi and S. Ólafsson. Nested partitions method for global optimization. Operations

Research 48 (3) (2000).

[65] R. Wunderling. SOPLEX: User documentation.

http://www.zib.de/Optimization/Software/Soplex/.

[66] F. Zufryden. A conjoint-measurement-based approach to optimal new product design

and market segmentation. In Analytical approaches to product and market planning,

A.D. Shocker (Ed.), Marketing Science Institute, Cambridge, MA (1977).

134

Appendix A

GS Sampling

Step 0 For the attributes that are fixed by the partitioning, let

lsi = l
σj

i , (52)

for all i ≤ d(σj).

Compute the overall relative utilities,

ukl =
M∑

i=1

(

uikl − uikl̃k

)

, (53)

for each attribute k = 1, 2, ..., K, and each level l = 1, 2, ..., Lk of that attribute.

Note that here l̃k is the level of the k-th attribute for the status-quo product.

Set k = d(σj) + 1.

Step 1 Generate a uniform random variable u0 from U(0, 1).

Step 2 If u0 > w1 then go to Step 3, otherwise go to Step 5.

Step 3 Generate a uniform random variable u1 from U(0, 1).

Step 4 If l−1
Lk

≤ u1 < l
Lk

then set the k-th attribute to level l, l = 1, 2, ..., Lk,

lsk = l. (54)

Go to Step 6.

Step 5 Select the level l∗k of the k-th attribute that satisfies

l∗k = arg max
l=1,2,...,Lk

ukl, (55)

135

and set the k-th attribute to this level,

lsk = l∗k. (56)

Continue to Step 6.

Step 6 If k = K stop, otherwise let k = k + 1 and go back to Step 1.

136

Appendix B

DP Sampling

Step 0 For the attributes that are fixed by the partitioning, let the sample profile θs

have the same levels,

lsi = l
σj

i , (57)

for all i ≤ d(σj). Thus a partial profile that fixes d(σj) attributes is determined

by the partitioning.

Compute the overall relative utilities,

u′
kl =

M∑

i=1

(

uikl − uikl̃k

)

, (58)

for each attribute k = 1, 2, ..., K, and each level l = 1, 2, ..., Lk of that attribute.

Set k = d(σj) + 1.

Step 1 Generate a uniform random variable u0 from U(0, 1).

Step 2 If u0 > w2 then go to Step 3, otherwise go to Step 5.

Obtain a uniform sample:

Step 3 Generate a uniform random variable u1 from U(0, 1).

Step 4 If l−1
Lk

≤ u1 < l
Lk

then set the k-th attribute to level l, l = 1, 2, ..., Lk,

lsk = l. (59)

If k = K stop, otherwise let k = k + 1 and go back to Step 3.

137

Obtain a randomized DP sample:

Step 5 We need to maintain a set of partial profiles for each attribute that has not been

determined. Initialize this as the singleton set that contains only the partial

profile that is fixed by the partitioning,

PK−1 = {θs} , (60)

with θs as in Step 0 above.

Randomize the order of the remaining n − d(σj) attributes

lsi1 , l
s
i2
, ..., lsin−d(σj)

, (61)

where {i1, i2, ..., in−d(σj)} is a permutation of {d(σj) + 1, d(σj) + 2, ..., n}.

Step 6 Given Pk−1, the set of last stages partial profiles, and the possible levels of the

current attribute lsik−d(σj)
, identify the k-th stage set of Lk partial profiles,

Pk = {p1k p2k ... pLkk} . (62)

This set is obtained by, for each level l of the ik−d(σj)-th attribute finding

the partial profile pl′(k−1) in Pk−1 that maximizes the overall relative utilities.

The new partial profile plk is then constructed from pl′(k−1) by also letting the

ik−d(σj)-th attribute be set to the l′-th level.

Step 7 If k = K let the sample product profile be

θs = pl∗K , (63)

where

l∗ = arg max
l=1,2,...,LK

f (plK) , (64)

and stop. Otherwise let k = k + 1 and go back to Step 6.

138

The details of how to implement Step 6 of the algorithm have appeared in [43], and are

omitted here for brevity.

139

Appendix C

GA Search

Step 0 Initialization. Let POP0 = θj , where θj is defined in step 2 of the NP

algorithm given in Chapter 3.

Let k = 0.

Step 1 Reproduction. Sort the product profiles in the current population POPk =
[

θ
[1]
k θ

[2]
k ...θ

N[j]

k

]

according to their fitness

f
(

θ
[1]
k

)

≥ f
(

θ
[2]
k

)

≥ ... ≥ f
(

θ
[Nj]
k

)

. (65)

Add the fittest product profiles to the new population,

POPk+1 =



θ
[1]
k θ

[2]
k ...θ

[
Nj

2

]

k



 . (66)

Step 2 Crossover. Select two random indices 1 ≤ i, j ≤
Nj

2
, i 6= j. Select a random

attribute k where d(σj) < k ≤ K, and create two new product profiles by

replacing the k-th attribute of θ
[i]
k with the k-th attribute of θ

[j]
k , and vice versa.

Add these new product profiles to the new population POPk+1. Repeat until

Nj

2
new product profiles have been created.

Step 3 Mutation. Select a random index 1 ≤ i ≤ Nj . Select a random attribute k

where d(σj) < k ≤ K, and mutate θ
[i]
k by replacing its k-th attribute with a

random level. Repeat.

Step 4 Let k = k+1. If k > kmax, the total number iterations, go to Step 5. Otherwise,

go back to Step 1.

140

Step 5 Finally, use the best product profile found using the GA search

Hσj(k) (θj) = θ
[1]
k . (67)

to estimate the promising index in Step 3 of the NP algorithm.

141

Appendix D

GAMS model for MIP formulation

of single product design problem

$title product design, share of choice problem

$setglobal nAttr 12

$setglobal nLev 3

$setglobal nCust 50

set at /1*%nAttr%/;

set le /1*%nLev%/;

set cu /1*%nCust%/;

alias(at,a);

alias(le,l);

alias(cu,c);

142

alias(pl,p);

****** read utility matrix uniformly ******

parameter util(cu,at,le)/

$include util.inc

/;

****** varaibles ******

binary variable x(at,le);

binary variable z(cu);

variable obj;

****** equations ******

equation objective,

sinLev(at),

cons1(cu);

objective.. obj =e= sum(c,z(c));

sinLev(a).. sum(l, x(a,l)) =e= 1;

143

cons1(c).. sum((a,l),x(a,l)*util(c,a,l)) + %nAttr%*z(c) =g= 0;

model prodDesign /all/;

prodDesign.optcr = 0.0;

prodDesign.optca = 0.9999;

prodDesign.reslim=1000000;

prodDesign.nodlim=100000000;

prodDesign.optfile = 1;

prodDesign.prioropt = 1;

x.prior(a,l) = 2;

z.prior(c) = 1;

solve prodDesign using mip minimizing obj;

