
ROBUST SOLUTION OF MIXED

COMPLEMENTARITY PROBLEMS

By

Steven P� Dirkse

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

�Computer Sciences�

at the

UNIVERSITY OF WISCONSIN � MADISON

����

Abstract

Robust Solution of Mixed Complementarity Problems

Steven P� Dirkse

Under the Supervision of Associate Professor Michael C� Ferris

at the University of Wisconsin�Madison

This thesis is concerned with algorithms and software for the solution of the Mixed

Complementarity Problem	 or MCP� The MCP formulation is useful for expressing systems

of nonlinear inequalities and equations
 the complementarity allows boundary conditions be

to speci�ed in a succinct manner� Problems of this type occur in many branches of the

sciences	 including mathematics	 engineering	 economics	 operations research	 and computer

science�

The algorithm we propose for the solution of MCP is a Newton based method containing

a novel application of a nonmonotone stabilization technique previously applied to methods

for solving smooth systems of equalities and for unconstrained minimization� In order to

apply this technique	 we have adapted and extended the path construction technique of

Ralph ������	 resulting in the PATH algorithm� We present a global convergence result for

the PATH algorithm that generalizes similar results obtained in the smooth case� The PATH

solver is a sophisticated implementation of this algorithm that makes use of the sparse basis

updating package of MINOS ����

Due to the widespread use of algebraic modeling languages in the practice of operations

research	 economics	 and other �elds from which complementarity problems are drawn	 we

have developed a complementarity facility for both the GAMS and AMPL modeling lan

guages	 as well as software interface libraries to be used in hooking up a complementarity

solver as a solution subsystem� These interface libraries provide the algorithm developer with

ii

a convenient and e�cient means of developing and testing an algorithm	 while also bene�t

ing the modeling community by providing ready access to the latest advances in algorithmic

development�

The library interface routines are used to read a number of complementarity models

formulated in the GAMS and AMPL modeling languages� We de�ne the syntax required

for these models and describe their derivation� These models have been collected to form a

library and have been made publicly available so that others may bene�t from this work�

We present extensive computational results for the PATH solver and other solution tech

niques	 many of which are obtained by using the interface library and the library of comple

mentarity models developed for this purpose�

iii

Acknowledgements

Of the many debts of gratitude I owe	 none is greater than the one owed to my wife	 Pat�

She has been the best part of my life	 and words cannot express my appreciation for the

support and encouragement she has given me and the sacri�ces she has made on my behalf�

I thank my parents for providing a secure home	 invaluable discipline	 and constant

encouragement� They have given up much to pay for my education	 and have fostered my

love of learning for as long as I can remember�

Any success I have met with in graduate school has been due in large part to my advisor	

Michael Ferris� His advice	 ideas	 and guidance have been invaluable to me� Working with

him has been a joyful and enlightening experience� I thank James Morris and Robert Meyer

for serving on my thesis committee and Olvi Mangasarian and Stephen Robinson for serving

as readers� Their interest in my work has been a source of encouragement	 while their

commments and suggestions have greatly improved my work� In addition	 Renato DeLeone	

Ferris	 Mangasarian	 Meyer and Robinson have served as classroom instructors and have

helped to stimulate my interest in mathematical programming� Gerard Venema of Calvin

College was instrumental in my decision to pursue an education in mathematics and did

much to make my graduate career possible�

Many colleagues have lent a hand� Danny Ralph introduced me to the path concept

and provided comments during the early stages of this work� Tom Rutherford�s pioneering

work in using the GAMS language provided a foundation for much of my research� GAMS

Development Corporation donated a GAMS system	 while Alex Meeraus	 Ramesh Raman	

and Erwin Kalvelagen answered many questions� David Gay�s suggestions helped lead to

the design of the AMPL interface library� S� Chan Choi provided data for an interesting

equilibrium model� Pete TerMaat introduced me to EMACS	 while Jon Cargille helped me

to use it wisely� I have enjoyed frequent discussions and infrequent golf outings with my

o�ce mate	 Stephen Billups�

iv

Finally	 I would like to thank Rick and Jill Poel for providing a reminder that my life is

not my own	 but that I belong to one who provides all that I need�

Call to me	 and I will answer you	 and I will tell you great and mighty things	

which you do not know�

Jeremiah ����

This research was partially funded by Fellowships from the National Science Foundation

and the Wisconsin Alumni Research Foundation	 as well as by the National Science Founda

tion under Grant CCR�������� and the Air Force O�ce of Scienti�c Research under Grants

AFOSR�������� and F�����
��
�
�����

v

Contents

Abstract ii

Acknowledgements iv

� Introduction �

��� Notation �

��� The Mixed Complementarity Problem �

��� Newton
based Equation Solvers ��

��� Modeling Languages ��

��� Chapter Outline ��

� Modeling Language Interfaces ��

��� Interface Tasks ��

��� GAMS�MCP ��

����� Developer
Written Subroutines ��

����� CPLIB Subroutines ��

����� Communication and Control ��

����� The C Interface ��

��� AMPL�MCP ��

��� Interface comparisons ��

� MCPLIB� A Model Library 	

��� MCP Syntax for GAMS and AMPL ��

��� The Model Library ��

����� Computing a Nash Equilibrium ��

vi

����� A Spatial Price Equilibrium Model ��

����� A Walrasian Equilibrium Model ��

����� A Tra�c Assignment Model ��

����� Computing an Invariant Capital Stock � � � � � � � � � � � � � � � � � ��

����� Extended Linear
Quadratic Programming � � � � � � � � � � � � � � � ��

����� An Obstacle Problem ��

����� The Elastohydrodynamic Lubrication Problem � � � � � � � � � � � � � ��

	 The PATH Solver ��

��� Approximation ��

��� Path Generation ��

��� Pathsearch Damping ��

��� Nonmonotone Stabilization ��

��� A Global Convergence Result ��

� Computational Results �
�

��� Comparison of PATH to Josephy
Newton and MILES � � � � � � � � � � � � � ���

��� Comparison of PATH to B
DIFF and NE�SQP � � � � � � � � � � � � � � � � ���

��� Comparison of PATH to Other Techniques ���

��� Conclusions ���

� Preprocessing and Other Extensions ��	

��� Preprocessing ���

��� Other Extensions ���

��� Conclusions ���

vii

Chapter �

Introduction

In this thesis	 we are concerned with the robust solution of nonlinear mixed complemen

tarity problems �MCP�s� arising in practical situations� In particular	 we describe a novel

method for the solution of these problems	 prove a convergence result for this method	 and

give extensive computational results demonstrating the e�ectiveness of the proposed method

as compared to other techniques considered in the literature� Since computational tests on

a wide variety of problems are essential in determining the relative merit of the many al

gorithms proposed for the complementarity problem	 we have developed a library of test

problems	 formulated in the GAMS and AMPL modeling languages and drawn from a num

ber of di�erent �elds	 with which to test our solver and others� The development of this

library	 along with the software necessary to make use of it	 is also described in this work�

It would be di�cult to overestimate the importance of the complementarity problem�

Since its de�nition nearly �� years ago	 it has been the subject of intense study regarding

the existence	 uniqueness	 and computability of its solutions� Originally noted in its linear

form as a unifying framework for quadratic and linear programming and as a useful tool in

game theory	 the complementarity problem and its close relative	 the variational inequality

�VI�	 have become fundamental problems in the �eld	 due in part to the fact that the

optimality conditions for most problems in constrained and unconstrained optimization can

be expressed as a VI�

Even more importantly	 due to asymmetry of the Jacobian matrix	 many complementarity

problems are di�cult to express as smooth optimization problems	 that is	 as the minimiza

tion of a smooth function subject to a number of smooth constraints� Thus	 techniques for

�

solving these types of complementarity problems e�ciently and robustly are especially im

portant� Prime examples of these types of problems include the general equilibrium models

which arise in economics� The Jacobian matrix for these models is often asymmetric	 so that

the usefulness of a smooth minimization approach is limited� These models are used in tax

policy analysis for the U�S� and elsewhere	 in setting corporate average fuel economy stan

dards	 in analyzing potential growth patterns in an economy	 and in analyzing the present

and future e�ects of policy changes on the environment and global carbon emissions� Other

complementarity problems occur in the areas of mechanical engineering	 in Nash and spatial

equilibrium models	 and in transportation and regional science�

In order to e�ectively solve the mixed complementarity problem	 we will rely primarily

on a damped variant of Newton�s method applied to a reformulation of the MCP as a

nonsmooth system of equations �described in Section ����� This approach is motivated by

both theoretical and practical considerations� Newton�s method has been shown to perform

well on a wide range of problems encountered in practice	 while it possesses excellent local

convergence properties that can be generalized via linesearch or trust region techniques� We

will show that our proposed algorithm	 a pathsearch damped	 nonmonotonically stabilized

version of Newton�s method for the MCP	 is globally convergent under conditions similar to

those used to show the convergence of other Newton
type algorithms for equations outlined

in Section ����

Many of the applications mentioned above are taken from economics and related �elds�

In these disciplines	 the GAMS modeling language �Brooke	 Kendrick � Meeraus ����� is

widely accepted and extensively used to formulate linear	 nonlinear	 and mixed integer pro

grams� It was only natural	 then	 that complementarity problems be formulated in GAMS

as well� In order to do so	 it was necessary to extend the GAMS language and write an

interface library of software routines used in linking a MCP solver to GAMS� This was done

by Dirkse	 Ferris	 Preckel � Rutherford ������
 the resulting complementarity format is

known as GAMS�MCP� A demonstration of the use of the GAMS�MCP system for equilib

rium analysis and game theory is provided by Rutherford �Rutherford ����b�� In addition	

Rutherford �Rutherford ����a� has embedded MPSGE	 a modeling language designed specif

ically for solving Arrow
Debreu economic equilibrium models	 in GAMS�MCP� In fact	 the

widely publicized estimate of ���� billion for annual economic bene�ts for the GATT world

trade agreement was produced by GAMS�MCP and the MPSGE subsystem�

�

While the GAMS modeling language is the standard in economics	 it is not so dominant

in other �elds	 such as mathematical programming and operations research	 where a more

recent modeling language called AMPL has been gaining increased acceptance� AMPL

has a number of features not found in GAMS	 such as a facility for �de�ning� variables

in terms of a function and a syntax more suited to those accustomed to the notation of

mathematical programming� Motivated by these factors	 we have developed a technique

whereby complementarity problems can be expressed in the AMPL language	 and have

written an interface library which can be used to quickly and easily hook a solver to AMPL�

As an aid in testing our solver	 and in order to compare it to other available software	 we

have formulated MCPLIB	 a library of GAMS�MCP models drawn from a wide variety of

disciplines� Many of the models in the library have been coded in AMPL as well� This model

library	 when coupled with the appropriate interface software	 provides a ready source of test

problems for anyone wishing to develop or evaluate a complementarity solver� In addition	

Brooke et al� ������ and Fourer	 Gay � Kernighan ������ show that the use of a modeling

language in problem formulation has a number of advantages over the use of a programming

language such as C or Fortran�

��� Notation

A word about notation is in order� The set of real numbers is denoted by IR and the

extended reals by IR �� IR � f�����g� The nonnegative orthant in IRn is denoted by

IRn
�� Matrices and vectors in IRm�n and IRn are denoted by upper and lower case Arabic

letters	 respectively� The transpose of a matrix A is denoted by A�	 and similarly for vectors�

The vector e � IRn is the vector whose components are all one	 while the vector ei � IRn is

the the vector whose components are all equal to zero except the i�th component	 which is

one� The Euclidean unit ball is denoted by IB �� fx j kxk� � �g� Two vectors � and u in

IR n de�ne a box or rectangle B � ��� u 	 where ��� u �� fz j � � z � ug� The relative interior

of a convex set C is denoted by riC and is de�ned to be the interior of C with respect to

its a�ne hull �Rockafellar ����	 Section ���

Assuming the set C � IRn is closed and convex	 we denote the projection operator onto

the set C as �C���
 �C�x� is the unique point in C which minimizes the Euclidean norm

kc� xk� for c � C� The projection of a vector x onto IRn
� is denoted more simply by x��

�

The negative of the projection onto the negative orthant is denoted by x�	 so that while

x� � �	 x � x� � x� decomposes x into its positive and negative parts�

We write s 	 � to mean s
 �� s � �� Given a scalar or vector function h�s�	 we say

h�s� � o�s� �as s 	 �� if h�s�� ksk
 � in norm as s 	 �
 similarly	 h�s� � O�s� if h�s�� ksk

is bounded as s 	 �� Similar de�nitions hold for the cases where s
 �� A function F is

Lipschitz of modulus L � � on a subset X� of IRn if kF �x�� F �y�k � L kx� yk � x� y � X��

A function F is Lipschitz invertible of modulus L � � if F is bijective and its inverse mapping

is Lipschitz of modulus L�

��� The Mixed Complementarity Problem

In this section	 we de�ne the Mixed Complementarity Problem �MCP�	 the chief problem

of interest for this thesis	 and a number of related problems� Both in this section and

throughout	 we assume that F � C �
 IRn is a continuously di�erentiable mapping from an

open set containing C	 where C � IRn is a closed convex set�

When the set C
 IRn
� �the nonnegative orthant�	 we have the well
known nonlinear

complementarity problem �NCP� de�ned by F � �nd z � IRn such that

� � F �z� � z � �� �NCP�

where � indicates a complementarity relationship between F and z �in this case	 hF �z�� zi �

��� The NCP bears a close relationship to the variational inequality VI�F�C�	 that of �nding

z � C such that

hF �z�� c� zi � � � c � C� �VI�

It is not di�cult to show that z solves NCP i� z solves VI�F� IRn
��	 so that NCP is a special

case of VI� This result is a special case of Theorem � below which relates the VI to the mixed

complementarity problem�

Given a function F and a box B �� ��� u 	 we de�ne below the mixed complementarity

problem MCP�F�B�� Suppressing the F and B	 we will refer to the problem as MCP when

it is convenient to do so�

�

De�nition � �MCP� Given a box B �� ��� u and a function F � B
 IRn�

s� t�

�nd z � IRn� w� v � IRn
�

F �z� � w � v ����a�

� � z � u ����b�

hw� z � �i � � ����c�

hv� u� zi � � ����d�

In the remainder of the thesis	 we shall use the notation

F �z� � z � ��� u

to express the complementarity conditions ������ When convenient	 we will include the

implied bounds on F and use an inequality to indicate the �nite variable bounds � and u	 as

in �NCP��

The MCP can be viewed in at least two ways� On one hand	 it can be seen as a gener

alization of the NCP to the case of general �and perhaps in�nite� lower and upper bounds

on the variables z	 rather than the nonnegativity condition imposed in the NCP� Just as

any practical implementation of an interior point or simplex method for linear programming

must explicitly consider lower and upper variable bounds and free variables	 so too must an

algorithm for solving complementarity problems� Thus	 the w and v in the above de�nition

can be viewed as simply the positive and negative parts of F �z�	 which must be complemen

tary to the di�erence between z and its lower and upper bounds � and u	 respectively� Note

that the choice of z completely determines w and v	 so that we can speak of either �z� w� v�

or z solving MCP	 as convenience dictates�

Many problems commonly considered in the literature are equivalent or can be reduced

to MCP	 including nonlinear equations �B �� IRn� and nonlinear complementarity problems�

MCP reduces to NCP when the box B de�ned by � and u is the positive orthant �i�e� � �� �

and u �� ��� These bounds imply that z � �	 while ����d� implies that v
 �	 so that

F �z� � w � �	 while hF �z�� zi � � follows from ����c��

The MCP can also be viewed as a special case of the VI where the set C is replaced by

a box B � ��� u 	 as we show in the following theorem�

�

Theorem � Given a rectangular set B �� ��� u and function F � B
 IRn� the vector z

solves MCP�F�B� � z solves VI�F�B��

Proof ��� Assume z solves MCP� Then z � B	 and for all c � B	

hF �z�� c� zi � �hF��z�� z � ci � hF��z�� c� zi

� � hF��z�� z � �i � hF��z�� u� zi

� ��

��� If z solves VI	 then � � z � u� De�ne w �� F��z�	 v �� F��z�	 so that F �z� � w�v�

For any index i � �� � � � � n	 assume wi � � and zi � �i	 so that

hF �z�� �z � ��i � zi�ei�� zi � wi��i � zi� � ��

This cannot be the case �since z solves VI�	 so that either wi � � or zi � �i � �� Since i was

arbitrary	 hw� z � �i � � as well� Similarly	 hv� u� zi � �	 so that z is a solution to MCP�

The normal cone is closely related to the VI and is an important and useful tool� Given

a closed convex set C � IRn and a point z � IRn	 the normal cone to C at z is de�ned to be

the set of all directions making an obtuse angle with any direction in C emanating from z	

i�e�

NC�z� ��

���
��
fy j hy� c� zi � � � c � Cg if z � C

� if z �� C

Clearly	 !z solves VI�F�C� �� �F �!z� � NC�!z�� Thus	 solutions to the VI can be described

in terms of the normal cone�

As Theorem � shows	 VI�F�C� is equivalent to MCP�F�C� when C is rectangular� When

C is polyhedral rather than rectangular	 VI�F�C� can be reduced to an MCP by explicitly

including the dual variables to the constraints de�ning C�

Theorem � Given a box B �� ��� u and a set X �� fz j Az � bg� where A � IRm�n�

VI�F�B �X� is equivalent to MCP�H�B � IRm
� �� where

H�z� u� ��

�
� F �z� � A�u

�Az � b

�
� �

�

Proof If !z solves VI�F�B �X�	 then �F �!z� � NB�!z� � NX�!z�	 since B and X are both

polyhedral� If we partition the rows of A into those corresponding to constraints active �A�

and inactive �I� at !z	 we can express the normal cone to X at !z as NX�!z� � fA�Au j u � �g	

so that there exists a !u � � such that ��F �!z� � A�!u� � NB�!z�	 where !ui � � for all

i � I� Since A!z � b � � and by choice of !u	 we have A!z � b � NIRm
�

�!u� as well	 so that

�H�!z� !u� � NB�IRm
�

�!z� !u�� Thus	 �!z� !u� solves VI�H�B � IRm
� ��

If �!z� !u� solves MCP�H�B � IRm
� �	 then �H�!z� !u� � NB�IRm

�
�!z� !u�� Thus	 ��F �!z� �

A�!u� � NB�!z� and A!z � b � NIRm
�

�!u�� Consequently	 we see that !z � X	 !u � �	 and

!ui � � for all i � I� Thus	 A�!u � NX�!z�	 so that �F �!z� � NB�!z� � NX�!z�	 and !z solves

VI�F�B �X��

As formulated above	 the MCP is not amenable to solution via the powerful Newton

based techniques used in �nding zeros to systems of equations� To express the MCP as a

zero
�nding problem	 the normal map of Eaves ������ and Robinson �����	 ����� is used� In

what follows	 we show how the normal map can be derived as a natural result of the MCP

under consideration	 thus providing some intuition into the relationship between these two

problems�

Since MCP is equivalent to the box
constrained VI	 z � B solves MCP if and only if

h�F �z�� c� zi � � � c � B� �����

If we de�ne x �� z � F �z�	 then the inequality

hx� z� c� zi � � � c � B �����

follows from inequality ������ But ����� is the projection inequality �Hiriart
Urruty �

Lemar"echal �����
 assuming z � B	 ����� holds if and only if z �� �B�x�	 the Euclidean

projection of x onto B� Hence	 the equation

�F ��B�x�� � x� �B�x� �����

is satis�ed� Conversely	 if ����� holds	 then since the projection inequality ����� holds for

z � �B�x�	 it follows that ����� holds as well� Thus	 �B�x� solves MCP	 so that solving

equation ����� is equivalent to solving MCP� This is made precise in the following de�nition

and theorem�

�

De�nition 	 �Normal Map� Given a closed convex set B � IRn and a function F � B

IRn� the normal map FB��� induced on F by B is de�ned as

FB�x� �� F ��B�x�� � �x� �B�x���

The corresponding normal map equation is then de�ned as

� � FB�x� � F ��B�x�� � �x� �B�x��� �NME�

Theorem � follows directly from equations �����	 �����	 and ����� above and the discussion

surrounding them�

Theorem � Given a rectangular set B �� ��� u and function F � B
 IRn� the vector

x � IRn solves NME � z �� �B�x� solves MCP� while z solves MCP � x �� z�F �z� solves

NME�

Since the projection mapping �B is continuous �Hiriart
Urruty � Lemar"echal �����	

a necessary and su�cient condition for the continuity of FB is the continuity of F on B�

However	 since �B is in general nondi�erentiable	 FB also fails to be di�erentiable� In order to

better understand the nondi�erentiability of FB	 we must take a closer look at the projection

�B�

We �rst de�ne the faces of B � ��� u � In this case	 the faces are essentially determined

by forcing some of the de�ning inequalities of B	 namely � � z � u	 to be satis�ed as

equalities� Thus	 if I and J are disjoint subsets of f�� � � � � ng	 then a corresponding face of

B is fz � B j zI � �I � zJ � uJ g� For example	 if B � IRn	 then B has only one nonempty

face	 namely B itself� On the other hand	 if B � IR�
�	 the nonnegative orthant of IR�	 then

the four nonempty faces of B are ��� ��	 �� IR�	 IR���	 and IR�
�� These faces are critically

related to �B� Given a face F of the set B	 let � represent all the points in IRn that are

projected onto F by �B� The collection of all such � is called the normal manifold � The

sets � are called cells of the normal manifold� Robinson ������ has shown that each cell

is polyhedral	 has dimension n	 and is of the form F � NF 	 where NF is de�ned to be the

normal cone on ri F � In addition	 we note that the sets �� �� ri F � NF form a partition of

IRn� Returning to our two examples above	 when B � IRn	 the only cell is � � IRn	 which

has dimension n and partitions IRn� For B � IR�
�	 the four cells � are the orthants of IR�	

each of which has dimension �	 while the four sets �� partition IR��

�

The normal manifold in IR� corresponding to the box B �� ����� � ��� � is given in

Figure �� The six cells of this manifold	 in clockwise order	 are B	 ���������� � 	 ���� � �

���� � 	 ���� � � ��� � 	 ���� � � �����	 and ������ ������

B

Figure �� Normal Manifold for B � ������ ��� �

The projection �B�x� onto the box B �� ��� u can be computed component
wise as follows

��B�x��i �

�������
������

�i if xi � �i�

xi if �i � xi � ui�

ui if ui � xi�

�����

In this case	 IRn is partitioned into at most �n rectangular cells where in each cell the

function used to compute �B�x�i is a�ne� Thus	 the restriction of the projection operator

�B to each of these cells is a�ne�

The normal manifold provides a useful tool for working with the normal map	 since it

partitions IRn into a number of cells on each of which �B	 and hence FB	 is smooth� This

allows us to view FB as a smooth nonlinear function on the interior of each each of these

cells	 or as a piecewise
smooth function over the whole space� The smoothness properties of

�

FB will be essential in developing Newton methods for the solution of �NME� and in proving

su�cient conditions for their convergence�

��� Newton�based Equation Solvers

In this section	 we describe some of the algorithms previously proposed for the solution of

systems of nonlinear equations	 for the mixed complementarity problem	 and for a number

of related problems� Since the solvers considered in this thesis are primarily of Newton

type	 we �rst review Newton�s method for solving systems of equations	 as well as some of

the extensions applied to the basic method� This method and its extensions will serve as a

model for our proposed solution methods for MCP�

Newton�s method for solving the equation

F �x� � � �NLE�

consists of two steps	 approximation and zero
�nding	 applied repeatedly to produce a se

quence of iterates fxkg� In an approximation step	 the function F is approximated	 or

linearized	 at the point xk by the a�ne function Ak��� de�ned by

Ak�x� �� F �xk� � F ��xk��x� xk�� �����

The Newton point xkN is a zero of the approximation Ak	 i�e� Ak�x
k
N � � �� If the Jacobian

matrix F ��xk� is nonsingular	 this zero is unique	 and is conceptually easy to �nd� Upon

solving the matrix equation F ��xk�dk � �F �xk�	 the Newton point is given by xkN � xk �dk	

where dk is the Newton direction� The next iterate in the Newton process is the Newton

point xkN 	 so that

xk�� �� xk � dk�

Under certain assumptions	 the sequence fxkg can be shown to converge to a solution

x� of NLE� Typical of this type of result is the domain of attraction result found in �Ortega

� Rheinboldt ����	 Theorem �������	 which shows quadratic convergence of fxkg to x� in

a neighborhood of x�	 assuming Lipschitz continuity of F ��x� near x� and nonsingularity

of F ��x��� Another result is the Newton
Kantorovich theorem �Ortega � Rheinboldt ����	

Theorem �������	 which shows the existence of and convergence to a point x�	 a zero of F 	

given the Lipschitz continuity of F � and the existence of a point x� for which both kF ��x����k

��

and kF ��x����F �x��k are su�ciently small� This is a strong result	 since it does not assume

the existence of the solution a priori�

The generalized equation �GE� of Robinson ������ is a zero
�nding problem for a set

valued mapping de�ned in terms of F and the normal cone to the closed convex set C	 i�e�

�nd z such that

� � F �z� � NC�z�� �GE�

Note that when C
 IRn	 NC�z� � f�g for all z � IRn	 so that GE reduces to NLE in this

case� In general	 however	 NC�z� will not be a singleton� Note also that GE is an equivalent

formulation of VI	 expressed in terms of the normal cone� Josephy �����b� describes a

Newton method for GE in which the linearizations obtained by replacing F with Ak are

solved to obtain the successive iterates� Under an assumption of strong regularity �Robinson

����� at a solution z and an assumption regarding the Lipschitz continuity of F �	 Josephy

�����b� shows that a domain of attraction result holds for Newton�s method for GE	 and

that quadratic convergence is achieved� A Newton
Kantorovich result is shown to hold under

assumptions on the initial point x� similar to those mentioned earlier�

While the convergence results for the basic Newton method indicate that fast convergence

may be expected in the neighborhood of a solution	 this neighborhood may be very small�

Thus	 convergence to a solution depends on the choice of initial iterate x�� In order to

reduce or eliminate this dependency on x�	 globalization methods of either the trust region

or linesearch damping type are used �Fletcher ������ Linesearch damping �Armijo ����	

Goldstein ����� was originally proposed in the context of the unconstrained minimization

of a function f � IRn �
 IR� Given d	 a direction of descent for the function f at a point xk	

a linesearch is applied in order to �nd a steplength 	 such that f�xk � 	d� � f�xk�� Under

appropriate conditions on the descent direction d and the choice of steplength 		 convergence

of the iterates to a minimizer of f can be shown� In a linesearch damped Newton method

for NLE	 the function to be minimized is often chosen to be kF �x�k��� The Newton direction

dk	 a descent direction for kF �x�k��	 is searched for a point that reduces kF �x�k���

Motivated by the success of the damped Newton method for NLE	 Ralph ������ has

proposed a similar method for the solution to the normal map equation �NME� formulation

of the complementarity problem de�ned in Section ���� Like the damped method in the

smooth case	 Ralph�s algorithm constructs a sequence of iterates	 each one resulting from an

��

approximation obtained from the previous iterate� Instead of searching a line from the cur

rent point to the Newton point	 a piecewise
linear path connecting these points is searched	

resulting in a reduction in kFBk� Convergence results for this algorithm similar to those

mentioned above are given by Ralph �������

Other Newton
type methods for complementarity problems include the B�ouligand��

di�erentiable equations approach proposed by Pang ������	 in which the B�derivative is

substituted for the F�r"echet��derivative in approximating a function H� When

H�x� �� min�x� F �x���

� � H�x� if and only if x solves NCP	 so that a B�Newton method for �nding a zero of

F solves NCP� The B�Newton direction can be linesearched	 so that the method can be

shown to be globally convergent� However	 a required assumption for both local and global

convergence is the F�di�erentiability of H at the solution point� Robinson ������ has shown

that for a class of nonsmooth functions for which a point�based approximation exists �a class

which includes the normal map FB�	 a Newton method can be applied� Convergence is shown

without assuming the F�di�erentiability of the function at the solution point� A computa

tional study of B�Newton�s method was performed by Harker � Xiao ������	 comparing

B
DIFF	 an implementation of B�Newton�s method for NCP	 to Josephy
Newton�s method

on a number of nonlinear complementarity problems� A method proposed for minimizing

kHk is the NE�SQP method of Pang � Gabriel ������	 in which a quadratic programming

problem is used to construct a descent direction for kHk� The sequence of QP�s solved leads

to a sequence of iterates which can be shown to converge to a zero of the nonsmooth equation

H�

The solution methods for NCP mentioned thus far all involve a reformulation of the prob

lem as a system of nonsmooth equations� Other solution methods based on a reformulation

as a smooth minimization problem have also been explored� These methods all involve the

minimization of a function # � IRn �
 IR� such that #�x� � � if and only if x solves NCP�

Various functions # have been proposed by Mangasarian ������	 by Mangasarian � Solodov

������	 and by Geiger � Kanzow ������� Computational tests using these formulations have

been done by Ferris � Lucidi ������ and by Geiger � Kanzow �������

Recently	 Fukushima ������ has shown how the asymmetric variational inequality can

be formulated as a di�erentiable optimization problem	 without any compactness or strong

convexity assumptions being made on the feasible set C� His formulation makes use of a

��

penalty term added to the gap function of Hearn ������ so that the resulting function is

bounded� Fukushima gives a formula for the gradient of his modi�ed gap function	 and

shows that when F � is positive de�nite for all x	 a descent direction for this mapping can be

easily computed	 without making use of F ��x��

��� Modeling Languages

An algebraic modeling language is a tool for expressing a mathematical programming prob

lem in an algebraic notation that is easily understood by both human and computer� Notable

examples include the GAMS modeling language �Brooke et al� �����	 �rst introduced in the

late �����s	 and AMPL �Fourer et al� �����	 a more recent entry into the �eld
 many other

systems exist� Both GAMS and AMPL come with a book describing the language and a

number of models illustrating how the system is used and what is possible� Each is available

in student and professional versions on a wide range of platforms and with a growing number

of available solvers�

Prior to the development of modeling languages	 an optimization problem might be

expressed via a number of Fortran routines providing function and gradient evaluation �both

objective and constraint�	 bound information	 and the initial point� Once the problem had

been correctly speci�ed and debugged	 perhaps by a programmer not familiar with the

problem being modeled	 the code was di�cult for others to read and even more di�cult to

modify� A change in the data of the model could be a time consuming task	 requiring the help

of the model�s programmer	 while a change in the model structure might be unthinkable� In

addition	 the speci�cation syntax varied with the computing environment	 so that the cost of

moving a model to a di�erent machine or switching to a di�erent solution method could be

prohibitive� In short	 the low
level problem description was di�cult to write	 read	 modify	

and move�

The di�culties described above motivate a number of fundamental concepts underlying

the design of a modeling language� Data independence refers to a model being speci�ed

independently of the data it uses� This allows a user to look at and change the form of the

model independently of the data	 and vice versa� The concise algebraic notation used to

enter a model makes the job of writing the model simpler and less time
consuming� The

derivatives are computed symbolically	 resulting in fewer errors	 since less code needs to be

��

written� The algebraic notation used is more self
documenting than comparable code in a

language such as Fortran or C	 while comments can also be included freely in the statement

of the model� Finally	 the model is speci�ed independently of any solution algorithm or

computing platform used to solve it� This solver independence	 perhaps the most important

feature of a modeling language	 allows many solvers to be easily applied to a common model

speci�cation	 thus both allowing the most e�cient solver to be applied and providing a

benchmark for comparison between di�erent solution procedures� In addition	 a new solution

method	 when implemented as a solver for a modeling language	 can immediately be tested

on the many models already formulated	 regardless of the platform on which the solver runs

or on which the models were originally speci�ed� This solver independence is also acheived in

the CUTE system of Bongartz	 Conn	 Gould � Toint ������ and the well
known MPS format

for linear programs	 although these systems do not provide the ease of use and simplicity of

model formulation found in a modeling language� In addition	 the MPS format su�ers from

a loss of precision on some systems�

Modeling languages were originally developed to formulate and solve linear programs	 but

due to their success and popularity were soon modi�ed to permit the formulation of nonlinear

and mixed integer programs as well� This development has continued with the extension of

the GAMS language to allow the formulation of mixed complementarity problems �Dirkse et

al� ������ GAMS is especially popular in the �eld of economics	 and since many applications

of the MCP are found in this �eld	 a complementarity facility in GAMS serves a large

number of potential users and provides a convenient access to a large number of real
world

applications which might not otherwise be available� In addition	 a similar extension to

the AMPL modeling language has been developed� Thus	 the bene�ts of using a modeling

language now accrue to practitioners formulating their problems in a mixed complementarity

format and to those developing algorithms for complementarity problems� Both the extension

to AMPL and the extension to GAMS are described and documented in Chapter ��

A modeling language functions as follows� The model to be solved must �rst be read in

by a compiler� Communication between a modeling language and a solver is done almost

entirely by �les� A modeling language does not dispense with code for evaluating functions

and gradients	 etc�	 but merely automates its formation� Each time a model is solved	

a compiler writes �les which contain all the problem data and machine
readable code to

evaluate the functions determining the model� Typically	 a solver uses a software library to

��

read these �les	 determine the form of problem to be solved	 and calculate the functions and

gradients at the required points� Thus	 each solve requires a number of temporary �les to

be written to and read from disk� The time required to read the model and read and write

the temporary �les can represent a signi�cant fraction of total solution time	 even though

the temporary �les are often written in a compact binary format� In addition	 it may be

di�cult or impossible to take advantage of any special structure the problem may possess�

The paragraph above shows that the bene�ts of using a modeling language are not ob

tained without cost� The �le I�O required for each solve and the generality of the problem

statement required by the interface are balanced by the ease and speed of model formula

tion and modi�cation� In an environment where the time required for model formulation

dominates the time required for model solution	 a modeling language is a valuable time
saver�

��� Chapter Outline

In this introductory chapter	 we have de�ned the MCP and a number of related problems	

chie$y the Normal Map Equation� The NME will be used in the development of a Newton

method for MCP� After a survey of related work in this area	 we have introduced alge

braic modeling languages	 and brie$y discussed their origin	 their function	 and the bene�ts

involved in their use�

In Chapter �	 we discuss the fundamentals involved in the design of a complementarity

interface to an algebraic modeling language� These fundamentals apply to the interfaces

for both GAMS and AMPL	 so that the sections describing these two interfaces have much

in common� This commonality and a number of important di�erences are discussed in the

closing section of this chapter	 along with numerical results comparing the performance of

the two interface libraries�

A library of complementarity problems written in the GAMS and AMPL modeling lan

guages is presented in Chapter �� In this chapter	 we describe the derivation of some of the

more complex models and the parameters these models contain� We also provide a brief

tutorial on the syntax used to express these models in GAMS and in AMPL�

Chapter � describes the PATH algorithm	 a path
following Newton method for the so

lution of MCP� This algorithm can be viewed as a generalization of a linesearch damped

Newton method for smooth equations
 our treatment of the PATH algorithm is along these

��

lines� We also give the details of a nonmonotone stabilization technique applied to the

underlying Newton algorithm	 concluding with a convergence proof�

Chapter � contains extensive computational results obtained by solving a large number of

problems with a number of di�erent algorithms� Most of the results presented were obtained

using the interface and model libraries of Chapters � and �	 respectively� A number of general

equilibrium models obtained from the GAMS model library and expressed in GAMS�MPSGE

format were solved as well� We also present results comparing the PATH solver to algorithms

for which computational results have been published�

Chapter � concludes this thesis
 in it we describe a projected Newton preprocessor for

MCP	 give some very promising computational results obtained using this technique	 and

indicate a number of possible extensions to the interface libraries�

��

Chapter �

Modeling Language Interfaces

The primary purpose of a modeling language is to aid the modeler in preparing a model

for solution and to report the results of the solution process to the modeler� The modeling

language does this by providing a convenient	 portable	 algebraic means of expressing the

problem at hand� While this formulation is human
readable	 it is not so useful �in the

algebraic form� to a solver	 which requires speci�c instructions as to how to evaluate the

required functions and gradients de�ning the problem	 as well as other problem data� A

modeling language usually writes all this information to a �le or �les in a compact	 binary

format� An interface exists to interpret these �les for a solver and provide the solver with

the functions and data these �les contain�

In this chapter	 we will be concerned with interfaces for hooking a complementarity solver

to a modeling language� In Section ���	 we will indicate what type of information and func

tionality will be required from such an interface	 and the data structures and computation

necessary to provide this� Since many modeling languages	 including GAMS and AMPL	

were not designed to formulate complementarity problems	 attaining this functionality is a

challenging and nontrivial task� Sections ��� and ��� describe in detail two interface libraries

used to hook up complementarity solvers �including PATH� to GAMS and AMPL	 respec

tively� In Section ���	 we compare the GAMS and AMPL interface libraries	 noting their

similarities and di�erences and discussing the consequences of each�

��

��� Interface Tasks

Since the MCP is de�ned by a function F and a box B � ��� u 	 minimum requirements for

a solver interface are routines to evaluate F and provide B� We also include routines to

evaluate J 	 the Jacobian of F � Since F is nonlinear	 techniques for the solution of MCP

may depend heavily on the choice of initial iterate z�
 the interface must provide this as

well� Finally	 the interface must provide the means to report a solution z� to the modeling

language and hence to the modeler� In addition to these minimal requirements	 an interface

may provide a number of convenience routines	 such as a way to pass algorithm parameter

values from a model to a solver� In order to report the solver�s progress to the modeler	

additional routines may be necessary	 such as those to write a status or log �le	 report

solution statistics	 and provide the names of functions or variables used in the model �so

that a solver can report on the variable �price��corn��� rather than �z���� ��� Depending

on the modeling language being used	 other routines may also be necessary or desirable� It

should not be necessary for a solver developer to communicate directly with the modeler

the interface must provide for all the input and output required�

Most algebraic modeling languages	 including GAMS and AMPL	 are designed to express

constrained optimization problems and pass them to a solver� As a rule	 it is impractical to

express the many complex constraints of these models in terms of a single function or a single

vector of variables� Typically	 a modeling language allows a number of nonlinear constraints	

expressed in terms of a number of named variables	 to be speci�ed	 and forms one collective

constraint function based on these component functions� Similarly	 the many named variables

are combined into one collective vector of variables� Thus	 a modeling language converts a

problem expressed in terms of many named variables and many constraints into a problem

expressed in terms of a single constraint function and a single vector of variables� The

function F and box B of the MCP must be extracted from this collective constraint function

and variable� How this is done is best illustrated by example�

A simple Walrasian equilibrium problem is given by Mathiesen ������ and has equilibrium

conditions

� � b � Ay � d�p� �� S�p� y� � p � � ����a�

� � �A�p �� L�p� � y � �� ����b�

��

where the demand function d��� is de�ned by

di�p� ��
ai

P
k bkpk
pi

�

p � IRm	 y � IRn	 and the data a	 b and A are given� The vectors p and y represent prices of

goods and levels of production activity	 while the functions S and L represent excess supply

of goods and loss per unit activity level	 respectively� Two di�erent yet equivalent ways of

expressing this problem as an MCP are to de�ne

F �y� p� ��

�
� L�p�

S�y� p�

�
� � B �� IRn

�� IRm
� � �����

or	 equivalently	 to de�ne

F �p� y� ��

�
� S�y� p�

L�p�

�
� � B �� IRm

� � IRn
� � �����

In either case	 the functions S�y� p� and L�p� combine to form F 	 while the variables y and p	

together with their bounds	 combine to form z and B� The order in which these components

are combined in the collective function and variable may depend upon the order in which

they are declared in the model	 in which case it would be possible to declare p	 y	 L	 and S

in such a way that the functions and variables are combined as in ����� or ������ An interface

might depend on the modeler to do exactly that�

However	 this approach lacks $exibility	 is prone to error	 and does not allow the inter

face to perform more than a simple check for model consistency� Models speci�ed in this

manner would be di�cult to read and modify� In addition	 this approach assumes that the

modeling language provides the constraints and variables to the solver in the order in which

they are speci�ed by the modeler� This will not always be the case	 as some languages

�notably AMPL� may provide constraints and variables in a di�erent order from that in

which they are speci�ed� Therefore	 the above approach is not used� Rather	 the modeler

de�nes the component functions of the model �using the constraint syntax�	 the variables

used together with their bounds	 and a list of function
variable pairs� Given the collective

constraint function	 the collective variables are permuted so that each component function

is complementary to the variable with which it is paired� This allows the modeler to ex

plicitly de�ne the complementarity relationship desired	 independent of the order in which

the functions and variables are de�ned in the model� The list of pairs allows the interface

��

to check the consistency of the model described by the modeler	 a very useful function for

more complex models consisting of many pairs� Thus	 the Walrasian model described above

would be speci�ed by the pairs hS�pi and hL�yi	 assuming S and L are de�ned as in ������

The indexing required to permute the collective constraint function and collective variable

�the rows and columns� serves a dual purpose� When variable components are �xed �i�e�

�i � ui�	 they can be removed from the vector z	 along with their associated equation Fi�

The indexing required for this is already in place	 so the interface can perform this task with

little additional overhead	 and in conjunction with the consistency check and the permutation

of rows and columns� This process occurs only once per problem	 while the work �les are

being read� In what follows	 we will assume that the removal and addition of �xed variables

takes place while the rows and columns are being permuted�

Once a problem has been read in	 the interface is ready to accept requests from the

solver for evaluations of F and J 	 the bounds � and u	 and the initial point z�� To get z�	

the interface calls a routine to get the initial values of the collective variable� These values

are then permuted and returned to the solver� The bounds � and u are obtained in a similar

fashion� To compute F 	 the level values supplied by the solver are permuted by the interface

into the order in which they appear in the collective constraint function� These values are

then passed as input to a routine which uses the instructions in the work �le to evaluate the

constraint function� This routine must understand the binary format of the work �le	 and

should be supplied with the modeling language being used� The function value returned by

this routine is then permuted by the interface and returned to the solver� A similar process

is used to compute the Jacobian J � However	 it may be necessary to permute both the

rows and columns of the constraint Jacobian	 since the variable z in the MCP is a permuted

version of the collective variable determining the constraint Jacobian�

Once the solver has computed a solution	 it calls an interface routine to report the solution

z� and the function value F �z�� to the modeler� The solution data is written to a work �le

in much the same way as the initial point is read in� In addition	 the solver can send a

message or set some status variables to indicate why the solver has terminated �solution

found	 iteration or resource limit exceeded	 error	 etc�� How or if this is done depends on

the modeling language being used� Routines for writing solution status �les or log �les	

performing other kinds of �le I�O	 and the convenience routines for reading and writing

parameter values and setting algorithm tolerances and parameters also vary greatly between

��

interfaces� The particular form these routines take will be described in the sections dealing

with the interface libraries for the GAMS and AMPL modeling languages�

��� GAMS�MCP

The GAMS modeling language has recently been extended to enable the formulation of MCP

in a format known as GAMS�MCP �Rutherford ����b�� The GAMS Callable Program

Library �CPLIB� is an interface designed to simplify and speed the process of hooking

up complementarity solvers for use as GAMS�MCP solution subsystems� CPLIB is a set

of Fortran routines that use the GAMS I�O library �Kalvelagen ����� to read and write

the binary instruction �les used to communicate between GAMS and a solver� The I�O

library also contains routines to evaluate the constraint function and its gradient	 using

the instructions found in the instruction �les� Designed for use in a Fortran environment	

CPLIB provides a dynamic memory allocation feature that is useful when hooking up a

Fortran solver�

The relationship between CPLIB	 the GAMS I�O library	 and the routines written by an

algorithm developer is presented in Figure �� The developer
written routines are indicated

by dashed boxes� When a CPLIB solver begins execution	 control lies with the developer

written Fortran MAIN routine	 whose only purpose is to call the cpmain subroutine	 a part of

CPLIB� The cpmain routine	 which has no arguments	 is the top
level CPLIB routine	 from

which calls to the GAMS I�O library	 CPLIB	 and the developer
written routines �corerq

and solver� are made� cpmain �rst calls routines from the I�O library in order to estimate

the size of the problem to be solved� It then calls the developer
written corerq	 which should

contain code to specify the solver type and the amount of memory required by the solver�

The amount of memory required is calculated in the corerq routine	 and is based on the

estimates of problem size previously obtained� These will always be overestimates� Although

a more accurate determination of problem size is made later	 this cannot be done until the

problem data is read in by CPLIB� Unfortunately	 this cannot take place until memory is

allocated for CPLIB� Since the GAMS I�O library allows the dynamic allocation of only one

memory block	 the memory for CPLIB and the solver must be allocated together� Hence	

the actual problem size in not available at the time that a request for solver memory has to

be made in corerq�

��

�

��

�

�

�

�

�

�

�

� �

�
� �

�

� �

o
p
t
i
o
n
a
l

MAIN routine� calls cpmain

cpmain� calls CPLIB and developer routines

corerq� workspace

estimate

solver� solution

algorithmCPLIB� evaluate function

and Jacobian	 provide ini

tial iterate	 accept solution	

utility routines

GAMS I�O library� reads�writes machine
speci�c binary �les

GAMS model

Figure �� Interrelationship of Developer Code and CPLIB

��

Once the request for solver memory has been made	 the total memory requirement �for

both solver and CPLIB� can be computed and a large block of memory allocated� At this

point	 CPLIB reads in the instruction �les �using I�O library routines� and formulates the

function F and box B de�ning the MCP� The data structures used to convert between F

and z and the collective function and variable computed by the I�O library are set up at

this time as well�

After CPLIB has formulated the problem and is ready to evaluate the function F 	 the

developer
written solver routine is called� This routine performs the work of problem

solution� To do so	 it can call CPLIB routines to�

i� obtain values of machine
dependent parameters	

ii� obtain the variable bounds � and u	 along with an initial iterate z�	

iii� evaluate the function F and its Jacobian	 and

iv� return the computed solution	 or an indication of why a solution has not been found�

Once the solution has been found or the reason for failure has been reported	 the solver

routine returns control to cpmain	 which must close the instruction �les before the solution

process terminates�

In order to simplify development and maintenance of CPLIB	 parameter values are gen

erally not passed as subroutine arguments� Instead	 communication between developer code

and the library takes place through calls to the �scalar interrogation� and �scalar return�

routines cpget� and cpput� described in Section ������ By keeping the use of argument

lists to a minimum	 it is easier to provide backward compatibility in future revisions of the

library�

A sample solver coded in Fortran and illustrating the use of the CPLIB routines de

scribed in Section ����� is available for anonymous ftp at ftp�cs�wisc�edu in directory

�math�prog�solvers�pg�sample�f�� A subset of the code from this solver is included in

Figure �� In the next two sections we provide more information regarding the developer

written subroutines and CPLIB routines	 respectively�

��

program pgrad

call cpmain

end

subroutine corerq

call cpgeti ��N��n� � size of problem

call cpgeti ��NADIM��nnz� � nonzeros in Jacobian

nwucor � � 	 n
 � 	 nnz � we won�t use Jacobian

call cpputi ��ISTYPE���� � solves general MCP�s

call cpputi ��NWUCOR�� nwucor� � solvers memory requirement

return

subroutine solver �work� nwucor�

call cpgeti ��N��n�

call projgrad �n� work�
�� work�n

�� work��	n

�� work��	n

��

return

subroutine projgrad �n� bl� bu� z� F�

���

call cpbnds �z� bl� bu� n�

call cpfunf �z� F� n�

���

call cpputi ��MODSTA��

� � model not solved

call cpputi ��SOLSTA�� �� � iteration interrupt

return

Figure �� Sample Fortran Solver Code
 GAMS Link

��

����� Developer�Written Subroutines

Of the three developer
written subroutines required by CPLIB	 the main program is trivial	

and must only call cpmain� In writing the other two	 it is good policy to avoid introducing

external symbols beginning with the letters cp or gf	 since names of the CPLIB and GAMS

I�O library routines begin with these pairs of letters�

Requesting Memory� corerq

The corerq subroutine has no arguments� It is used to communicate to CPLIB the

capabilities of the solver and its workspace needs� It does this by calls to the routine cpputi	

which sets integer parameters associated with string constants� If a solver can only process

problems with unbounded variables �i�e� systems of nonlinear equations�	 corerq must

set the �istype� parameter to �� Otherwise	 any other value may be used� To request

memory	 the �nwucor� parameter must be set to the number of �words� �double
precision

real equivalents� required by the solver routine� This amount can be computed by calls to

cpgeti using the strings �n�	 �nadim�	 and �intw� �see Table ���

Problem Solution� solver

subroutine solver�work	 nwucor

integer nwucor
double precision work�nwucor

nwucor input number of words �double
precision reals� of memory requested by

the solver in the previous call to corerq

work input workspace array of nwucor words

The solver routine is responsible for solving the MCP at hand� Typically	 it acts as an

interface to another routine used to solve the problem� If properly coded	 the solution

routine called by solver will di�er only slightly from a standalone version of the same

routine� For example	 much of the same code is used in the GAMS	 AMPL	 and standalone

versions of the PATH solver� Conditional compilation and di�erent calling routines �solver

in the GAMS version� account for the only di�erences in the versions of the PATH solver�

For a Fortran solver using dynamically allocated memory	 the solver routine is typically

used to partition a large block of memory and pass this memory on to a subroutine as a

number of smaller	 separate arrays�

��

In order to solve a problem	 the solver routine and its subsidiaries will call CPLIB

routines for problem data� These routines are described in the next section�

����� CPLIB Subroutines

Variable Bounds and Level Values� cpbnds

subroutine cpbnds�z	 bl	 bu	 n

integer n
double precision z�n
	 bl�n
	 bu�n

z output initial values of the problem variables

bl output lower bounds

bu output upper bounds

n input problem dimension�

CPLIB passes three values for each variable to the solver� the initial level value	 the lower

bound	 and the upper bound� The bit patterns used to represent plus and minus in�nity in

bl and bu should be obtained via calls to cpgetd	 using the strings �plinfy� and �mninfy��

Abnormal Interrupt� cppunt

Normally	 the solver routine will process a problem and return control to cpmain� How

ever	 a good solver will include checks for errors in the data and in programming	 especially

when under development� When these errors occur	 the solver may wish to terminate the

program immediately� Instead of using a Fortran stop statement or calling the exit�
 rou

tine	 the solver should call the cppunt routine� This routine	 which has no arguments	 sets

status indicators used to report the result of the solution process to the GAMS modeler	 as

well as making other arrangements for a graceful exit�

Function and Jacobian� cpfunf� cpsprj

subroutine cpfunf �z	F	n

integer n
double precision z�n
	 F�n

subroutine cpsprj�z	 F	 J	 Jrow	 Jcol	 Jlen	 n	 nadim

��

integer n	 nadim	 Jrow�nadim
	 Jcol�n
	 Jlen�n

double precision z�n
	 F�n
	 J�nadim

z input point at which to evaluate F and J

F output value of F evaluated at z

J output nonzero coe�cients of the Jacobian evaluated at z

Jrow output row indices of the coe�cients stored in J

Jcol output pointers to columns starts in J

Jlen output lengths of the columns in J

n input problem dimension�

nadim input number of nonzero components in J�

The subroutine cpfunf evaluates the nonlinear function F at a given point without evaluating

the Jacobian J � The cpsprj routine evaluates the function F and its Jacobian J 	 the matrix

of �rst partial derivatives of F with respect to its arguments� The Jacobian is returned in

the well
known row index	 column pointer	 column length format� The coe�cients for the

nonzero entries of the k�th column of J are stored in the vector J	 in positions Jcol�k
	

Jcol�k
��	 � � � 	 Jcol�k
�Jlen�k
��� The row indices for these coe�cients are stored in the

corresponding positions of Jrow�

Reporting Solution� cpsoln

subroutine cpsoln �z	 n

integer n
double precision z�n

z input solution estimate at solver termination

n input problem dimension�

Before the solver routine returns control to cpmain	 it may explicitly return the computed

solution z� to CPLIB� Use of the cpsoln routine is optional� CPLIB keeps track of the best

values encountered during the course of solution	 and writes these to disk if cpsoln is not

used�

Scalar Interrogation� cpgetd� cpgeti� cpgetl

��

subroutine cpgetd �name	 dparam

character���
 name
double precision dparam

subroutine cpgeti �name	 iparam

character���
 name
integer iparam

subroutine cpgetl �name	 lparam

character���
 name
integer lparam

name input the name of the parameter to be returned

dparam output real parameter returned

iparam output integer parameter returned

lparam output logical parameter returned�

These routines	 which �get� parameter values from CPLIB	 return double precision �real�	

integer and logical parameters	 respectively� Character string identi�ers for which these

subroutines produce useful values are listed in Tables �	 �	 and �	 along with de�nitions of

the results�

Scalar Return� cpputd� cpputi

subroutine cpputd �name	 dparam

character���
 name
double precision dparam

subroutine cpputi �name	 iparam

character���
 name
double precision iparam

name input the name of the parameter to be passed

dparam input real parameter passed

iparam input integer parameter passed�

These routines pass double precision �real� and integer values	 respectively	 to the CPLIB

library� Character string identi�ers used as input to these routines are listed in Tables � and

�	 along with de�nitions of the results�

��

Table �� CPGETD Arguments

String Result returned in double precision argument

�clock� Current elapsed time �for checking resource limit �reslim���

�eps� The smallest positive number that can be added to ��� to

obtain a result di�erent from ����

�huge� The largest positive number representable on the machine�

�maxexp� The largest positive decimal exponent representable on the

machine�

�minexp� The largest negative decimal exponent representable on the

machine�

�mninfy� Value currently used for ���

�obj� Merit function associated with the most recent function

evaluation�

�plinfy� Value currently used for ���

�precis� The number of signi�cant decimal digits�

�real�� �

�real��

Five real values can be set in a user�s GAMS program using

option statements of the form�

option real
 � ����

these should be used only during solver development�

�reslim� The resource limit in CPU seconds�

�tiny� The smallest positive number representable on the machine�

��

Table �� CPGETI Arguments

String Result returned in integer argument

�domerr� Number of domain errors encountered

�domlim� Maximum number of domain errors allowed before the I�O

library terminates execution

�integer�� �

�integer��

Five integer values can be set in a user�s GAMS program using

option statements of the form�

option integer
 � ����

these should be used only during solver development�

�intw� The number of integers per �word� �� word � � double pre

cision real�

�iolog� The unit number of the log �le

�ioopt� The unit number of the options �le �cf� cpgetl��useopt�
�

�iosta� The unit number of the status �le

�iterlim� An iteration limit set via the GAMS iterlim option
 default

� ����

�maxcol� The maximum number of nonzeros in any column of the

matrix

�n� The number of equations � variables in the MCP

�nadim� estimated number of nonzeros in the Jacobian of F �

�screen� The unit number of the screen�

Table �� cpgetl Arguments

String Result returned in logical argument

�useopt� If true	 the solver should attempt to read the user�s options

�le	 whose format and syntax are solver
de�ned�

�sysout� If true	 GAMS will copy the complete status �le to the listing

�le�

��

Table �� cpputd arguments

String Description of associated value

�contol� Convergence tolerance � used to identify infeasible equations

in the solution listing�

Table �� String arguments to subroutine cpputi

String Description of associated value

�istype� Indicator of solution algorithm capability �passed from

corerq��

� nonlinear equations �l � ��� u � ���

� general MCP ��� � l � u � ���

�itsusd� The number of iterations used by the solver� If not set	 this

records the number of function�derivative evaluations�

�modsta� Model status indicator� Values relevant to MCP models are�

� model solved

� intermediate nonoptimal

�� error
 no solution �GAMS triggers a SYSOUT�

�nwucor� Words of memory requested for solver �passed from corerq�

�solsta� Solver status indicator� Values relevant to MCP algorithms

are�

� normal completion

� iteration interrupt

� resource interrupt

� terminated by solver �GAMS triggers a SYSOUT�

� evaluation error limit

�� internal solver error

�startc� Start copying status �le output to the listing �le

�stopc� Stop copying status �le output to the listing �le

��

����� Communication and Control

There are a number of conventions that a proper GAMS solution subsystem is expected to

follow� These conventions exist so that the GAMS user may better control the behavior of

the solver and be informed of its progress�

To inform the user of its progress	 the solver writes to the status �le	 the log �le	 and the

screen� The unit numbers for these �les are obtained through calls to cpgeti� The status

�le contains two classes of information � that which is always copied to the GAMS listing

��lst� �le and that which is copied to the listing �le only when the GAMS user speci�es the

option sysout � on� The �rst type of output is identi�ed by �rst calling cpputi with the

string �startc� �the integer argument is ignored�� Subsequent solver output to the status

�le will then appear in the GAMS listing� To stop copying to the listing �le	 call cpputi

with the string �stopc� �again	 the integer argument is ignored��

The log �le and the screen are typically the same unit� On interactive platforms	 the

solver may send messages to the log �le to indicate progress towards a solution� This can be

particularly reassuring when the solution process progresses slowly� It is possible	 however	

for the user to redirect the log �le� �A user might do this when operating over a slow phone

line	 or in order to save the log �le output for examination later�� Only when information

�such as a copyright notice� is always to be displayed on the screen should the screen unit

be used�

A GAMS user can control the behavior of a solution system in two ways	 through GAMS

options and an options �le� The GAMS iterlim and reslim options can be set in a GAMS

model and passed to a solver via cpgeti and cpgetd calls	 respectively� It is a GAMS conven

tion that for algorithms with major and minor iterations	 iterlim refers to the cumulative

minor iterations performed� Other types of solvers will interpret this limit di�erently� The

default value is ����� The real value corresponding to reslim is a resource �time� limit	 in

seconds	 requested by the user� This defaults to ���� as well� It is up to the solver developer

to see that these limits are adhered to� Note that the �solsta� indicator should be set �via

cpputi� to indicate when these limits have been exceeded �see Table ���

All algorithms have a number of controlling parameters which can be adjusted to a�ect

performance and tune for particular problems� Nondefault settings for these are best speci�ed

in an options �le whose form and content depend on the algorithm developer� Examples of

options �le formats are the SPEC �le of MINOS ��� �Murtagh � Saunders ����� and the

��

keyword
value syntax of MINOS ���	 Lancelot �Conn	 Gould � Toint �����	 and PATH

�Dirkse � Ferris ������ The GAMS user can specify whether an options �le is to be used by

setting the optfile option� This logical value is passed to the solver via a call to cpgetl	

using the �optfil� string� Depending on what language the solver is coded in	 CPLIB can

be requested to open the options �le and return its unit number to the solver or to return

only the name of the options �le� The former is done using the cpgeti routine with �ioopt�	

while the latter is done using the C routine c gfopti�

Once the solver has been compiled into an executable format	 GAMS must be made

aware of it	 and arrangements must be made to call the executable properly� Details of how

this is done on a PC running DOS are discussed in �Dirkse et al� ������ The details for a

UNIX installation are quite similar�

����� The C Interface

On many platforms	 the Fortran CPLIB can be used in conjunction with solvers written in

the C programming language� While the tasks of linking a Fortran solver and a C solver are

quite similar	 there are some important di�erences� Because of these di�erences	 we have

written a set of C routines which act as an interface to the routines in CPLIB� These C

routines allow the writer of a C solver to ignore many of the �perhaps platform
speci�c�

cross
language issues he or she would otherwise have to consider in making direct calls to

Fortran CPLIB subroutines
 instead	 a C routine is called	 which performs the dirty work�

In this section	 we discuss the issues involved in the design of such routines	 and indicate

how these routines can best be used�

There are a number of standard conventions used in calling Fortran routines from C and

vice versa� Perhaps most importantly	 Fortran arguments are �called
by
reference� �pointers

to data are passed	 not the actual data values�	 while C passes by value� Of course	 arrays

are stored column
major in Fortran	 but row
major in C� Also	 on some systems	 a Fortran

subroutine named foo gets an underscore appended to its name before being passed to the

loader	 so a C call to subroutine foo must actually call foo � Case is signi�cant in the C

code	 while Fortran names are all generally converted to lower case� Calls from C to CPLIB

which use only integer and real arguments can be made easily	 and in a portable manner	 by

keeping these conventions in mind� An extra interface layer in these cases is not necessary�

While passing numeric arguments is simple	 the interrogation routines �cpgeti	 cpputi	

��

etc�� in CPLIB require that a character string be passed to a Fortran subroutine� Passing

this string from a C routine is a bit more complicated than passing a numeric value
 the code

necessary to do this may vary from machine to machine� Because of this	 we have chosen

to write C routines which act as logical replacements for the CPLIB interrogation routines�

The details of passing a string from C to Fortran are taken care of in the body of these

C routines
 the algorithm developer need not be aware of how this is done� In addition to

making programming easier	 these interface routines serve to isolate much of the code used

to make CPLIB calls� This eases the task of porting the C solver to a di�erent architecture	

since changes need be made only to the interface routines
 the calls to them in the solver

remain unchanged�

From a solver writer�s perspective	 the essential details of the C interface are contained

in the header �le c cplib�h� The �rst lines of this �le de�ne BOOLEAN	 CHAR	 DREAL	 and

INT to be the C type declarators for logical	 character	 $oating
point and integer types	

respectively� When writing a C solver	 it is recommended that these type declarators be

used for all variables which will be passed to CPLIB functions or to the C interface� The

declarators have been de�ned to assure correspondence in size and type to the Fortran

variables used in CPLIB
 their use increases solver portability�

Declarations for routines called from the solver are also included in the header �le

c cplib�h � The functions c cpget� have a single string pointer argument	 and return a

value of the appropriate type� The functions c cpput� have two arguments	 a string pointer

and the value to be put� The c print msg routine is used to print messages to the various

Fortran I�O units opened by CPLIB� Its �rst �integer� argument is the unit number to print

to
 its second argument is a pointer to the string to be printed� This string must be null

terminated� Thus	 one technique for writing to the CPLIB status and log �les from a C solver

is to use sprintf to write to a message bu�er	 and to pass a pointer to this bu�er to the

c print msg routine� This is the technique used in a sample solver written in C and available

via anonymous ftp at ftp�cs�wisc�edu in directory �math�prog�solvers�pg�sample�c��

The remaining calls to CPLIB routines �cpbnds	 cpfunf	 etc�� are made without an in

terface� In making these calls	 care must be taken to observe the conventions described

above� C
type declarations for the CPLIB routines are included in c cplib�h to aid in error

detection� A subset of the code from the sample C solver is included in Figure ��

��

�include �c�cplib�h�

DREAL 	z� 	lower� 	upper� 	F�

void corerq� �void�

�

c�cpputi ��nwucor��
�� �	 one �word�� it won�t be used 	�

c�cpputi ��istype�� ��� �	 solve general MCP�s 	�

return�

�

void solver� �DREAL 	work� INT 	nwucor�

�

INT n�

n � c�cpgeti ��n���

projected�gradient �n��

�

void projected�gradient �INT n�

�

lower � MEMALLOC �DREAL�n�� �	 similarly for upper� z� F 	�

cpbnds� �z� lower� upper� �n��

cpfunf� �z� F� �n��

��

c�cpputi ��modsta�� MODEL�NOT�SOLVED��

c�cpputi ��solsta�� SOLU�ITERATION��

return�

�

Figure �� Sample C Solver Code
 GAMS Link

��

��� AMPL�MCP

Like the GAMS modeling language	 AMPL was not designed to formulate and solve com

plementarity problems� However	 it was designed in a su�ciently general way so that an

MCP can be extracted from a properly speci�ed set of constraints expressed in the AMPL

language� The approach we use to specify a complementarity problem in AMPL�MCP dif

fers signi�cantly from that used in GAMS�MCP and CPLIB	 and is made possible by the

AMPL solver interface library written and made publicly available by Gay �������

In a GAMS�MCP model	 the component functions are de�ned as constraints	 while the

complementarity pattern is de�ned in the model statement	 where a list of function
variable

pairs is given	 as described in Section ���� Thus	 CPLIB merely permutes the rows and

columns of the constraint function	 its Jacobian	 and the associated variables to arrive at F 	

J 	 and z� The AMPL language lacks a model statement	 so the above approach cannot be

used� Instead	 a function and variable are associated via a pseudo�constraint � Consider for

example the Walrasian equilibrium problem from Section ��� �page ���� The corresponding

pseudo
constraints can be written down directly from the complementarity conditions �����	

as follows	

p � �S�p� y� � � ����a�

y � �L�p� � �� ����b�

where the variable bounds �p � p	 �y � y are assumed to be speci�ed elsewhere� We refer

to ����� as a system of pseudo
constraints because they may not hold at a solution to MCP

�e�g� S�p� y� � �	 p � �p � ��� If the pseudo
constraints ����� are decomposed into

�
� p

y

�
�

and

�
� S

L

�
�	 the complementarity relationship between z ��

�
� p

y

�
� and F ��

�
� S

L

�
�	 as well

as the function F itself	 can be recovered� This decomposition is performed by the AMPL

MCP interface library�

We mention here a crucial point regarding the presolve step that the AMPL compiler

performs when writing a problem to disk in response to a solve or write command� Since

the pseudo
constraints specifying the complementarity pattern and function are not true

constraints	 they are not properly understood or processed by AMPL�s pre
solver� Thus	

��

it is imperative that the AMPL compiler skip the presolve stage when generating a model�

This is accomplished by the options setting option presolve ��	 which can be set at the

AMPL command line	 or more conveniently	 in the default AMPL initialization �le� If there

are �xed variables in the model	 they will be eliminated from the problem by the AMPL

MCP library routines	 not the AMPL presolve step� In a similar vein	 we note that unless an

AMPL variable will always be treated as a constant and is not associated with any function

via a pseudo
constraint	 the AMPL fix statement used to �x variables at their current values

should not be used�

Since both the AMPL MCP and AMPL solver routines are written in C	 the need to

dynamically allocate memory places no constraints on the organization of the interface library

or solver� The only requirements are that the solver calls an initialization routine prior to

calling any other AMPL MCP routines	 and that a routine to write solution values and�or

send a termination message is called to report the solver�s progress prior to the solver�s

termination� The MCP interface library is simple to both use and describe� The organization

of an AMPL�MCP solver is illustrated in Figure ��

The AMPL solver interface library communicates with AMPL by writing and reading

�les whose names have the form stub � su�x� AMPL calls its solvers with two command line

arguments	 the �lename stub and the string ��AMPL�� Unless the solver can be called in a

non
AMPL mode	 the ��AMPL� string can be ignored� The �lename stub and an indication

of what type of Jacobian	 sparse or dense	 is required is input to the mcp init routine	 the

�rst routine called by a typical AMPL�MCP solver�

Interface Initialization� mcp init

int mcp init �char �stub	 int do sparse	 int �n	 int �nnz
�

return OK or error indication �see mcp�h�

stub input �lename stub for nonlinear instruction	 solution �les

do sparse input if true	 set up to compute a sparse Jacobian
 otherwise	 set up for

a dense Jacobian �you can�t do both��

n output problem dimension

nnz output number of Jacobian nonzeros�

The return values for the mcp init routine are described in the header �le mcp�h
 this �le

is part of the AMPL MCP library and should be �included in the solver source code� The

��

�

�

�

� � �

�

�

�

�

�

developer
written solver

mcp init mcp bounds

mcp init z

mcp f

mcp dense J

mcp sparse J

mcp report soln

AMPL MCP interface library

AMPL solver interface library

stub�nl �instruction �le�	 stub�sol �solution �le�

Figure �� Interrelationship of Developer Code and AMPL MCP library

��

mcp init routine reads in the problem described in stub�nl and decomposes the pseudo

constraints it contains	 checking that the result will be a valid MCP� In the course of doing

so	 the mcp init routine sets up the data structures necessary to calculate F 	 B	 and z

and returns the size of the problem� In addition	 mcp init initializes the global variables

col len	 col start	 and row idx� When a dense Jacobian is requested	 these variables

are unnecessary and are set to NULL� When do sparse is true	 they are set to point to

integer arrays describing the nonzero structure of J � Before calling the mcp init routine

with do sparse � true	 the global variable Fortran should be set to either � or �� See

the discussion following the mcp sparse J routine for details on Fortran and the integer

pointers mentioned above�

Once the AMPL MCP library has been initialized	 the other library routines can be

called in any order� Typically	 the routines to read in the bounds and the initial point will

be called �rst�

Variable Bounds and Level Values� mcp bounds� mcp init z

void mcp bounds �int n	 DOUBLE �l	 DOUBLE �u
�

void mcp init z �int n	 DOUBLE �z
�

n input problem dimension �size of l	 u	 and z�

l output lower bound

u output upper bound

z output initial iterate�

Function and Jacobian� mcp F� mcp dense J� mcp sparse J

int mcp F �int n	 DOUBLE �z	 DOUBLE �F
�

int mcp dense J �int n	 DOUBLE �z	 DOUBLE �J	 DOUBLE �F
�

int mcp sparse J �int n	 int nnz	 DOUBLE �z	 DOUBLE �J	 DOUBLE �F
�

return OK or domain error �see mcp�h�

n input problem dimension

nnz input number of nonzeros in J �size of J�

z input point at which to evaluate the function F

F output value of F evaluated at z�

��

J output value of J evaluated at z
 if dense	 stored column major in J���

� � � J�n�n���
 if sparse	 only the nonzero coe�cients are stored�

In order to remain compatible with solvers coded in C	 Fortran	 and other languages	

only one
dimensional vectors are used in the AMPL MCP library� The mcp dense J routine	

used to evaluate F and its Jacobian J 	 returns J in column
major order in a vector of size n��

To obtain a sparse representation of the Jacobian	 the mcp sparse J routine is used� The

nonzero structure of the Jacobian matrix is determined in function mcp init and indicated

by the three global integer vectors col len	 col start	 and row idx having length n	 n��	

and nnz	 respectively� The nonzero elements of the k�th column of J are stored in the

vector J in positions col start�k�	 col start�k���	 � � � 	 col start�k� � col len�k� �

�� The row indices for these coe�cents are stored in the corresponding positions of row idx�

The extra element in the vector col start is provided so that all column lengths can be

computed using only the col start vector	 via the formula col len�k� � col start�k���

� col start�k�� Since these global vectors are computed only once	 care should be taken

not to overwrite their values�

To facilitate the use of both Fortran and C language solvers	 the Fortran global variable

can be set� When Fortran �� � �the default�	 the indices stored in col start and row idx

assume that array indices begin with �	 so �col start � �	 etc�	 and the values stored in

row idx range from � to n��� This is appropriate for most C solvers� When Fortran �� �	

the array indexing used is suitable for a Fortran solver	 i�e�	 �col start � � and the values

stored in row idx range from � to n�

Solver Termination� mcp report soln

void mcp report soln �char �msg	 int n	 DOUBLE �z	 DOUBLE �F
�

msg input termination message for the AMPL user

n input problem dimension

z input if non
NULL	 computed solution

F input if non
NULL	 value of F evaluated at z�

Before terminating	 the solver should send a message to the AMPL user indicating why

the solver has terminated	 as well as sending the computed solution	 if available� If no solution

has been computed	 NULL pointers should be passed to the mcp report soln routine instead

of the vectors z and F�

��

A sample solver coded in C and illustrating the use of some of the library routines

described in this section is available for anonymous ftp at ftp�cs�wisc�edu in directory

�math�prog�solvers�pg�sample�c�� A subset of the code from this solver is included in

Figure ��

�include �jacdim�h� �	 AMPL interface header 	�

�include �mcp�h� �	 AMPL�MCP interface header 	�

void main �int argc� char 		argv�

�

INT n� �	 dimension of system to solve 	�

nnz� �	 number of nonzeroes in Jacobian 	�

Fortran �
� �	 indices start with
 	�

if ��mcp�init �argv�
�� TRUE� �n� �nnz�� �� OK� �

fprintf �stdout� �Routine mcp�init returns error��n���

exit ��
��

�

projected�gradient �n�� �	 this is actually the call to solve 	�

�

DREAL 	z� 	bl� 	bu� 	F�

void projected�gradient �INT n�

�

bl � MEMALLOC �DREAL�n�� �	 similarly for bu� z� F 	�

mcp�bounds �n� bl� bu��

mcp�init�z �n� z��

mcp�F �n� z� F��

���

mcp�report�soln ��Solution not found� iteration limit�� n� NULL� NULL��

return�

�

Figure �� Sample C Solver Code
 AMPL Link

While it is possible to write an AMPL MCP solver using only the MCP library routines	

using some of the routines from the AMPL solver library as well may result in a more user

friendly implementation� For example	 an AMPL user can specify option values during an

��

AMPL session that can be passed on to a solver	 thus overriding both the default parameter

values and those found in the solver
speci�c options �le� These options are passed to the

solver in the form of an environment variable named solver options� Thus	 the AMPL

version of the PATH solver �rst gets parameter values from the options �le path�opt	 and

then checks the environment variable path options	 using the C getenv function� The

PATH solver uses the same code to parse both the options �le and the options string� The

AMPL solver interface library routine b search exists for those not wanting to write their

own code for parsing an options string� A description of the b search routine	 as well

as other useful routines and global variables available to all solvers hooked up as AMPL

subsystems	 is provided by Gay �������

As mentioned earlier	 AMPL communicates with its solvers through �les of the form

stub � su�x� The only �le required by the AMPL MCP library is the nonlinear instruction

�le stub�nl
 this �le contains the problem description read by the AMPL solver interface

library routines� When developing or debugging a solver	 the stub�nl �le can be created

and saved in an AMPL session by using the write command	 as described in the AMPL

manual �Fourer et al� ������ The solver can then be called directly from the command line

with arguments stub and �AMPL�

��� Interface comparisons

In this section	 we compare the MCP interface libraries for the GAMS and AMPL modeling

languages� The similarities between these libraries have several implications on the design of

software for solving complementarity problems� The di�erences between these libraries arise

largely out of the languages used to code them	 and also out of the di�erences between the

two modeling languages used� We conclude this chapter with a performance comparison of

the two libraries�

Both GAMS and AMPL exist for the purpose of formulating constrained optimization

problems and passing these problems on to a solver� Neither language included the for

mulation of complementarity problems as a major goal	 so that each interface library must

�rst interpret a set of constraints	 verify that they specify a valid MCP	 and construct this

problem before any requests from a solver for problem data can be ful�lled� Each language

��

communicates with its solvers through �les	 each provides one derivative �the Jacobian� ob

tained symbolically	 and each expects to provide the Jacobian in the same sparse row index	

column pointer format�

Both of the interface libraries are designed to be used with a solver written to be called

as a subroutine� This solver should make use of dynamic memory allocation	 and should also

handle matrices stored in the sparse format used by both libraries� Naturally	 the evaluation

of functions and gradients should be done using subroutines� Finally	 input from and output

to the user should be con�ned to as few places as possible	 since each modeling language has

its own conventions for I�O that must be adhered to�

There are a number of di�erences between the two libraries� Perhaps the most important

di�erence lies in the programming languages used� The AMPL MCP library is written in C	

while CPLIB is written in Fortran� Each library is written so that solvers written in other

languages can be used� However	 CPLIB allows a solver to request memory	 a feature useful

only for a Fortran solver	 while the AMPL MCP library requires a solver to allocate its own

memory� The latter approach has the advantage of separating the memory required for the

interface and the memory required for the solver� It also allows a solver to request exactly

the amount of memory it requires
 recall that the request for memory using CPLIB is made

using estimates only� Finally	 the AMPL approach prevents the solver from depending too

closely on the interface
 a solver that allocates its own memory can be decoupled more easily

and used in other applications�

The CPLIB interface requires that the GAMS dictionary �le be read in when setting up

the complementarity problem� This �le contains the complementarity relationship speci�ed

in the model statement and provides indices to the components of the functions and variables

named in the model statement� The dictionary �le is an ASCII �le
 for large	 sparse models	

reading and writing it can consume a signi�cant percentage of solution time� Space must

also be reserved for storing the contents of this �le in memory� The AMPL approach does

not require that similar AMPL �les �stub�row	 stub�col� be written or read	 since the

complementarity relationship is implied in the pseudo
constraint	 which is written and read

in a binary rather than an ASCII format�

The di�erent ways of specifying the complementarity relationship have other implications

on the interfaces as well� The GAMS model is �overdetermined� in the sense that the

bounds on the function are given implicitly by the variable bounds and explicitly by the

��

bounds used to specify the constraints� This can be used as a consistency check	 but it

can also lead to some confusion as to where the bounds are speci�ed� In the GAMS�MCP

system	 as in the MCP de�nition	 it is the variable bounds that determine the bounds on the

function
 the relational operator used to specify the constraint is extraneous� In addition	 it

is not possible to consistently de�ne a GAMS equation associated with a bounded variable�

Although seemingly well suited for this case	 the GAMS �no constraint� relational operator

���n��� cannot be used	 since it drops the constant terms from the constraint� On the other

hand	 the pseudo
constraint syntax used in the AMPL model sets no extraneous constraints

on the function F de�ning the MCP
 the only bounds the user provides are those explicitly

placed on the AMPL variables� While this is more consistent with the problem de�nition	 it

does not allow the user to specify the intended sign of F explicitly� Therefore	 a consistency

check cannot be performed by the interface�

When CPLIB is requested to evaluate a function or Jacobian	 it merely permutes the

input and output to the GAMS I�O library routines and accommodates the removal of �xed

variables� While simple to program	 this approach does unnecessary work when �xed vari

ables are present in the model� The AMPL MCP routines typically evaluate only those

function and Jacobian components not corresponding to �xed variables	 thus avoiding un

necessary work on the part of the interface�

The di�erences in form and function between the two modeling languages cannot be

overlooked� One salient feature of AMPL is the �de�ned variable� �Chapter �� of Fourer

et al� �������	 where a variable is de�ned in terms of other variables and used in turn to

de�ne still other variables or to de�ne constraints� In addition to making model writing

much simpler and reducing the errors in model formulation	 the use of de�ned variables can

lead to signi�cant gains in performance �see Table �	 page ���� When a variable is de�ned as

it is declared	 it will be substituted out of the model automatically by the AMPL compiler�

When a variable is de�ned using a constraint declaration	 it will only be substituted out of

the model if option substout is set to ��

The GAMS model statement provides a convenient way to specify the complementarity

problem
 in addition	 variables and functions can be temporarily left out of the model easily

by eliminating them from the model statement� These functions and variables must be

commented out of an AMPL model� The GAMS loop statment is also a useful feature not

yet included in the AMPL language�

��

In order to compare the performance of the two interface libraries	 we have tested them

on a number of models� In these tests	 AMPL and GAMS models for the same problems

have been read in and the functions and Jacobians evaluated a number of times� In Table �	

we compare both the times required to initialize the libraries for function and Jacobian

evaluation and the average time required to evaluate the function and Jacobian� These two

measurements include practically all of the computation done in the MCP interface libraries

the interface time spent doing other work is negligible� What is not measured is the time

required for the respective compilers to process the model description and write the work

�les used to de�ne the model for the solver�

These tests were performed on a DECstation ��������	 using Version � of CPLIB and an

experimental version of the AMPL MCP interface library� The AMPL models marked with

an asterisk ����� indicate where de�ned variables are used� The data in Table � represent

the average of the results obtained over � trials	 where in each trial the problem was set up	

the function and Jacobian were evaluated ��� times	 and the setup and average evaluation

times were reported� The results are illustrated in the bar graphs of Figures � and ��

Problem Setup Evaluation

Size Model Time Time

GAMS ��� ���

�� choi AMPL ��� ���

AMPL� ��� ���

GAMS ��� ���

��� ehl kost AMPL ��� ���

AMPL� ��� ���

��� bratu GAMS ��� ���

AMPL �� ���

��� obstacle GAMS ��� ���

AMPL �� ���

Table �� Interface Library Execution Times �in seconds�

As illustrated in Figure �	 the AMPL library is able to read in the instruction �le and

set up the complementarity problem in less time than is taken by the GAMS CPLIB� This

��

c
h
o
i

b
r
a
t
u

o
b
s
t
a
c
l
e

e
h
l
−
k
o
s
t

0

5

10

 GAMS

 AMPL

 AMPL−defined

Figure �� Interface Library Setup Times �in seconds�

��

c
h
o
i

b
r
a
t
u

o
b
s
t
a
c
l
e

e
h
l
−
k
o
s
t

0

50

100

150

200

250

 GAMS

 AMPL

 AMPL−defined

Figure �� Interface Library Evaluation Times �in seconds�

��

advantage is increased when de�ned variables are used in the AMPL model� Also	 we can

expect the di�erence in setup times to increase as the models increase in size� However	

neither interface library exhibits a clear superiority in function and Jacobian evaluation

times� For the more complex models	 and for those in which de�ned variables can be used	

the AMPL interface is faster	 and is to be preferred to the GAMS interface	 while for very

simple models �especially the linear one� the GAMS model is able to evaluate the function

and Jacobian more quickly� For the large	 sparse	 simple models	 the question of which library

requires the least amount of total computing time depends on the number of function and

gradient evaluations required� Since a linear problem such as the obstacle problem should

require a very small number of function evaluations	 the AMPL interface is to be preferred

for this problem	 and unless a very large number of function evaluations are necessary	 the

AMPL interface would be preferred for the bratu problem as well�

��

Chapter �

MCPLIB� A Model Library

In this chapter	 we describe MCPLIB	 a library of nonlinear mixed complementarity problems

formulated in the GAMS and AMPL modeling languages� The problems de�ned in this

library can be used in conjunction with the interfaces discussed in Chapter �� Together with

the MCP interfaces	 the library of test problems provides a uniform basis for testing and

comparing currently available MCP algorithms	 as well as those under development� The

library greatly simpli�es the task of thoroughly testing an algorithm on a large number of

problems drawn from a number of di�erent �elds� The problems in this library will thus

serve both as test problems for new algorithms and as a standard of comparison between

existing algorithms for solving the MCP�

In addition	 the problems in this library also serve as examples of how many di�erent

types of problems can be formulated as MCP�s	 and how these MCP�s can be expressed in

the GAMS and AMPL languages� The usefulness of the complementarity format is aptly

demonstrated by the number and breadth of the problems included� Using these problems

as examples	 researchers in many areas will be able to more easily formulate their problems	

and in a way which gives access to a number of di�erent solution algorithms� It is hoped that

this library will act as a catalyst for further use of the complementarity facilities recently

added to the GAMS and AMPL languages	 thereby providing even more models with which

to test and compare solution algorithms�

In Section ���	 we describe the syntax used to express MCP�s in the GAMS and AMPL

modeling languages	 using the KKT conditions for a quadratic program as an example�

Section ��� contains descriptions of some of the models in the library	 as well as a discussion

��

of their derivation� Included in the library are all the problems attempted by Harker � Xiao

������	 Pang � Gabriel ������	 and Dirkse � Ferris ������� New and larger problems from

extended linear
quadratic programming �Rockafellar ����� and other areas are included as

well� The GAMS and AMPL models for these problems are available via anonymous ftp

from ftp�cs�wisc�edu���math�prog�mcplib��

��� MCP Syntax for GAMS and AMPL

In order to describe the syntax used to formulate MCP�s in GAMS and AMPL	 we will

consider the KKT conditions of a QP in the following form�

minimize
x

�
�
x�Qx � c�x

subject to Ax � b�
�QP�

We will assume that Q is symmetric� �If not	 Q can be replaced with Q�Q�

�
�� The Karush�

Kuhn�Tucker conditions �Mangasarian ����� associated with �QP� are as follows�

� � Qx � A�u � c � x

� � �Ax � b � u � ��
�KKT�

Although it would be quite simple to express �KKT� as an MCP	 we will not do so directly�

Instead	 we write down the complementary function
variable pairs of �KKT� in the GAMS

or AMPL model� These pairs are then used by the appropriate MCP library to construct

an MCP	 as described in Chapter ��

The model fragments given in Figures � and �� exclude parameter and set de�nitions	

etc� Those unfamiliar with how these are de�ned should consult the GAMS �Brooke et al�

����� or AMPL �Fourer et al� ����� user�s manuals�

In a GAMS�MCP model	 the component functions are de�ned using the GAMS con

straint syntax	 while the complementarity pattern is de�ned in the model statement by a list

of constraint�variable pairs� The bounds on the variables are given using the normal GAMS

techniques	 as shown in Figure ��

When formulating an MCP via GAMS	 it is important to keep in mind the simple rules

GAMS�MCP follows in obtaining functions from constraints� Regardless of the relational

operator used ��e�	 �l�	 �g�	 or �n��	 the function de�ning the constraint is �normalized�

��

variables x�J
	
u�I
�

u�lo�I
 � ��

equations dx�J
	
du�I
�

dx�J
 �� sum�K	 Q�J	K
�x�K

 � sum�I	 u�I
�A�I	J

 � c�J

�e� ��

du�I
 �� b�I
 �g� sum�J	 A�I	J
�x�J

�

model qp � dx�x	 du�u ��

solve qp using mcp�

Figure �� Fragment of GAMS�MCP model of KKT conditions for QP

by moving all the terms to the left
hand side of the equation
 this normalized function is then

used in de�ning the MCP� Thus	 the du�I
 constraint in the model of Figure � could have

been written as �sum�J	 A�I	J
�x�J

 � b�I
 �g� � or as � �g� sum�J	 A�I	J
�x�J

� b�I
	 but not as sum�J	 A�I	J
�x�J

 �l� b�I
�

As mentioned in Chapter �	 the permissible sign of a component function is determined

solely by the bounds on the associated variable
 the relational operator used to de�ne the

constraint is extraneous� The extra information the relational operator provides is used

as a consistency check� However	 the relational operator �n� cannot be used	 so there is

no consistent way to express models containing bounded variables� In this case	 another

operator must be used	 and the consistency check is not performed� Note that in writing

down the KKT conditions for QP	 we associated the nonnegative dual variables u with

the nonnegatively constrained function b � Ax
 this is consistent with the MCP format�

Associating u with the nonpositively constrained function Ax � b is not consistent� Care

should be taken in writing down KKT or complementarity conditions that are consistent with

the MCP� For example	 in the GAMS model of Figure �	 the model statement associates the

unbounded variable x with the equation dx � � and the nonnegative variable u with the

nonnegatively constrained function du �� b � Ax � �� Similarly	 a variable bounded above

should be associated with a function whose sign must be nonpositive� The function name

must precede the variable name in each pair speci�ed in the model statement�

In an AMPL�MCP model	 there are no extraneous constraints placed on the functions�

��

Rather	 each variable to appear in the MCP is used in a particular way in a pseudo
constraint

that both de�nes the associated function and links it to the variable used� An AMPL�MCP

model for the KKT conditions for QP is given in Figure ���

var fj in ���Ng x�
var fi in ���Mg u �� ��

dx fj in ���Ng�
x�j� �
� sum fk in ���Ng Q�j	k��x�k�
� sum fi in ���Mg u�i��A�i	j� � c�j�

� ��

du fi in ���Mg�
u�i� �
� b�i� � sum fj in ���Ng A�i	j��x�j�

� ��

solve�

Figure ��� AMPL�MCP model of KKT conditions for QP

The variables included in the AMPL�MCP model are those appearing in the AMPL

constraints� Each pseudo
constraint must be of the form

var � � expr
 � ���

This pseudo
constraint is decomposed by the interface	 and results in the variable var being

associated with the function de�ned by expr in the resulting model�

As when formulating a GAMS�MCP model	 it is crucial that the complementarity con

ditions be consistent with the MCP format	 i�e� variables bounded below associated with

functions whose sign must be nonnegative	 etc� Given such a consistent set of comple

mentarity conditions	 the �redundant� bounds on the functions can be deduced from the

variable bounds� Thus	 the MCP contains no explicit bounds on the function
 neither does

the AMPL�MCP model� The only information contained in the pseudo
constraints are the

variable bounds	 the function de�nitions	 and the complementarity pattern
 no extraneous

bounds can be placed on the functions�

Since the pseudo
constraints do not represent true constraints	 they may not be correctly

interpreted by AMPL�s presolve stage� Thus	 the presolve option should not be used when

formulating AMPL�MCP models
 it can be turned o� by specifying option presolve ���

��

��� The Model Library

The AMPL�MCP models included in the model library are given in Table �	 while the

GAMS�MCP models are given in Table �� Due to the more recent development of the

AMPL�MCP format and to di�culties encountered with some of the earlier versions of the

AMPL compilers	 the AMPL library currently contains only a partial list of the models

contained in the GAMS library�

Table �� AMPL�MCP Models

Model origin AMPL �le Size
Nonlinear programming
Quadratic programming qp�mod �

NLP test problem %� from Colville colvncp�mod ��
Dual of Colville problem %� colvdual�mod ��

Obstacle problems obstacle�mod N
Obstacle Bratu problems bratu�mod N

Nonlinear complementarity
josephy�mod �
kojshin�mod �

Elastohydrodynamic lubrication ehl kost�mod N
Variational inequalities

Nash equilibrium nash�mod ��
� � choi�mod ��

Walrasian equilibrium mathi&�mod �
� � scarfa&�mod ��
� � scarfb&�mod ��

Tra�c assignment gafni�mod �
Invariant capital stock hanskoop�mod ��

Project Independence energy system �PIES� pies�mod ��
Von Th'unen land use vonthun�mod ���

Extended linear
quadratic programming
Optimal control opt cont�mod N

����� Computing a Nash Equilibrium

The problem of computing a Nash equilibrium appears often in the literature� As studied by

Murphy	 Sherali � Soyster ������	 Harker ������	 and Harker � Xiao ������	 the problem

��

Table �� GAMS�MCP Models

Model origin GAMS �le Size
Nonlinear equations

Distillation column modeling hydroc���gms ��
� � hydroc���gms ��
� � methan���gms ��

Nonlinear programming
Quadratic programming qp�gms �

NLP test problem %� from Colville colvncp�gms ��
Dual of Colville problem %� colvdual�gms ��

Obstacle problems obstacle�gms N
Obstacle Bratu problems bratu�gms N

Nonlinear complementarity
josephy�gms �
kojshin�gms �

Elastohydrodynamic lubrication ehl kost�gms N
Variational inequalities

Nash equilibrium nash�gms ��
� � choi�gms ��

Spatial price equilibrium sppe�gms ��
� � tobin�gms ��

Walrasian equilibrium mathi&�gms �
� � scarfa&�gms ��
� � scarfb&�gms ��

Tra�c assignment gafni�gms �
Invariant capital stock hanskoop�gms ��

Project Independence energy system �PIES� pies�gms ��
Von Th'unen land use vonthun�gms ���

Extended linear
quadratic programming
Optimal control opt cont�gms N

��

concerns a number of �rms	 each competitively producing a common good� We de�ne the

following�

N number of �rms	 indexed i � �� � � � � N

x � �xi� production vector
 �rm i produces a quantity xi of the good

 e�x	 the sum total of the quantity being produced

p�
� inverse demand function
 p�
� is the unit price at which consumers will

demand �and actually purchase� a quantity

Ci�xi� the production cost for �rm i
 note that this is the total cost	 not a per�unit

cost�

The �rms comprise a market that we assume evolves over a number of time periods� At

the beginning of each period	 each �rm sets its production level xi so as to maximize its

own pro�t	 under the assumption that the production for all other �rms remains constant

at some level x�j � j �� i� �These �rms are said to operate in a Nash manner 	 i�e�	 they assume

the other �rms� decisions remain constant�� Intuitively	 a Nash equilibrium point x� is a

production pattern in which no �rm can increase its pro�t by unilaterally changing its level

of production� Since no �rm chooses to change its production in the current period	 there

is no change in the market	 hence the equilibrium� Mathematically	 a Nash equilibrium is a

vector x� such that

� i� x�i � arg max
xi��

xi p�xi �
X
j ��i

x�j�� Ci�xi� �����

The KKT conditions for ����� take the following simple form�

� i� � � rCi�xi�� p�
�� xirp�
� � xi � � �NE�

which we call the Nash equilibrium conditions� In conformity with generally accepted eco

nomic behavior	 the inverse demand function p is assumed to be strictly decreasing	 the cost

function C to be convex	 and the �industry revenue curve�
p�
� to be concave for
 � ��

Under these assumptions	 the objective function in ����� is concave �Murphy et al� ������

Mangasarian ������ shows that under these conditions	 the Nash equilibrium conditions

�NE� are both necessary and su�cient for x� to maximize ������ By combining the Nash

equilibrium conditions for each i	 we get an NCP in N variables�

The functions p and C used in the problem de�ned by Murphy et al� ������ are de�ned

below
 ci� Li� �i� and � are parameters	 with � � ��

p�
� � ����
�

�

��

�

��

Ci�xi� � cixi �
�i

� � �i
L

�

�i
i x

�i��

�i
i

The parameter values are given in the models nash�gms and nash�mod�

Another Nash equilibrium problem is given by Choi	 DeSarbo � Harker ������� In this

problem	 the �rms are di�erentiated by the characteristics of the analgesic pain relievers they

produce	 in addition to their production costs	 while demand is determined by the prices

and ingredient lists of the pain relievers� Each �rm acts by setting its price	 rather than its

production level� Since the goods produced by the competing �rms are not identical	 the

demand function for each good �and hence	 the revenue function for each �rm� depends on

the prices of each of the other goods
 �rms continue to act so as to maximize revenue� Data

for this problem	 and a description of the demand and revenue functions	 are given in the

�les choi�gms and choi�mod�

����� A Spatial Price Equilibrium Model

Harker ������ gives a number of models which describe the spatial and competitive structure

of markets embedded in a network �i�e� a set of nodes and the arcs connecting them�� Each

node represents a unit or site separated spatially from the others� In each model	 a spatial

price equilibrium is sought� One competitive structure modeled is an oligopoly	 a market

situation in which a few producers control the deliveries to and demands from a large number

of buyers� In our example	 each producer tries to maximize the pro�t associated with his

production of a single commodity common to all producers� We de�ne the following�

L set of distinct production units or sites

W � L� L set of transportation arcs between the sites in L

Q set of producers	 or �rms	 operating in the market

Iq � L set of sites controlled by �rm q � Q� The set of sites L is partitioned

among the sets Iq� q � Q�

Example � Eight sites partitioned among � producers�

�
�
�
�
�
�
�
����

�
�
�
�
�
��

a �

b �

c �

d �

e �

f �

g �
L � fa� � � � � gg

Q � f�� �� �g

I� � fa� bg

I� � fc� d� eg

I� � ff� gg

��

sl� l � L amount of commodity supplied �produced� by site l

Cl�sl� total cost of producing sl units of output at site l �integral of inverse

supply function�

dl� l � L amount of commodity delivered �demanded� at site l

l�dl� purchase price dictated by the delivery to site l �inverse demand func

tion�

tij� ij � W $ow from site i to site j

cij�tij�� ij � W unit transportation cost at level tij

dlq amount of commodity produced by �rm q delivered to site l�

We will assume that each �rm q acts in a Nash manner �see Section ������ when making

decisions regarding the following quantities�

si� i � Iq the amounts produced at the sites q controls

dlq� l � L amount of �rm q�s production delivered to each site in L

tij� i � Iq� j � L $ow from sites under �rm q�s control to each site in L�

The aggregation of these variables is �rm q�s strategy vector xq� The constraints on xq

are those which ensure a conservation of $ow at each site� Constraints for sites which �rm

q controls are more complicated than those for sites outside of �rm q�s control� The supply	

delivery	 and transportation variables are subject to lower and upper bounds	 which we have

taken to be � and ��	 respectively� Thus	 the set Xq of feasible strategies for the �rm q is

Xq �

��������������
�������������

xq ��

�
			�
si

dlq

tij

�

� � �

������������������

dlq �
X
j�L

tlj � sl �
X
i�Iq

til �� l � Iq�

����a�

dlq �
X
i�Iq

til �� l � L n Iq�

����b�

�������������

�������������

�

Let X ��
Q
q�QXq	 so that x � X is a feasible strategy for all �rms� Firm q�s pro�t is then

given by the function fq�

fq�x� ��
X

l�L

l�
X
j�L

tjl�dlq �
X
i�Iq

Ci�si��
X
i�Iq

X
j�L

cij�tij�tij� �����

��

so that �rm q wishes to �nd a strategy xq which solves the following problem�

maximize
xq�Xq

fq�x�

subject to xp � !xp � p �� q�

�����

where !xp is the current strategy employed by �rm p� If we assume that	 for all l� i� j � L	
l�dl�

is a decreasing function	 Cl�sl� is a convex function	 and cij�tij� is an increasing function	

then fq is convex� If fq is de�ned on the feasible set X and X contains a positive point	 then	

by applying Theorem ���� from Rockafellar ������	 we see that problem ����� is equivalent

to VI�rfq� Xq�	 where fq is di�erentiated with respect to xq� A spatial price equilibrium

�Harker ����� is therefore a point x which solves the following VI�

�nd !x � X

s�t�
P

q�Qrfq�!x���xq � !xq� � � � x � X
�����

A GAMS or AMPL model for this problem can be obtained from ����� or	 more directly	

from the KKT conditions for ������ The particular model formulated contains � sites and �

�rms	 so that each �rm controls only one site
 the relevant functions are de�ned as follows�

Cl�sl� �� �lsl � �ls
�
l �
l�dl� �� �l � �ldl� cij�tij� �� �ij � �ijt

�
ij�

While this particular example is somewhat limited	 the GAMS model sppe�gms is coded for

the general situation	 where each �rm controls multiple sites�

Tobin ������ describes a spatial price equilibrium in a multi
commodity market modeled

as a network� In this example	 the variables are the prices at the various nodes in the network�

These prices determine supply and demand	 and not conversely	 as in Harker�s SPE model�

The competitive structure assumed in this example is one of perfect competition
 it�s �every

node for itself�� We de�ne the following�

l � �� � � � � n the nodes �markets� in the network

k � �� � � � � p the commodities being traded in the network

� � ��lk� price vector
 for each node
commodity pair �l� k�	 �lk is the unit price of

commodity k at node l

Dlk��� demand for commodity k at node l

Slk��� supply of commodity k at node l

��

a � �ij� an arc in the network	 from node i to node j

A � �Ala the standard node
arc incidence matrix� A is mainly zeros	 with these

exceptions� if a � �ij�� Aia � � � Aja � ���

t � �tak� $ow vector
 for each arc
commodity pair �a� k�	 tak is the $ow of com

modity k on arc a

cak�tak� unit cost of transportation service for commodity k on arc a�

Section � of �Tobin ����� gives the following conditions for a spatial price equilibrium

�SPE��

Nonnegative $ows	 prices	 demands	 � supplies�

tak � �� �lk � �� Dlk � �� Slk � � � a� l� k ����a�

Conservation of $ow at each node�

Slk �
X
i

t�il�k � Dlk �
X
j

t�lj�k � l� k ����b�

Delivered price exceeds local price�

�ik � c�ij�k�t� � �jk � a �� �ij�� k ����c�

Delivered�local price di�erence or path $ow � �D
�ik � c�ij�k � �jk� tak

E
� � � a �� �ij�� k� ����d�

A set of $ows and prices are feasible if they satisfy conditions ����a� and ����b�� Condition

����c� and the complementarity condition ����d� imply that if the delivered price strictly

exceeds the local price	 no commodity is being delivered	 and that if there is a commodity

being delivered	 its delivered price equals the local price�

If we relax the conservation of $ow constraint ����b� to allow excessive supply	 we get

the following NCP�

� � c�t� � A�� � t � �� ����a�

� � S����D���� At � � � �� ����b�

The following lemma gives conditions under which the conditions for a SPE are equivalent

to the NCP de�ned in ������

Lemma � Suppose the arc cost functions c�t� � � and the demand and supply functions are

such that

�lk � � � Dlk���� Slk��� � � �����

��

Then a set of �ows and prices �!t� !�� is a spatial price equilibrium i	 it solves the NCP de�ned

by
���a� �
���b�
 furthermore� !� � ��

Proof If �!t� !�� is a SPE	 then clearly it solves the NCP as well� To show the converse	 we

need only show that ����b� is satis�ed at a solution to ������ Assume then that �!t� !�� is a

solution to the NCP� For the sake of contradiction	 assume that �lk � � for some node l and

commodity k� Then we have

�At lk � Slk �Dlk � �� �����

so that node l is a net importer of commodity k� Thus	 for some node i� t�il�k � �� This

and condition ����a� of the NCP imply that �ik � c�t�il�k� � �lk� However	 this last equation

and the positivity of c�f� implies that �lk � �	 which is the desired contradiction to our

original assumption� Since �lk � �	 ����b� implies the conservation of $ow constraints must

be satis�ed exactly
 hence	 we have a SPE�

A similar result is proved by Friesz	 Tobin	 Smith � Harker ������
 there	 the inequality

in ����� is not strict	 and as a result	 the optimal prices need not be positive
 the equivalence

between the NCP solution and the SPE still holds� In �Tobin �����	 the positivity of the

optimal prices is said to follow from the weaker version of �����
 this is false	 as is easily

shown by a small counterexample�

Condition ����� is a reasonable one
 we can expect demand to exceed supply when some

thing is free� If this is true	 we can model the problem as an MCP in two ways� as an NCP

�using only non
negativity constraints�	 or by letting the price vector be free and enforcing

the conservation of $ow constraints ����b� directly�

In the GAMS model tobin�gms	 the relevant functions are de�ned as follows�

cak�t� �� (ak �)akt
	
ak �

X
m��k

*akmtam

Slk��� �� Blk � Jlk�
�
lk �

X
i��l

ulik�ik

Dlk��� �� Elk �Glk�
�
lk �

X
i ��l

wlik�ik

����� A Walrasian Equilibrium Model

An equilibrium can be characterized as Walrasian if there are no goods for which demand

strictly exceeds supply �Varian ������ Mathiesen ������ describes an economy containing

��

a number of goods	 a number of utility
maximizing consumers	 and a number of pro�t

maximizing producers� Both consumers and producers act as price
takers	 that is	 they

assume that the market price for each good does not change as a result of their actions� The

role of the consumers here is to demand goods
 this demand is determined by the prices�

The producers determine their optimal levels of production based on these demands� Our

objective is to �nd an equilibrium	 or a steady state	 for the economy� More speci�cally	 we

de�ne the following�

i � �� � � � � m indices corresponding to the m types of goods or commodities in the

economy

j � �� � � � � n index corresponding to the n sectors or types of production processes

in the economy

p � �pi� vector of prices for the goods

b � �bi� vector of initial endowments for the goods �i�e� the amount of each

good initially available�

d�p� � �di�p�� consumer demand functions
 given a price vector	 the demand for good

i is di�p�

y � �yj� vector of activites
 yj is the activity or production level in sector j

A � �aij� technology matrix
 a unit production level in sector j results in an

output of aij units of good i� Negative values of aij indicate an input

of good i is required for activity j� Column A�j describes the process

of sector j	 while row Ai indicates where good i is used and produced�

The equilibrium conditions given in De�nition ����� of Scarf ������ are as follows�

No activity earns a positive pro�t� A�p � � �����a�

No good is in excess demand� b � Ay � d�p� � � �����b�

No prices or activity levels are negative� p � � y � � �����c�

An activity earning a de�cit is not run

an operated activity runs at zero pro�t�
hy��A�pi � � �����d�

A good in excess supply has a zero price

a positive price implies market clearance�
hp� b � Ay � d�p�i � � �����e�

��

At equilibrium	 no activity earns a positive pro�t
 if this were the case	 others would step

in to duplicate the activity	 driving the pro�t to zero� Condition �����b� characterizes the

equilibrium as Walrasian
 there is no excess demand for any good� Condition �����e� implies

that goods in excess supply have a zero price
 if we assume that the goods are �desirable�	

�i�e� any good with a zero price must be in demand�	 then �����e� implies that all markets

clear	 or that supply equals demand�

A noteworthy property of Walrasian models is the assumption that the demand function

d�p� is homogeneous of degree � �i�e� d�p� � d�tp� � t � ��� As a consequence	 the

equilibrium price vector is not unique
 if p� is an equilibrium price vector	 so is tp� for

t � �� An additional consequence of the homogeneity of d	 shown by Mathiesen ������	 is

the singularity of the matrix rd�p�� This singularity can make �nding a solution di�cult�

Two customary ways of avoiding this singularity are normalizing the price vector or �xing

one of the prices	 called the num"eraire price�

In the example given by Mathiesen ������	 the consumer demand function d�p� is deter

mined by a single consumer
 there is one production activity	 and � goods� The problem is

a di�cult one because of the singularity of the Jacobian of the NCP formulation when no

��x� is applied	 and because of the form of d�

di��� ��
ai

P
k bk�k
�i

If we require that
P

i ai � �	 then ai determines the fraction of the budget
P

k bk�k spent

on good i�

Scarf ������ describes two similar Walrasian models	 the smaller of which contains six

commodities	 eight activity sectors	 and � consumers� Each consumer n has an initial asset

ein of each good i
 the initial endowment bi of good i is given by summing over all the

consumers n� The individual initial assets are used in computing the demand function d	

which is the sum of the individual consumers� demands� The equilibrium conditions ������

are the optimality conditions for this problem as well�

If �in is the demand share parameter for good i and consumer n	 and �n is the elasticity

of substitution for consumer n	 then the demand function for this problem is

di��� ��
X
n

�in�
�n
i

P
k ekn�kP

k �kn�
���n
k

��

����� A Tra	c Assignment Model

Bertsekas � Gafni ������ give a tra�c assignment problem where there are � cities connected

by a network of one�way links �see Figure ���� In each city i	 there is a shipper who must

ship di units of a commodity to city �i� ��� Thus	 there are � origin
destination �OD� pairs

in the network� There are only two paths or routes linking each OD pair	 the inside and the

outside paths� On each of these paths	 a delay is incurred	 which is equal to the sum of the

delays on the links in that path� The delay on a link k is determined by the $ow on and

near link k	 and is given in terms of a convex function g and a parameter � � �
 we have

taken g�x� �� � � x � x�� Figure �� gives the con�guration of the network	 and the link

delay functions� It is assumed that all $ow not intended for a city will bypass that city�

Let xi denote the amount shipped from city i via the outside path	 and yi the amount

shipped via the inside path� Then the vectors x � �xi� and y � �yi� determine the $ow on

the paths	 and also on each of the links� A $ow is said to be feasible if

�
� x

y

�
A � X ��

��
�
�
� x

y

�
A
������ xi � yi � di� x� y � �

�

� �

Given a $ow

�
� x

y

�
A 	 we de�ne the e	ective delay between two cities in an OD pair to be the

maximum delay among paths with nonzero $ow between the two cities� The problem is to

�nd a feasible $ow in which each user has minimized her e�ective delay	 subject to all other

users� $ows remaining constant� This occurs when the delay on every path with nonzero $ow

is the minimum among all paths between the corresponding OD pair� This $ow is optimal

in the sense that no user can reduce her e�ective delay by adjusting the $ows she controls	

while remaining feasible�

The conditions described in the above paragraph can be encapsulated by the optimality

conditions VI�T�X�	 where

T

�
� x

y

�
A ��

�
� outside
delay�x�

inside
delay�y�

�
A � ������

This VI in �� variables and � demand constraints can be written simply as an NCP in

�� variables	 if the demand constraints are relaxed to permit excess $ow �there is no excess

$ow at the solution
 clearly	 sending excess $ow increases any user�s e�ective delay�� The

��

highway links An arrow near midpoint indicates direction of $ow� Delay on highway
link k� ��g�flowk � ��g�flowexit from k �

exit ramps An arrowhead indicates $ow from a highway to a city� Delay on exit
ramp k� g�flowk �

entrance ramps An arrowhead indicates $ow from a city to a highway� Delay on exit
ramp k� g�flowk � �g�flowbypass of k �

bypass links No arrows
 $ow direction clear from �gure� Delay on bypass link k�
g�flowk �

Solid lines indicate positive �ow�

Figure ��� Tra�c Network

��

simple demand constraints lead to NCP�G�	 where

G

�
BBB�

x

y

u

�
CCCA ��

�
BBB�

outside
delay�x�� u

inside
delay�y�� u

x � y � d

�
CCCA �

The problem can be expressed even more compactly by taking advantage of the constraint

x � y � d and the generality of the MCP model� Let B �� fz j � � z � dg
 then

X � fa � Az j z � Bg � a �

�
� �

d

�
� � A �

�
� I

�I

�
� �

Expressing VI�T�X� in term of z	 we have the condition

hT �a � A!z�� �a � Az�� �a � A!z�i � hA�T �a � A!z�� z � !zi � � � z � B�

so that for F �z� �� A�T �a � Az�	 VI�T�X� is equivalent to VI�F�B��

The intuition behind this latest VI is the clearest of any yet o�ered� Fi�!z� represents the

di�erence in delay between the outside and inside paths from node i at optimality� When

the di�erence is positive	 the outside path is more expensive
 all $ow from node i should go

to the inside� When the di�erence is negative	 the inside path is more expensive
 all $ow

from node i should go to the outside� When the di�erence is �	 any $ow pattern from node i

which satis�es the demand constraints is acceptable� Since the feasible set B is rectangular	

the VI�F�B� is an MCP� Thus	 we need only solve an MCP in � variables	 rather than the

forty
plus variables in the problem on the links	 or the �� variables in NCP�G��

����
 Computing an Invariant Capital Stock

Hansen � Koopmans ������ consider the problem of determining an invariant optimal capital

stock� In this problem	 an economy is assumed to grow over an in�nite number of time

periods� The technology �i�e�	 the production processes that can be run� and the available

resources are assumed constant over all time periods� At the beginning of each time period	

the economy invests its capital goods into the production processes	 which produce both

capital goods and consumption goods� The capital produced will be invested in the next

period	 while the consumption goods produced determine the utility of the investment� The

total utility is a discounted sum
 that is	 the utility earned by an investment of capital at

��

time t is discounted by a factor of �t	 where the discount factor � � ��� ��� We wish to �nd

an initial endowment of capital for which the investment strategy necessary to maximize the

discounted sum of the utilities is constant� More formally	 we have the following�

r index for the set of resources types

i index for the set of capital good types to be invested in production�

j index for the set of production processes to run
 each process consumes

capital and resources	 and produces capital and consumption goods�

w � �wr� The resources available at the beginning of each time period
 this is

assumed constant over time�

zt � �zi�t A capital stock
 the amount of capital goods available for investment

at the beginning of time period t�

xt � �xj�t The level at which to run the production processes during time period

t� This e�ectively determines the investment of the capital stock zt�

v�x� Utility derived from the production�investment speci�ed by x�

A � �aij� capital input matrix
 running production process j at unit level re

quires aij units of capital good i �A � ��

B � �bij� capital output matrix
 running production process j at unit level pro

duces bij units of capital good i �B � ��

C � �crj� resource input matrix
 running production process j at unit level re

quires crj units of resource good r �C � ��

� � � � � discount factor for future utility

Assuming an integer time variable t	 and given an initial capital stock z�	 we might wish

to optimize our growth by solving the following�

maximize
xt�zt

	X
t��

�tv�xt�

subject to

Axt � zt

Bxt � zt��

Cxt � w

xt � �

������

A solution of ������ maximizes the discounted sum of the utilities v
 the feasibility con

ditions ensure that the growth path f�zt� xt�g determining these utilities is consistent with

��

the given technology and resource constraints� Notice that in ������	 the initial capital stock

z� is given
 this stock determines the optimal growth path� Note also that the sequence of

capital stocks fztg is not �xed explicitly by the constraints in ������� However	 it is possible

that	 over time	 some optimal pattern of investment and return may evolve
 that is	 the

growth path approaches a constant value�

This motivates the following problem� an initial capital stock z� is desired for which

the optimal growth path does not vary� It should be noted that one cannot merely require

that the path be constant	 and optimize the choice of z�� The invariance of the path must

be a result of the optimality conditions in ������ and the choice of z�	 not of any explicit

constraint� We will not derive here the conditions for a z� with a constant optimal growth

path	 since the motivation for the result is rather lengthy	 and the proof longer still� The

interested reader is referred to �Hansen � Koopmans �����	 or to �Cottle	 Pang � Stone

����� for an example where v is linear�

We will assume that the utility function to be maximized in ������ is concave and contin

uously di�erentiable� Under some reasonable constraints on the technology	 and a regularity

condition on z�	 an initial capital stock z� whose optimal growth path �zt� xt� is constant

satis�es the following NCP�

� � �rv�x� � �A� �B��y � C�u � x � �� �����a�

� � �B � A�x � y � �� �����b�

� � �Cx � w � u � �� �����c�

A solution to NCP ������ su�ces to determine an initial capital stock whose optimal

growth path is constant
 no regularity condition on z� is necessary in this direction� If

�!x� !u� !y� satisfy ������	 the capital stock z� � A!x�

����� Extended Linear�Quadratic Programming

A number of recent papers have proposed an extended linear
quadratic programming �ELQP�

model �Rockafellar ����	 Rockafellar ����� as a means of taking advantage of the spe

cial structure found in large
scale problems in multi
stage optimization �Rockafellar �����	

stochastic programming �Rockafellar � Wets ����a�	 and optimal control �Rockafellar ������

While problems formulated in this way are generally more di�cult to solve than the con

ventional quadratic program	 there exists an elegant duality theory for ELQP	 which can

��

be exploited in solution procedures� In this section	 the ELQP is de�ned	 and a signi�cant

special case is shown to be an instance of the MCP�

A problem in extended linear
quadratic programming is de�ned using the primal variables

u � IRn	 the dual variables v � IRm	 and the nonempty	 polyhedral sets U � IRn and V � IRm�

Let p � IRn and P � IRn�n	 and let q � IRm and Q � IRm�m	 where Q and P are both

symmetric positive semi
de�nite� In the ELQP model	 some constraints are incorporated

into a penalty or monitoring function added to the objective	 rather than being considered

explicitly� Given the set V and the matrix Q	 this monitoring function is de�ned as

�V Q�w� �� sup
v�V

w�v � �
�
v�Qv for w � IRm ������

An extended linear
quadratic program may be de�ned using either a primal or dual form	

both of which follow�

minimize
u�U

f�u� �� p�u � �
�
u�Pu � �V Q�q � Ru� �P�

maximize
v�V

g�v� �� q�v � �
�
v�Qv � �UP �R�v � p� �D�

The di�culties in solving problems �P� and �D� arise from the monitoring functions ��

Theorem � �Proposition ���� Rockafellar ��
���� The function �V Q is lower semicon�

tinuous� convex� and piecewise linear�quadratic� its e	ective domain

dom �V Q �� fw � IRm j �V Q�w� ��g

is a nonempty convex polyhedron that can be decomposed into �nitely many polyhedral convex

sets� on each of which �V Q is quadratic
or linear�
 a similar result holds for �UP and its

e	ective domain�

Thus	 the objective function f is convex and piecewise linear
quadratic	 as is �g� This

makes it di�cult to apply techniques from smooth optimization in a straightforward manner�

However	 duality theory can be used to show that problems �P� and �D� above are related

through the following Lagrangian function�

L�u� v� �� p�u � �
�
u�Pu � q�v � �

�
v�Qv � v�Ru� ������

with f�u� � supv�V L�u� v� and g�v� � infu�U L�u� v�� The following theorem from Rock

afellar ������ characterizes a pair of solutions to �P� and �D� as a saddle point of L�

��

Theorem
 It is always true that inf�P � � sup�D�� Furthermore� a pair �!u� !v� is a saddle

point of the Lagrangian L�u� v� on U � V if and only !u solves
P�� !v solves
D�� and the

optimum values are equal�

The characterization of an optimal solution pair �!u� !v� as a saddle point leads to a char

acterization in terms of a VI� We de�ne

T

�
� u

v

�
A ��

�
� ruL�u� v�

�rvL�u� v�

�
A �

�
� P �R�

R Q

�
A
�
� u

v

�
A�

�
� p

�q

�
A ������

and note from Theorem � that the pair �!u� !v� is optimal for �P� and �D� if and only if �!u� !v�

solves VI�T� U � V ��

Any ELQP can be reformulated as a conventional QP	 and hence as a complementarity

problem �Rockafellar � Wets ����a�� Unfortunately	 this may greatly increase the problem

size and disguise any special problem structure� Although specialized techniques can solve

ELQP�s quickly	 we show that a frequently occurring special case of ELQP can be reformu

lated as an equivalent MCP	 without any increase in size or loss of special structure� In a

common practical situation �Rockafellar � Wets ����b	 Rockafellar � Wets ����a	 Rockafel

lar �����	 the feasible sets U and V are rectangular� In this case	 the VI�T� U�V � de�ned by

������ is one involving only rectangular constraints	 so that no reformulation is necessary to

solve the problem as an MCP� In the remainder of this section	 we discuss a continuous
time

optimal control problem whose discretization results in a problem of this type�

Given a �xed time interval �t�� t� 	 we de�ne the primal problem in terms of the instan

taneous control variables u�t� � U � IRk and the left endpoint control variables uL � UL �

IRkL
 the free state variables x�t� � IRn depend on these control variables� The data for the

problem �i�e� the matrices +A� +B� +C� +D� +P� and +Q	 the vectors +b� +c� +p� and +q	 and the feasible

sets U and V � are generally assumed to vary continuously in t
 we will assume that these

matrices are constant as well� We seek to minimize the functional

F�uL� u� ��
Z t�

t�

�+pu�t� �
�

�
u�t� +Pu�t�� +cx�t� dt � pLuL �

�

�
uLPLu

L � cRx�t��

�
Z t�

t�

�V
Q�+q � +Cx�t�� +Du�t�� dt � �VRQR
�qR � CRx�t���

over the state trajectory

dx

dt
�t� � +Ax�t� � +Bu�t� � +b� x�t�� � BLu

L � bL� ������

��

where the subscripts L and R denote data and variables used to de�ne boundary conditions

at the left and right endpoints	 respectively� In this model	 the feasible sets U� UL� V� and VR

are bounded rectangular sets�

The ELQP model arises as a discretization of the continuous problem above� The interval

�t�� t� is divided into N segments	 so that the variables u�t� and x�t� are discretized as follows	

N � �

t� t�

uL u� u� u�

x� x� x� xR

HHHHHj

HHHHHj�

HHHHHj�

HHHHHj�

where the arrows indicate the dependence of the state variables on previous states and

controls	 as determined by ������� If we assume that t� � t� � �	 the resulting discrete
time

ELQP is that of minimizing

�

N

NX
�

�+pui �
�

�
ui +Pui � +cxi � pLuL �

�

�
uLPLu

L � cRxR

�
�

N

NX
�

�V
Q�+q � +Cxi � +Dui� � �VRQR
�qR � CRx

R�

subject to the state constraints

x� � BLu
L � bL ������

xi�� � xi �
�

N
� +Bui � +Axi � +b� i � �� � � � � N � � ������

xR � xN �
�

N
� +BuN � +AxN � +b�� ������

If we de�ne A �� I � �
N

+A	 B �� �
N

+B	 b �� �
N

+b	 C �� �
N

+C	 c �� �
N

+c	 D �� �
N

+D	 P �� �
N

+P 	

��

p �� �
N

+p	 Q �� �
N

+Q	 and q �� �
N

+q	 we obtain the following ELQP�

minimize
uL�ui�xi�xR

FD�uL� ui� xi� xR� ��

NX
�

�pui �
�

�
uiPui � cxi � pLuL �

�

�
uLPLu

L � cRxR

�
NX
�

�V Q�q � Cxi �Dui� � �VRQR
�qR � CRx

R�

subject to the constraints

x� � BLu
L � bL

xi�� � Bui � Axi � b i � �� � � � � N � �

xR � BuN � AxN � b�

Using ������	 we can express the optimality conditions for the discrete
time minimization

problem as the VI�F� UL � UN � IRn�N����V N � VR � IRn�N����	 with

F

�
BBBBBB�

u

x

v

y

�
CCCCCCA

�

�
						�

!P � � !D� � !B�

� � � !C� I � !A�

!D !C !Q �

!B !A� I � �

�

�

�
						�

u

x

v

y

�

�

�

�
						�

!p

�!c

�!q

!b

�

�
�

where

!P ��

�
							�

PL

P
� � �

P

�

�
� !D ��

�
							�

� D

�
� � �
� � � D

�

�

�
� !B ��

�
							�

BL

B
� � �

B

�

�
�

!C ��

�
							�

C
� � �

C

CR

�

�
� !A ��

�
							�

�

A �
� � � � � �

A �

�

�
� !Q ��

�
							�

Q
� � �

Q

QR

�

�
�

!p ��

�
							�

pL

p
���

p

�

�
� !c ��

�
							�

c
���

c

cR

�

�
� !q ��

�
							�

q
���

q

qR

�

�
� !b ��

�
							�

bL

b
���

b

�

�
�

��

and the dots represent replication N times�

In the GAMS implementation	 the data elements for the continous
time problem are

generated randomly	 where the matrices +P and +Q are generated to be positive �semi�de�nite�

The division by N takes place during the formation of the discretized problem� Note that the

discrete
time problem makes use of the function FD�uL� ui� xi� xR� in the variables u and x	

while the continuous problem is expressed as a minimization over u only� While it is possible

to express the discrete time problem without using the x variables	 this results in a dense

problem� For this reason	 the state variables x and y are retained in the MCP formulation�

����� An Obstacle Problem

The obstacle problem �Ciarlet ����� consists of �nding the equilibrium position of an elastic

membrane subject to a vertical force f pushing upwards� In our example	 we consider a

membrane with height v on a domain D �� ��� ��� ��� ��� We restrict our attention to those

functions v in the space H�
� �D� of functions with compact support in D such that v and

krvk� belong to the square integrable class L��D�� Note that this implies that v � � on the

boundary of D� In addition	 we have lower and upper bounds v� and vu on v which represent

the position of solid objects below and above the membrane	 respectively� The membrane�s

equilibrium position is its position of minimum energy	 where the energy of the membrane

is given by the quadratic functional q�v� in the following quadratic program�

minimize
v

q�v� � �
�

Z
D
krvk� dD �

Z
D
fvdD

subject to v � H�
� �D� � v� � v � vu

� ������

In �Mor"e � Toraldo �����	 the force f is taken to be the constant c � ��

In order to solve this problem numerically	 the domain D is discretized by a triangulation

of a rectangular grid with grid spacing h �� �
N��

in both the X and Y axes� The function v is

then approximated by a piecewise linear function which can be represented by its values vi�j	

for i� j � �� � � � � N 	 at the N� interior vertices of the triangulation� Using this approximation	

the objective function q in ������ can be reduced �see for example �Mor"e � Toraldo ������

to a quadratic function

q�v� �� �
�
v�Mv � q�v� ������

where the components of v � IRN�

are the values vi�j at the vertices of the triangularization	

��

qi�j � ch�	 and M is the usual pentadiagonal matrix obtained via a di�erence approxima

tion of the Laplacian operator �diagonal entries of �	 o�
diagonal entries of
��� Given the

constraints v� � v � vu	 the optimality conditions for minimizing the discretized q��� can be

written as the following MCP�

F �v� �� Mv � q � v � �v�� vu � ������

If the force f acting on the membrane is taken taken to be the nonlinear function 	ev	 the

obstacle Bratu problem results� This problem	 solved by Miersemann � Mittelmann ������

and Hoppe � Mittelmann ������	 di�ers from the one just described in that the components

of the vector q are no longer constant but are a function of v	 i�e�	 qi�j � 	evi�j �

����
 The Elastohydrodynamic Lubrication Problem

The problem of the elastohydrodynamic lubrication of cylinders in line contact is considered

by Kostreva ������� A particular example considers �cylindrical� roller bearings lubricated

by oil� Earlier work by Cryer � Dempster ������ considers the case where the bearing

is rigid	 rather than elastic	 resulting in a linear complementarity problem� The standard

mathematical model for the elastic problem is governed by � equations� a linear integral

equation for the deformation of the cylinders	 Reynolds� di�erential equation for the pressure

in the lubricant	 and a linear integral equation which represents a balance of load constraint�

If the lubricant pressure at position x is represented by p�x�	 then the thickness h of the

lubricant �lm between the cylinders at position x is given by

h�x� � x� � k �
�

�

Z b

a
p�s� ln jx� sjds� ������

where k is a free variable of the model	 xa is an inlet point and xb is an outlet point to be

determined from the model solution	 with xa � xb� The pressure will be positive between

the inlet and outlet points	 while the boundary conditions are p�xa� � p�xb� � p��xb� � ��

In the region of positive pressure	 Reynolds� equation	 which relates lubricant pressure to

lubricant �lm thickness	 holds�

R�p� k� �� �
d

dx

�
h�x��

e�p
dp

dx

�
� 	

dh

dx
� �� ������

Downstream of xb	 the pressure will be �	 so that Reynolds� equation need not be satis�ed

in this area	 R�p� k� is allowed to become positive and reduces to 	dh
dx

� Since 	 � �	 this

��

represents a divergence of the cylinders downstream of the outlet point� The �nal equation

represents a constraint placed on the cumulative pressure required by the speci�ed load on

the cylinders�

T �p� k� �� ��
�

�

Z b

a
p�s�ds � �� ������

Given the inlet point xa	 the complementarity form of this problem makes use of �nite

di�erence approximations to R and T on the interval �xa� xF 	 where xF is chosen to be far

downstream	 so that xF � xb� Given a uniform grid of N intervals such that xF � xa�N*x	

let pi � p�xa � i*x� and let hj � h�xa � j*x� for i � �� � � � � N� j � i � �
�
� The values of

hj at the intermediate points can be approximated by numerical integration of ������ or by

the following	 computationally recommended	 integral obtained from ������ via integration

by parts�

h�x� � x� � k � � �
�

�

Z xb

xa

�s� x� ln jx� sj

�
dp

ds

�
ds�

In the GAMS model	 both hj and T are approximated using the trapezoidal rule� The

formula for hj is substituted into the �nite di�erence approximation to Reynolds� equation

at the points xi for i � �� � � � � N as follows�

Ri�k� p� ���
�

�*x��

�
� �hi� �

�

��

exp��pi� �

�

�
�pi�� � pi��

�hi� �

�

��

exp��pi� �

�

�
�pi � pi���

�
�

�
	

*x
�hi� �

�

� hi� �

�

��

The �nal MCP is given by

� � T �k� p� � k

� � Ri�k� p� � pi � �� for i � �� � � � � N�

As mentioned earlier	 the location of the free boundary xb is not known a priori
 it is

determined as part of the solution to the complementarity problem� This is in contrast to

other methods proposed for this problem	 which rely on heuristics to locate the free boundary�

Kostreva ������ considers examples where the free boundary has been mislocated by these

heuristic techniques	 as well as other examples where the computed �lm thickness h di�ers

from previous results�

The elastohydrodynamic lubrication model is interesting both because of its highly non

linear nature and because of its potentially large size� Unfortunately	 it is fully dense	 so

��

that sparse techniques cannot be used to improve performance� In his computational work	

Kostreva ������ used a grid of size ���� on an interval of length �	 resulting in a highly

nonlinear model with ��� equations� However	 for higher pressure and load conditions	 the

solution to this problem develops a large pressure spike	 which can be di�cult to compute	

and necessitates the use of �ner grid approximations and larger problems�

��

Chapter �

The PATH Solver

The PATH solver is an implementation of a stabilized Newton method for solving MCP� Much

of the motivation and previous work behind Newton methods in this context has already

been given in Chapter �� In this chapter	 we introduce and describe a stabilization scheme

as it applies to Newton methods for nonsmooth equations and present a global convergence

result for the damped Newton method that results� In order to do so	 it will be convenient

to express the MCP as the normal map equation

FB�x� � �� �NME�

where FB is the normal map of Robinson ������ imposed on F by the rectangular set

B �� fz j � � z � ug�

FB�x� �� F ��B�x�� � x� �B�x��

The normal map is a generalization of the Minty map �Minty ����� de�ned when B �� IRn
��

Theorem � of Chapter � shows that a solution to NME leads directly to a solution to

MCP	 and vice versa� Thus	 we can view the MCP as the problem of �nding a zero of an

equation	 albeit a potentially nonsmooth one� This framework enables us to apply Newton

type techniques from equation solving	 including the method to be described	 to �nd solutions

for the MCP�

In the classical Newton�s method	 the smooth function F is approximated at a point xk

via the linearization Ak de�ned by

Ak�x� �� F �xk� � F ��xk��x� xk�� �����

��

This linearization Ak is said to be a �rst order approximation of F at xk� The Newton

point xkN is a zero of this approximation	 that is	 Ak�x
k
N � � �� Assuming nonsingularity

of the Jacobian matrix	 this zero is unique	 and it is a conceptually simple task to �nd it

one merely solves the linear system F ��xk�dk � �F �xk�� The Newton point is de�ned by

xkN �� xk � dk	 and the Newton direction by dk� The next iterate in the Newton process is

determined by a linesearch along this direction	 that is	

xk�� �� xk � 	kdk�

where 	k satis�es appropriate conditions� Thus	 a linesearch
damped Newton method can be

divided into three parts� linearization	 direction
�nding	 and linesearching� Our presentation

will be organized similarly
 the PATH solver analogues of these three parts are approxima

tion	 path generation and pathsearch damping� These are described in the �rst three sections

of this chapter� In Section ���	 we describe a nonmonotone stabilization scheme which we

have incorporated into the algorithm� Finally	 in Section ��� we present a convergence proof

for the stabilized method�

��� Approximation

Due to the piecewise
linear nature of the projection operator �B���	 it is in general impossible

to approximate FB well with a linear function� Instead	 a �rst
order approximation �Robin

son ����� is used	 which generalizes the familiar linearization used for smooth functions�

De�nition �
 Let xk � IRn� A �rst
order approximation of FB at xk is a mapping Ak �

IRn �
 IRn such that

lim
x
xk

kF �x�� Ak�x�k �
���x� xk

��� � ��

This is expressed more compactly by saying F �x��Ak�x� is o�x�xk�� A �rst
order approx

imation of FB on X� � IRn is a mapping A on X� such that for each x � X�� A�x� is a

�rst�order approximation of FB at x�

Let A be a �rst�order approximation of F on X�� A is a uniform �rst�order approximation

with respect to X�� if there exists h � ����� �
 ���� � with h�s� � o�s�� such that for any

x� y � X��

kA�x��y�� F �y�k � h�kx� yk�� �����

��

Note the fundamental di�erence between �rst
order approximations to a function at a point

and on a set
 the approximation on a set is an operator by which approximations at the

points in that set can be obtained �e�g� for xk � X�	 Ak �� A�xk���

The nondi�erentiability of the normal map FB is due to the piecewise
linear nature of

the projection operator �B���� The standard �rst
order approximation of FB at xk is the

point
based approximation of Robinson ������ obtained by linearizing F around �B�xk� and

leaving the projection operator alone� This yields

Ak�x� �� M�B�x� � q � x� �B�x�� �����

where

M �� F ���B�xk�� and q �� F ��B�xk���M�B�xk��

A Newton point xkN is de�ned to be a zero of the approximation Ak� This point may not

be unique� However	 we will continue to use the notation xkN to refer to the unique Newton

point found by the path generation technique described in the next section� Much of the

di�culty in computing a zero of Ak is caused by the projection operator �B���	 which is

nonsmooth� Our method for �nding a zero depends on the notion of a path	 which we now

introduce�

��� Path Generation

An essential part of the algorithm is the path constructed between the current point xk

and the Newton point xkN � The general form of the path construction technique is due to

Ralph ������� This path generalizes the Newton direction dk in the smooth case	 and serves

two purposes� it provides us with the Newton point	 and it is the backbone of a pathsearch

scheme which serves to damp our Newton method and improve on its convergence properties�

This piecewise linear path is constructed using pivotal techniques
 each pivot step results in

a new linear piece of the path� In this section	 we describe a parametric method used to

construct the desired path from xk to xkN � However	 we �rst describe the equivalence between

the approximation Ak of ����� and another system more amenable to pivotal techniques	 and

we review Lemke�s method as a type of path construction technique�

Instead of attempting to �nd a zero of the approximation Ak directly	 this approximation

is cast as a linear MCP	 and solved using a pivotal technique� This technique yields a path to

��

the Newton point xkN
 furthermore	 there is a simple relationship between the variables used

in the pivotal technique and those of �NME� which allows an easy transition from points

x � IRn to points z � B � IRn	 and vice versa� This will be crucial in the pathsearch stage

of the algorithm� Set

z � �B�x��

v � �x� z���

w � �z � x���

�����

Since v and w are the positive and negative parts of x� z	 it follows that v�w � x� z and

x � z � w � v�

where

w � �� v � �� w�v � � ����a�

z � B� ����b�

z � �B�z � w � v�� ����c�

De�nition �� Let B � IRn be rectangular� and x � IRn�

�� The vectors z� w� and v de�ned by
���� are said to be the components of x�

�� Vectors z� w� and v satisfying
���� are said to comprise x
 �z� w� v� is called a triple�

It is clear that there is a �
� correspondence between triples �z� w� v� and the points

x � IRn
 a triple �z� w� v� comprises x precisely when z	 w	 and v are the components of x�

Moreover	 the vector x solves FB�x� � � exactly when its components solve the MCP�

De�nition �� �MCP� Given a box B �� ��� u and a function F � B
 IRn�

s� t�

�nd z � IRn� w� v � IRn
�

��

F �z� � w � v

� � z � u

hw� z � �i � �

hv� u� zi � �

The approximation Ak can be written using the components of x to obtain

� � Ak�x� � M�B�x� � q � x� �B�x�

� Mz � q � w � v�
�����

where �z� w� v� comprise x� It is in the form ����� that the zero of the approximation Ak is

computed� In the course of solving �����	 valid triples �z� w� v� are maintained throughout

the vectors x comprised by these triples form a path�

We now de�ne the formal notion of a path	 using the de�nition from Ralph �������

De�nition �� A path in IRn is a continuous function p � ��� T �
 IRn� where T � ��� � �

The Newton path satis�es the following additional conditions�

pk��� � xk� ����a�

Ak�p
k�t�� � ��� t�FB�xk�� � t � ��� T � ����b�

The path pk may be denoted simply by p when the context makes the meaning clear� Note

that ����b� implies that the norm of the approximation at points on p decreases linearly as

a function of �� t	 and that the point p��� is a Newton point� To avoid ambiguity	 we will

assume that the notation xkN refers to this Newton point	 which is unique	 if it exists� Note

also that ����a� requires that the path begin at the current point xk�

When the feasible set B � IRn
�	 the approximation ����� reduces to the linear complemen

tarity problem �LCP�	 to which Lemke�s method can be applied� We now consider Lemke�s

method as a path construction technique�

In Lemke�s method �Lemke ����	 Cottle � Dantzig �����	 an extra column �called a

covering vector� is added to the matrix M 	 along with an arti�cial variable 	� Typically	

the covering vector is taken to be the unit vector e� This vector is introduced to achieve

feasibility for an augmented system	 while also maintaining complementarity in the original

��

variables	 that is	 ����� is replaced by

h
M �I e

i
�
			�
z

w

	

�

� � �q �����

z� w� 	 � ��

where �z� w� v
 �� comprise x� A ray start is performed	 in which 	� is set to minf	 j 	 �

�� e	 � q � �g� This ray start leads directly to an initial basic feasible solution �BFS�

�Chv"atal ����� of the system ������ Note that the variables z and w are feasible for the LCP

�i�e�	 z � �	 w � �	 w � Mz � q� only if 	 � �� In general	 	 will be basic in the initial BFS	

with value 	� � �	 as a result of the ray start� Thus	 Lemke�s method speci�es pivoting rules

which determine a sequence of entering and leaving variables and BFS which maintain the

complementarity of z and w� The algorithm terminates successfully when a pivot results in

	 leaving the basis at �� At this point	 the LCP has been solved
 the original variables z and

w are both complementary and feasible� The solution to this LCP is the Newton iterate	

and a path	 parameterized by t � � � �
��

and leading from the initial BFS to the Newton

iterate	 has been constructed by the sequence of Lemke pivots� At every point in this path	

z and w comprise a vector x� Unfortunately	 the Lemke path is not quite what is needed	

since in general it does not include the current point �zk� wk�	 violating condition ����a��

In the general case	 the approximation ����� is expressed using the triple �z� w� v�
 any

path p from xk to xkN can be expressed as a triple by letting �z�t�� w�t�� w�t�� be the compo

nents of p�t�	 that is	

p�t� �� z�t�� w�t� � v�t��

for all t � ��� T � The requirements for a feasible path ����� require that

��� t�FB�xk� � Ak�p�t���

or applying ����� that

��� t�r � Mz�t� � q � w�t� � v�t�� �����

where r �� FB�xk� is the �residual� vector at the start of the path� Clearly	 setting p��� � xk

satis�es �����	 while the triple �z���� w���� v���� comprises the Newton point xkN � The path

��

from xk to xkN is now determined by a sequence of pivots	 which are analogous to the pivots

used in Lemke�s method above and which we now describe�

In the PATH solver we use r as the covering vector� Thus in the general case	 �����

becomes�

h
M �I I r

i
�
						�

z

w

v

t

�

�

� �q � r

� � z � u

w� v � �

� � t � ��

������

The initial BFS is determined by the triple �zk� wk� vk�	 where t � �� If the triple is non

degenerate �i�e�	 for all j � �� � � � � n	 exactly one of zkj 	 wk
j 	 and vkj is not at a bound�	 then

the choice of basis corresponding to the triple is unique
 the basis consists of columns cor

responding to variables not at bound� The �rst entering variable is always t	 which enters

the basis at its lower bound �	 and forces a variable to leave the basis� The leaving variable	

chosen by a ratio test	 must be one of four types	 and determines the choice of entering

variable according to the following pivot rules�

wj� If wj leaves the basis	 the next entering variable will be zj	 which will enter at its

lower bound �j�

vj� If vj leaves the basis	 the next entering variable will be zj	 which will enter at its

upper bound uj�

zj� If zj leaves the basis at lower bound	 wj enters at �� If zj leaves at upper bound	

vj enters at ��

t� If t leaves the basis at upper bound �	 the Newton point xkN has been computed

and can be recovered from the basis�

The choice of entering variable drives a new pivot step� The path
construction algorithm

continues taking pivot steps	 using the pivot rules indicated above	 until t leaves the basis

at � �successful termination�	 t leaves at lower bound	 or the ratio test results in no leaving

��

variable �ray termination�� Note that once t enters the basis	 the lower bound of � for t

may be relaxed or ignored� Relaxing this bound has proved useful in practice
 some of

the linearizations solved admit a Newton point only after a sequence of pivots in which t

oscillates and takes values less than �� Each pivot step described above results in a new

�linear� piece of the path� Thus	 it is possible for a path to have a very large number of

pieces
 consequently	 it may be quite expensive to store� Since the techniques used for storing

the path depend upon how the path is to be searched	 we defer a discussion of path storage

techniques to Section ���	 where the pathsearch is considered�

It is clear from ����� that the residual vector r�t� �� Ak�p�t�� goes to � linearly in t as t

goes from � to �� In Figure ��	 we have plotted the contours of the Euclidean norm of this

residual vector for an approximation Ak	 along with two paths	 each leading to a zero of this

approximation� The piecewise nature of the path is clearly illustrated by this �gure	 as well

as the smooth nature of the approximation Ak on each cell of the normal map de�ned by

the box B �� ������ ��� � and the nonsmoothness of the approximation on the boundaries

of each cell� We see as well that the direction taken at each pivot step �each crossing of the

boundary� is one which minimizes the norm of Ak on the current cell�

It is possible that the basis corresponding to the triple �zk� wk� vk� be rank de�cient� In

this case	 it is impossible to construct the path from the current point to the Newton point

by the path generation method described
 instead	 the PATH solver constructs a path from

a new point to the Newton point� This new point is chosen so as to correspond to a basis

for all constrained variables	 slack columns are made basic� If there are no free variables	

this all
slack basis is guaranteed to be of full rank� Furthermore	 is is possible	 by a simple

choice of the basic values for the slack variables w and v	 to duplicate exactly the sequence

of pivots performed by Lemke�s complementary pivot algorithm� In the case where there are

free variables	 it may not be possible to choose a full
rank basis corresponding to any valid

triple	 since the columns corresponding to the free variables must always be in the basis
 a

su�cient condition is that the principal submatrix Mf corresponding to the free variables

be of full rank� In this case	 a basis can be obtained by choosing as many slack columns as

possible� Cao � Ferris ������ describe a scheme whereby the lineality of the feasible set B

can be factored out	 and a new problem solved over a reduced space� The full rank condition

on Mf is a necessary condition in that context� However	 in a more recent paper �Cao �

Ferris �����	 the lineality is removed under a copositive
plus assumption only� Neither of

��

Figure ��� Contour Plots for kAkk

��

these techniques is currently included in PATH	 since this case has not occurred in practice�

Having generated the path	 we now return to the nonlinear model and describe our

globalization strategy	 pathsearch damping�

��� Pathsearch Damping

In pathsearch
damped Newton�s method for �nding a zero of the function FB	 the path

from xk to xkN is searched for a point satisfying some descent condition� This condition is

often a su�cient reduction in the norm of FB or in some other merit function� These merit

functions are nonnegative functions whose zeroes coincide exactly with those of FB� Thus	

while the path is computed in order to �nd a zero of Ak	 the next iterate will be a point on

this path yielding a suitable decrease in the merit function� In the smooth case	 the Newton

direction yields a zero of the approximation and also serves as a descent direction for the

merit function �Dennis � Schnabel ������ The paths we construct have similar properties�

Recall from Section ���	 ����b� that the norm of the approximation Ak goes to zero

linearly in �� � t� on the path p� We use this and the approximation properties of Ak to

show that the norm of FB must decrease on the path near t � �� Let � � ��� ��
 then

kFB�p�t��k � kAk�p�t�� � o�t�k

� ��� t� kFB�xk�k� o�t� ������

� ��� �t� kFB�xk�k �

for some !t � ��� �� and all t � ��� !t�� Thus	 the norm of FB decreases on a section of the path

near �	 so that p is a �descent path� for FB� Note that the relaxation parameter � � �	 so

that the norm of FB for acceptable points on p does not have to be as small as predicted

by the approximation Ak
 in practice	 � will be chosen to be close to �	 so that almost any

decrease in kFBk will be su�cient for acceptance�

For solving F �x� � �	 one possible merit function #��� is

#�x� ��
�

�
F �x��F �x��

the norm function of F � In this case	 the Newton direction d � �F ��xk���F �xk� is a descent

��

direction for #
 note that

#��xk� d � F �xk��F ��xk� d

� F �xk��F ��xk���F ��xk����F �xk�

� �F �xk��F �xk� � ��

In order to �nd a value of t which satis�es ������	 an Armijo search �Armijo ����	 Dennis

� Schnabel ����� can be performed on the path p� In a typical implementation of this

technique	 a parameter � � ��� �� is chosen	 and the points p���� p����� p����� � � � are tried	

until a value of t is found for which

kFB�p�t��k � ��� �t� kFB�xk�k �

In the smooth case	 the path p consists of the line between xk and xkN 	 so that both storing

p and computing p�t� are trivial tasks� This is not the case when p is piecewise linear
 in

this case	 it is necessary to modify the standard linesearch techniques to accommodate the

special form of the path� Ralph ������ suggests two approaches to pathsearching� The �rst	

called the forward pathsearch	 checks that the descent condition ������ is satis�ed as the

path is being constructed� Assuming that each pivot step in the path generation algorithm

results in an increase in the value of t from told to tnew	 the forward pathsearch ensures that

tnew satis�es ������� The path generation � pathsearch routine terminates when the Newton

point is found	 or when a pivot step results in an unacceptable value of tnew� In the latter

case	 the line segment between p�told� and p�tnew� is searched for an acceptable point	 which

becomes the next iterate xk��� The primary advantage of the forward pathsearch lies in its

simplicity
 the path is searched as it is constructed	 so that it does not need to be stored�

As reported by Ralph ������	 the chief drawback of the forward pathsearch lies in the

fact that the search begins on the wrong end of the path� When the Newton point p��� is

acceptable	 all the function evaluations performed in checking that the descent condition is

satis�ed during path construction are essentially wasted� Also	 the forward pathsearch is

too restrictive in the sense that an acceptable Newton point may exist at the end of a path

which has been terminated due to a failure to satisfy ������ at an intermediate point on the

path� Since we wish to accept the Newton step as often as possible	 it seems reasonable to

check the Newton point �rst� Recognizing this	 Ralph ������ suggests a backward pathsearch	

in which the path is constructed without checking the descent condition� Instead	 a list is

��

made	 with each element in the list containing the values of the variables at a breakpoint

in the path� When the path has been fully constructed	 the endpoint is checked� If this

point satis�es ������	 this point is accepted as the next iterate
 if not	 a recursive bisection

search is carried out on the list� This bisection search checks ������ for a point near the

center of the list
 if this point is acceptable	 the second half of the list is searched
 if not	 the

�rst half is searched� In this way	 the Newton point is checked �rst	 when it is part of the

path� Ralph demonstrates that this leads to fewer function evaluations� Unfortunately	 the

backward pathsearch also requires that the sequence of pivot steps be recorded� This may

require a large amount of space	 which cannot be estimated before path construction� The

amount of storage required at each pivot step is O�n�	 while the number of pivot steps may

be exponential in n� This is a serious drawback for large
scale problems� Also	 a bisection

of the list may not lead to a bisection of the current section of the path to be searched
 the

change in t at each pivot varies widely and nonuniformly�

Motivated by the success of the backwards pathsearch in reducing the number of necessary

function evaluations and in increasing the chance of accepting the Newton point	 we have

implemented a backtracing pathsearch� As in the backwards pathsearch	 we construct the

path without searching it
 path generation is completed when the Newton point is found

or when ray termination occurs	 but not when t oscillates or when the descent criteria are

violated� However	 instead of saving all of the variable values at each pivot	 only information

about the entering variable is stored	 on a stack which grows with the path� When path

generation terminates at a point p�T �	 the only information about the path that exists is the

current basis and a record of the entering variables which led to this basis� At this point	 the

backtracing pathsearch traces the path in the reverse direction from that of its construction	

using the information about the entering variables from the stack to �unpivot�	 i�e�	 to

reconstruct the breakpoints of the path	 along with their associated bases� Backtracing ends

when an acceptable point is found� Backtracing is essentially as expensive as is constructing

the path
 however	 this expense is only incurred when a backtrace is necessary� When the

point p�T � is acceptable	 the information about the path �which can be saved quite cheaply�

can be thrown away	 without any real backtracing taking place� Also	 in this case	 at most

one function evaluation will be performed�

The forward pathsearch requires little storage	 at the cost of added computation �in the

form of function evaluations� and reduced robustness� The backward pathsearch requires

��

a minimal number of function evaluations and increases robustness	 at the cost of a large

storage requirement� The backtracing pathsearch possesses the advantages of both of the

above methods	 while its drawback �the computational cost of reconstructing parts of the

path� is evidenced only when p�T � is unacceptable and a nontrivial pathsearch must be

performed� The nonmonotone stabilization techniques discussed in the next section serve to

reduce the number of pathsearches performed and make the backtracing pathsearch an even

better choice�

��� Nonmonotone Stabilization

In a linesearch
damped Newton method	 the line from xk to xkN is searched for a point

satisfying some descent condition	 usually expressed in terms of a decrease in some merit

function� Implementations of these methods invariably require a monotonic decrease in this

merit function	 although there is evidence which indicates that this requirement may im

pede or block convergence to the solution of the equation �Grippo	 Lampariello � Lucidi

����	 Grippo	 Lampariello � Lucidi ����	 Ferris � Lucidi ������ Various nonmonotone sta

bilization �NMS� schemes for Newton�s method have been proposed	 each seeking to improve

e�ciency by relaxing the requirement of monotone descent� The PATH solver implements a

scheme of this type	 modi�ed to incorporate a pathsearch rather than a linesearch�

The NMS scheme implemented makes use of the watchdog technique proposed by Cham

berlain	 Powell � Lemar"echal ������ to reduce the number of pathsearches performed	 and

allows a nonmonotonic decrease in the merit function associated with the points chosen as

a result of these pathsearches� The number of pathsearches is reduced by taking a d�step in

the majority of cases� A d
step is acceptable if the point returned by the path generation

procedure is suitably close to the current point� The measure of closeness	 *	 decreases as

the algorithm progresses� In order to monitor these steps	 the nonmonotone descent criteria

for the merit function are checked at least once every !n number of iterations� The current

merit function value is compared with a reference value R	 which is computed from previ

ous function values� Steps in which these checks on the current merit function value occur

are called m�steps� The points at which these criteria are checked and satis�ed are called

check points� An m
step is also taken when a d
step is unacceptable	 that is	 when it is

too large� A watchdog step occurs when descent criteria are violated
 when this occurs	 the

��

algorithm returns to the most recent check point	 re
generates the path from the check point

�if necessary�	 and backtraces the path until the nonmonotone descent criteria are satis�ed�

For future reference we introduce a new index j which is set initially to j � � and

incremented each time we de�ne a new check point� If ��j� is the index of the jth check

point	 then we indicate by fx��j�g the sequence of check points �where the merit function

has been evaluated� and by fRjg the sequence of reference values associated with the check

points� Each check point xk�� �� pk�tk� is chosen so that the step length tk satis�es equation

�NmD� below	 a generalization of a descent condition for the monotone linesearch� given a

reference value R �
���FB�xk�

���	 the step length tk satis�es

���FB�pk�t��
��� � ��� �t�R� �NmD�

If Tk satis�es �NmD�	 then the pathsearch will choose the step length tk �� Tk� If not	 we

require that the step length be chosen to be large enough	 in some sense� This is accomplished

by making the technical assumption that tk be at least � times as large as the largest interval

��� T on which �NmD� is satis�ed	 for some � � ��� ��� Thus	 we require that the step length

tk satisfy the following�

�NmD� holds for Tk implies tk �� Tk
 otherwise	

� � � ��� �� s�t� tk � � supfT j �NmD� holds � t � ��� T g�
�NmPs�

Note that the backtracing pathsearch described in Section ��� yields a value tk which satis�es

�NmPs�� To see this	 note that	 given a linear segment of the path from p�told� to p�tnew�

for which �NmD� holds at told but not at tnew	 the segment can be searched using an Armijo

technique for a point at which �NmPs� is satis�ed	 where � depends on the pathsearch

parameters used�

In order to complete the description of the algorithm we must specify the rule employed

for updating Rj	 the reference value for the merit function� This is initially set to kFB�x��k�

Whenever a point x��j� is generated such that
���FB�x��j��

��� � Rj	 the reference value is updated

by taking into account the memory �that is	 a �xed number m�j� � !m of previous values�

of the merit function� To be precise	 we require the updating rule for Rj�� to satisfy the

following condition�

Reference Updating Rule� Given !m � �	 let m�j � �� be such that

m�j � �� � min �m�j� � �� !m��

��

let

Mj�� �� max
�� i�m�j���

���FB�x��j��� i��
��� � ������

and choose the value Rj�� to satisfy

���FB�x��j����
��� � Rj�� �Mj��� ������

These conditions on the reference values include several ways of determining the sequence

fRjg in an implementation of the algorithm� For example	 any of the following updating

rules can be used�

Rj�� � Mj�� � max
�� i�m�j���

���FB�x��j��� i��
��� � ������

Rj�� � max

�
����FB�x��j����

��� � �

m�j � �� � �

m�j���X
i��

���FB�x��j��� i��
���
�
� � ������

Rj�� � min
�
Mj���

�

�

�
Rj �

���FB�x��j����
����� � ������

We note that ������ is the easiest to satisfy and is used in the PATH solver	 while ������ and

������ de�ne conditions which guarantee �mean descent��

We should stress at this point that the stabilization technique di�ers from standard

linesearch techniques in two ways� Firstly	 the acceptance criteria for the pathsearch are

relaxed signi�cantly by replacing the current merit function value by a reference value	

typically taken to be the maximum over a �xed number of previous merit function values�

Secondly	 the pathsearch is skipped entirely when the Newton point is close to the current

point �within the d
step tolerance *� and an m
step is not required�

The algorithm can be outlined as follows�

Algorithm PATH

�� �Initialization Let x�	 !n �� �	 * � !* � �	 � � ��� �� be given�

set k � �	 check point � �	 j � �	 *� � *	 R� � kFB�x��k�

�� If FB�xk� � �	 stop�

��

�� Using the approximation Ak	 generate a path pk � ��� Tk �
 IRn� Tk � ��� � 	 satisfying

������

�� If �k � check point � !n� then

d�step�

if �
���pk�Tk�� pk���

��� � *�	 the step is small enough
 accept it�

set xk�� �� pk�Tk�

set * � * � �

else the step is too large
 go to m
step�

else

m�step�

if �
���FB�pk�Tk��

��� � ��� �Tk�Rj�	 accept the step�

set xk�� �� pk�Tk�

else perform a watchdog step�

set k � check point	 * � *j

if necessary	 generate the path pk from xk to pk�Tk�

backtrace pk to �nd tk � ��� Tk satisfying �NmPs�
 set xk�� �� pk�tk�

increment j
 update Rj
 set *j � *
 set check point � k � ��

�� Increment k	 and go to Step ��

In Step � above	 it is assumed that Tk is as large as possible	 i�e�	 that if Tk � �	 Ak is not

continuously invertible near pk�Tk�� For practical reasons and robustness	 the PATH solver

checks whether the function FB is de�ned at a given point before accepting that point� This

check	 not described in the algorithm above	 yields a function value at each point� When this

function value is computed after a d
step and found to be lower than the reference value	 the

reference value and check point are updated� If the function at the prospective new iterate is

unde�ned	 a watchdog step is performed in the same manner as that performed for a failing

m
step�

In order to illustrate the behavior of the PATH algorithm and the stabilization techniques

incorporated into it	 we have solved a modi�ed version of the ETAMACRO model from the

��

GAMS MPSGE library and saved the iteration log	 which is given in Table � and forms the

basis for Figure ��� The modi�cation to the model consisted only of lengthening the time

horizon and decreasing the size of each period within this time horizon	 resulting in a larger

problem�

Iterate pivots F evals t value kFBk

x� � � ������e���

,x� �� � � ������e���

,x� �� � � ������e���

x� � ������e���

x� �� �� ���� ������e���

!x� �� � � ������e���

!x� �� � � ������e���

x� � ������e���

x� �� �� ���� ������e���

x� � � � ������e���

x	 � � � ������e���

x� � � � ������e���

x� � � � ������e���

x
 � � � ������e
��

x� � � � ������e
��

x� � � � ������e
��

x�� � � � ������e
��

Table �� PATH Solver Output for Modi�ed ETAMACRO Problem

The data in Table � indicate that the �rst two subproblems terminate at the Newton

point� Note that for numerical reasons	 the PATH solver forces t from � down to � instead

of vice versa	 so that a terminal t value of � corresponds to the Newton point� Note also

that kFB�,x��k and kFB�,x��k are very much larger than kFB�x��k� These residual norms are

not used by the algorithm	 but are computed to demonstrate its progress� The algorithm

parameters were set to check the descent condition after two iterations	 so that instead

of accepting ,x�	 the algorithm returns to the check point x� �i�e� it performs a watchdog

��

0 5 10

Iterates

1x10
−5

1x10
−3

1x10
−1

1x10
1

1x10
3

1x10
5

1x10
7

|| F_B ||

Damped step

Undamped step

Figure ��� PATH Solver Output for Modi�ed ETAMACRO Problem

��

step�� In doing so	 the points ,x� and ,x� are discarded� This is indicated in Table � by

the �rst horizontal line � The path is reconstructed from x�	 and instead of accepting the

resulting Newton point	 a backtracing pathsearch is performed� This pathsearch terminates

at t � ���� and a point x�	 which becomes the new check point� The pathsearch required ��

function evaluations and resulted in a decrease in kFBk� The algorithm continues from x�

by taking two Newton steps !x� and !x�	 but again	 the descent conditions are not satis�ed�

Thus	 a watchdog step is performed and the algorithm returns to the check point x�	 as

indicated by the second horizontal line in Table �� The path from x� is reconstructed	 and

the nonmonotone linesearch procedure gives t � ���� and the new check point x��

The Newton point x� does not satisfy any monotone descent criterion
 it is	 however	

accepted by the watchdog method� This is fortunate	 since from this point on	 the PATH

solver computes Newton points which satisfy any reasonable descent criteria� Note that the

optimal basis has been reached at this point	 so that each succeeding iteration requires only

one pivot step� Each of these single pivot steps result in a linear path from the current

iterate to the Newton point�

In Figure ��	 the norm of the residual FB at each of the iterates is plotted on a logarithmic

scale� In addition	 the type of step taken to reach each of these iterates	 whether damped or

undamped	 is indicated�

��� A Global Convergence Result

In this section	 we present a global convergence result for the PATH solver� This result gen

eralizes the work of Ralph ������ through the addition of the watchdog technique described

earlier� Before doing so	 we include	 without proof	 a path lifting result from Ralph ������

which guarantees the existence of the paths used in our algorithm�

Lemma �	 Let - � X �
 Y � x � X and -�x� �� �� Suppose the restricted mapping

!- �� - j U � U �
 V is continuously invertible� where U and V are neighborhoods of x

and -�x�� respectively� If U is open� and � � � is such that -�x� � � IB � V � then� for

� � T � minf �
k��x�k � �g� the unique path p of domain ��� T such that

p��� � x

-�p�t�� � ��� t� -�x� � t � ��� T

��

is given by

p�t� � !-������ t�-�x�� � t � ��� T �

We now present our main result	 which gives the convergence properties of the PATH

algorithm� Note that �A��	 the third assumption below	 is a technical one which states that

the domains of the paths used by the algorithm can be closed �see also �Ortega � Rheinboldt

����	 De�nition ��������

Theorem �� Let F � IRn �
 IRn be continuous� and let �� � � and X� �� fx �

IRn j kFB�x�k � ��g� Let �� � � ��� ��� !* � �� and !m� !n � IN be the parameters gov�

erning the pathsearch� and let X ���n �� X� � !*!n IB� Suppose

A�� A is a uniform �rst�order approximation of F on X�� i�e��
���� holds�

A�� A�x� is uniformly Lipschitz invertible near each x � X ���n
 i�e�� for some �� �� and L � �

and for each x � X ���n� there exist sets Ux and Vx containing x � � IB and FB�x� � � IB

respectively� such that A�x� j Ux � Ux �
 Vx is Lipschitz invertible of modulus L�

A�� For each x � X ���n and T � ��� � � if p � ��� T � �
 IRn is such that p��� � x and� for

each t � ��� T �� A�p�t�� � ��� t�FB�x� and A�x� is continuously invertible near p�t��

then there exists p�T � �� limt�T p�t� with A�x��p�T �� � ��� T �FB�x��

Then for any x� � X�� Algorithm PATH produces a sequence fxkg such that either

FB�xk� � � for some k � � or the sequence fxkg converges to a zero x� of FB at a Q�

superlinear rate�

Furthermore� the residuals FB�xk� converge to zero� and the sequence of reference values

fRjg converges to zero at an R�linear rate� If for some c � � the approximation A satis�es

kA�x��x��� FB�x��k � ckx� x�k� on some neighborhood of x�� the sequence fxkg converges

to x� at a Q�quadratic rate�

Proof Assume that FB�xk� �� � for each k� We note �rst that given xk � X ���n	 there exists

a unique path pk � I �
 IRn of largest domain I such that the following hold�

�� p��� � xk

�� I � ��� T for some T � ��� �

�� � t � I� Ak�p�t�� � ��� t�FB�xk�
 and

��

�� � t � T�Ak is continuously invertible near pk�t��

To see this	 note that Ralph ������ has shown that the sets Ux and Vx in �A�� can be

assumed to be open� Let ,Ak be the Lipschitz invertible mapping obtained by restricting Ak

to the neighborhood Uxk around xk� �A��	 Lemma ��	 and �A�� imply the existence of the

path described above	 where the technical assumption �A�� is used to close the domain of

the path�

Thus	 the paths required by the algorithm are guaranteed to exist when fxkg � X ���n�

Note that the PATH algorithm will construct these paths	 and that the backtracing path

search described in Section ��� will yield a point which satis�es �NmPs�� �See note following

de�nition of �NmPs���

To see that the algorithm is well de�ned	 we need only show that the sequence of iterates

remains in X ���n	 where the pathsearch is well de�ned� To do this	 we show that the algorithm

can take only a limited number of bounded steps before the iterates are forced to return to

X�� It will be convenient to de�ne the index

��k� �� max �j j ��j� � k��

Thus ����k�� is the largest iteration index not exceeding k at which the merit function has

been evaluated� For example	

k � � � � � � � �� �� � � � �� � � � � � �

j � � � � � � �

��j� � � �� �� � � �

��k� � � � � � � � � � � � � � � � �

We use the notation

dk �� pk�Tk�� pk��� ������

to denote the di�erence between the initial and terminal points of the path pk� The dk above

should not be confused with the notation for the search direction d used in the smooth case

rather	
���dk��� is the size of a possible d
step�

If the point xk�� is a check point	 then it has been generated as the result of an m
step	

so that ���FB�xk���
��� � R��k� �

���FB�x��
���

��

and xk�� � X��

If the point xk�� is not a check point	 then it has been generated as the result of a

�bounded� d
step	 so that xk�� satis�es

xk�� � x����k�� �
kX

i�����k��

di�

where kdik � !* and k� ����k�� � !n� Since x����k�� is a check point	 it must be in X�	 so that

xk�� � X ���n�

Thus	 we have shown that the algorithm is well
de�ned and that every iterate xk � X ���n�

We now demonstrate the global convergence of our method� We �rst show that FB converges

to � �i�e limk
	

���FB�xk�
��� � ��� This result is used to show convergence of the iterates	 and

to derive rates for their local convergence�

To show convergence of fFB�xk�g to zero	 the sequence fxkg can be split into two sub

sequences� fx��k�g	 the points at which a reference value has been de�ned	 and fxr�k�g	 the

remainder of the points�

If the sequence fxr�k�g is �nite	 then the algorithm will eventually take only m
steps�

Once this point is reached	 a pathsearch is performed at each iteration	 and there can be

no further watchdog steps taken� Ralph ������ shows that in this case	 the residual norms���FB�xk�
��� converge linearly to zero�

Assume then that fxr�k�g is an in�nite sequence� We show �rst that for large enough k	

xr�k� � X�� Recall that xr�k� is the result of a d
step	 so that xr�k� � xr�k��� � dr�k���	 where

dr�k��� is bounded as follows� ���dr�k������ � !* �k�

Thus	 limk
	

���dr�k������ � �� Choose K so that
���dr�k������ � ,
 � k � K � !n	 where ,
 is

such that h�
� �

L
�
 � ,
� �Recall from De�nition �� that h�s� is o�s��� The Lipschitz

invertibility of A yields

kp�t�� p���k �
��� ,A��k ���� t�FB�xk��� ,A��k �FB�xk��

��� � Lt
���FB�xk�

��� � ������

��

so that for all k � K � !n	 we have	 by the uniformity of A	

���FB�p�Tr�k�����
��� � ���Ar�k����p�Tr�k�����

���� h�
���dr�k������� by �����

� ��� Tr�k����
���FB�xr�k����

����
�

L

���dr�k������ by ����b�

� ��� Tr�k����
���FB�xr�k����

���� Tr�k���
���FB�xr�k����

���
by ������	������

�
���FB�xr�k����

��� �
Since the PATH algorithm takes at most !n d
steps before taking an m
step	 and we have

shown previously that all the points resulting from m
steps are in X�	 the above result shows

that xr�k� � X� for k � K�

We now show that the sequence fRjg converges linearly to �� Recall from the algorithm

description that the number of consecutive d
steps is bounded above by !n	 after which an

m
step must occur� Let fxs�k�g be the sequence of iterates which have occurred as the result

of an m
step	 but whose predecessors have occurred as the result of a d
step� The algorithm

requires that xs�k� �� ps�k����Ts�k���� satis�es

���FB�xs�k��
��� � ��� �Ts�k����R��s�k����� ������

Since xs�k��� is the result of a d
step	
���FB�xs�k����

��� � �� for large enough k	 where �� is an

upper bound for kFBk on the level set X�� Since by �A��	 As�k��� is continuously invertible

in an �
neighborhood of FB�xs�k����	 we can use Lemma �� to show that

Ts�k��� � minf
�

��
� �g�

thus bounding ��� �Ts�k���� away from �� We now need only show that a result similar to

������ holds for x��k� when x��k� is the result of consecutive m
steps� This is precisely what

Ralph �����	 Theorem �� has shown in proving convergence for his algorithm
 this and ������

imply that for large enough k	

���FB�x��k��
��� � ��� � ,T �R����k���� ������

holds for some ,T � ��� ��� Applying ������ and our rule ������ for updating the reference

values	 we have

R����k� �m�� � ��� � ,T �R����k���

��

thus demonstrating the R
linear convergence of the reference values at the rate of ��� � ,T �
�
�m �

The entire sequence fFB�xk�g converges to � as well	 since for large enough k	

R����k�� �
���FB�xi�

��� for i � ��k��

since all d
steps following iteration ��k� result in a decrease in kFBk	 while all m
steps

following ��k� result in iterates xi at which R����k�� � kFB�xik�

Thus	 we have established that f
���FB�xk�

���g converges to �� We show now that	 after a

certain point	 the algorithm takes only Newton steps� Let � �� minf��
,

L
g	 where � is de�ned

in �A�� and ,
 is such that h�
� �

��� ��

L
�
 � ,
� Let K be chosen so that

���FB�xk�
��� � �

for k � K� Then for k � K	 the following hold�

���FB�xk�
��� � �� ���������FB�xkN �

��� � ��� ��
���FB�xk�

��� � ������

where ������ follows directly from the choice of �� To see ������	 note that ������ and

Lemma �� imply that the PATH algorithm �nds the Newton point xkN �� pk���	 so that by

the uniformity of A	

���FB�xkN�
��� � ���Ak�x

k
N �
���� h�

���dk���� � h�
���dk����

� h�L
���FB�xk�

���� by ������

�
L
���FB�xk�

��� ��� ��

L
by choice of �

� ��� ��
���FB�xk�

��� �
Hence by ������	 xk�� � xkN for k � K�

We show now that the sequence fxkg is Cauchy� For k � K	

���xk�� � xk
��� �

��� ,A��k ���� ,A��k �FB�xk��
���

� L
���FB�xk�

���
� L��� ��k�K

���FB�xK�
��� �

��

the last inequality following from ������� Choosing s � r � K implies that

kxs � xrk �
	X
k�r

���xk�� � xk
���

�
	X
k�r

L
���FB�xK�

���
��� ��K

��� ��k

�
L
���FB�xK�

���
��� ��K �

��� ��r
 � as r
��

This implies convergence of fxkg� Let x� �� limk
	 xk� Since f
���FB�xk�

���g
 �	 the conti

nuity of FB implies FB�x�� � ��

To see the Q
superlinear rate of convergence for the iterates	 note that for some !K � K	

k � !K implies that x� � xk � � IB �i�e�	 x� is in the range of the inverse of the linearization

,A��k �	 and the following applies�

���xk�� � x�
��� �

��� ,A��k �FB�x���� ,A��k �Ak�x
���
���

� L kFB�x��� Ak�x
��k ������

� L h�
���xk � x�

����� ������

where the last inequality depends on the uniformity of A� Since h�s� is o�s�	 inequality ������

shows convergence at a Q
superlinear rate�

If the approximation A also satis�es the inequality

���A�xk��x��� FB�x��
��� � c

���xk � x�
���� ������

for some c � � and on some neighborhood of x�	 then for large enough k	 ������ and ������

together yield ���xk�� � x�
��� � cL

���xk � x�
�����

so that a quadratic rate of convergence is achieved�

Note that although Theorem �� deals with the normal map FB	 the result holds for more

general nonsmooth mappings
 the restriction to the normal map FB is made only for the

sake of consistency with the rest of the thesis�

���

Chapter �

Computational Results

In this chapter	 we present computational results obtained from several complementarity

problems considered in the literature	 using a number of di�erent solution algorithms� In

Sections ��� and ���	 the following algorithms are compared�

PATH The PATH solver described in Chapter ��

J
N The classic Josephy
Newton�s method	 as described by Josephy �����a��

The results shown were obtained by running the PATH solver with the

options �le set to emulate Josephy
Newton�s method�

MILES MILES is a Mixed Inequality and nonLinear Equations Solver developed

by Rutherford ������� This solver is an adaptation of Josephy
Newton�s

method in which warm start and basis
crashing techniques are used to re

duce the number of pivot steps required�

B
DIFF The B
di�erentiable equations approach of Harker � Xiao ������	 in which

each major iteration involves a linesearch of a direction determined by solv

ing a system of equations�

NE�SQP Pang � Gabriel ������ describe a method in which the search direction is

determined by solving a quadratic program
 this direction is linesearched as

well�

In Section ���	 we compare the PATH solver to solution algorithms proposed by Geiger �

Kanzow ������ and Sellami �������

Unless otherwise noted with an asterisk ���	 the results for the PATH solver were ob

tained using default values for all parameters
 in no case was the code modi�ed to improve

���

performance for any particular problem� For B
DIFF and NE�SQP we include only results

available in the literature �Harker � Xiao ����	 Pang � Gabriel ������

��� Comparison of PATH to Josephy�Newton and

MILES

In this section	 we compare the Josephy
Newton method	 MILES	 and PATH	 three

solvers available as GAMS solution subsystems� The Josephy
Newton �J
N� solver is ob

tained as a special case of the PATH algorithm �i�e� no pathsearch is carried out	 and a

particular choice of initial basis and basic values is made for each subproblem�	 by using an

options �le to set options included in the PATH solver for just this purpose� This makes

possible a meaningful comparison of solution times	 as any di�erences are the result of the al

gorithm used and not of the implementation� The MILES solver of Rutherford ������ which

we used for these tests is nearly identical to the one distributed with the GAMS compiler	

the di�erence being some code added to report solution time to the log �le� Unless taken

from published sources	 the results in this chapter were obtained on a Sun SPARCstation

��� All solution times are reported in seconds� In each instance	 the CPU time reported is

the sum of the user time and the time spent in system mode on behalf of the user�s process	

each obtained via the getrusage system call�

Since each of the above algorithms is available as a GAMS solver	 we can easily compare

their performance by using them to solve a number of complementarity problems expressed

in the GAMS language� We have run each of the three solvers on a total of �� di�erent input

�les� The number of variables in each model and the number of nonzeros in its Jacobian are

indicated in the tables below by the columns headed n and nnz	 respectively� For each model

solved	 we compare the number of major and minor iterations	 the number of function and

Jacobian evaluations	 and the amount of CPU time required for problem solution� Some

of the models are solved from multiple starting points or using di�erent values for model

parameters	 resulting in additional rows in the tables below� Twelve of the models are

general MCP�s from the GAMS model library �distributed with GAMS�
 these models have

�lename stubs ending in mcp to distinguish them from the other library models� The results

for these models are given in Tables �� and ��� Fifteen of the models are MPSGE models

�Rutherford ����a� also taken from the GAMS model library
 these models have �lename

���

stubs ending in mge� The results for these models are given in Tables �� through ��� The

remaining �� models are taken from MCPLIB	 and are described in Chapter �� The results

for these models are given in Tables �� and ���

Some of the models solved in this section contain solve statements for which no solution

is intended	 or for which the solution process is trivial� For example	 some of the MPSGE

models use a solve statement to obtain a function value in order to calibrate the model� The

results for these solves have been omitted	 so that the initial points for each model are not

numbered consecutively�

For the tobin model	 the default minor iterations limit of ���� was reached several times	

due to the cycling of bases observed to occur during some of the major iterations for this

problem� This is why the solution time is so high for the second run of the PATH solver

on this model� For the hydrocarbon re�nery problem �hydroc���	 the memory size and

initial reference factor for the nonmonotone stabilization technique were both set to unity	

so that the watchdog technique would return to the initial iterate to perform a damped step�

The initial iterate for this problem is a very good estimate of the solution	 as required by

the highly nonlinear nature of this problem� The dmcmge model was run with the m
step

frequency set to one to prevent function evaluation errors�

The initial points used to obtain the data in Tables �� through �� can be obtained from

the GAMS models	 as can the settings for most model parameters� A GAMS user may wish

to adjust many of these parameters to e�ect a model�s size or di�culty of solution� The

models in Tables �� and �� make use of a discretization process whose mesh size can be

easily changed� For the obstacle and bratu problems	 we have chosen a mesh size of ��� ��	

resulting in a problem with ���� variables� The bounds for the obstacle problem varied

over the runs	 and are given in the GAMS model
 for the bratu runs	 we chose 	 � � and

set the lower and upper bounds at � and �	 respectively� For the optimal control problem

of Bertsekas ������	 we have chosen a mesh of size ����	 resulting in a problem in ����

variables� For the ELQP models from optimal control �opt contN�	 we varied the mesh and

kept the number of controls and states constant	 so that model opt contN has a total of

���N � �� variables� Thus	 the largest problem solved is one having ��	��� variables	 and

���	��� nonzeros in its Jacobian�

It is clear from these results that the PATH solver represents an increase in robustness

over the undamped method of Josephy� In addition	 the PATH solver requires considerably

���

Table ��� Comparison of Major and Minor Iteration Counts
 GAMSLIB

size problem major minor

n nnz J
N MILES PATH J
N MILES PATH

��� ���� cammcp � fail � � fail �� �

��� ���� ers��mcp � fail � � fail � �

��� ���� gemmcp � fail � � fail � �

��� ���� gemmcp � fail � � fail � �

��� ���� gemmcp � fail � � fail � �

��� ���� gemmcp � fail � � fail � �

��� ���� gemmcp � fail � � fail � �

�� ��� hansmcp � �� � �� ��� �� ��

�� ��� harkmcp � � � � ��� �� ��

�� ��� harkmcp � � � � ��� � �

�� ��� harkmcp � � � � ��� � �

�� ��� harkmcp � � � � ��� ��� ��

�� ��� kormcp � fail � � fail � �

��� ���� mr�mcp � fail � � fail � �

� �� oligomcp � � � � �� � �

�� �� transmcp � � � � � � �

�� �� transmcp � � � � � � �

�� �� transmcp � � � � � � �

�� �� transmcp � � � � �� �� �

two�mcp � � � � �� � �
� ��

two�mcp � � � � �� � �

��� ��� vonthmcp � fail �� �� fail ��� ���

� �� wallmcp � fail � � fail � �

���

Table ��� Comparison of Func�Jac� Evals � Solution Times
 GAMSLIB

problem func evals Jac� evals time �sec�

J
N PATH J
N PATH J
N MILES PATH

cammcp � fail � fail � fail ���� ����

ers��mcp � fail � fail � fail ���� ����

gemmcp � fail � fail � fail ���� ����

gemmcp � fail � fail � fail ���� ����

gemmcp � fail � fail � fail ���� ����

gemmcp � fail � fail � fail ���� ����

gemmcp � fail � fail � fail ���� ����

hansmcp � �� �� �� �� ���� ���� ����

harkmcp � � � � � ���� ���� ����

harkmcp � � � � � ���� ���� ����

harkmcp � � � � � ���� ���� ����

harkmcp � � � � � ���� ���� ����

kormcp � fail � fail � fail ���� ����

mr�mcp � fail � fail � fail ���� ����

oligomcp � � � � � ���� ���� ����

transmcp � � � � � ���� ���� ����

transmcp � � � � � ���� ���� ����

transmcp � � � � � ���� ���� ����

transmcp � � � � � ���� ���� ����

two�mcp � � � � � ���� ���� ����

two�mcp � � � � � ���� ���� ����

vonthmcp � fail �� fail �� fail ���� ����

wallmcp � fail � fail � fail ���� ����

���

Table ��� Comparison of Major and Minor Iteration Counts
 MPSGE

size problem major minor

n nnz J
N MILES PATH J
N MILES PATH

�� ��� cafemge � � �� � ��� �� �

��� ���� cammge � fail � � fail � �

��� ���� co�mge � fail � �� fail �� ��

��� ���� dmcmge � fail � ��� fail ��� ����

��� ���� dmcmge � fail � � fail � �

��� ��� etamge � fail �� �� fail �� ���

��� ���� �nmge � � � � ��� �� ���

��� ���� �nmge � � � � ��� � �

��� ���� �nmge � � � � ��� �� ��

��� ���� �nmge � � � � ��� � �

��� ���� gemmge � � � � ���� ���� �

��� ���� gemmge � � � � ���� ��� ���

��� ���� gemmge � � � � ���� ��� ���

��� ���� gemmge � � �� � ���� ���� ���

�� ��� hansmge � � � � ��� �� ��

harmge � � � � �� � �

� �� harmge � � � � �� � �

harmge � � � � �� � �

kehomge � � � � �� � �

� �� kehomge � �� � � ��� � �

kehomge � �� � � ��� � �

���

Table ��� Comparison of Func�Jac� Evals � Solution Times
 MPSGE

problem func evals Jac� evals time �sec�

J
N PATH J
N PATH J
N MILES PATH

cafemge � � � � � ���� ���� ����

cammge � fail � fail � fail ���� ����

co�mge � fail �� fail �� fail ���� ����

dmcmge � fail ���� fail ��� fail ���� �����

dmcmge � fail � fail � fail ���� ����

etamge � fail �� fail �� fail ���� ����

�nmge � � � � � ���� ���� ����

�nmge � � � � � ���� ���� ����

�nmge � � � � � ���� ���� ����

�nmge � � � � � ���� ���� ����

gemmge � � � � � ����� ����� ����

gemmge � �� �� �� �� ����� ���� ����

gemmge � � � � � ����� ���� ����

gemmge � � � � � ����� ������ ����

hansmge � � � � � ���� ���� ����

harmge � � � � � ���� ���� ����

harmge � � � � � ���� ���� ����

harmge � � � � � ���� ���� ����

kehomge � � � � � ���� ���� ����

kehomge � �� � �� � ���� ���� ����

kehomge � �� � �� � ���� ���� ����

���

Table ��� Comparison of Major and Minor Iteration Counts
 MPSGE

size problem major minor

n nnz J
N MILES PATH J
N MILES PATH

�� ��� sammge � � � � �� � �

�� ��� sammge � � � � �� � �

�� ��� sammge � � � � ��� � �

�� ��� scarfmge � � � � ��� �� ��

�� ��� scarfmge � � � � ��� � �

�� ��� scarfmge � � � � ��� �� ��

�� ��� scarfmge � � � � ��� �� ��

shovmge � � � � �� � �

�� ��� shovmge � � � � �� � �

shovmge � � � � �� � �

� �� unstmge � �� � �� ��� �� ��

�� ��� vonthmge � �� �� �� ��� �� ��

���

Table ��� Comparison of Func�Jac� Evals � Solution Times
 MPSGE

problem func evals Jac� evals time �sec�

J
N PATH J
N PATH J
N MILES PATH

sammge � � � � � ���� ���� ����

sammge � � � � � ���� ���� ����

sammge � � � � � ���� ���� ����

scarfmge � � � � � ���� ���� ����

scarfmge � � � � � ���� ���� ����

scarfmge � � � � � ���� ���� ����

scarfmge � �� �� �� �� ���� ���� ����

shovmge � � � � � ���� ���� ����

shovmge � � � � � ���� ���� ����

shovmge � � � � � ���� ���� ����

unstmge � �� �� �� �� ���� ���� ����

vonthmge � �� �� �� �� ���� ���� ����

���

Table ��� Comparison of Major and Minor Iteration Counts
 MCPLIB

size problem major minor

n nnz J
N MILES PATH J
N MILES PATH

bertsekas � � �� � �� �� ��

�� �� bertsekas � � � � �� � �

bertsekas � �� �� �� ��� �� ��

�� ��� choi � � � � �� � �

colvdual � � � � �� �� ��
�� ���

colvdual � � � � �� �� ��

colvnlp � � � � �� �� ��
�� ��

colvnlp � � � � �� �� ��

ehl kost � fail � � fail �� �

ehl kost � fail � � fail �� ��

��� ����� ehl kost � fail � � fail � �

ehl kost � fail � � fail � �

ehl kost � fail � � fail � �

gafni � � � � �� � �

� �� gafni � � � � �� � �

gafni � � � � �� �� �

hanskoop � �� � �� ��� �� ��

hanskoop � �� � �� ��� �� ��

�� ��� hanskoop � � � � �� �� ��

hanskoop � � � � �� �� ��

hanskoop � �� fail �� ��� fail ��

�� ��� hydroc�� � fail ��� fail ���

���

Table ��� Comparison of Func�Jac� Evals � Solution Times
 MCPLIB

problem func evals Jac� evals time �sec�

J
N PATH J
N PATH J
N MILES PATH

bertsekas � � � � � ���� ���� ����

bertsekas � � � � � ���� ���� ����

bertsekas � �� �� �� �� ���� ���� ����

choi � � � � � ���� ���� ����

colvdual � � � � � ���� ���� ����

colvdual � � � � � ���� ���� ����

colvnlp � � � � � ���� ���� ����

colvnlp � � � � � ���� ���� ����

ehl kost � fail � fail � fail ���� ����

ehl kost � fail � fail � fail ���� ����

ehl kost � fail � fail � fail ���� ����

ehl kost � fail � fail � fail ���� ����

ehl kost � fail � fail � fail ���� ����

gafni � � � � � ���� ���� ����

gafni � � � � � ���� ���� ����

gafni � � � � � ���� ���� ����

hanskoop � �� �� �� �� ���� ���� ����

hanskoop � �� �� �� �� ���� ���� ����

hanskoop � � � � � ���� ���� ����

hanskoop � � � � � ���� ���� ����

hanskoop � �� �� �� �� ���� fail ����

hydroc�� � ��� ��� �����

���

Table ��� Comparison of Major and Minor Iteration Counts
 MCPLIB

size problem major minor

n nnz J
N MILES PATH J
N MILES PATH

josephy � � fail � �� fail �

josephy � � fail �� �� fail ��

josephy � �� �� �� �� �� ��
� ��

josephy � � fail � � fail �

josephy � � � � � � �

josephy � � � �� �� � ��

kojshin � � fail � �� fail �

kojshin � � � � �� � �

kojshin � �� �� �� �� �� ��
� ��

kojshin � � � � � � �

kojshin � � � � � � �

kojshin � � � � �� �� ��

mathinum � fail � � fail � �

mathinum � � � � �� � �
� �

mathinum � fail � �� fail �� ��

mathinum � � � � �� � �

mathisum � � � � �� � �

mathisum � � � � �� � �
� ��

mathisum � fail � � fail �� ��

mathisum � � � � �� � �

�� ��� methan�� � fail � � fail � �

nash � � � � �� � �
�� ���

nash � � � � �� � �

���

Table ��� Comparison of Func�Jac� Evals � Solution Times
 MCPLIB

problem func evals Jac� evals time �sec�

J
N PATH J
N PATH J
N MILES PATH

josephy � � � � � ���� fail ����

josephy � � �� � �� ���� fail ����

josephy � �� �� �� �� ���� ���� ����

josephy � � � � � ���� fail ����

josephy � � � � � ���� ���� ����

josephy � � �� � �� ���� ���� ����

kojshin � � � � � ���� fail ����

kojshin � � � � � ���� ���� ����

kojshin � �� �� �� �� ���� ���� ����

kojshin � � � � � ���� ���� ����

kojshin � � � � � ���� ���� ����

kojshin � � � � � ���� ���� ����

mathinum � fail �� fail � fail ���� ����

mathinum � � � � � ���� ���� ����

mathinum � fail �� fail �� fail ���� ����

mathinum � � � � � ���� ���� ����

mathisum � � � � � ���� ���� ����

mathisum � � � � � ���� ���� ����

mathisum � fail �� fail �� fail ���� ����

mathisum � � � � � ���� ���� ����

methan�� � fail � fail � fail ���� ����

nash � � � � � ���� ���� ����

nash � � � � � ���� ���� ����

���

Table ��� Comparison of Major and Minor Iteration Counts
 MCPLIB

size problem major minor

n nnz J
N MILES PATH J
N MILES PATH

�� ��� pies � � � � ��� � ��

powell � � � � ��� � ��

powell � � � � �� �� ��
�� ���

powell � � � � �� � ��

powell � � � � �� � ��

powell mcp � � � � �

powell mcp � � � � �
� ��

powell mcp � � � � �

powell mcp � � � � �

scarfanum � � � � �� � ��

�� �� scarfanum � � � � �� �� ��

scarfanum � � � � �� �� �

scarfasum � � � � �� � �

�� �� scarfasum � � � � �� �� �

scarfasum � � � � �� �� ��

scarfbnum � � � � ��� �� ��
�� ���

scarfbnum � � � � ��� �� ��

scarfbsum � � � � ��� �� ��
�� ���

scarfbsum � � � � ��� �� ��

sppe � � � � ��� ��� ��
�� ��

sppe � � � � ��� �� �

tobin � � � � ��� �� ��
�� ���

tobin � � fail �� ��� fail ����

���

Table ��� Comparison of Func�Jac� Evals � Solution Times
 MCPLIB

problem func evals Jac� evals time �sec�

J
N PATH J
N PATH J
N MILES PATH

pies � � � � � ���� ���� ����

powell � � � � � ���� ���� ����

powell � � � � � ���� ���� ����

powell � � � � � ���� ���� ����

powell � � � � � ���� ���� ����

powell mcp � fail � fail � fail ���� ����

powell mcp � fail � fail � fail ���� ����

powell mcp � fail � fail � fail ���� ����

powell mcp � fail � fail � fail ���� ����

scarfanum � � � � � ���� ���� ����

scarfanum � � � � � ���� ���� ����

scarfanum � � � � � ���� ���� ����

scarfasum � � � � � ���� ���� ����

scarfasum � � � � � ���� ���� ����

scarfasum � � � � � ���� ���� ����

scarfbnum � � � � � ���� ���� ����

scarfbnum � � � � � ���� ���� ����

scarfbsum � � � � � ���� ���� ����

scarfbsum � � � � � ���� ���� ����

sppe � � � � � ���� ���� ����

sppe � � � � � ���� ���� ����

tobin � �� �� �� �� ���� ���� ����

tobin � �� �� �� �� ���� fail ����

���

Table ��� Comparison of Major and Minor Iteration Counts
 MCPLIB

size problem major minor

n nnz J
N MILES PATH J
N MILES PATH

bert oc � � �� � ���� �� ���

bert oc � � �� � ���� ��� ���
���� �����

bert oc � � fail � ���� fail ���

bert oc � � � � ���� ��� ���

���� ����� bratu � fail fail � fail fail �

obstacle � fail fail � fail fail ����

obstacle � fail fail � fail fail ����

obstacle � fail fail � fail fail ����

obstacle � fail fail � fail fail ����
���� �����

obstacle � fail fail � fail fail ����

obstacle � fail fail � fail fail ����

obstacle � fail fail � fail fail ����

obstacle � fail fail � fail fail ����

���� ����� opt cont � � � ��� ��� ���

���� ����� opt cont � � � ���� ���� ����

���� ������ opt cont � fail � ���� fail ����

����� ������ opt cont � fail � ����� fail ����

���

Table ��� Comparison of Func�Jac� Evals � Solution Times
 MCPLIB

problem func evals Jac� evals time �sec�

J
N PATH J
N PATH J
N MILES PATH

bert oc � � � � � ������ ������ �����

bert oc � � � � � ������ ������ �����

bert oc � � � � � ������ fail �����

bert oc � � � � � ������ ������ �����

bratu � fail � fail � fail fail �����

obstacle � fail � fail � fail fail �����

obstacle � fail � fail � fail fail �������

obstacle � fail � fail � fail fail ������

obstacle � fail � fail � fail fail ������

obstacle � fail � fail � fail fail ������

obstacle � fail � fail � fail fail ������

obstacle � fail � fail � fail fail �������

obstacle � fail � fail � fail fail ������

opt cont�� � � � � ����� ����� ����

opt cont��� � � � � ������ ������� ������

opt cont��� � � � � ������� fail �������

opt cont��� � � � � �������� fail �������

���

less solution time in many cases	 due to the smaller number of pivots it performs� This is

the result of the warm start taken by the PATH solver on the subproblems
 in most cases	

the optimal basis remains the same over the last few subproblems	 so that only one pivot

step is required for each� There are a number of problems	 however	 for which the PATH

solver performs no better than Josephy
Newton�s method	 especially on some of the smaller

problems in which the pivots are very inexpensive� One of the design goals of the PATH

solver was to always perform at least as well as the Josephy
Newton method
 there are a

number of instances in which an improvement on it is not possible�

The di�erence in performance between the PATH solver and MILES is not a great one	

especially if the results from the larger problems in Tables �� and �� are discounted� A com

parison of iteration counts reveals much similarity
 neither solver consistently outperforms

the other� The robustness of the two solvers is quite similar as well	 as neither of them fail

on many of the problems tested� However	 the solution time required by the PATH solver

is frequently less than that required by MILES	 although there are exceptions to this� For

the larger problems	 it is quite clear that the PATH solver is the method of choice� MILES

failed on a large number of these runs	 while its solution times compare poorly with those

of the PATH solver when both algorithms compute a solution�

��� Comparison of PATH to B�DIFF and NE�SQP

Since the B
DIFF algorithm of Harker � Xiao ������ and the NE�SQP algorithm of

Pang � Gabriel ������ are not publicly available	 it is not possible to obtain a meaningful

comparison between the solution times for these methods and those for the PATH solver�

However	 the above references do contain results regarding the number of major iterations

required for the solution of several problems� These problems have been coded in GAMS	 and

the models solved using the PATH solver	 thus allowing a comparison between the number

of major iterations required for solution	 as shown in Table ��� The voids in this table

indicate that data for a particular problem and start point were not available� Start points

for these problems can be obtained from Harker � Xiao ������ and Pang � Gabriel ������	

respectively�

The results of Table �� indicate that the PATH solver compares favorably with the

B
DIFF and NE�SQP algorithms	 although there are instances where the latter methods

���

Table ��� Comparison of Major Iteration Counts
 PATH	 B
DIFF � NESQP

problem Major

PATH B
DIFF NE�SQP

josephy � � �

� �� ��

� �� ��

� � �

� � �

� �� �

hanskoop � �� ��

� �� ��

mathiesen � � ��

� � �

� � �

� � �

� �� �

nash � � ��

� � ��

scarf � � � �

� � �

� � ��

� � �

sppe � � ��

� � ��

tobin � � �� ��

� �� �� ��

���

require fewer major iterations� We note once again that the code for the PATH solver was

not modi�ed in order to solve any of these problems	 and was run with default parameters

except where indicated� This does not appear to be the case for B
DIFF and NE�SQP	 as

Harker � Xiao ������ and Pang � Gabriel ������ indicate that certain modi�cations to their

codes as applied to some of the problems were used in order to achieve the results given�

��� Comparison of PATH to Other Techniques

Geiger � Kanzow ������ have implemented an algorithm which solves NCP via a refor

mulation as an unconstrained minimization problem and present computational results on

�nding the KKT points of � constrained optimization problems� In Table ��	 we compare

results using the PATH solver to their results	 obtained from Tables � through � of �Geiger �

Kanzow ������ We have taken the results for m�� from each of these tables� The column in

Table �� headed G
K contains results obtained by Geiger and Kanzow using their reformu

lation	 while the column headed M
S contains results obtained by the same authors	 using

the same code and a di�erent but similar reformulation of the NCP due to Mangasarian �

Solodov ������� The asterisks ��� indicate convergence to a stationary point that is not a

solution for the NCP�

The results in Table �� show that the PATH solver requires many fewer iterations to solve

these problems than does the minimization approach described above� The results reported

by Geiger � Kanzow are for a limited
memory BFGS scheme	 so that one would expect

their method to require more major iterations than a Newton method such as the PATH

solver� However	 the minor iteration counts for the PATH solver are also very low	 so that we

can conclude that the PATH solver has outperformed Kanzow�s technique for the problems

included in Table ��� Due to the small size and limited number of these problems	 it is not

possible to compare the two methods conclusively	 although the PATH solver appears to be

more robust than Kanzow�s technique�

In his Ph�D� thesis	 Sellami ������ gives results for a continuation method for normal

maps as applied to a number of complementarity problems� In Table ��	 we compare the

results from his thesis with those obtained from the PATH solver� Again	 it is only possible

to compare the major iteration counts	 although the minor iterations required by the path

solver are also given�

���

Table ��� Iteration Counts
 PATH and Kanzow�s technique

problem Minor Major

PATH PATH G
K M
S

hs�� � �� � ��� ���

� � � ��� ���

� �� � ��� ���

� �� � ��� ��

� �� � ��� ���

hs�� � � � �� ��

� � � �� ��

� � � �� ���

� � � �� ���

� � � �� ���

hs�� � �� � �� ��

� �� � �� ��

� �� � �� ��

� �� � �� ��

� �� �� �� ��

hs�� � � � �� ��

� � � �� ��

� � � ��� ���

� � � �� ��

� � � �� ��

���

Table ��� Iteration Counts
 PATH and Sellami�s technique

problem Minor Major

PATH PATH Sellami

prob� � �� �� �

� �� �� ��

� � � ��

� �� �� ���

� � � ��

prob� � � � ��

� �� �� ��

� �� �� ��

prob� � � � ��

� � � ��

prob� � � � ��

� �� �� ��

prob� � � � ��

� � � ��

prob� � � � ��

� � � ��

� � � ��

nash
�� � � � ���

� � � ���

���

Almost without exception	 the PATH solver requires fewer iterations to solve the problems

in Table �� than does the continuation method of Sellami� Since each major iteration of

Sellami�s method involves a QR factorization	 we can expect the PATH solver to solve these

problems much more quickly� The di�erence in speed will become more pronounced as

problems of a larger size are solved	 especially if these problems are sparse	 due to the sparse

matrix routines used by the PATH solver� Both techniques appear to be equally robust�

��� Conclusions

We have designed the PATH solver to be both fast and robust	 in order minimize both

solution time and the number of failures encountered in problem solution� The data presented

in this chapter indicate that we have achieved these twin objectives� The stabilization

techniques incorporated into the PATH solver have resulted in a signi�cant reduction in

the failure rate as compared to the undamped method of Josephy� At the same time	 these

techniques have not slowed down the solver on problems for which Josephy
Newton�s method

performs well� In fact	 the parameterized path construction method serves to decrease the

number of minor iterations required	 thereby speeding the solution process� A comparison

to the MILES solver does not yield as dramatic a di�erence	 especially in robustness	 but

we can conclude that the PATH solver is somewhat faster	 in general	 and both faster and

more reliable for the larger problems solved� A comparison to the algorithms considered in

Section ��� yields the same conclusion�

���

Chapter �

Preprocessing and Other Extensions

In the preceding chapters	 we have described the core of a system for e�ectively formulating

and solving the MCP� In this chapter	 we describe the results of our attempts at improving

the computational results achieved and indicate directions for future research based on the

content of this thesis�

	�� Preprocessing

We noted at the close of Chapter � that the PATH solver compares favorably with the other

methods considered there� However	 the data from Tables �� and �� indicate that the PATH

solver performs a large number of pivot steps when solving large problems� This is to be

expected� the pivotal techniques employed by the PATH solver place it among those QP

solvers which use an active set strategy� For solvers that add or subtract one constraint at a

time from the active set	 the number of pivots required is bounded below by the di�erence in

size between the initial and optimal set of active constraints� This bound can be expected to

grow with the size of the problem	 as is seen from the iteration counts given in Table ��� In

order to reduce the number of pivots required	 the initial iterate can be adjusted so that it

corresponds more closely to the active set at the solution to the problem� We will call such

an adjustment a preprocessing step� In this section	 we will consider a number of di�erent

preprocessing techniques�

A simple approach to this problem is to use the power of the GAMS language to compute

an initial point satisfying as many of the model constraints as possible� For example	 the

���

variables in the optimal control models are of two types	 control variables and state variables�

The state variable are completely determined by the control variables	 but are not substituted

out of the model	 since doing so would result in a completely dense problem� Given the initial

values for the control variables	 it is a simple matter to compute values for the state variables

such that all the equality constraints are satis�ed� This was done	 and resulted in a decrease

in the residual norm at the initial iterate� However	 there was no corresponding reduction in

the number of pivot steps required to solve the problem� Since the variables corresponding

to the equality constraints of the model are all free	 they remain in the basis regardless of

whether their corresponding constraints are satis�ed as equalities or not�

A more algorithmic approach to preprocessing involves the projected gradient techniques

studied by Bertsekas � Gafni ������ and Calamai � Mor"e ������� Su�cient conditions for

the convergence of such a method to a solution of an MCP are given by Bertsekas � Tsitsiklis

�����	 Proposition ���� and include the Lipschitz continuity and strong monotonicity of F �

Convergence results for a number of projection methods based on a gap function derived from

the variational inequality problem are given by Fukushima ������ and Larsson � Patriksson

�������

We have implemented a projected gradient type preprocessing step for the initial point

supplied to the PATH solver� In this method	 an iterate zk � B is replaced by a new point

zk�� �� z���	 where

z��� �� �B�zk � �D��F �zk��� �����

D is a diagonal positive de�nite matrix chosen to approximate the diagonal of the Jacobian	

and � is chosen via an Armijo linesearch technique so as to reduce kFB���k� At each trial

step �	 a simple projection step is required to obtain z���� Note that in order to gauge the

acceptability of the projected points z���	 we are using kFBk	 a mapping de�ned over all of

IRn� To do so	 we evaluate kFBk at the points

x��� �� arg min
x

fkFB�x�k j z��� � �B�x�g� �����

where z��� is given in ������ The computation of x��� in ����� is trivial and can be done in

a simple loop	 the same loop used to calculate kFB�x����k� The preprocessing is terminated

when either the active set is not changed from one iteration to the next or the decrease

in kFB�x�k becomes less than a �xed fraction of the maximum decrease achieved over all

previous linesearch steps� The results obtained using this technique are mixed� Table ��

���

compares the number of pivots and function evaluations and the solution time required to

solve some of the larger models via the PATH solver both with and without the projected

gradient preprocessing step� While this technique was useful in reducing the number of pivots

required to solve some of the obstacle and optimal control problems	 it was less helpful in

solving the Bertsekas optimal control or bratu problems� In many cases	 the projection step

failed to reduce kFB�x�k	 resulting in no basis change and no reduction in the number of

pivot steps required for solution� This is consistent with the theoretical results for this type

of method
 the functions F for the optimal control problems are not strongly monotone	 so

that F �zk� is not necessarily a descent direction�

Table ��� Performance Metrics
 PATH � Projected Gradient Preprocessing

size problem pivots func� evals time �sec�

n nnz PATH PGP PATH PGP PATH PGP

bert oc � ��� ��� � �� ����� �����

bert oc � ��� ��� � �� ����� �����
���� �����

bert oc � ��� ��� � �� ����� �����

bert oc � ��� ��� � �� ����� �����

���� ����� bratu � � �� � �� ����� �����

obstacle � ���� ��� � �� ����� �����

obstacle � ���� ���� � �� ������� ������

obstacle � ���� ���� � �� ������ ������

obstacle � ���� ���� � �� ������ ������
���� �����

obstacle � ���� ��� � �� ������ �����

obstacle � ���� ���� � �� ������ ������

obstacle � ���� ���� � � ������� ������

obstacle � ���� ���� � �� ������ ������

���� ����� opt cont ��� �� � �� ���� ����

���� ����� opt cont ���� ���� � �� ������ ������

���� ������ opt cont ���� ���� � �� ������� ������

����� ������ opt cont ���� ���� � �� ������� ������

���

The failure of the projected gradient technique discussed above has led to the implemen

tation of a projected Newton technique� Motivated by the work of Bertsekas ������	 this

technique computes a Newton direction for a reduced system and uses this direction in a

linesearch similar to that of ������ The Newton direction for the reduced system is essen

tially the same direction used in the initial pivot step of the path construction phase of the

PATH solver� While the path construction algorithm stops at a boundary and recomputes

the direction �i�e� performs a pivot step�	 the projected Newton technique takes a damped

step and projects back onto the feasible set� Our projected Newton step is also similar to

the step taken by the B
DIFF algorithm of Harker � Xiao �������

We use the index sets A and I to indicate box constraints active and inactive at the

solution of an approximation de�ned at zk� These index sets are de�ned as follows�

A �� fi j �i � zi� Fi�z
k� � �g

�
fi j ui � zi� Fi�z

k� � �g

I �� fi j i �� Ag

The reduced system

F �
II�zk�dI � FI�zk� �����

computes the nonzero part of the search direction d� Assuming a reordering of the variables	

the new iterate zk�� �� z���	 where

z��� �� �B

�
�
�
� zkI

zkA

�
�� �

�
� dI

�

�
�
�
A � �����

Again	 � is chosen via a linesearch to reduce kFB�x����k	 where x��� is chosen as in ������

The new iterate zk�� leads to a new choice of index sets A and I�

In computational tests of the projected Newton preprocessor	 the preprocessing phase

was terminated when the membership of the index sets for successive iterations di�ered by

less than �� indices� At this point	 the most recent iterate was used as the initial iterate

for the PATH solver� For problems with fewer than �� variables	 no preprocessing step was

attempted	 since pivots for these problems are relatively inexpensive� Also	 the preprocessing

phase was terminated if the Newton direction did not result in a decrease in kFBk or if the

Newton step could not be computed due to rank de�ciency in the reduced system ������

The data in Tables �� through �� give the time and number of projected Newton steps	

major and minor iterations	 and function and gradient evaluations required for problem

���

solution via the PATH solver with projected Newton preprocessing� These tables show a

signi�cant decrease in the solution time required for the larger models over that required by

the pivotal methods considered in Chapter �	 without sacri�cing the robustness of the PATH

solver on the smaller	 more complex problems� The di�erence in solution time required on

the larger problems is illustrated in Figure ���

Our projected Newton preprocessor is similar to the B
di�erentiable equations approach

for solving FIRn
�

� � taken by Harker � Xiao ������� In the latter approach	 an iterate x is

used to de�ne the index sets

P �� fi j xi � �g

D �� fi j xi � �g

N �� fi j xi � �g

In their implementation	 Harker � Xiao chose the point x so that the set of degenerate

indices D � �� In this case	 the Newton direction for FIRn
�

is given by

�
� F �

PP�zk� �

F �
PN �zk� �I

�
�
�
� dP

dN

�
� �

�
� rP

rN

�
� � �����

where r �� FIRn
�

�xk� is the residual at the current point� This search direction is used

in a linesearch step which seeks to reduce
���FIRn

�
�x� �d�

����� We note that our projected

Newton method di�ers from the above method both in the choice of search direction and the

manner of search performed� The search directions for each method can each be calculated

by solving a reduced system of linear equations	 but the composition of these systems may

well di�er� More importantly	 the linesearch performed by B
DIFF updates the vector x	

while our projected Newton step modi�es only the components of z corresponding to inactive

constraints and then computes the best x consistent with z� This type of search assures that

a good choice of steplength � and potential iterate z��� is not rejected due to a poor update

of the slack variables corresponding to the active constraints�

The similarity of the projected Newton preprocessing step to the major iteration of the

B
DIFF algorithm of Harker � Xiao ������	 together with the much
improved results of

Tables �� through ��	 led us to implement an algorithm that performed only projected

Newton steps� The results were very disappointing	 and are not included here� We found

that a pure projected Newton algorithm su�ered from a marked lack of robustness� Many

���

Table ��� Projected Newton Performance Metrics
 GAMSLIB

size problem PATH �projected Newton preprocessing�

n nnz proj
N major minor func Jac time

��� ���� cammcp � � � � � � ����

��� ���� ers��mcp � � � � � � ����

��� ���� gemmcp � � � � � � ����

��� ���� gemmcp � � � � � � ����

��� ���� gemmcp � � � � � � ����

��� ���� gemmcp � � � � � � ����

��� ���� gemmcp � � � � � � ����

�� ��� hansmcp � � �� �� �� �� ����

�� ��� harkmcp � � � �� �� �� ����

�� ��� harkmcp � � � � � � ����

�� ��� harkmcp � � � � � � ����

�� ��� harkmcp � � � �� �� � ����

�� ��� kormcp � � � � � � ����

��� ���� mr�mcp � � � � � � ����

� �� oligomcp � � � � � � ����

�� �� transmcp � � � � � � ����

�� �� transmcp � � � � � � ����

�� �� transmcp � � � � � � ����

�� �� transmcp � � � �� � � ����

two�mcp � � � � � � ����
� ��

two�mcp � � � � � � ����

��� ��� vonthmcp � � �� ��� �� �� ����

� �� wallmcp � � � � � � ����

���

Table ��� Projected Newton Performance Metrics
 MPSGE

size problem PATH �projected Newton preprocessing�

n nnz proj
N major minor func Jac time

�� ��� cafemge � � � � �� � ����

��� ���� cammge � � � � � � ����

��� ���� co�mge � � �� �� �� �� ����

��� ���� dmcmge� � � �� ��� ��� �� ����

��� ���� dmcmge � � � � � � ����

��� ��� etamge � � �� �� �� �� ����

��� ���� �nmge � � � ��� � � ����

��� ���� �nmge � � � � � � ����

��� ���� �nmge � � � � � � ����

��� ���� �nmge � � � � � � ����

��� ���� gemmge � � � ��� � � ����

��� ���� gemmge � � � �� �� �� ����

��� ���� gemmge � � �� �� �� �� ����

��� ���� gemmge � � � ��� � � ����

�� ��� hansmge � � � �� � � ����

harmge � � � � � � ����

� �� harmge � � � � � � ����

harmge � � � � � � ����

kehomge � � � � � � ����

� �� kehomge � � � � � � ����

kehomge � � � � � � ����

���

Table ��� Projected Newton Performance Metrics
 MPSGE

size problem PATH �projected Newton preprocessing�

n nnz proj
N major minor func Jac time

�� ��� sammge � � � � � � ����

�� ��� sammge � � � � � � ����

�� ��� sammge � � � � � � ����

�� ��� scarfmge � � � �� � � ����

�� ��� scarfmge � � � � � � ����

�� ��� scarfmge � � � � � � ����

�� ��� scarfmge � � � �� �� �� ����

shovmge � � � � � � ����

�� ��� shovmge � � � � � � ����

shovmge � � � � � � ����

� �� unstmge � � �� �� �� �� ����

�� ��� vonthmge � � �� �� �� �� ����

���

Table ��� Projected Newton Performance Metrics
 MCPLIB

size problem PATH �projected Newton preprocessing�

n nnz proj
N major minor func Jac time

bertsekas � � � �� � � ����

�� �� bertsekas � � � � � � ����

bertsekas � � �� �� �� �� ����

�� ��� choi � � � � � � ����

colvdual � � � �� � � ����
�� ���

colvdual � � � �� � � ����

colvnlp � � � �� � � ����
�� ��

colvnlp � � � � � � ����

ehl kost � � � � � � ����

ehl kost � � �� �� �� �� �����

��� ����� ehl kost � � � � �� � ����

ehl kost � � � � � � ����

ehl kost � � � � � � ����

gafni � � � � � � ����

� �� gafni � � � � � � ����

gafni � � � � � � ����

hanskoop � � �� �� �� �� ����

hanskoop � � �� �� �� �� ����

�� ��� hanskoop � � � �� � � ����

hanskoop � � � �� � � ����

hanskoop � � �� �� �� �� ����

�� ��� hydroc�� � � � � �� �� ����

���

Table ��� Projected Newton Performance Metrics
 MCPLIB

size problem PATH �projected Newton preprocessing�

n nnz proj
N major minor func Jac time

josephy � � � � � � ����

josephy � � �� �� �� �� ����

josephy � � �� �� �� �� ����
� ��

josephy � � � � � � ����

josephy � � � � � � ����

josephy � � �� �� �� �� ����

kojshin � � � � � � ����

kojshin � � � � � � ����

kojshin � � �� �� �� �� ����
� ��

kojshin � � � � � � ����

kojshin � � � � � � ����

kojshin � � � �� �� �� ����

mathinum � � � � �� � ����

mathinum � � � � � � ����
� �

mathinum � � �� �� �� �� ����

mathinum � � � � � � ����

mathisum � � � � � � ����

mathisum � � � � � � ����
� ��

mathisum � � � �� �� �� ����

mathisum � � � � � � ����

�� ��� methan�� � � � � � � ����

nash � � � � � � ����
�� ���

nash � � � � � � ����

���

Table ��� Projected Newton Performance Metrics
 MCPLIB

size problem PATH �projected Newton preprocessing�

n nnz proj
N major minor func Jac time

�� ��� pies � � � �� � � ����

powell � � � � �� � ����

powell � � � �� � � ����
�� ���

powell � � � �� � � ����

powell � � � �� � � ����

powell mcp � � � � � � ����

powell mcp � � � � � � ����
� ��

powell mcp � � � � �� �� ����

powell mcp � � � � � � ����

scarfanum � � � �� � � ����

�� �� scarfanum � � � �� � � ����

scarfanum � � � �� � � ����

scarfasum � � � � � � ����

�� �� scarfasum � � � � � � ����

scarfasum � � � �� � � ����

scarfbnum � � � �� � � ����
�� ���

scarfbnum � � � �� � � ����

scarfbsum � � � �� � � ����
�� ���

scarfbsum � � � �� � � ����

sppe � � � �� �� � ����
�� ��

sppe � � � � � � ����

tobin � � � �� �� � ����
�� ���

tobin � � � �� �� � ����

���

Table ��� Projected Newton Performance Metrics
 MCPLIB

size problem PATH �projected Newton preprocessing�

n nnz proj
N major minor func Jac time

bert oc � � � � � � ����

bert oc � � � � � � ����
���� �����

bert oc � � � � � � ����

bert oc � � � � � � ����

���� ����� bratu � � � � � �����

obstacle � �� � � �� �� �����

obstacle � �� � � �� �� �����

obstacle � �� � � �� �� �����

obstacle � �� � � �� �� �����
���� �����

obstacle � � � � � � �����

obstacle � �� � � �� �� �����

obstacle � �� � � �� �� �����

obstacle � �� � � �� �� �����

���� ����� opt cont � � � � � ����

���� ����� opt cont � � � � � ����

���� ������ opt cont � � � � � �����

����� ������ opt cont � � � � � �����

���

b
r
a
t
u

o
b
s
t
a
c
l
e

1

o
b
s
t
a
c
l
e

2

o
b
s
t
a
c
l
e

3

o
b
s
t
a
c
l
e

4

o
b
s
t
a
c
l
e

5

o
b
s
t
a
c
l
e

6

o
b
s
t
a
c
l
e

7

o
b
s
t
a
c
l
e

8

o
p
t
_
c
o
n
t
1
2
7

o
p
t
_
c
o
n
t
2
5
5

0

200

400

600

800

1000

1200

 PATH

 PNP

Figure ��� PATH Solution Times
 Original � Projected Newton Preprocessing

���

of the di�culties reported by Harker � Xiao ������ were evidenced in our computational

tests as well� These authors report obtaining convergence in some cases only through the use

of heuristics such as proximal point� This explains some of the di�erences between PATH

and B
DIFF in Table �� �page ����	 particularly for the Nash problem� The use of these

heuristics is a likely explanation for the di�erence in major iterations required by these two

methods	 since without the heuristics the two methods should perform identically on this

model�

The excellent performance of the PATH solver with projected Newton preprocessing has

resulted in a new release of the PATH solver	 version ���� This latest version is available

from the author�

	�� Other Extensions

The complementarity interface to AMPL is a very recent development	 and will need further

testing and development before it can be distributed along with the rest of the AMPL solver

interface library� In addition	 it may be possible to extend its functionality as well� At

present	 problems can only be expressed as MCP�s� The library could be extended to allow

the expression of side constraints	 so that variational inequalities over more general sets

could be formulated explicitly	 rather than having to be reformulated as a MCP before being

written down in the AMPL model� With this extension	 the reformulation as a MCP could

be done automatically by the interface library for MCP solvers	 or the side constraints could

be furnished directly to a solver able to handle feasible sets more general than the rectangular

set of MCP�

It may also be possible to narrow rather than broaden the focus of the AMPL interface	

in a manner similar to that taken in the GAMS�MPSGE system designed by Rutherford

�����a� for the formulation of general equilibrium models� The MPSGE system speeds

and simpli�es the formulation of Arrow
Debreu economic equilibrium models by allowing a

description of the model at a higher level than is possible using GAMS�MCP alone� The

development of a similar AMPL system for formulating these or other types of models may

be quite useful� However	 such a project is best left until the latest revision of the AMPL

language	 due out in the latter half of ����	 is available�

Of course	 the model library is easily improved through the addition of more models	

���

especially those from �elds outside of which the current models are drawn� Currently	 there

are many more small and medium size models in the library than there are larger models� The

library would bene�t greatly from additional large	 nonlinear models� It is to be expected

that such models will be made available as more people begin to use the complementarity

facilities now available as part of the GAMS and AMPL modeling languages�

	�� Conclusions

In this thesis	 we have focused on algorithms and software for e�ectively solving MCP� In

Chapter �	 we discuss the design fundamentals for complementarity interfaces to modeling

languages and give details for two such interfaces	 the GAMS Callable Program Library and

the AMPL MCP interface library developed by the author� In Chapter �	 we present a

library of complementarity models written in the GAMS and AMPL modeling languages	

while Chapter � contains a description of the PATH solver	 a novel application of a stabi

lization technique to a Newton method for nonsmooth equations� In Chapter � we present

computational results for the PATH solver and other available solvers for MCP	 results

obtained using the interface and model libraries discussed in the previous chapters� This

combination of model library	 interface library	 and solver has worked well and has helped

greatly in the development and testing of the PATH solver� Finally	 in this chapter	 we have

discussed preprocessing techniques used to improve the performance of the PATH solver and

have indicated promising directions of future research based the interface libraries we have

described�

���

Bibliography

Armijo	 L� ������	 .Minimization of functions having Lipschitz
continuous �rst partial deriva

tives�	 Paci�c Journal of Mathematics ��	 ����

Bertsekas	 D� P� ������	 .Projected Newton methods for optimization problems with simple

constraints�	 SIAM Journal on Control and Optimization �
	 ��������

Bertsekas	 D� P� � Gafni	 E� M� ������	 .Projection methods for variational inequalities

with application to the tra�c assignment problem�	 Mathematical Programming Study

��	 ��������

Bertsekas	 D� P� � Tsitsiklis	 J� N� ������	 Parallel and Distributed Computation	 Prentice�

Hall	 Inc	 Englewood Cli�s	 New Jersey�

Bongartz	 I�	 Conn	 A� R�	 Gould	 N� � Toint	 P� ������	 CUTE� Constrained and uncon

strained testing environment	 Publications du D"epartment de Math"ematique Report

�����	 Facult"es Universitaires De Namur�

Brooke	 A�	 Kendrick	 D� � Meeraus	 A� ������	 GAMS� A User�s Guide	 The Scienti�c

Press	 South San Francisco	 CA�

Calamai	 P� H� � Mor"e	 J� J� ������	 .Projected gradient methods for linearly constrained

problems�	 Mathematical Programming �
	 �������

Cao	 M� � Ferris	 M� C� ������	 A pivotal method for a�ne variational inequalities	 Tech

nical Report ����	 Computer Sciences Department	 University of Wisconsin	 Madison	

Wisconsin� To appear in Mathematics of Operations Research�

���

Cao	 M� � Ferris	 M� C� ������	 Lineality removal for copositive�plus normal maps	 Math

ematical Programming Technical Report ��
��	 Computer Sciences Department	 Uni

versity of Wisconsin	 Madison	 Wisconsin� Submitted to Communications on Applied

Nonlinear Analysis�

Chamberlain	 R� M�	 Powell	 M� J� D� � Lemar"echal	 C� ������	 .The watchdog technique

for forcing convergence in algorithms for constrained optimization�	 Mathematical Pro�

gramming Study ��	 �����

Choi	 S� C�	 DeSarbo	 W� S� � Harker	 P� T� ������	 .Product positioning under price

competition�	 Management Science ��	 ��������

Chv"atal	 V� ������	 Linear Programming	 W� H� Freeman and Company	 New York�

Ciarlet	 P� G� ������	 The Finite Element Method for Elliptic Problems	 North
Holland	 New

York�

Colville	 A� R� ������	 A comparative study on nonlinear programming codes	 Technical

Report ��������	 IBM New York Scienti�c Center�

Conn	 A� R�	 Gould	 N� I� M� � Toint	 P� ������	 LANCELOT� A Fortran package for Large�

Scale Nonlinear Optimization
Release A�	 number �� in .Springer Series in Computa

tional Mathematics�	 Springer Verlag	 Heidelberg	 Berlin�

Cottle	 R� W� � Dantzig	 G� ������	 .Complementary pivot theory of mathematical pro

gramming�	 Linear Algebra and Its Applications �	 ��������

Cottle	 R� W�	 Pang	 J� S� � Stone	 R� E� ������	 The Linear Complementarity Problem	

Academic Press	 Boston�

Cryer	 C� W� � Dempster	 M� A� H� ������	 .Equivalence of linear complementarity problems

and linear programs in vector lattice Hilbert spaces�	 SIAM Journal on Control and

Optimization ��	 ������

Dennis	 J� E� � Schnabel	 R� B� ������	 Numerical Methods for Unconstrained Optimization

and Nonlinear Equations	 Prentice�Hall	 Inc	 Englewood Cli�s	 New Jersey�

���

Dirkse	 S� P� � Ferris	 M� C� ������	 .The PATH solver� A non
monotone stabilization scheme

for mixed complementarity problems�	 Optimization Methods � Software� To appear�

Dirkse	 S� P�	 Ferris	 M� C�	 Preckel	 P� V� � Rutherford	 T� ������	 The GAMS callable

program library for variational and complementarity solvers	 Mathematical Program

ming Technical Report ��
��	 Computer Sciences Department	 University of Wisconsin	

Madison	 Wisconsin�

Eaves	 B� C� ������	 .On the basic theorem of complementarity�	 Mathematical Programming

�	 ������

Ferris	 M� C� � Lucidi	 S� ������	 Globally convergent methods for nonlinear equations	 Tech

nical Report ����	 Computer Sciences Department	 University of Wisconsin	 Madison	

Wisconsin�

Ferris	 M� C� � Lucidi	 S� ������	 .Nonmonotone stabilization methods for nonlinear equa

tions�	 Journal of Optimization Theory and Applications ��	 ������

Fletcher	 R� ������	 Practical Methods of Optimization	 second ed�	 John Wiley � Sons	 New

York�

Fourer	 R�	 Gay	 D� � Kernighan	 B� ������	 AMPL	 The Scienti�c Press	 South San Fran

cisco	 CA�

Friesz	 T� L�	 Tobin	 R� L�	 Smith	 T� E� � Harker	 P� T� ������	 .A nonlinear complementarity

formulation and solution procedure for the general derived demand network equilibrium

problem�	 Journal of Regional Science ��	 ��������

Fukushima	 M� ������	 .Equivalent di�erentiable optimization problems and descent methods

for asymmetric variational inequality problems�	 Mathematical Programming ��	 ���

����

Gay	 D� M� ������	 .Hooking your solver to AMPL�	 Numerical Analysis Manuscript ������

AT�T Bell Laboratories	 Murray Hill	 New Jersey�

Geiger	 C� � Kanzow	 C� ������	 .On the resolution of monotone complementarity problems�	

Preprint ��	 Institute of Applied Mathematics	 University of Hamburg� Bundesstrasse

��	 D
����� Hamburg Germany�

���

Goldstein	 A� A� ������	 Constructive Real Analysis	 Harper and Row	 New York�

Grippo	 L�	 Lampariello	 F� � Lucidi	 S� ������	 .A nonmonotone line search technique for

Newton�s method�	 SIAM Journal on Numerical Analysis ��	 ��������

Grippo	 L�	 Lampariello	 F� � Lucidi	 S� ������	 .A class of nonmonotone stabilization meth

ods in unconstrained optimization�	 Numerische Mathematik �
	 ��������

Hansen	 T� � Koopmans	 T� C� ������	 .On the de�nition and computation of a capital stock

invariant under optimization�	 Journal of Economic Theory �	 ��������

Harker	 P� T� ������	 .Alternative models of spatial competition�	 Operations Research

�		 ��������

Harker	 P� T� ������	 .Accelerating the convergence of the diagonalization and projection

algorithms for �nite�dimensional variational inequalities�	 Mathematical Programming

	�	 ������

Harker	 P� T� � Xiao	 B� ������	 .Newton�s method for the nonlinear complementarity prob

lem� A B�di�erentiable equation approach�	 Mathematical Programming 	�	 ��������

Hearn	 D� W� ������	 .The gap function of a convex program�	 Operations Research Letters

�	 ������

Hiriart
Urruty	 J�
B� � Lemar"echal	 C� ������	 Convex Analysis and Minimization Algo�

rithms I	 Vol� ��� of Grundlehren der mathematischen Wissenschaften	 Springer Verlag	

Berlin�

Hogan	 W� W� ������	 .Energy policy models for Project Independence�	 Computers � Op�

erations Research �	 ��������

Hoppe	 R� H� W� � Mittelmann	 H� D� ������	 .A multi
grid continuation strategy for

parameter
dependent variational inequalities�	 Journal of Computational and Applied

Mathematics ��	 ������

Josephy	 N� H� �����a�	 Newton�s method for generalized equations	 Technical Summary

Report ����	 Mathematics Research Center	 University of Wisconsin	 Madison	 Wis

consin�

���

Josephy	 N� H� �����b�	 Newton�s Method for Generalized Equations and the PIES Energy

Model	 PhD thesis	 Department of Industrial Engineering	 University of Wisconsin�

Madison�

Kalvelagen	 E� ������	 .The GAMS I�O library�	 mimeo	 GAMS Development Corporation�

Preliminary Version�

Kostreva	 M� M� ������	 .Elasto
hydrodynamic lubrication� A non
linear complementarity

problem�	 International Journal for Numerical Methods in Fluids 		 ��������

Larsson	 T� � Patriksson	 M� ������	 .A class of gap functions for variational inequalities�	

Mathematical Programming �		 ������

Lemke	 C� E� ������	 .Bimatrix equilibrium points and mathematical programming�	 Man�

agement Science ��	 ��������

Mangasarian	 O� L� ������	 Nonlinear Programming	 McGraw�Hill	 New York�

Mangasarian	 O� L� ������	 .Equivalence of the complementarity problem to a system of

nonlinear equations�	 SIAM Journal of Applied Mathematics ��	 ������

Mangasarian	 O� L� � Solodov	 M� V� ������	 .Nonlinear complementarity as unconstrained

and constrained minimization�	 Mathematical Programming ��	 ��������

Mathiesen	 L� ������	 .An algorithm based on a sequence of linear complementarity problems

applied to a Walrasian equilibrium model� An example�	 Mathematical Programming

��	 �����

Miersemann	 E� � Mittelmann	 H� D� ������	 .Continuation for parametrized nonlinear vari

ational inequalities�	 Journal of Computational and Applied Mathematics ��	 ������

Minty	 G� J� ������	 .Monotone �nonlinear� operators in Hilbert space�	 Duke Mathematics

Journal �
	 ��������

Mor"e	 J� J� � Toraldo	 G� ������	 .On the solution of large quadratic programming problems

with bound constraints�	 SIAM Journal on Optimization �	 �������

���

Murphy	 F� H�	 Sherali	 H� D� � Soyster	 A� L� ������	 .A mathematical programming

approach for determining oligopolistic market equilibrium�	 Mathematical Programming

�		 �������

Murtagh	 B� A� � Saunders	 M� A� ������	 MINOS ��� user�s guide	 Technical Report SOL

�����	 Stanford University�

Ortega	 J� M� � Rheinboldt	 W� C� ������	 Iterative Solution of Nonlinear Equations in

Several Variables	 Academic Press	 San Diego	 California�

Pang	 J� S� ������	 .Newton�s method for B�di�erentiable equations�	 Mathematics of Oper�

ations Research ��	 ��������

Pang	 J�
S� � Gabriel	 S� A� ������	 .NE�SQP� A robust algorithm for the nonlinear com

plementarity problem�	 Mathematical Programming �
	 ��������

Ralph	 D� ������	 .Global convergence of damped Newton�s method for nonsmooth equations	

via the path search�	 Mathematics of Operations Research �
	 ��������

Robinson	 S� M� ������	 .Generalized equations and their solution� Part I� Basic theory�	

Mathematical Programming Study �
	 ��������

Robinson	 S� M� ������	 .Strongly regular generalized equations�	 Mathematics of Operations

Research �	 ������

Robinson	 S� M� ������	 .Mathematical foundations of nonsmooth embedding methods�	

Mathematical Programming 	�	 ��������

Robinson	 S� M� ������	 .Normal maps induced by linear transformations�	 Mathematics of

Operations Research ��	 ��������

Robinson	 S� M� ������	 .Newton�s method for a class of nonsmooth functions�	 Set Valued

Analysis� To appear�

Rockafellar	 R� T� ������	 Convex Analysis	 Princeton University Press	 Princeton	 New

Jersey�

Rockafellar	 R� T� ������	 .Linear
quadratic programming and optimal control�	 SIAM Jour�

nal on Control and Optimization ��	 ��������

���

Rockafellar	 R� T� ������	 .Multistage convex programming and discrete
time optimal con

trol�	 Control and Cybernetics ����
��	 ��������

Rockafellar	 R� T� ������	 .Computational schemes for large�scale problems in extended

linear�quadratic programming�	 Mathematical Programming 	�	 ��������

Rockafellar	 R� T� ������	 Large
scale extended linear
quadratic programming and multistage

optimization	 in S� Gomez	 J� P� Hennart � R� A� Tapia	 eds	 .Advances in Numeri

cal Partial Di�erential Equations and Optimization�	 SIAM Publications	 chapter ��	

pp� ��������

Rockafellar	 R� T� � Wets	 R� J�
B� �����a�	 .A Lagrangian �nite generation technique for

solving linear
quadratic problems in stochastic programming�	 Mathematical Program�

ming Study ��	 ������

Rockafellar	 R� T� � Wets	 R� J�
B� �����b�	 Linear
quadratic programming problems with

stochastic penalties� the �nite generation algorithm	 in V� I� Arkin	 A� Shiraer � R� J�

B� Wets	 eds	 .Stochastic Optimization�	 Lecture Notes in Control and Information

Sciences	 IIASA Series No� ��	 Springer
Verlag	 New York	 Berlin	 pp� ��������

Rutherford	 T� F� ������	 MILES� A mixed inequality and nonlinear equation solver	 Working

Paper	 Department of Economics	 University of Colorado	 Boulder�

Rutherford	 T� F� �����a�	 Applied general equilibrium modeling with MPSGE as a GAMS

subsystem	 Manuscript	 Department of Economics	 University of Colorado	 Boulder�

Rutherford	 T� F� �����b�	 Extensions of GAMS for complementarity problems arising in ap

plied economic analysis	 Manuscript	 Department of Economics	 University of Colorado	

Boulder�

Scarf	 H� E� ������	 The Computation of Economic Equilibria	 Yale University Press	 New

Haven	 Conneticut�

Sellami	 H� ������	 A Continuation Method for Normal Maps	 PhD thesis	 University of

Wisconsin � Madison	 Madison	 Wisconsin�

Tobin	 R� L� ������	 .A variable dimension solution approach for the general spatial equilib

rium problem�	 Mathematical Programming 	
	 ������

���

Varian	 H� R� ������	 Microeconomic Analysis	 W�W� Norton � Company	 New York	 New

York�

���

