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abstract

Improving the economic efficiency of today’s wholesale energy markets has gener-
ated tremendous interest and actions among policy makers, market participants,
and operations researchers. This dissertation aims to contribute by proposing
solutions to some imperative issues at the heart of the deregulated market design,
operations and their policy framework. Mathematical programming, hierarchical
optimization modeling and parallel computing techniques constitute the method-
ological basis of my research. The dissertation is organized as follows.

Chapter 1 presents a pedagogical overview of the power economics models that
exert direct impact on the electricity markets operations and efficiency. The expo-
sition of the models enables a straightforward translation to computer programs
in an algebraic modeling language such as GAMS and AMPL. This chapter also
serves as a first documentation of the GAMS model suite for power systems and
power economics models which are evolving into a “library” of data and models
through a joint project with FERC.

Chapter 2 studies the FERC Order 745 regarding demand response compensa-
tion in organized wholesale energy markets and investigates different approaches
to model and solve a compliant implementation of the Order. In an economic sense,
demand response in the Order context is a trade of “consuming rights” instead of a
sale of energy, therefore it must be traded separately from the energy market. In
this chapter, a bi-level optimization model is developed to simultaneously clear
the energy and demand response markets and a three-phase solution procedure is
devised for large-scale instances.

Chapter 3 analyzes the efficiency and equity issues of the existing payment rules
in the context of unit commitment economic dispatch, and justifies an alternative
pay-as-bid rule for consideration by policy makers. The inefficiency of the existing
payment rule is rooted in its pricing mechanism. This chapter argues that pricing
only the power balance constraints and neglecting the marginal prices of other
constraints lack justification and concludes, based on linear programming duality,
that a theoretically correct pricing mechanism exactly corresponds to a pay-as-



xi

bid payment rule. The effectiveness of this payment rule is then validated via
a simulation of market participants’ bidding behaviors in a realistic experiment
setting.

Chapter 4 extends the demand response discussion and proposes a general
bidding structure that clears obstacles for efficient demand-side participation. It is
observed that the existing bid formats are all separable over time while a significant
and growing segment of demand can be shifted across time and hence has no way
to bid its true valuation of consumption. To meet the growing trend, this chapter
proposes additional bid types that allow deferrable, adjustable and storage-type
loads to better express their value, thus elicit demand response in the most natural
way – direct participation in the market. It is then shown that these bid types are
easily incorporated into the existing market with no technological barrier and that
they preserve the market’s efficiency and incentive-compatibility properties.

Chapter 5 presents a stochastic programming model for ISO New England’s
reserve adequacy analysis that manages the load uncertainty. Due to the large size
of the ISO’s system and the increasing net-load variability caused by increasing
penetration of renewable resources, the problem is computationally challenging.
This chapter develops an effective scenario reduction technique, Derandomization
(or Derand), to identify a small number of scenarios that extract key and unbiased
information from the distribution of random variables. Numerical testing results
show that the stochastic model with only 3 or 5 scenarios outperforms its deter-
ministic counterpart by a significant margin. Results also show that the Derand
method outperforms several conventional scenario reduction methods, and the
solution quality is comparable to the cost based scenario-reduction technique but
with less computational efforts.

Chapter 6 deals with the security-constrained economic dispatch (SCED) which
pivots economic efficiency and operational reliability of the power grid. Post-
contingency corrective actions are modeled in SCED while multiple stages of
rescheduling are considered to meet different security constraints. The result-
ing linear program is not solvable by traditional LP methods due to its large size. A
series of algorithmic enhancements based on the Benders’ decomposition method



xii

are proposed to ameliorate the computational difficulty. In addition, a set of online
measures are devised to diagnose and correct infeasibility issues encountered in
the solution process. The overall solution approach, coded directly in GAMS, is
able to process the “N-1” contingency list in ten minutes for all large network cases
available for experiments.

Chapter 7 proposes a novel solution approach for the SCED problem in a non-
linear AC setting, in which the model is a large-scale nonconvex problem and
is extremely difficult to solve. The proposed approach deals with the scale and
nonconvexity issues separately and effectively. The key point is to approximate
the nonconvex AC feasibility problem with its semidefinite programming (SDP)
relaxation and use these SDP models as a convex subproblem within a Benders’ de-
composition framework. Numerical experiments demonstrate the superior solution
quality of this approach and its tractability for IEEE test cases.
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1 overview of power economics models

1.1 The Power Flow Equation

Operations researchers can construe an electrical grid as a directed graph, in which
the nodes are called buses and the arcs lines. A bus is either a generating unit, gener-
ating electrical energy, or a load, consuming the energy. While the arcs represent the
actual transmission lines, the directional nature of them should not be compared to
that of the usual transportation networks in which the commodity flows only in the
specified direction along the arcs. Rather, the direction of an arc merely indicates
the sign of the parameters associated with the transmission line, which will be used
to compute the bus admittance matrix. The bus admittance matrix is what governs
the energy transmission characteristics of the network. We will come back to it
shortly.

In the electricity realm, one cannot avoid dealing with complex matrices and the
algebra. Simply put, the alternating current carries power in two forms, active and
reactive. The active power is the rate of energy that gets delivered to and consumed
by the loads (such as lighting a light bulb or running an electric motor, etc.) while
the reactive power is a kind of energized wave swinging back and forth along the
lines and does not transfer energy. Even though the reactive power does no work
at the loads, abundant amount of it must be present at practical loads to account
for the loads’ reactance. Therefore, the energy demand of a load always comes in
the form of a complex number, with the real part standing for the active power
and the imaginary part for the reactive power. As a convention, both numbers
use negative signs for demand and positive signs for generation. Similarly, the
power supplied by a generator is also quantified by a complex number. Both the
active and the reactive power can be measured in MVA (megavolt ampere) and
the active power is most often measured in MW (megawatt, 1 MW = 1 MVA). In a
transmission network, the total active power supplied should equal the total active
power consumed plus the transmission losses. This is a basic equation in power
systems.
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Then how does the energy flow in the network? It turns out that the word
“flow” is somewhat off target. Unlike in a transportation network where the flow
balance is observed at every node (inbound equals outbound), the power grid
simply “distributes” the roles (positive sign for generating units and negative sign
for loads) and shares (how much power to contribute or absorb) among the buses
as a whole, in which case the microscopic view of the flow becomes irrelevant. For
a network of n buses andm lines, the bus admittance matrix is a n by n complex
matrix, denoted by Ybus. For power flow and related computations, Ybus is usually
known or can be computed from other physical parameters of the transmission
system. With Ybus, the power “distribution” can be computed as described below.
Each bus k has a complex control variable called the bus voltage phasor

Vk = |Vk|e
iδk (1.1)

where |Vk| is the voltage magnitude, δk the phase angle, and i the imaginary unit,
i.e., i = sqrt( − 1). Alternatively, Vk can be written in the complex form as Vk =

V real
k + iV

imag
k which gives

|Vk|
2 = (V real

k )2 + (V
imag
k )2 (1.2)

Collectively, the phasors form a vector V ∈ Cn. The complex power vector
S ∈ Cn is then calculated as

S = V . ∗ (YbusV)
∗ (1.3)

where .∗ is element-by-element multiplication and the superscripted ∗ is the conju-
gate operator, all in the complex field. Let P ∈ Rn denote the real (active) power
andQ ∈ Rn the reactive power, then one has S = P+Qj. As discussed above, Pk is
positive if bus k is a generating bus and negative if it is a load bus.

There are four fundamental quantities related to a bus k, namely, V real
k , V imag

k

(or alternatively |Vk| and δk), Pk and Qk. In the power flow model, for each bus
two of the four quantities are given as parameters and the other two are unknown.
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Specifically, for a generating bus, Pk and |Vk| are known while Qk and δk are
unknown; for a load bus, Pk andQk are known whileV real

k andV imag
k (or equivalently

|Vk| and δk) are unknown; and for a swing bus, V real
k and V imag

k are known and Pk
andQk are unknown. So in a network of n buses, there are altogether 2n unknowns.
On the other hand, equations (1.1) and (1.2), after plugging in the known parameter
values, provide 2n nonlinear equations. The task of the power flow study is to solve
this system of nonlinear equations.

For the ease of presenting complex equations in a real formulation, an inter-
mediate variable Ik is introduced for each bus k to represent the complex current
generated by the bus. It is defined as

I = YbusV (1.4)

and it relates to the complex S and V via the following equation,

S = V . ∗ I∗ (1.5)

or equivalently for each bus k,
Sk = VkI

∗
k (1.6)

The power flow model is presented below, following the list of notations in Table
1.1.

Ireal
k =

∑
l∈BUS

(Yreal
bus (k, l)V real

l − Y
imag
bus (k, l)V imag

l ), ∀k ∈ BUS (1.7)

I
imag
k =

∑
l∈BUS

(Yreal
bus (k, l)V imag

l + Y
imag
bus (k, l)V real

l ), ∀k ∈ BUS (1.8)

Pk = V real
k Ireal

k + V
imag
k I

imag
k , ∀k ∈ BUS (1.9)

Qk = V real
k (−I

imag
k ) + V

imag
k Ireal

k , ∀k ∈ BUS (1.10)

|Vk|
2 = (V real

k )2 + (V
imag
k )2, ∀k ∈ BUS (1.11)
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Table 1.1: Notations for the Complex Formulation

BUS The set of buses, also denoted by B

k, l ∈ BUS The indices of the buses
Yreal

bus (k, l) Real part of the (k,l)-th element of the Ybus matrix
Y

imag
bus (k, l) Imaginary part of the (k,l)-th element of the Ybus matrix
V real
k Real part of the voltage phasor of bus k
V

imag
k Imaginary part of the voltage phasor of bus k

|Vk| Voltage magnitude of the bus k
Ireal
k Real part of the current generated by bus k
I

imag
k Imaginary part of the current generated by bus k
Pk Real power output of bus k
Qk Reactive power output of bus k

One can do a simple counting to verify that the model is a square system. The
lower part of Table 1 lists seven variables for each bus, among which two have fixed
values, so there are altogether 5n unknown variables. And equations (1.7) to (1.11)
give 5n equations.

1.2 Computing the Bus Admittance Matrix Ybus

Ybus is where information about transfer capability of the network is encapsulated.
From a modeler’s standpoint, it is merely the raw data organized in a matrix
form and this matrix is supposed to be provided for power flow and other related
computations. Indeed, every modeler’s life would have been easier if Ybus’s were
provided in the benchmark data sets, not because it is difficult to compute, but
because there are multiple versions of formulas for Ybus, or its equivalence in the
polar format, being used in the literature depending on how much network detail an
author chooses to include or neglect. This is a roadblock for comparison work that
involves models and formulations from different sources, and is especially annoying
when the specific formula being used is not articulated in the work. Therefore,
the formation of the Ybus matrix is not something that a responsible modeler could
tolerate to remain mysterious. Dobson et al. (2001) provide an excellent engineering



5

tutorial for computing and analyzing the power transfer characteristics of a network.
This section gives a relatively comprehensive formula for computing Ybus, which

involves all the relevant quantities in the IEEE Common Data Format (CDF) docu-
mented by Christie (1993). This formula is consistent with that used in the makeY-
bus.m routine in the Matpower package (Zimmerman et al., 2011), but the differences
between the two are also worth noting. In some cases, there are multiple phys-
ical lines, called circuits, running between two buses, so in the IEEE CDF each
line is identified by a triple, e.g., (k, l, c), meaning that the line is the c-th circuit
between bus k and bus l and the positive sign direction is along (k, l). However,
the MatPower case format (see caseformat.m) has obsoleted the circuit identifier, i.e.,
the third element in the triple, and allowed the data set to contain duplicate (k, l)
entries. The drawback is apparent. For one, the makeYbus.m routine based on this
format heavily uses Matlab specific matrix manipulation functions which obscures
physical interpretations; for another, allowing for duplicate data entries is not a
common practice in the mathematical modeling context, hence limits the usability
of the case format outside the Matlab platform.

Let CIR be the set of circuit numbers and more notations are summarized in
Table 1.2. The third column indicates the column ranges that the quantity occupy
in IEEE CDF data files.

For each line (k, l, c), the conductance and susceptance are

G(k,l,c) =
r(k,l,c)

r2
(k,l,c) + x

2
(k,l,c)

(1.12)

and
B(k,l,c) =

−x(k,l,c)

r2
(k,l,c) + x

2
(k,l,c)

(1.13)

respectively. And for each bus k, define the shunt admittance Yk by

Yreal
k =

Gsk

baseMVA
(1.14)

Y
imag
k =

Bsk

baseMVA
(1.15)
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Table 1.2: Symbols for the Branch data

Symbol Quantity In CDF
k ∈ BUS From bus number BR 1-4
l ∈ BUS To bus number BR 6-9
c ∈ CIR Circuit number BR 17
r(k,l,c) Branch resistance p.u. BR 20-29
x(k,l,c) Branch reactance p.u. BR 30-40
bb(k,l,c) Line charging susceptance p.u. BR 41-50
t(k,l,c) Transformer ratio BR 77-82
α(k,l,c) Transformer angle (deg) BR 84-90
k ∈ BUS Bus number BU 1-4
Gsk Shunt conductance p.u. BU 107-114
Bsk Shunt susceptance p.u. BU 115-122
baseMVA MVA Base TI 32-37

Then the diagonal entries of the Ybus can be computed as

Ybus(k,k) =
∑
j∈BUS
c∈CIR

G(j,k,c) + i(B(j,k,c) +
bb(j,k,c)

2
)

+
∑
j∈BUS
c∈CIR

G(k,j,c) + i(B(k,j,c) +
bb(k,j,c)

2 )

t2
(k,j,c)

+ (Yreal
k + iY

imag
k )

(1.16)

and the off-diagonal entries are

Ybus(k, l) =



−
∑
c∈CIR

G(k,l,c) + iB(k,l,c)

t(k,l,c)e
−iα(k,l,c)

, if (k, l) exists

−
∑
c∈CIR

G(l,k,c) + iB(l,k,c)

t(l,k,c)e
iα(l,k,c)

, if (l,k) exists

0, otherwise

(1.17)

Since equation (1.17) contains complex quantities, a step further is needed to
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“realize” them. Re-write the transformer tap by

tapreal
(k,l,c) = t(k,l,c) cos(α(k,l,c)) (1.18)

tap
imag
(k,l,c) = t(k,l,c) sin(α(k,l,c)) (1.19)

then the real and imaginary parts of Ybus can be expressed separately using real
quantities, as follows.

Yreal
bus (k, l) =



∑
j∈BUS
c∈CIR

G(j,l,c) +
∑
j∈BUS
c∈CIR

G(k,j,c)

t2
(k,j,c)

+ Yreal
k , if k = l

∑
c∈CIR

−G(k,l,c)tap
real
(k,l,c) + B(k,l,c)tap

imag
(k,l,c)

t2
(k,l,c)

, if (k, l, c) exists

∑
c∈CIR

−G(l,k,c)tap
real
(l,k,c) − B(l,k,c)tap

imag
(l,k,c)

t2
(l,k,c)

, if (l,k, c) exists

0, otherwise

(1.20)

Y
imag
bus (k, l) =



∑
j∈BUS
c∈CIR

(B(j,l,c) +
bb(j,l,c)

2
) +

∑
j∈BUS
c∈CIR

(B(k,j,c) +
bb(k,j,c)

2 )

t2
(k,j,c)

+ Y
imag
k , if k = l

∑
c∈CIR

−G(k,l,c)tap
imag
(k,l,c) − B(k,l,c)tap

real
(k,l,c)

t2
(k,l,c)

, if (k, l, c) exists

∑
c∈CIR

G(l,k,c)tap
imag
(l,k,c) − B(l,k,c)tap

real
(l,k,c)

t2
(l,k,c)

, if (l,k, c) exists

0, otherwise
(1.21)



8

Table 1.3: Electrical Line Characteristics Measures

Term Symbol A measure of ...
Resistance R the opposition to the passage of an electric current
Reactance X the opposition to a change of current
Impedance Z the opposition to alternating current (AC)
Conductance G the ease of electricity to flow along the line
Susceptance B the ease of polarization of the line
Admittance Y the ease to allow an AC to flow

Vk

ᵟk

Vl

ᵟl

Zklc ZlkcRklc Xklc 1:tklce
jα

bbklcbbklc

Figure 1.1: Power engineering view of a transmission line

1.3 Polar Coordinates Formulation of the Power Flow

Another prevalent formulation uses the trigonometric form of complex numbers
and more expressively involves the physical characteristics of the lines and buses in
the equations, instead of encapsuling them in the Ybus matrix. In this formulation,
the power flow is calculated line by line and the flow balance constraints are enforced
at each bus, thus the traditional “network flow” point of view becomes relevant.

In order to make sense of this formulation, some electrical terms are symbolized
in Table 1.3 and a graphical depiction of a typical transmission line is given in Figure
1.1. Details are abundant in any introductory electrical engineering textbook, hence
are omitted here for succinctness.

For a single transmission line, the following relations hold,

Y = G+ jB, Z = R+ jX, Y =
1
Z

, (1.22)



9

Table 1.4: Notations for the Polar Formulation

Vi The voltage magnitude of bus i
δi The voltage angle of bus i relative to the swing bus
tk Ideal transformer tap ratio on line k
αk Ideal transfomer phase angle shift on linek k
Gk = Rk/(R

2
k + X

2
k), conductance of line k

Ωk = Xk/(R
2
k + X

2
k), negative susceptance of line k

B
cap
k Line charging capacitance of line k
ZPijk Real power flowing from bus i to j along line k between them
ZQijk Reactive power flowing from bus i to j along line k between them
yPi Net real power injection into the network at bus i
yQi Net reactive power injection into the network at bus i
I(i) Set of buses which are linked to bus i by a line

and therefore,
G =

R

R2 + X2 , B = −
X

R2 + X2 (1.23)

As the formation of the Ybus matrix is clear, it is tempting to expand the basic
power equations (1.3) to (1.6) a little bit and write

Sk = Vk(
∑
l∈BUS

Ybus(k, l)Vl)∗

=
∑
l∈BUS

Vk(Ybus(k, l)Vl)∗

=
∑
l∈BUS

S(k,l)

=
∑
l∈BUS

P(k,l) + iQ(k,l)

=
∑

l∈BUS\{k}

(
∑
c∈CIR

P(k,l,c) + i
∑
c∈CIR

Q(k,l,c)) + (P(k,k) + iQ(k,k))

(1.24)

where S(k,l) represents the complex power flowing from bus k to bus l, with P(k,l)

being its real part andQ(k,l) its imaginary part. The last line of the above equations
further split the power flows in circuits. Since there is no circuit between a bus k
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and itself, P(k,k) + iQ(k,k) is used to denote the flow from bus k to itself. Then using
equation (1.1) and the Ybus(k, l) formula given in (1.16) and (1.17), the algebraic
formulas for P(k,l,c), Q(k,l,c), P(k,k) and Q(k,k) can be derived.

P(k,l,c) =



(|Vk||Vl|/t(k,l,c))(−G(k,l,c) cos(δk − δl − α(k,l,c))

− B(k,l,c) sin(δk − δl − α(k,l,c))),
if (k, l, c) exists

(|Vk||Vl|/t(l,k,c))(−G(l,k,c) cos(δk − δl + α(l,k,c))

− B(l,k,c) sin(δk − δl + α(l,k,c))),
if (l,k, c) exists

0, otherwise
(1.25)

Q(k,l,c) =



(|Vk||Vl|/t(k,l,c))(B(k,l,c) cos(δk − δl − α(k,l,c))

−G(k,l,c) sin(δk − δl − α(k,l,c))),
if (k, l, c) exists

(|Vk||Vl|/t(l,k,c))(B(l,k,c) cos(δk − δl + α(l,k,c))

−G(l,k,c) sin(δk − δl + α(l,k,c))),
if (l,k, c) exists

0, otherwise
(1.26)

P(k,k) = |Vk|
2(

∑
j∈BUS
c∈CIR

G(j,k,c) +
∑
j∈BUS
c∈CIR

G(k,j,c)

t2
(k,j,c)

+ Yreal
k ) (1.27)

Q(k,k) = −|Vk|
2(

∑
j∈BUS
c∈CIR

(B(j,k,c) + bb(j,k,c)/2)

+
∑
j∈BUS
c∈CIR

B(k,j,c) + bb(k,j,c)/2
t2
(k,j,c)

+ Y
imag
k )

(1.28)

Note that the symbols P and Q are somewhat overused (overloaded) in the
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Table 1.5: More Notations for the Polar Formulation

Line Set of lines
ZP(k,l,c) Real power flowing from bus k to l on the c-th circuit between them
ZQ(k,l,c) Reactive power flowing from bus k to l on the c-th circuit between them
WP
k Real power flowing from bus k to bus k

WQ
k Reactive power flowing from bus k to bus k

Pk Net real power injection into the network at bus k
Qk Net reactive power injection into the network at bus k

above derivations. Their meanings depend on the number of subscripts that go
with them. Take P for example, Pk represents the real power output (injected into
the network) from bus k, P(k,l) is the real power flowing from bus k to bus l from
all circuits between them (or no circuit if k = l), and P(k,l,c),k 6= l is the real power
flowing from bus k to bus l along the c-th circuit between k and l. The following
relations hold,

Pk =
∑
l∈BUS

P(k,l) =
∑

l∈BUS\{k}
c∈CIR

P(k,l,c) + P(k,k) (1.29)

The same interpretation goes to Q. Symbol overloading is not a standard feature
for modeling languages such as GAMS, and the bypass is to use more symbols.
Table 1.5 and the following equations will do this.

For each line (k, l, c) ∈ Line,

ZP(k,l,c) = (|Vk||Vl|/t(k,l,c))(−G(k,l,c) cos(δk − δl − α(k,l,c))

− B(k,l,c) sin(δk − δl − α(k,l,c)))
(1.30)

ZP(l,k,c) = (|Vl||Vk|/t(k,l,c))(−G(k,l,c) cos(δl − δk + α(k,l,c))

− B(k,l,c) sin(δl − δk + α(k,l,c)))
(1.31)
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ZQ(k,l,c) = (|Vk||Vl|/t(k,l,c))(B(k,l,c) cos(δk − δl − α(k,l,c))

−G(k,l,c) sin(δk − δl − α(k,l,c)))
(1.32)

ZQ(l,k,c) = (|Vl||Vk|/t(k,l,c))(B(k,l,c) cos(δl − δk + α(k,l,c))

−G(k,l,c) sin(δl − δk + α(k,l,c)))
(1.33)

For each bus k ∈ BUS,

WP
k = |Vk|

2(
∑
j∈BUS
c∈CIR

G(j,k,c) +
∑
j∈BUS
c∈CIR

G(k,j,c)

t2
(k,j,c)

+ Yreal
k ) (1.34)

WQ
k = −|Vk|

2(
∑
j∈BUS
c∈CIR

(B(j,k,c) + bb(j,k,c)/2) +
∑
j∈BUS
c∈CIR

B(k,j,c) + bb(k,j,c)/2
t2
(k,j,c)

+ Y
imag
k )

(1.35)

Pk =
∑

(k,l,c)∈Line

ZP(k,l,c) +
∑

(l,k,c)∈Line

ZP(k,l,c) +W
P
k (1.36)

Qk =
∑

(k,l,c)∈Line

ZQ(k,l,c) +
∑

(l,k,c)∈Line

ZQ(k,l,c) +W
Q
k (1.37)

Suppose that there are m lines and n buses, i.e., |Line| = m and |BUS| = n,
equations (28) to (35) represent a total of 4m+ 4n equations and contain 4m+ 6n
variables. Remember that for each bus k, two of the four quantities |Vk|, δk, Pk and
Qk are fixed, which reduces the number of unknowns by 2n. Again, we have a
square system.

Line losses are readily computed. Let lP(k,l,c) and lQ(k,l,c) be the losses of real and
reactive power, respectively, on line (k, l, c). The following relations hold,

lP(k,l,c) = Z
P
(k,l,c) + Z

P
(l,k,c) (1.38)

lQ(k,l,c) = Z
Q
(k,l,c) + Z

Q
(l,k,c) (1.39)
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1.4 DC Approximation

Nonlinear nonconvex models are hard to solve, intractable, and the local solution
usually depends on the starting point. In many circumstances such as in the
real-time dispatch of generating resources, power flow models or other models
built upon the power flow equations need to be solved frequently and reliably.
Such requirements call for a set of linear equations that approximate the nonlinear
behavior of the power system so as to substitute for the nonlinear equations in
the power flow model. Models of this type are called DC power flow models,
whereas in contrast the original nonlinear models are often called AC power flow
models. Stott et al. (2009) provide a review of DC power flow models. Common
approximations and assumptions made in DC power flow models include:

• Completely ignore the power balance equations for reactive power.

• Assume that all voltage magnitudes are identically one per unit, i.e., set all
|Vk|’s to one.

• Ignore all line losses, i.e., set the resistance r(k,l,c) to zero for each line (k, l, c).

• Ignore tap dependence in the transformer reactance, i.e., set t(k,l,c) = 1 and
α(k,l,c) = 0 for each line (k, l, c).

• Assume that the voltage angle difference δk − δl across any line (k, l, c) is
sufficiently small so that cos(δk − δl) ≈ 1 and sin(δk − δl) ≈ δk − δl.

These assumptions eliminate many variables and equations compared to the
AC power flow models, resulting in a set of strikingly simple linear equations.

For each line (k, l, c) ∈ Line,

ZP(k,l,c) = B(k,l,c)(δl − δk) (1.40)

where B(k,l,c) = −1/(xk,l,ctk,l,c) (the line susceptance taking account of the effect of
the transformer ratio, see Table 1.2 for notation; set tk,l,c = 1 if transformer tap is
ignored), and for each bus k ∈ BUS,
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Pk =
∑

(k,l,c)∈Line

ZP(k,l,c) +
∑

(l,k,c)∈Line

ZP(k,l,c) (1.41)

Remember that for a bus k, either δk or Pk has a fixed value. Therefore, the DC
model remains a square system with (m+ n) equations and the same number of
unknowns.

A vector format of the DC power flow equations is often used in the literature.
Denote the set of network arcs by A = {(k, l, c)|(k, l, c) ∈ LINE or (l,k, c) ∈ LINE}.
Let A be the arc-bus incidence matrix of dimension |A|× |B|. Nonzero entries of A
are given by

Ain =

−1, if arc i originates from bus n

1, if arc i points to bus n

Let B be an |A|× |A| diagonal matrix, the Bii entry of which is the susceptance of arc
i ∈ A (for example, if i = (k, l, c), then Bii = Bk,l,c). Then the power flow equations
(1.40) and (1.41) can be respectively rewritten as

Z = BAδ (1.42)

P = ATZ (1.43)

The incidence matrix A of a connected network has a rank number of one less than
the number of nodes, i.e., rank(A) = |B| − 1, which would make the above linear
system under-determined. This issue can be mended by fixing the voltage angle at
the swing bus to zero by

eT1 δ = 0 (1.44)

where e1 is a |B|-by-1 vector with the first element (assuming the first bus is the
swing bus) equal to 1 and all other elements equal to 0, i.e., e1 = [1 0 0 . . . 0]T .
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1.5 Economic Dispatch

Although power flow models may appear in various forms, they are essentially
square systems of equations. In these systems, two of the four fundamental quan-
tities relating to each bus are fixed and the other two are unknown. The goal of
the power flow study is to solve these system of equations to obtain the unknown
quantities. In contrast, the essence of the economic dispatch is to relax (unfix and
set bounds) certain quantities that are otherwise fixed in the power flow model,
set an objective function, and then solve the resulting optimization model. The
quantities being relaxed are usually the real power outputs of the generating buses,
which then become variables to be determined in the lowest cost way. Economic
dispatch problem is also called optimal power flow (OPF) problem. Cain et al.
(2012) provide a historical review of the OPF problem and formulations, with an
emphasis on the potential cost savings of increased efficiency of the dispatch.

The objective function in an economic dispatch model typically captures the
cost of production. There are two prevalent forms for the cost function, quadratic
and piece-wise linear. The quadratic form is rooted in the fact that the heat rate of a
traditional coal-fueled generator is a quadratic function of its MW output level. Most
of the power systems test cases have quadratic generation costs. Let GEN ⊂ BUS,
for a generating unit k ∈ GEN, the quadratic cost function is determined by three
parameters αk, βk and γk, and takes the following form,

Hk(Pk) = βkPk + γkP
2
k (1.45)

The piece-wise linear form of the cost function is mainly used in the ISOs’ market
clearing practice, where the generators submit to the ISOs their generation offers by
break points, i.e., the (dollar/MW, MW output) pairs, which serve as the parameters
for a piece-wise linear cost function. Convex piece-wise linear cost functions can be
formulated by linear functions and inequalities, in at least two ways.

1. Let S(k) be the set of linear “pieces” in the cost function of unit k, with c1
k,s

and c0
k,s being the linear coefficient and the constant term, respectively, of
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piece s. Assume that {c1
k,s, s ∈ S(k)} is in increasing order which ensures the

convexity of the cost function, then the cost function, denoted here byHk(Pk),
could be characterized by

Hk > c1
k,sPk + c

0
k,s ∀o ∈ S(k) (1.46)

Hk > 0 (1.47)

2. LetO(k) be the set of offer segments of unit k, and for each o ∈ O(k) the offer is
given by a price-quantity pair (ck,o, P̄k,o), indicating that for the increment of
P̄k,o MW output, the marginal cost is ck,o dollars/MW. Assume that {ck,o,o ∈
O(k)} is in increasing order to ensure the convexity of the cost function, and
let the decision variable Pk,o be the MW dispatched in segment o, then the
total cost Hk(Pk) can be characterized by the following constraints,

Hk(Pk) =
∑

o∈O(k)

ck,oPk,o (1.48)

Pk,o 6 P̄k,o ∀o ∈ O(k) (1.49)

Pk =
∑

o∈O(k)

Pk,o (1.50)

Note that both of the two formulations rely on the fact that the cost Hk is being
minimized in the objective.

Each generating unit k ∈ GEN has a lower limit Pmin
k and an upper limit Pmax

k

on its real power output, which corresponds to inequalities of the following type,

Pmin
k 6 Pk 6 Pmax

k (1.51)

Reactive power outputs may be subject to similar inequalities. Depending on
circumstances, there might be restrictions on voltage angles, line flows, line losses
and so forth.

In terms of the real power, the nodal balance of injection and withdrawal is
implied in the power flow equations, e.g., in (1.9), (1.29) or (1.41). However, many
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power economics models such as economic dispatch and unit commitment, are
based on the DC approximation of the network or not considering the network at all.
It is a convention to symbolize the distinction between the generation (injection) and
demand (withdrawal). In such contexts, Pk is taken as the (positive) generation at
bus k, whereas a parameterDk is designated as the demand (or negative generation)
at bus k, and the power balance constraint is expressed as

Pk = Dk ∀k ∈ GEN (1.52)

1.6 Unit Commitment

Regarding the economic dispatch model discussed above, one might question the
role of the constant term αk in the cost parameters, as well as the validity of setting
Pmin
k to any value other than zero. In effect, the parameter αk represents a fixed

cost that is incurred regardless of the output of the generator, which is also termed
“no-load” cost. A positive Pmin

k parameter indicates the generator must maintain
that level of output as long as it is in the on state, which is also termed “Economic
Minimum” in a generator’s bid data. These parameters are inputs to the unit
commitment problem. The demand varies hour by hour, accordingly the optimal
dispatch of generators will also vary hour by hour. However, it is impractical and
uneconomical to turn on and off a generator too frequently. Unit commitment is a
task of choosing among the available generating units the ones that are to be “up
and running” for a contiguous blocks of time during the scheduling horizon, so a
temporal dimension is needed in its model.

Suppose the planning horizon is discretized by a set T = {1, 2, . . . , |T |} of |T |
periods. For example, the day-ahead market concerns the hourly unit commitment
for the next 24 hours, so each period is a hour. A binary variable yk,t ∈ {0, 1} is
used to indicate whether a generator k is committed in period t. Then (1.51) can be
rewritten as follows,

Pmin
k yk,t 6 Pk,t 6 P

max
k yk,t (1.53)
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Let Cnoload
k represent the no-load cost, which is given by

Cnoload
k =

∑
t∈T

αkyk,t (1.54)

A committed unit k in hour t may not be running at its full capacity, and the
residual generating capability defined by

Pres
k,t = max{Pmax

k yk,t − Pk,t, 0} (1.55)

contributes to the system’s spinning reserve, the generating capacity available to
dispatch within a short period of time in case of supply disruption or demand
surges. The system spinning reserve requirement is then written as∑

k∈GEN

Pres
k,t > P

R
t (1.56)

where PR
t is a piece of data denoting the minimum required reserve amount during

hour t.
Unit commitment problem is centered on the recognition that the startup and

shutdown processes of most thermal based generating units are slow and costly,
which deserves explicit treatment in a model. In general, there are minimum up/-
down time constraints, ramping constraints and startup cost terms to be considered.

The minimum uptime (or downtime) constraints require that once a unit is
committed (or uncommitted), it has to remain committed (or uncommitted) for a
minimum of τUp

k (or τDown
k ) hours. Suppose that it costs csk dollars per startup. Two

formulations are provided below.

1. If a unit k is turned on in hour t, then the set of hours during which it must
be up and running is

T
Up
k,t = {t1 ∈ T |t+ 1 6 t1 6 t+ τ

Up
k − 1} (1.57)

Similarly, if a unit k is shut down in hour t, then the set of hours during which
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it must remain offline is

TDown
k,t = {t1 ∈ T |t+ 1 6 t1 6 t+ τ

Down
k − 1} (1.58)

Note that TUp
k,t and TDown

k,t may be empty. With these two sets defined for each
k ∈ GEN and t ∈ T , the minimum up/down time constraints can be written
as

yk,t − yk,t−1 6 yk,t1 ∀t ∈ T\{1}, t1 ∈ TUp
k,t (1.59)

yk,t−1 − yk,t 6 1 − yk,t1 ∀t ∈ T\{1}, t1 ∈ TDown
k,t (1.60)

The startup cost Csk of unit k during the entire horizon is

Csk =
∑
t∈T

csk(yk,t − yk,t−1) (1.61)

2. Let binary variables ystart
k,t and yshut

k,t indicate that unit k is started up and shut
down in hour t, respectively. Their relations with yk,t, as well as the minimum
up and down time constraints are then expressed by the following constraints.

ystart
k,t > yk,t − yk,t−1 ∀t (1.62)

yshut
k,t > yk,t−1 − yk,t ∀t (1.63)

−

t∑
t ′=t−τ

Up
k +1

ystart
k,t ′ + uk,t > 0 ∀t (1.64)

−

t∑
t ′=t−τ

Up
k +1

yshut
k,t ′ − uk,t > −1 ∀t (1.65)

and the startup cost is
Csk =

∑
t∈T

csky
start
k,t (1.66)

Ramping constraints limit the magnitude of change in a unit’s output level
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between successive hours. Typical ramping constraints take the form

Pk,t−1 − ∆
Down
k 6 Pk,t 6 Pk,t−1 + ∆

Up
k ∀t ∈ T\{1} (1.67)

where ∆Up
k and ∆Down

k are the ramp-up and ramp-down rates (MW/hour), respec-
tively, of the generating unit k.

The exclusion of the case t = 1 in the constraints (1.59), (1.60) and (1.67) hints
a caveat: the model isolates the current planning horizon (e.g., a 24-hour period)
from the chain of time, and assume a clean initial state, as well as a worry-free
ending state. For example, the model could freely set yk,1 = 1 without considering
whether the unit k has fully “cooled down” (been offline for τDown

g hours) since the
last shutdown, or it could turn on a unit in the last hour of the day not worrying
about the minimum uptime of constraints extending to the next day.

To mend this loophole, one could save the relevant information derived from the
solution and use it to form the initial state constraints for the next run. In particular,
the following data can be easily updated after each run:

• U1 and D1, subsets of GEN, the members of which must be Up and Down,
respectively, in the first hour of the next run

• Hk, the number of hours the first hour commitment state (up or down, as
indicated by U1 and D1) must last in the next run

• PL
k, the last hour output level of unit k in the current run, i.e., PL

k = Pk,24

With these extra data, the following constraints could be added to the model.

yk,t = 1 ∀k ∈ U1 (1.68)

t 6 Hkyk,t = 0 ∀k ∈ D1, t 6 Hk (1.69)

PL
k − ∆

Down
k 6 Pk,1 6 P

L
k + ∆

Down
k ∀k (1.70)
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And the total start-up cost of unit k is updated as

CS
k =

∑
t∈T\{1}

αS
kmax{yk,t − yk,t−1, 0}+ 1{k/∈U1}α

S
kyk,1 (1.71)

1.7 Market Clearing Price and Locational Marginal
Price

The U.S. electricity market has undergone dramatic changes over the last two
decades. Historically, electricity was supplied by vertically integrated utility com-
panies subject to the cost-of-service regulation. Essentially, it was the suppliers who
determined the price and the consumers who determined the transaction quantity.
The contemporary wholesale market design is predicated on bid-based, competitive
participation of both suppliers and demanders. Due to the characteristics of electric
energy and its marketplace over the grid, centralized short-term (e.g., day-ahead)
resource planning and real-time dispatch and control are indispensable to facilitate
the competitive market. Independent System Operators (ISO) or Regional Transmis-
sion Organizations (RTO) are typically encharged of these responsibilities, under
the regulation of Federal Energy Regulatory Commission (FERC). In its market
orchestration, an ISO/RTO’s statutory objective is maximizing the social welfare
subject to resource and security constraints.

In the competitive market, the market clearing price (MCP), as well as the trans-
action quantity, is now determined by the market equilibrium, in economic terms,
the intersection of the upward sloping supply curve and the downward sloping de-
mand curve. When these two curves are accurate and unmanipulated, the resulting
equilibrium maximizes the social welfare.

The locational marginal price (LMP) is defined as the cost of delivering the last
unit (MW) of real power to a network node, at the current optimal dispatch solution.
Mathematically, LMP is the optimal Lagrangian multiplier (also known as dual
variable) corresponding to the real power balance equation, e.g., equation (1.9),
(1.29), (1.41) or (1.52) depending on the formulation, in the economic dispatch
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model. In an ideal case where the power flow on transmission lines were within the
lines’ thermal limits (no congestion) and the lines were conductive enough to have
negligible resistance (no loss), the LMPs would be the same for all buses. But such
ideal cases are uncommon in reality, which explains why the “location” matters.
The congestion and loss components in the LMP differ by locations (buses) and
reflect the relative difficulty and inefficiency to deliver power to a network node.

It is important to note that MCP and LMP are not equivalent by definition.
However, in today’s ISO- and RTO- run markets, LMP is widely used as a substitute
for MCP. This gives rise to a myriad of efficiency, fairness and equity issues, some
selected ones of which will be discussed in later chapters.

1.8 Data Sources and Formats

One of the most referenced data sources in power flow research is the Power Systems
Test Case Archive at the University of Washington, see Christie (1993). The archive
contains five power flow test cases named by the number of buses, including 14-bus,
30-bus, 57-bus, 118-bus and 300-bus cases. The data in these cases are believed to
be representative of actual power systems of similar sizes. In particular, the cases
of 14-bus up to 118-bus are portions of the American Electric Power System in the
Midwestern U.S. as of the early 1960’s, and the 300-bus case was developed in 1993
by an IEEE Test Systems Task Force. The data are stored in the IEEE Common Data
Format (CDF), a text based file format inherited from the punch card era. Among
other restrictions, CDF circumscribes the decimal length of each field or column,
which to some extent limits the precision; furthermore, CDF contains neither the
generator cost information nor the inter-temporal characteristics such as minimum
up/down time and ramping rates, which are needed in many power economics
models.

Matpower, a package of Matlab M-files for solving power flow and optimal
power flow problems (Zimmerman et al., 2011), uses the Matlab way to store data.
It encodes all the pertinent data of a case in a single struct and the users can edit
the data as plain text. Some fields in the CDF are obsoleted and other fields such as
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the generator cost parameters are added. Comparatively speaking, the Matpower
case format is more advanced and more convenient to work with than CDF, but it
is not an ultimate format without any limitation. The dynamics of the electricity
market often require the model to handle demand forecasts in finer time scales
(which means there needs to be a time axis in the demand data structure), or treat
the demands as stochastic quantities rather than deterministic ones. Likewise, the
generator cost parameters also come in various forms in practice. Different ancillary
and security parameters and constraints may also need accommodations in unit
commitment models. None of these are reflected in the Matpower case format.

To facilitate research, FERC publishes in its online eLibrary some sets of the
market input data. Each set is of industrial scale (e.g., more than 1000 generators,
spanning 24 hours) and includes generator offers, demand forecasts, demand bids,
demand response offers and virtual bids. The data are derived from the PJM RTO’s
market operation data. These data, as well as a documentation, are available to the
public and can be found on the FERC website at

http://www.ferc.gov/industries/electric/indus-act/market-planning/rto-comm

it-test.asp

However, the underlying network data are considered Critical Energy Infras-
tructure Information (CEII) and inaccessible to the public.

The design of a common data protocol is imperative for promoting an open and
efficient research environment. Apart from the advantage in data exchange, a com-
mon protocol also helps present the problem inclusive of all facets, so researchers
are aware of the big picture while focusing on certain aspects of the problem. At the
same time, assumptions or simplifications made in a particular research work can
be more explicitly exposed to other researchers. The idea of building hierarchical
models to facilitate the planning and operation of power systems on multiple scales
is elaborated in Ferris (2011).

http://www.ferc.gov/industries/electric/indus-act/market-planning/rto-commit-test.asp
http://www.ferc.gov/industries/electric/indus-act/market-planning/rto-commit-test.asp


24

1.9 GAMS Model Suite

The power flow models, economic dispatch (ACOPF) models and the unit commit-
ment models described in the previous sections are implemented in GAMS. Table
4 lists the model files and auxiliary files currently in the suite.

Most models use the Matpower case data as the source data. Specifically, a
Matpower case data file is a M-file with the name caseXX.m, where XX is a number
indicating the number of buses in the case. For example, case14.m is the data file
for the 14-bus case and case300.m is the data file for the 300 bus case. The following
paragraphs will use the 14-bus case to illustrate the usage of files in the suite. Note
that togdx.m uses the Matlab-GAMS interfacing utility called GDXMRW which
requires separate installation. For how to install GDXMRW, refer to Ferris et al.
(2011).

Unless the file case14.gdx has already been generated, the following steps are
needed to generate it.

1. In Matlab, make sure case14.m and togdx.m are both included in the path,
then execute

>> togdx(case14,‘case14raw’);

This will generate the case14raw.gdx in the current directory.

2. In the GAMS IDE or the DOS mode, run GAMS command

gams raw2gdx --raw=case14raw --out=case14

This will generate the case14.gdx, which is readable by the model files.

Once case14.gdx is generated, one can pick a model and solve it for this case.
For instance, to solve the economic dispatch model with the Ybus formulation, run
the GAMS command

gams ed1_mp --case=case14
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The GAMS default NLP solver (often CONOPT) will be used. To solve the case
with a different solver, PATHNLP for example, run

gams ed1_mp --case=case14 --nlp=pathnlp

The solutions are reported in the GAMS listing file ed1_mp.lst.
Two unit commitment models, uced.gms and uced2.gms, use the FERC data

sets. Each data set consists of two Excel files, one for generator data and the other
for demand data. For example, the 4012gen.xls and 4012demand.xls in the suite
are obtained from FERC eLibrary, Docket Number AD10-12, ACCNNUM20120222-
4012. The following steps are needed to run the model.

1. Upon executing the following command-line commands, 4012gen.gdx and
4012demand.gdx will be created.

gdxxrw 4012gen.xls @extract_gen.txt
gdxxrw 4012demand.xls @extract_demand.txt

2. Run uc_raw2gdx.gms (uc2_raw2gdx.gms) to generate model-ready GDX files
for the model uced.gms (uced2.gms), for example, run

gams uc_raw2gdx --genfile=4012gen --demandfile=4012demand --outfile=uc_data

to generate uc_data.gdx file, and then run the model by

gams uced --datafile=uc_data

Communication is the key to the success of any joint project, especially of
the multidisciplinary ones. The suite of models provides a common basis for
communication between the problem definer and the problem solver in power
system related projects, and more generally serves as a bridge to convey the power
economics problems and the computational challenges to the OR community.

Compared to Matlab, GAMS separates the core mathematical formulation from
the solution technique in a much cleaner fashion, and is independent of the data
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processing chores and solver technologies. Via the GDX utilities, the models are
able to read in raw data from various sources and formats, and easy to customize
for different aspects or detail levels of the problem. Powered by a stable of high-
performance solvers integrated with GAMS, these models are expected to provide
off-the-shelf solutions for industrial applications. Furthermore, attributed to the
flexibility of GAMS language, the models and the shared data sources could enable
coherent testing of new ideas.

As a first documentation of the GAMS model suite on power economics, this
chapter has presented the problems and their mathematical formulation in the
subscripted format (as opposed to the vector format) that is directly implementable
in algebraic modeling languages. The notations and models documented here also
serve as a basis for the subsequent chapters. For instance, the demand response
model in Chapter 2, the unit commitment model used in Chapter 3 and 5 and the
economic dispatch models discussed in Chapter 4, 6 and 7 can all find their root in
this chapter.

1.10 A Case Study at ISO New England

ISO New England Inc. has three key missions: (1) Developing and administering
the region’s competitive wholesale electricity markets; (2) Overseeing the day-
to-day operation of new England’s electric power generation and transmission
system; (3) Managing comprehensive regional power system planning. The unit
commitment and dispatch model is at the core of two of them, clearing the market
and maintaining the power systems operation. This section briefly reviews how
these missions are modeled and implemented.

Physically, a bus is a metal bar1 where several power lines end and connect to
each other. The other end of the line with one end tieing to a bus may connect
to a nearby generator that injects power into the bus, or to a nearby load2 that
withdraws power from the bus, or to another faraway bus to transmit power over a

1Three bars, to be exact, one for each phase of the three-phase AC power.
2A load here physically indicates a stepping-down transformer.
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long distance. A line that links two buses is called a branch. Each piece of power
injection/withdrawal equipment (e.g., a generator or a load), or an equivalent of it,
tied to a bus is called a node. Bus, node and branch are the main components of a
power network from the engineering viewpoint.

The network configuration, or topology, can be modified by a number of con-
trolling components, such as switches and breakers. For example, a node can be
connected to one bus or another in its vicinity, or disconnected from any of them.
A bus can be disconnected from the transmission line that leads to another bus,
or it can be separated into two buses when a breaker in its local configuration is
open. However, a node is never connected to more than one bus simultaneously.
In general, the mapping between buses and nodes may change over time. At any
moment, a bus can have any number (including zero) of nodes attached to it, while
a node can connect to at most one bus.

Nodes are geographically grouped into different LMP locations. Locations are
not mutually exclusive in terms of the nodes they contain. As subsets of nodes,
LMP locations can intersect, and even contain one another. For example, a reserve
zone as an LMP location may encompass many switchyard-based LMP locations.
The mapping between nodes and LMP locations rarely changes over time. Typically,
each location contains at least one node and each node can belong to zero, one or
multiple locations.

Any participant that submits energy bids (either buy or sell) in the day-ahead
market is treated as a resource in the market models. A resource can, but does
not have to, be backed by a physical point of injection (generator or load), hence
a mapping between resources and nodes is irrelevant. Instead, a resource must
specify the LMP location in which it bids into the market. All cleared resources in
an LMP location will be subject to the same LMP. An LMP location can have any
number (including zero) of resources, whereas the number usually changes from
day to day and hour to hour. On the other hand, a resource may bid in different
LMP locations for different time periods, but it cannot bid in multiple locations
simultaneously.
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...

Figure 1.2: Relations of different modeling elements

Table 1.7: Counts of Different Modeling Elements in the ISO’s System

Bus Node Resource LMP Location Branch Bid Block Hour
2,336 13,450 793 2,837 3,250 280 24

Resource bids typically come in two forms: fixed and price-sensitive. A fixed bid
specifies the quantity of MWh energy to be supplied or demanded in the specified
hour. Self-scheduled generation and fixed demand are examples of fixed bids.
A price-sensitive bid consists of one or multiple blocks of MWh quantities, each
accompanied by a bid price. Apart from the energy component, resources that are
(verified to be) backed by physical generators can include unit commitment costs
in their bids. Limited energy generation (LEG) requirements are also accepted in a
generator’s bid. Figure 1.2 illustrates the relation of different modeling elements
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mentioned above and Table 1.7 demonstrates the size of the ISO’s system in terms
of component count.

Day-ahead Unit Commitment and Dispatch

The day-ahead (DA) market is a forward market for the delivery of energy in
24 hours. The market outcome consists of three parts: the cleared quantities of
resources, the LMP and the day-ahead unit commitment schedules for generators.

The DA market clearing algorithm involves two optimization models, i.e., the
security-constrained unit commitment (SCUC) model and the security-constrained
economic dispatch (SCED) model. SCUC aims to find an optimal unit commitment
solution that supports the market clearing, while SCED computes the optimal for-
ward contracts (e.g., resources’ buy/sell positions) and the LMPs. Both models take
into account the transmission limitation as well as line contingencies. The transmis-
sion and contingency constraints in these models are supplied by the simultaneous
feasibility test (SFT). We group the constraints for the ease of discussing the models.

UC constraints

These constraints only involve binary variables, primarily vIsOnline, vIsStartup
and vIsShutdown. They include:

EQ_StartShut
EQ_MinUpTime
EQ_MinDownTime
EQ_StartUpState_1
EQ_StartUpState_2
EQ_StartUpState_3
EQ_PumpStorageCommitment
EQ_CC_ModeSelection
EQ_CC_ModeCalc_1
EQ_CC_ModeCalc_2
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EQ_MaxStartups

Linking constraints

These constraints link a unit’s commitment status and its energy output and reserve
level. The ramping constraints belong to this category, as ramping also depends on
the commitment status. When the linking constraints appear in the SCED model,
the commitment variables are fixed according to the preceding UC solution.

EQ_RampUp
EQ_RampDown
EQ_RampUp_Startup
EQ_RampUp_DemandStartup
EQ_RampDown_DemandShutDown
EQ_EnergyMax
EQ_EnergyMin
EQ_TotalCapacity
EQ_ReserveCapacity

Market constraints

These constraints characterize the resource dispatch and market clearing mecha-
nisms. The market clearing is conducted on the “transaction network” built on
LMP locations, in lieu of the physical network of nodes and buses. The net energy
sales in an LMP location (vNetInjection) is the signed sum of all resource energy
outputs (vResourceEnergy) in this location, positive sign for supply resources and
negative sign for demand resources3. The LMP is the shadow price of the constraint
EQ_Energy_Balance. Constraints on the energy flow among LMP locations, which
cause the LMPs to differ by location, are encapsulated in the proxy constraints. The
transmission proxies are derived from the base-case network condition (i.e., no line

3Supply resources are GEN and INC, and demand resources include LOAD_FIX_ZONE,
LOAD_FIX, LOAD_PRICE, LOAD_ARD, DEC and TRANSACTION
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contingency) and the SFT proxies are derived from the N-1 contingency scenarios.
The proxy constraints are identified by the SFT given the dispatch solution of the
previous iteration. The use of proxy constraints greatly reduces the size and com-
plexity of the SCUC and SCED models. Generic constraints are additional linear
constraints derived from information not available in the data, oftentimes manually
added by the system operator via the software interface.

**** Market Clearing ****
EQ_Resource_Output
EQ_Resource_Reserve
EQ_NetInjection
EQ_Energy_Balance
EQ_System_Losses
EQ_ReserveConstraints
EQ_TransactionsMW
EQ_MaxEnergy

**** Generic ****
EQ_GenericLHS
EQ_GenericConstraints_LE
EQ_GenericConstraints_GE
EQ_GenericConstraints_EQ

**** Transmission Proxy ****
EQ_TransmissionFlow
EQ_TransmissionConstraints

**** SFT Proxy ****
EQ_SFTFlow
EQ_SFTConstraintsP
EQ_SFTConstraintsN
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DC power flow constraints

These constraints model the physical network using DC power flow equations. The
net locational sales (vNetInjection) is allocated to nodes (as nodal injections) within
the location by a predefined weight vector (pLMPFactors). Bus injection is the
sum of the nodal injections of all nodes connected to that bus. These relations are
instantiated in the equation EQ_BusBalance.

EQ_BusBalance
EQ_BranchFlow
EQ_ZBRBranch
EQ_DCFlowLimit_P
EQ_DCFlowLimit_N

The remaining equations define the cost segments and objective functions for
the models.

EQ_Total_Objective
EQ_Objective_Cost
EQ_Objective_PenaltyCost
EQ_CalcStartUpCost

DA market clearing process

The DA market clearing algorithm is an iterative process. The day-ahead UC
solution u is obtained by solving the SCUC model, which includes the UC, Linking,
Market (in which the proxy constraints are empty) and DC power flow constraints.
Given u, the SCED model is solved for each hour, individually and sequentially.
The SCED solution Pt of hour t will be used as input to the intertemporal (e.g.,
ramping) constraints in the SCED model for hour t+ 1. Below, we discuss in detail
the solution process of SCED for an hour t. The time index t is present in all
variables and equations in the model, and will be omitted for succinctness. The
SCED model minimizes the total as-bid energy cost (supply cost minus demand
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benefit) subject to the Linking constraints with fixed u, the Market constraints with
a growing set of proxies, and the DC power flow constraints.

DC power flow constraints consists of the following equations and inequalities4,

EQ_BranchFlow: Z = BAδ (1.72)

EQ_BusBalance: P = ATZ (1.73)

EQ_DCFlowLimit_P: Z 6 Z̄ (1.74)

EQ_DCFlowLimit_N: Z > −Z̄ (1.75)

In the above equations, variables P, δ and Z are the bus injection, bus voltage
angle (vPARAngleUC) and branch flow (vBranchFlow), respectively. A is the
branch-bus incidence matrix. Nonzero entries of A are given by

Ain =

−1, if branch i originates from bus n

1, if branch i points to bus n

and B is a diagonal matrix, the Bii entry of which is the susceptance of branch i.
Suppose (ATBA) is invertible5, we have

δ = (ATBA)−1P

and subsequently

Z = BA(ATBA)−1P

The SCED solution process for a given hour begins by solving the SCED model
to obtain the bus injection P∗, which satisfies the base-case DC power flow con-

4EQ_ZBRBranch handles a special case and will not be discussed here.
5The incidence matrix A of a connected network has a rank number one less than the number

of buses, so (ATBA) is not invertible. This can be amended by replacing a row (corresponding to
the swing bus) by e = [1 0 0 . . . 0] and the corresponding element in P by 0. The resulting system is
determined and (ATBA) invertible.
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straints. This solution P∗ is then fed into the SFT to identify additional transmission
constraints in cases of a line contingency.

The SFT is a what-if analysis that answers the question: would P∗ satisfy all the
line limit constraints if a certain branch (in a predefined subset of branches, called
the contingency list) were tripped? Denote the incidence and susceptance matrices
under the contingency scenario by Ã and B̃, respectively. Given the injection P∗,
the new branch flow Z̃ is computed by

Z̃ = B̃Ã(ÃT B̃Ã)−1P∗

If all branch flows are within limits, i.e., Z̃ satisfies (1.74) and (1.75), then P∗ is good
for this contingency. Otherwise, suppose the positive-direction flow limits (1.74)
are violated at a subset I of branches, and the negative-direction flow limits (1.75)
are violated at a subset J of branches, then the following SFT proxy constraints will
be generated for the SCED model.

[B̃Ã(ÃT B̃Ã)−1]I·P 6 Z̄I (1.76)

[B̃Ã(ÃT B̃Ã)−1]J·P > −Z̄J (1.77)

The above SFT analysis is iterated for all contingency scenarios, each having
different Ã and B̃, and each identifying possible proxy constraints (1.76) and (1.77).
Once the SFT process is completed, all identified proxy constraints will be added
back to the SCED model. The updated SCED model is then solved again to find a
new P∗. The process repeats until a solution P∗ that does not violate any contingency
flow limit is found or a predefined iteration limit is reached. At the end, the dispatch
solution and the LMPs are returned, for the hour t at discussion. Chapter 6 will
discuss the SFT analysis in more detail.

The day-ahead market is settled once the SCED process is completed sequentially
for all hours.
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2 modeling demand response for ferc order 745

2.1 Introduction

On March 15, 2011, Federal Energy Regulatory Commission issued Order No. 745
(FERC, 2011), the Final Rule settling the yearlong rule-making debate on how to
compensate demand response resources that participate in an organized wholesale
energy market (i.e., the day-ahead and real-time energy markets) administered by
a Regional Transmission Organization (RTO) or an Independent System Operator
(ISO).

According to the Final Rule, demand response means a reduction in the con-
sumption of electric energy by customers from their expected consumption in
response to an increase in the price of electric energy, or to incentive payments
designed to induce lower consumption of electric energy. A demand response
resource means any dispatchable entity that is capable of providing demand re-
sponse. For example, a manufacturing plant that is capable of suspending its
energy-intensive process when called upon by the ISO during hours of high prices,
can be considered as a demand response resource.

The Order requires that “when a demand response resource participating in
an organized wholesale energy market administered by an RTO or ISO has the
capability to balance supply and demand as an alternative to a generation resource
and when dispatch of that demand response resource is cost-effective as determined
by a net benefits test, that demand response resource must be compensated for the
service it provides to the energy market at the market price for energy, referred to
as the locational marginal price (LMP)”.

The Order on one hand dictates very specifically that the demand response (DR)
resource, when dispatched, be compensated at the LMP, and on the other hand
leaves the determination of the cost-effectiveness condition and the implementation
of the demand response dispatch to the RTOs and ISOs, to which end it outlines a
two-stage action plan with clear time lines. The Order states:
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By July 22, 2011, each RTO and ISO should develop a mechanism as an
approximation to determine a price level at which the dispatch of demand re-
sponse resources will be cost-effective. ...

By September 21, 2012, each RTO and ISO should undertake a study
examining the requirements for and impacts of implementing a dynamic ap-
proach which incorporates the billing unit effect in the dispatch algorithm to
determine when paying demand response resources the LMP results in net
benefits to customers in both the day-ahead and real-time energy markets. ...

As a response to the call in FERC Order 745, this chapter investigates the above-
mentioned dynamic dispatch approach that incorporates the demand response
dispatch and compensation rules as described in the Order. The remainder of this
section introduces the background of the subject, in particular, the motivation for
promoting demand response in the wholesale market and the key elements of the
Order that pose challenges for implementation thus motivate our work. Section
2.2 presents our main contribution: modeling the demand response problem as a
bi-level optimization program. In Section 2.3, we develop two alternative methods
that work under different conditions, and use them in Section 2.4 to validate the
bi-level model via experiments. Section 2.5 presents some useful observations
about the demand response market and the dispatching operations by applying the
model and its variants to various data cases. Section 2.6 summarizes the chapter
and gives the plan for future work.

All occurrences of the term ISO in the rest of the chapter should be taken as
ISO/RTO. Electric power means the real (instead of the reactive or complex) power.
Node, bus and location mean the same thing. We use the units MW and dollars/MW
to measure the power and the price, which can be regarded as equivalent to using
MWh and dollars/MWh.

Motivation of Demand Response

The motive, if not the action, of consumers’ response to electricity prices has existed
since spot pricing was adopted in the electricity market. In the book by Schweppe
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et al. (1988), two essential types of consumers’ response were identified: reduce
usage if the price in a given hour is high, and reschedule usage if the price is high in
some hours and low in other hours. Another early work by Daryanian et al. (1989)
studied how a storage-type consumer could respond to the spot pricing of electricity
by determining an optimal schedule of electricity usage given a predetermined
electricity price schedule.

However, demand response is not an inherent element of competitive energy
markets; rather, it is a recourse measure to account for the market imperfection
caused by some unusual characteristics of the underlying commodity, electric
energy. Specifically, electricity supply and demand over the grid must match
closely at every instant in time, so the market must clear in real time. Such frequent
market clearing cannot happen naturally (at the discretion of the “invisible hand”),
but requires coordination of a central dispatcher, namely, an ISO. The ISO attempts
to clear the market efficiently, i.e., maximize the social welfare, and therefore needs
to know explicitly how much the suppliers and demanders value each increment
of supply and demand (the supply and demand curves, as depicted in Figure 2.1).
This information is conveyed to the ISO via supply offers and demand bids, see, for
example, Arroyo and Conejo (2002) and Su and Kirschen (2009).

While the supply curve is usually easy to estimate, it is difficult for the majority
of the demand-side to identify the marginal value of electricity and hence bid a
meaningful demand curve, see Kirschen (2003). We observe that such difficulty
is not unique to electricity, but is present in many other commodity markets, e.g.,
markets of farm produces, consumer products and the like. However, those markets
do not require instantaneous clearing, therefore, consumers’ response to price
signals, an alternative expression of the demand curve, can have enough time to
settle in and keep market equilibrium at the efficient point (Mankiw, 2011). This
is not the case for the ISO-run energy markets over the grid. In the absence of an
accurate demand curve, social welfare cannot be accurately characterized, let alone
optimized.

It is commonly recognized that the demand elasticity, or the willingness and
ability of the demand-side to reduce consumption in times of high prices, is actually
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Figure 2.1: Electricity supply and demand curves

higher than what is perceived by the ISO from the demand bids, see, for example,
Joskow (2001), Wellinghoff and Morenoff (2007) and Chao (2010). The consequence
of under-perceiving the demand elasticity is illustrated in Figure 2.2. With the true
demand and supply curves, the market equilibrium is at point Ewith supplier’s
surplus being the area of COE and the demander’s surplus being the area of ACE.
However, if the elasticity of the demand was under estimated, as represented by
the Perceived Demand curve in the figure, the market would operate at point G,
resulting in a supplier’s surplus of BOG and a demander’s surplus of ABDminus
DHG. The net effect is a surplus transfer from the demander to the supplier by the
amount BCEG and a social welfare loss of EHG.

For clarity, we make two technical points about the figure: (1) even though the
elasticity varies along a linear demand curve, it is easy to see that at any given
price level or demand level, the elasticity of the Perceived Demand curve is always
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Figure 2.2: Market inefficiency caused by imperfect demand information

lower than the True Demand curve, therefore, using linear demand curves suffices
for the comparison; (2) the two demand curves intersect at the zero price level,
because when a commodity is free (at zero price), it is reasonable to assume that the
consumption will be at the maximum consumption capacity or the most convenient
level, which is the same for different demand curves.

A demand response mechanism, if appropriately designed and implemented,
can serve to overcome the market inefficiency, by migrating the market equilibrium
point from G to E in Figure 2.2. This is illustrated in Figure 2.1. The supply curve is
plotted by the formula

LMP = 4.0177310.000107x−12.7911 + 22.54387

where x is the supply quantity in MW. This formula is published by PJM as its
Modeled Supply Function for June, 2012. There is not a single demand curve
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because the demand for electricity is practically cyclical and the demand curve
shifts from left to right depending on the time of day, day of the week or week of the
year. For demonstration purposes, the two (dotted and dot-dashed) slanted lines
are fictitious demand curves to represent the peak and trough demand scenarios,
respectively. A similar depiction can be found in Kirschen (2003). The curtailed
demand line (the vertical line that stems downward from the middle of the peak
demand curve) represents a fictitious example of demand response, corresponding
to an amount measured by the distance from the vertical dashed line to this line.
The demand response yields an LMP reduction from around $460/MWh to about
$250/MWh. The shaded area is the compensation received by the curtailed demand
as per the FERC Order. It can be seen that the effect of demand response on the
market equilibrium is aligned with what is needed to correct the inefficiency as
depicted in Figure 2.2. As a side effect, demand response can also thwart the “all
but irresistible temptation for generators to manipulate the market, sending prices
soaring” as depicted by Spees and Lave (2007). The following paragraph in FERC
Order 745-A (on page 15) briefly summarizes the above point:

A properly functioning market should reflect both the willingness of sellers
to sell at a price and the willingness of buyers to purchase at a price. In an RTO-
or ISO-run market, however, buyers are generally unable to directly express
their willingness to pay for a product at the price offered. ... RTOs and ISOs
cannot isolate individual buyers’ willingness to pay which results in extremely
inelastic demand. Including demand response as a resource in RTO and ISO
markets provides a way for buyers to indicate the price at which they are willing
to stop consumption.

This constitutes the economic justification and motivation of eliciting demand
response in the market.
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Understanding the FERC Order

The essence of FERC Order 745 (referred to as “the Order” subsequently) is the
requirement that “when a demand response resource participating in an organized
wholesale energy market administered by an RTO or ISO has the capability to
balance supply and demand as an alternative to a generation resource and when
dispatch of that demand response resource is cost-effective as determined by a net
benefits test, that demand response resource must be compensated for the service
it provides to the energy market at the market price for energy, referred to as the
locational marginal price (LMP)”.

While the DR compensation level is dictated in the Order, there remains four
key questions to answer to implement a compliant and efficient DR program: (1)
who makes the decision about when, and how much, to reduce consumption, the
DR provider or the ISO? (2) Should DR providers be treated as energy sellers, in the
same way as are generators, in the market clearing and LMP calculation process?
(3) What is meant by “cost-effective” and what is the net benefit test? (4) What
measure is in place to ensure economic efficiency in the Order context?

Conventional wisdom would regard demand response as consumers’ voluntary
action to curtail consumption to cut down energy bills during periods of high prices.
This is not the same notion of DR discussed in the Order. The Order clearly refers
demand response as a service procured by, and a dispatchable resource of, the ISO,
which means that the dispatch decision, i.e., when, how much and which resources
to dispatch, is at the hand of the ISO, not of the DR providers. A DR provider, on
the other hand, need to inform the ISO (via bids) its capability and willingness to
follow the ISO’s dispatch.

For the second question, abundant evidence in the literature suggests that
the answer is no. In short, a DR provider is not entitled to sell (in the energy
market, day-ahead or real-time) the energy curtailed from its baseline consumption,
without physically or contractually owning the baseline amount of energy, see
Ruff (2002), Chao (2010), Borlick (2011) and Hogan (2010a). Instead, DR can be
treated as a sale of the “consuming right” from certain consumers (DR provider)
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to other consumers (the remaining load). In particular, as implied by the Order,
the remaining consumers pay the DR provider to reduce consumption. When the
supply curve is steep, such trades among the demand-side can be beneficial to all
consumers, including DR providers who get compensation from the remaining load,
and the remaining load who enjoys lower LMP. This trading of consuming right is
done outside the energy market so there is not an issue about energy entitlement.
From a modeler’s perspective, the simultaneous clearing of DR and energy requires
either an iterative process, or a hierarchical model. This is the main subject of study
in this chapter and will be elaborated in subsequent sections.

The answer to the third question has been indicated in the Order. Specifically,
the Order recognizes and stresses the “billing unit effect”, a phenomenon that, de-
pending on the change in LMP relative to the size of the energy market, dispatching
demand response resources may result in an increased cost per unit (dollars/MW)
to the remaining wholesale load associated with the decreased amount of load
paying the bill. The Order states that billing unit effect should be avoided when an
ISO dispatches the demand response.

A simple example is given in the Order (footnote 119 in FERC (2011)) to illustrate
a cost-effective scenario of paying the demand response LMP, quoted as: “assume a
market of 100 MW, with a current LMP of $50/MW without demand response, and
an LMP of $40/MW if 5 MW of demand response were dispatched. Total payments
to generators and load would be $4,000 with demand response compared to the
previous $5,000. Even though, the reduced LMP is now being paid by less load,
only 95 MW compared to 100 MW, the price paid by each remaining customer
would decrease from $50/MW to $42.11/MW ($4,000/95). Therefore, the payment
of LMP to demand resources is cost-effective.”

Following the same reasoning, a cost-ineffective (due to the billing unit effect)
scenario can be cooked up easily. For example, if the 5 MW of demand response
were only able to reduce the LMP to $49/MW, then the price paid by the remaining
customers would be $51.58/MW ($4900/95), an increase compared to not dispatch-
ing the demand response.

The LMP at a location is defined to be the cost of providing the next unit amount
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of power to this location. In the payment rule, LMP is the price at which the ISO pays
to the generator to buy the dispatched amount of power, or to the demand response
resource to compensate the dispatched amount of reduction in consumption. The
total cost of buying power and compensating the DR resources are shared among
the actual consuming loads. The average price, AvgPrice, is thus defined by,

AvgPrice =

∑
k(gk + rk)λk∑
k(dk − rk)

, (2.1)

where gk is the generation in MW, dk is the pre-DR demand in MW, rk is the
demand response amount in MW, and λk is the LMP in $/MW, all for node k.
This definition of the AvgPrice is consistent with the idea implied in the billing
unit effect discussion in the Order, therefore, it enables the determination of the
DR cost-effectiveness in the same way as in the Order. Specifically, if the post-DR
AvgPrice is lower than the pre-DR AvgPrice, then there is no billing unit effect and
the DR dispatch decision (quantified by the rk’s) is cost-effective and vice versa.

The fourth question is critical for an economically sound DR program. As
pointed out by Hogan (2009), “if demand response is improperly compensated,
hoped-for increases in efficiency may not materialize, as either too much or too little
demand response may be developed.” Better than nothing, the Order mentions
a price level or threshold such that when the market price exceeds this level, the
dispatch of demand response will be considered. Note that the “market price” here
is meant to be a single price across all locations. We believe that this price is best
defined as the demand weighted average LMP across all nodes (short for AvgLMP),
calculated by the following formula,

AvgLMP =

∑
k dkλk∑
k dk

. (2.2)

Again, the dk used in the formula is the demand before the demand response
amount is deducted, if there is any at node k. By using this formula, we assume
that

∑
k dk > 0, that is, the total demand in the network is always positive.

The ideal level of AvgLMP should be that of the market clearing point resulted
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from a perfect-information scenario, i.e., level C in Figure 2.2. The determination
of such a point is of great importance to social welfare, and is not an easy task in
practice. We refer the readers to Walawalkar et al. (2007) for a dedicated research
and case study on this topic.

2.2 Modeling the Demand Response

The demand response problem arises from the ISO’s practice of clearing the energy
market, where economic dispatch is at the center of this practice. Research on this
topic abounds in the power systems literature. In the development of this work, we
find Monticelli et al. (1987b), Momoh et al. (1999), Andersson (2008), Wang et al.
(2007) and Dommel and Tinney (1968) useful for understanding the subject matter.
We briefly develop the economic dispatch model and then proceed to the demand
response modeling.

Preliminaries

In the modeled power network, there is a set B of buses (or nodes), which are further
distinguished by two subsets, GEN ⊂ B for generating buses and LOAD ⊂ B for
load buses. A generating bus is one attached with a generating unit so that it may
inject electricity into the network. A load bus is one that has no generating capability
and can only withdraw electricity from the network. Buses are interconnected by
transmission lines. In some cases there are more than one lines connecting two
buses, and each line is called a circuit. Let CIR denote the set of circuit numbers,
then every transmission line (or arc in graph theory terminology) in the network
can be uniquely identified by the triple (k, l, c), where k < l ∈ B, c ∈ CIR. Let A
denote the set of all arcs in the network, and use the symbol a as a substitute for
the arc triple (k, l, c) in subscripts when context allows. More notations are listed
in Table 1, of which the upper half lists the parameters and the lower half lists the
decision variables.
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Table 2.1: Notations for the Economic Dispatch Model

ba Susceptance of the arc a
dk Demand at bus k
g
k

, ḡk Lower and upper generation limits at bus k
za, z̄a Lower and upper flow limits on arc a
αk,βk Generation cost parameters of bus k
gk Generation at bus k
δk Voltage angle of bus k
za Power flow from k to l on arc a

Let g ∈ R|B|, z ∈ R|A| and δ ∈ R|B| be the vectors formed by the scalar variables
gk, za and δk, respectively. In the remainder of this chapter, undefined symbols
without subscripts should be understood in the same way as the above ones. The
Economic Dispatch model is presented below, we name it ED1.

Min
g,z,δ

∑
k∈B

αkg
2
k + βkgk (2.3)

s.t. z(k,l,c) − b(k,l,c)(δl − δk) = 0, ∀(k, l, c) ∈ A (2.4)

gk −
∑
(l,c):

(k,l,c)∈A

z(k,l,c) +
∑
(l,c):

(l,k,c)∈A

z(l,k,c) = dk, ∀k ∈ B (2.5)

g
k
6 gk 6 ḡk, ∀k ∈ B (2.6)

za 6 za 6 z̄a, ∀a ∈ A (2.7)

In ED1, the objective function (2.3) is the total generation cost, with αk > 0,∀k
ensuring the convexity of the function. Constraints (2.4) are the defining equations
for the power flow za. These power flow quantities participate in the constraints
(2.5), the nodal power balance equations. The equations in (2.5) say that at each bus
k, the net generation (gk − dk) must equal to the sum of the outbound power flow
from bus k along all lines adjacent to k. Constraints (2.6) are the lower and upper
bounds on the power generation, with ḡk > g

k
> 0. A load node k ∈ LOAD that
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does not generate power is enforced by setting ḡk = g
k
= 0 in the data. Constraints

(2.7) represent the thermal limits on the transmission lines, that is, the magnitude of
the power flowing on an arc a should not exceed the arc’s thermal limit z̄a (whereas
z̄a = −za). Note that for a connected network which we assume here, the row
rank of the linear system (2.4) to (2.5) was one less than full, which would leave
an undesirable extra degree of freedom. For example, given g and z, we would be
unable to determine δ. To overcome this issue, practitioners usually select a bus k
at which the phase angle δk is artificially set to zero and serve as the reference to
the angles at all other buses. This bus is called the swing bus. In ED1 and all the
subsequent models, the variable fixing is not expressed in the model but will be
handled at the solution stage.

An important by-product of solving ED1 is the LMP. Take the bus k for example.
The LMP at node k, denoted by λk, is by definition the sensitivity of the optimal
value of the objective function to the demand dk. Since ED1 is a convex quadratic
programming model for which the KKT conditions are both necessary and sufficient
for optimality, it is not difficult to verify that λk are the optimal multipliers on the
nodal power balance constraints (2.5).

Demand Response Model

In this section, we build a model to dispatch the DR and generation resources
simultaneously, taking account of the LMP threshold and the DR cost-effectiveness
conditions as required in the FERC Order.

We begin by defining some more variables and parameters. Let rk > 0,k ∈ B be
the amount of demand response to be dispatched at node k. It is a decision variable
and is upper bounded by a parameter r̄k > 0. For a bus l ∈ B that is incapable
of providing the DR service, setting r̄k in the data could fix rl to 0. Let C1 be the
AvgLMP threshold that the ISO tries to maintain via dispatching the DR resources.
The resulting LMPs λk,k ∈ B, should satisfy the following inequality:∑

k∈B dkλk∑
k∈B dk

6 C1 (2.8)
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Let C2 be the AvgPrice before dispatching any DR resources. It is a parameter that
can be calculated from the results of ED1, prior to computing the DR dispatch
(applying (2.1) with rk = 0,∀k ∈ B). Then the DR cost-effectiveness condition
could be expressed as ∑

k∈B(gk + rk)λk∑
k∈B(dk − rk)

6 C2 (2.9)

Within the boundaries of the net benefit test and LMP threshold constraints,
there is leeway regarding the dispatch decisions of DR (e.g., which DR provider
to dispatch and how much to dispatch), which can also have a substantial impact
on economic efficiency. Such decisions will be guided by the objective function
of the ISO’s DR dispatch algorithm, for which the Order does not have a speci-
fication. Since the intended price-suppressing goal of DR is fully represented in
the constraints, the objective, on the other hand, should aim to discourage over-
suppressing of the price, or equivalently over-dispatching of the demand response,
so as to prevent uneconomic consequences (as an example, in Figure 2.2 if the price
is suppressed to a level below C, the deadweight loss will emerge again). A myriad
of functions can capture the “extent of DR dispatch”, and the choice is up to the
individual ISO. At present, we find no strong reason for the objective function to go
beyond a linear form, so we will minimize a linear function L(r) as the objective of
the demand response dispatch. In subsequent analysis, we take L(r) =

∑
k∈B rk to

minimize the total amount of DR dispatch. Note that in cases where DR providers
are allowed to bid a valuation, e.g., vk, in addition to the upper bound r̄k, then
L(r) =

∑
k∈B vkrk can be an appropriate objective function. This and other variants

of the model will be demonstrated in Section 2.5.
For ease of analysis, we present the demand response model in vector format.

First, let us make the following definitions. Q is a |B|× |B| diagonal matrix, with
Qkk = 2αk; c is a vector of size |B|, with ck = βk; e is a vector of size |B| with all
elements equal to 1; B is a |A|× |A| diagonal matrix, with Baa = ba, for a ∈ A; A is
a |A|× |B| arc-bus incidence matrix, and the element Aak, where a ∈ A and k ∈ B,
is equal to −1 if a = (k, l, c) for some (l, c), and equal to 1 if a = (l,k, c) for some
(l, c). An illustration is given below, followed by the demand response model DR1.
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Q =


2α1

. . .
2α|B|

 c =


β1
...
β|B|

 e =


1
...
1



B =


b1

. . .
b|A|

 A =


1 −1

1 −1
· · · · · ·

−1 1



Min
g,z,δ,r,λ

L(r) (2.10)

s.t. dTλ 6 C1e
Td (2.11)

(g+ r)Tλ+ C2e
Tr 6 C2e

Td (2.12)

0 6 r 6 r̄ (2.13)

and (g, z, δ) solves

Min
g,z,δ

1/2gTQg+ cTg (2.14)

s.t. z− BAδ = 0 (⊥ λz) (2.15)

g−ATz = d− r (⊥ λ) (2.16)

g ∈ [g, ḡ] (⊥ ηlo,ηup > 0) (2.17)

z ∈ [z, z̄] (⊥ µlo,µup > 0) (2.18)

where λ is the multiplier of (2.16).

DR1 is a bi-level model. Readers could consult Bard (1998) for a thorough
treatment of bi-level optimization models, whereas Colson et al. (2007) provides
a useful survey on this subject. The lower level, (2.14) to (2.18), is an economic
dispatch model (ED1) that takes the demand response variable r as a parameter.
As discussed in Section 2.2, the LMP is the optimal multiplier λ on the nodal power
balance constraint (2.16). The upper level minimizes the total MW amount of de-
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mand response subject to the LMP threshold constraint (2.11), the cost-effectiveness
constraint (2.12), DR bound constraints (2.13) and that (g, z, δ) solves the lower level
problem so that λ represents the true LMPs.

An alternative model would be a single-level model formed by preserving all the
constraints in DR1 and combining the two objectives in DR1 into one by summing
them up. Let us name such a model DR1a. It is easy to generate examples where
the solutions of DR1 and DR1a are different. By comparing the two models, we
argue that the bi-level model is more appropriate for the problem at hand. First,
in DR1a, it is not justifiable to simply take the multiplier λ of the constraint (2.16)
as the LMP. By definition, LMP is the derivative of the Lagrangian function with
respect to the demand (data) evaluated at a KKT point. The extra constraints (2.11)
and (2.12) would complicate the expression of the derivative. In contrast, DR1
encapsulates the original ED model in its lower level and therefore the multiplier
λ remains to represent the true LMP. Secondly, although the generation cost and
the DR objective function both need to be minimized, they are not simply additive
in a single objective function. In fact, minimization of the two objective functions
is intrinsically hierarchical in that the core business remains to be the economic
dispatch given the demand data as well as a particular DR decision, and on top of
that, we seek a “minimal” dispatch of DR to satisfy the LMP threshold constraint
and the net benefit test. The bi-level DR1 exactly serves this purpose.

Model Reformulation

The parameterized economic dispatch model in the lower level is a convex quadratic
program, hence can be replaced by its KKT conditions, and therefore DR1 becomes
an MPEC (mathematical program with equilibrium constraints) model. Specifically,
the KKT conditions of the lower level problem include (2.15) to (2.18), as well as
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the following equalities and inequalities,

Aλ− λz − µlo + µup = 0 (2.19)

Qg+ c− λ− ηlo + ηup = 0 (2.20)

(BA)Tλz = 0 (2.21)

ηlo
k (gk − gk) = 0, ηlo

k > 0, ∀k ∈ B (2.22)

η
up
k (ḡk − gk) = 0, ηup

k > 0, ∀k ∈ B (2.23)

µlo
a(za − za) = 0, µlo

a > 0, ∀a ∈ A (2.24)

µup
a (z̄a − za) = 0, µup

a > 0, ∀a ∈ A (2.25)

where λ’s and η’s are dual variables, and their correspondence to the primal con-
straints (2.15) to (2.18) is marked in the parentheses following the constraints in
DR1.

Two difficulties remain for the global solution of DR1: the nonconvexity of
the net benefit test constraint (2.12) and the nonconvexity of the complementarity
conditions in (2.22) to (2.25). We will address them below.

Transforming constraint (2.12)

The bilinear term (g+ r)Tλ in the net benefit test constraint (2.12) can be converted
into a linear expression of the dual variables, as follows.

(g+ r)Tλ = (ATz+ d)Tλ by (2.16)

= zTAλ+ dTλ

= zT (λz + µlo − µup) + dTλ by (2.19)

= δT (BA)Tλz + zTµlo − zTµup + dTλ by (2.15)

= 0 + zTµlo − z̄Tµup + dTλ by (2.21),(2.24)-(2.25)
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Therefore, constraint (2.12) is reduced to a linear inequality:

zTµlo − z̄Tµup + dTλ+ C2e
Tr 6 C2e

Td (2.26)

Implementing constraints (2.22)-(2.25)

We investigate three approaches to implement the bilinear equations in (2.22)-(2.25).
The first approach is taking the bilinear equations “as-is” to form a nonlinear
program (NLP), then using an NLP solver to obtain a local solution. The second
approach involves linearizing them using binary variables. For instance, the relation

ηlo
k (gk − gk) = 0 (2.27)

is equivalent to

ηlo
k 6 η̄lo

kv
lo
k and gk − gk 6 (ḡk − gk)(1 − vlo

k )

where η̄lo
k is the upper bound on ηlo

k and vlo
k is a binary variable. The third ap-

proach takes advantage of the special ordered sets (SOS) capability of MIP solvers
such as CPLEX and Gurobi. For instance, for each generator kwe define two pos-
itive variables slo

k := gk − gk and sup
k := ḡk − gk and put the ordered quadruple

{ηlo
k , sup

k , slo
k ,ηup

k } in an SOS2 set (indicating that at most two members of the set can
be positive and the positive members must be adjacent).

To obtain global solutions, the first two approaches require upper bounds (big-
M) for the multipliers ηlo, ηup, µlo and µup, which must be set artificially in practice.
The following method to set the big-M has been tested and shown to be effective in
our experiments. First, it is observed that the dispatch of DR at any node would not
result in an increase in the highest nodal LMP, and that the LMP usually does not
drop below the marginal cost of the cheapest generator. Therefore, we set the upper
bound for λ in the DR model as λ̄ := ||λ∗||∞e, the highest nodal LMP resulted from
the ED1 model, and set the lower bound by λ := ||Qg+ c||∞e, where e is a vector
of 1’s. From the bounds on λ, and by (2.20) and the fact that ηlo and ηup cannot be
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positive simultaneously, we can set

η̄lo
k := (2αkḡk + βk) − λk
η̄

up
k := λ̄k − (2αkgk + βk)

For the bound on µlo and µup, we use µ̄lo := µ̄up := 2||µ∗||∞e, where µ∗ is the optimal
multiplier (a vector of size 2|A|) on constraint (2.7) in the ED1 solution and e is a
|A|-sized vector of ones.

2.3 Alternative Approaches

We develop two alternative approaches that address the demand response problem
under different network assumptions and from different perspectives. They can be
used to validate the demand response model.

In a Congestion Free Network

It is well-known that when there is no congestion and no losses in the network,
the LMPs at all buses will be identical and equal to the marginal supply offer at
the market clearing point. In particular, absent constraints (2.7), ED1 could be
simplified to ED2, as follows.

Min
g

∑
k∈B

αkg
2
k + βkgk

s.t.
∑
k∈B

gk = D

g
k
6 gk 6 ḡk, ∀k ∈ B

where D =
∑
k∈B dk, the total demand in the network. It is not difficult to show

that ED2 is an equivalent model of ED1 without line limits – the solution of one
implies the solution of the other.
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Figure 2.3: LMP curve in a 3-generator example

ED2 can be solved by a graphical method. We illustrate the solution process via
a simple example, and then present a graphical criterion for the cost-effectiveness
of the demand response.

In Figure 2.3, we draw the marginal cost lines of three generators, and the
aggregate supply curve, which we call the LMP curve. In this example, β1 and β2

are equal, so we mark them by β1,2 in the figure. This figure reveals the relationship
among the demand, generator dispatch and price. For example, given a total
demand D∗, we can read off from the figure the corresponding LMP, which is λ∗,
and the generator dispatch solution, which is (g∗1 ,g∗2 , 0). It can be seen that the
third generator will kick in when the demand is beyond the level of D1, which
marks a kink point on the piecewise linear LMP curve. We provide below a general
procedure that constructs the aggregate LMP curve from generators’ marginal cost
curves.

The inputs to the algorithm include the index set GEN of the generators, the
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Table 2.2: Cost Parameters of a Two-generator Example

k αk βk ḡk
1 0.1 10 100
2 0.1 50 100

quadratic and linear term coefficients, αi and βi, and the capacity, ḡi, of each
generator i ∈ GEN. The output is an ordered set P of break points on the curve.
In the algorithm, we use the convention that the minimum over an empty set is
infinity, formally, mins∈S s = ∞ if S = ∅.

Algorithm 1 Generating the LMP Curve

Initiate P = ∅,C = GEN,U = ∅,D1 = 0
Let λ1 = mini∈C βi, A1 = {j ∈ C : βj = λ1}

Add (D1, λ1) in P

while C 6= ∅ do
λ2 = mini∈C\A1 βi
A2 = {j ∈ C\A1 : βj = λ2}

For each i ∈ A1, let ai = 2αiḡi + βi
λ3 = mini∈A1 ai, A3 = {j ∈ A1 : aj = λ3}

if λ3 6 λ2 then
Let di = (λ3 − βi)/αi for each i ∈ A1, and D1 =

∑
i∈A1

di +
∑
i∈U ḡi

A1 = A1\A3, λ1 = λ3, C = C\A3, U = U ∪A3
else

For each i ∈ A1, let di = (λ2 − βi)/αi
D1 =

∑
i∈A1

di +
∑
i∈U ḡi

A1 = A1 ∪A2, λ1 = λ2
end if

end while
Return P

Once P is returned by Algorithm 1, the LMP curve can be plotted by connecting
the points in P one by one in the same sequence as they are added. It is important to
note that in the presence of the upper bounds on gk, the LMP curve thus created may
not represent a 1-to-1 mapping betweenD and λ. For instance, for the case given in
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Figure 2.4: An LMP curve with a jump

Table 2.2, Algorithm 1 returns the ordered set P = {(0,10),(100,30),(100,50),(200,70)}.
Connecting these points one by one, we get an LMP curve as shown in Figure 2.4.
WhenD = 100, λ is indefinite, indicating that any value in the range [30, 50] would
make λ satisfy the KKT conditions. This represents a case where the dual solution
of ED2 is not unique.

For the subsequent analysis of demand response on an LMP curve, we use
superscript “old” and “new” on a symbol to indicate that it is a quantity before and
after the demand response, respectively. Figure 2.5 shows two points on an LMP
curve following this superscripting convention.

Let p denote the average price, which is defined by Equation (2.1). The demand
reduction of ∆D = Dold −Dnew results in a reduction in LMP by ∆λ = λold − λnew,
and the average price after the demand response is pnew = λnewDold/Dnew, while
the average price before the demand response is pold = λold. The cost-effectiveness
condition requires pnew 6 pold, which gives λnewDold 6 λoldDnew. Seen from Figure
2.5, this inequality is equivalent to

λnew∆D 6 Dnew∆λ, (2.28)

the left and right hand sides of which are the lower-right and upper-left shaded
areas in Figure 2.5. Since all the quantities involved in (2.28) are positive, we can
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Figure 2.5: DR cost-effectiveness test on an LMP curve

equivalently write the inequality in the form

λnew

Dnew 6
∆λ

∆D
. (2.29)

In (2.29), the left hand side is the slope of the line passing through the origin
and the point (Dnew, λnew), i.e., the dashed line in Figure 2.5, and the right hand
side is the slope of the line segment connecting (Dold, λold) and (Dnew, λnew). We
summarize this observation in the following rule.

Rule 1. On the LMP curve, if the slope of the line connecting (Dold, λold) and (Dnew, λnew)
is bigger than the slope of the line connecting (0,0) and (Dnew, λnew), then it is cost effec-
tive to reduce the demand from Dold to Dnew.

Applying Rule 1, we can see that Figure 2.5 shows a case where it is cost effective
to dispatch the ∆D amount of demand response from the current demand level of
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Dold.
It is also easy to derive the “local” cost-effectiveness condition for the demand

response, in other words, whether the demand response is immediately cost ef-
fective as the DR amount ∆D increases from zero. As Dnew approaches Dold from
below, the left hand side of (2.29) becomes

lim
Dnew↑Dold

λnew

Dnew = lim
Dnew↑Dold

λ(Dnew)

Dnew =
λ(Dold)

Dold =
λold

Dold ,

which is the slope of the line passing through the origin and (Dold, λold), while the
right hand side of (2.29) becomes

lim
Dnew↑Dold

∆λ

∆D
= lim
Dnew↑Dold

λold − λnew

Dold −Dnew = lim
Dnew↑Dold

λ(Dold) − λ(Dnew)

Dold −Dnew = ∂−λ(D
old),

(2.30)

which is the left derivative of λ(D) at Dold. If we make an convention that, at the
demand level D∗ which corresponds to a range of indefinite λ, let λ(D∗) be the
minimum value in the range, then λ(D) becomes a function (1-to-1 mapping) of
D, and (2.30) is just the slope of the LMP curve to the immediate left of the point
(Dold, λold). Therefore, determining whether the demand response is locally cost
effective at demand level D amounts to comparing the slopes of two lines that cut
through the (D, λ) point in the LMP curve. This is noted in Rule 2.

Rule 2. At a demand levelD, if the left slope of the LMP curve at (D, λ) is bigger than the
slope of the line connecting (0,0) and (D, λ), then demand response is locally cost effective
at the demand level D.

In a General Network

In the presence of the line flow constraints, demand response decisions are no
longer easy to make. Active line flow constraints would make the LMPs different
for different locations, and there would be no simple mapping between the AvgLMP
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Figure 2.6: Heuristic framework for finding a DR solution

and the total demandD. An intuitive way of thinking would be viewing the demand
response as data adjustments in the economic dispatch model. We thereby design
a heuristic method following this idea.

From the data adjustment viewpoint, to test if a particular demand response
proposition is feasible (both keeping the AvgLMP below the threshold and reducing
the AvgPrice), one could adjust the demand data according to the DR proposition,
solve the economic dispatch model with the adjusted demand data, compute the
new AvgLMP and AvgPrice from the solution, and compare with the original
AvgLMP and AvgPrice. This idea is illustrated in Figure 2.6.

The key point in this framework is how to choose an appropriate DR level in each
iteration, so as to steer the process toward a feasible solution. A myriad of heuristics
can be workable for this point. We design a simple line search method. Specifically,
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in each iteration, try for each (DR qualified) bus one by one a small amount of
demand reduction and select the bus that yields the lowest total cost to really make
the small demand reduction. Repeat this process until the AvgLMP drops below
the threshold and the AvgPrice is lower than the original price (succeeded) or no
bus would yield any drop in the total cost by the small demand reduction (failed).
We name such a line search heuristic method LS1.

Two merits of LS1 are worth noting. First, the search path progresses in small
increments, which effectively reduces the possibility and extent of overdoing the
demand reduction. The whole purpose of the demand response is keeping the
AvgLMP under the threshold, not necessarily making the AvgLMP as low as possi-
ble. To this extent, small steps are safer than long shots, and simpler as well since
no backtracking is needed. Second, the search path is locally optimized in terms
of the total cost calculated in each step. This local optimality is implemented by
evaluating the effect of the demand reduction step on each DR-qualified bus and
picking the best one.

Admittedly, there is no guarantee that LS1 always terminates at a solution when
one exists, however, if it does find a solution, the solution is feasible and is quite
parsimonious in terms of the total DR amount dispatched. Apart from a hierarchical
modeling approach as implemented in DR1, an iterative process in the form of
Figure 2.6 is almost the only option to implement the requirements of the Order. In
this sense, we believe it is acceptable to use LS1 to represent the class of the “second
best” methods to compare to the DR1 model.

2.4 Numerical Experiments

We first validate the model DR1 by comparing its solutions to those obtained by
the alternative approaches developed in Section 2.3. We will use the well-known
14-bus case (Christie, 1993) in the validation experiments, with the generator cost
parameters coming from the Matpower (Zimmerman et al., 2011) data sets.
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Without Line Limits

Applying the method developed in Section 2.3, the congestion-free LMP curve for
the 14-bus case is given by

λ =



0.073412D+ 20, D ∈ [0, 272.402]

0.006112D+ 38.33515, D ∈ [272.402, 599.642]

0.073421D− 2.02661, D ∈ [599.642, 689.611]

0.5D− 296.2, D ∈ [689.611, 772.400]∞, D ∈ [772.400,∞]

At D = 599.642, λ = 0.073421 × 599.642 − 2.02661 = 42.00. Since the slope
599.642÷ 42.00 = 0.070042 falls in between 0.006112 and 0.073421, we can identify
the demand level 599.642 as a threshold for the cost-effectiveness of DR. In other
words, DR is locally cost-effective only when the demand level is higher than 599.642
MW, see Figure 2.7. With this knowledge, we can fabricate some scenarios on which
the results are predictable and test if the solutions found by DR1 on these scenarios
match our predictions.

For clarification, we note that the original 14-bus case has a total demand (sum
of all nodal demand) of 259 MW. In the experiments, when we need to reset the
demand to a particular level, we do this by multiplying a scale factor on all nodal
demands. For example, the GAMS statement “d(k) = d(k)*2.5” scales up all nodal
demands by 2.5, achieving a total demand level of 259 × 2.5 = 647.5 MW. Also
note that for experimental purpose, we set uRk = (1 − ε)dk for all k ∈ BUS, where
ε = 0.01, that is, the demand is allowed to freely decrease down to almost zero.
Zero net demand is avoided to keep equation (2.1) well-defined.

Scenario 1:

Set the demand to 599.642 MW, the economic dispatch model ED1 gives the current
AvgLMP λ of 42.00 and the current AvgPrice C2 of 42.00. We know that at this
demand level, any positive DR level would violate the cost-effectiveness condition.
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Figure 2.7: LMP curve for the 14-bus case without line limits

So, if the LMP threshold C1 is set to 42.00, we would expect DR1 to be just feasible
thus optimal at Rk = 0,∀k; and for a slightly lower LMP threshold, e.g., C1 =

41.99, DR1 would become infeasible. Experiments verified the above speculations.
Furthermore, similar results are expected to occur for any demand level that is
lower than 599.624, which is also confirmed by experiments on demand levels
sampled within the range [0,599.624], as demonstrated in Table 2.3.

Scenario 2:

Set the demand to a level above 599.642 MW, for example, 600 MW, then ED1 gives
λ = C2 = 42.03. If we set C1 = 42.00, an AvgLMP level corresponding to 599.642
MW demand, we would expect 600 − 599.642 = 0.358 MW of demand response
to be dispatched. The DR1 result confirmed this expectation, dispatching exactly
this amount of DR at bus 2. We carry out a series of experiments on demand levels
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Table 2.3: DR1 Results for Cost-ineffective Demand Levels

D LMP (λ) Price (C2) LMP Cap (C1) rk
500 41.392 41.392 41.392 0

41.391 infes
400 40.780 40.780 40.780 0

40.779 infes
300 40.169 40.169 40.169 0

40.168 infes
200 34.685 34.685 34.685 0

34.684 infes

Table 2.4: DR1 Results for Cost-effective Demand Levels with Different C1 Values

D λ C2 C1
∑
Rk new λ new Price

650 45.70 45.70 45.00 9.50 45.00 45.67
44.00 23.12 44.00 45.62
42.00 50.36 42.00 45.53
41.986 52.65 41.986 45.687
41.985 infes N/A N/A

700 53.80 53.80 53.00 2.60 53.00 53.12
48.61 10.38 48.61 49.34
42.00 102.79 42.00 49.21
41.647 158.12 41.647 53.80
41.646 infes N/A N/A

750 78.80 78.80 78.00 1.60 78.00 78.17
48.61 60.38 48.61 52.87
42.00 150.36 42.00 52.53
40.703 362.58 40.703 78.795
40.702 infes N/A N/A

above 599.642 coupled with various C1 levels. The results are summarized in Table
2.4. All results produced by DR1 match those generated by the graphical approach.

The D = 700 case is also illustrated in Figure 2.7. The line connecting the origin
and the point (700, 53.8) intersects the LMP curve at (541.88, 41.65), so the maximum
amount of cost-effective demand reduction from 700 MW is 700 - 541.88 = 158.12
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MW and the corresponding LMP is 41.65. These assertions are verified by DR1.

Conclusion 1. DR1 works correctly in a congestion free network.

Another important point could be observed. As shown above, the demand can
be cost-effectively reduced from 700 to 541.88. However, we have noted in Scenario
1 (and also by examining Figure 2.7) that any demand reduction from a demand
level below 599.64 would have been cost-ineffective. The rationale for these clashing
observations lies in the fact that the cost-effectiveness judgement depends on the
current (starting) demand level. For example, atD = 700 the AvgPrice is 53.80, so a
demand reduction that could yield an average price no higher than 53.80 would be
deemed cost-effective; but at D = 599.64, a demand reduction would have to yield
an average price less than or equal to 42.00 in order to be cost-effective.

With Line Limits

We will experiment on the case D = 650 MW with a limit of 150 MW on every line.
From the solution of ED1 and applying the formula (2.1) and (2.2), we first obtain
AvgLMP = 73.13 and AvgPrice = 62.04. Then we run DR1 and LS1 on a few selected
C1 levels and compare the results. In each of the experiments below, the step length
in LS1 is set to 0.1 MW.

Table 2.5 exhibits the DR1 and LS1 solutions for the case C1 = 73. Both methods
found the same solution. The solution is to dispatch 0.4 MW, or to be exact, 0.302082
MW of DR at bus 2. The numerical difference is due to the fact that LS1 is an
approximate method whose precision is only up to 0.1 MW, while DR1 is an exact
method. The decision that bus 2 is selected makes sense since the LMP at bus 2 is
the highest, even after the demand response.

The reason why we choose the case C1 = 73 to elaborate comes from practical
considerations. In practice, the DR model or routine is executed whenever the
AvgLMP rises above the LMP threshold, and since the demand usually does not
change wildly in the time interval (5-minute or hourly) within which the ED model
is executed and the AvgLMP is updated, the AvgLMP will not be much higher
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Table 2.5: Comparison of DR1 and LS1 Solutions for C1 = 73

DR1 LS1
k gk rk λk gk rk λk
1 230.3 39.819 230.3 39.819
2 119.4 0.302082 79.649 119.3 0.4 79.699
3 100 75.382 100 75.338
4 71.310 71.272
5 68.526 68.491
6 100 69.401 100 69.364
7 70.849 70.811
8 100 70.849 100 70.811
9 70.607 70.569
10 70.402 70.364
11 69.920 69.883
12 69.476 69.439
13 69.582 69.545
14 70.163 70.126

than the threshold at the time the DR model is triggered. In this sense, an LMP
threshold of 73 is reasonable for the current AvgLMP of 73.13.

The results for other LMP threshold cases are summarized in Table 2.6. To save
space, the third column lists the total DR amount (summed over all buses) in each
solution. We can see that in terms of the total DR amount, the LS1 solution is a
round-up of the DR1 solution in all of these cases, which matches our expectation
knowing the nature of the two respective methods. However, the efficiency of
the methods differs greatly. The solution time of LS1 grows significantly as C1 is
set lower and lower away from the AvgLMP of the initial ED1 solution, while the
solution time of DR1 remains short regardless of the parameter.

Conclusion 2. DR1 works correctly in a general network and significantly outperforms
the heuristic method in terms of accuracy and efficiency.
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Table 2.6: Comparison of DR1 and LS1 Solutions for Different C1 Levels

C1 Model
∑
rk Gen Cost DR Cost Time (sec)

73.00 DR1 0.302082 25140.045 24.075 1.2
LS1 0.4 25132.243 31.860 5.6

70.00 DR1 7.513285 24578.326 571.704 1.6
LS1 7.6 24571.730 577.973 101

60.00 DR1 31.550629 22893.714 2021.568 2.2
LS1 31.6 22890.551 2023.952 417

45.00 DR1 69.14031 20847.861 3175.374 2.3
LS1 69.2 20845.194 3176.459 922

General Solvability

We experiment different formulations and solvers on five IEEE test cases (Christie,
1993) to demonstrate the general solvability of the model. In particular, we run
the NLP formulation using CONOPT, BARON and GLOMIQO, and run the binary
and SOS formulation using CPLEX and GUROBI. Two congestion conditions are
examined for each test case: free and congested. In order to make feasible yet simple
DR cases, we need to scale up the demand to certain levels and set appropriate line
limits for the congested scenarios. The setting and solutions are presented in Table
2.7, in which λED and λDR stand for the AvgLMP computed from the ED and DR
solutions, and all C1 levels were set to 0.9λED for simplicity.

Table 6.2 lists the computation time (in seconds) for each solver to find the
solution, where “-” indicates not finishing within an hour. The computer is a
Dell R710 server with two 3.46G X5690 Xeon Chips, 12 Cores and 288GB Memory.
For BARON, GLOMIQO and the binary formulation, we apply the big-M bounds
discussed in Section 2.2 to pursue the global solution within the bounds. Note
that the SOS formulation does not require artificial variable bounds, thus can be
trusted to provide the true global solution. The fact that all solvers obtained the
same solution is evidence for the validity of our choice of variable bounds. In all
cases, CONOPT consistently provides a good local solution very quickly, which can
serve as a starting point for other global solvers. We use this as part of a three-phase
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Table 2.7: Setting and Solution of IEEE Test Cases

Bus Setting ED Soln. DR Soln.
D z̄k C1 λED C2 λDR AvgPrice

∑
rk

14 700 ∞ 48.42 53.80 53.80 48.42 49.33 12.92
180 69.42 77.13 64.76 69.42 61.59 19.95

30 320 ∞ 4.84 5.38 5.38 4.84 5.10 16.48
42 5.50 6.11 5.89 5.50 5.47 3.65

57 1600 ∞ 54.23 60.26 60.26 54.23 56.01 50.93
220 54.58 60.65 56.42 54.58 53.45 43.11

118 9500 ∞ 53.61 59.56 59.56 53.61 54.01 71.16
390 156.55 173.94 135.01 156.55 122.91 0.85

300 31956 ∞ 68.79 76.43 76.43 68.79 69.74 437.50
1680 252.95 281.05 270.15 252.95 243.61 11.24

Table 2.8: Solution Time (in seconds) of Different Formulations and Solvers

Bus Status NLP Bin SOS
Conopt Baron Glomiqo Cplex Gurobi Cplex Gurobi

14 free 0.12 0.10 0.12 0.17 0.19 0.18 0.16
cong 0.12 0.16 0.12 0.28 0.13 0.13 0.15

30 free 0.12 202.76 1.10 0.16 0.16 0.29 0.15
cong 0.13 82.71 2.66 0.29 0.31 0.17 0.15

57 free 0.17 16.88 3.66 0.17 0.17 0.26 0.17
cong 0.15 - 11.21 0.29 0.29 0.82 0.28

118 free 0.13 - 9.54 0.28 0.25 9.68 5.29
cong 0.13 - 226.62 2.91 2.68 8.40 5.68

300 free 0.25 - 7.35 0.42 0.49 4.30 1.81
cong 0.14 - 833.44 2.51 2.70 4.22 2.56

solution strategy to be discussed below.

Solving Realistic Instances: A Three-phase Approach

We proceed to test DR1 on larger cases based on the Polish network. While the
nodal demands are scaled up (by a factor between 1.05 to 1.2) to make feasible DR
cases, we adopted the realistic line ratings given in the network data. It is observed
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that in realistic cases most lines will never reach their thermal limits. We exploit
this observation in a three-phase solution approach as outlined below.

1. Fast local solution: We first solve the NLP reformulation using CONOPT to
obtain a local solution with objective value R∗. If CONOPT reports an infeasible
solution, set R∗ =

∑
k∈B r̄k (its maximum possible value) for use in the second

phase.
2. Bound and fix: For each line a ∈ A, we find the lowest/highest level that

the flow za can possibly reach (let us call such a level an effective bound), by
minimizing/maximizing za subject to (2.15), (2.16), (2.17), (2.18) and the inequality∑
k∈B rk 6 R∗. If the effective lower bound of za is greater than za, then µlo

a (which
belongs to a SOS2 set) can be fixed to zero in the DR1 model; likewise, if the effective
upper bound of za is less than z̄a, µup

a can be fixed to zero in the DR1 model. Such
a “bound and fix” step could significantly reduce the effective number of discrete
variables in the MIP (binary or SOS) formulation of DR1, making it easier to solve.
Note that exploring the effective bounds requires solving 2|A| linear programs,
which is computationally inexpensive and is efficiently parallelizable (we used 40
parallel processes in the experiments).

3. Solving the MIP: After the variable fixing, we now solve the MIP (using
either the binary or SOS2 formulation of Section 2.2) with CPLEX, taking the local
solution from phase 1 as an initial integer feasible solution (i.e., enabling the mipstart
option in CPLEX).

The performance of this approach is demonstrated in Table 2.9. The solution
times of each step are listed in the last three columns of the table. We can see
that for each of the five cases, CONOPT obtains the local solution within about
10 seconds and the bound strengthening time is well within 2.5 minutes. Both
of the binary and SOS2 formulations obtained the same solution but the binary
formulation solves much faster. Here are the settings used in the experiments: In
order to realistically control the size of the instances, the qualified DR buses are set
to be those having an original demand level within a certain interval, e.g., [30,∞]

MW, and the DR upper bound rk is set to 10% of the original demandDk. Since the
Polish data do not contain generators’ quadratic cost coefficients, we artificially set
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Table 2.9: DR Test Results on Polish Networks

Case C1
ED Soln. DR Soln. Soln. Time (seconds)
λED C2 λDR AvgPrice

∑
rk NLP Bound Bin SOS

2383-bus 178.00 179.96 164.31 178.00 163.60 7.36 2.6 112.9 301.6 412.1
2736-bus 110.00 118.20 117.50 110.00 115.84 1161.64 10.1 124.2 16.4 67.1
2737-bus 113.00 115.21 114.74 113.00 113.68 146.85 4.4 100.2 4.90 27.1
2746-bus 112.00 112.82 111.98 112.00 111.38 117.76 4.5 95.8 73.1 1476.6
3012-bus 250.00 258.85 197.58 250.00 192.68 46.10 3.7 109.3 47.8 384.0

Table 2.10: Settings and Bounding Results on Polish Networks

Case Lines Demand # DR Buses Avail. DR MW # Zmax # Zmin
2383-bus 2896 25809.5 107 610.4 24 74
2736-bus 3269 19882.0 1305 1782.3 10 38
2737-bus 3269 13746.0 646 547.1 1 7
2746-bus 3279 26116.7 133 295.7 14 56
3012-bus 3572 29372.0 10 270.5 14 31

them to 0.1 for all generators in all cases. Table 2.10 summarizes the case-specific
setting, i.e., total number of lines, total demand, number of DR qualified buses,
total available MW of DR. The last two columns are the number of lines which
can possibly reach their upper bound and lower bound, respectively, determined
by the bounding procedure. It can be seen that most lines will never reach their
bounds, hence the corresponding multipliers are fixed to zero in the subsequent
MIP solve. We have also tested various cases in which CONOPT reported infeasible.
For such cases, CPLEX was able to terminate with infeasibility quickly (in less than
1 minute), which globally verifies that the cases are indeed infeasible.

We acknowledge that the DR model contains unavoidable nonconvex constraints
and there can be no general guarantee that a global solution is always obtainable
within a reasonable amount of time – it is an extremely hard problem. However,
realistic instances/data usually have exploitable characteristics such as the ones
exploited above, and the use of SOS2 formulation (without a need of artificial
bounds) or big-M formulations (for faster solution) are acceptable for practice.
Case-specific data analysis and simplification are necessary complements to the



70

practical deployment of the model.

2.5 Extensions

In this section, we design and carry out more experiments on various data cases
and obtain some insight on the model and the problem at large. For each of the
cases involved below, the network data are obtained from Christie (1993) and the
generator cost parameters are from Matpower. The experiments are performed
on a Dell Precision laptop computer with Intel Core i7 CPU @ 1.87GHz and 8 GB
memory, on which GAMS (ver 23.7.1) is run in a Windows 7 64-bit operating system.

On the Cost-effectiveness Condition

We design experiments on four data cases to shed some light on the DR cost-
effectiveness condition. The results are presented in Figure 2.8. Each subplot in the
figure represents a series of experiments on the same data scenario (as annotated by
the subplot title) with different C1 levels. Let us take the first subplot for example.
The experiments are carried out on the 14-bus case with a total demand level of 650
MW (scaled up to this level to ensure that a positive demand response is locally
feasible), and a 150 MW limit on every line (set to this level so that it is binding on
at least one line). In the first run, C1 is set to the current AvgLMP obtained from the
economic dispatch run, a level that barely makes “rk = 0,∀k ∈ B” feasible (thus
optimal for DR1). After the run, the AvgLMP and the AvgPrice from the optimal
solution is plotted as a solid and dashed dot, respectively. Then we reduce C1 by a
fixed interval (e.g., $1/MW) and re-run the model to plot the next pair of dots, and
so forth until we reach aC1 level where DR1 could not find an optimal solution. The
solid and dashed curves are obtained by connecting the dots. Roughly speaking,
each point on the curves represents an optimal solution of DR1 given a certain C1

level.
We make the following observations and remarks based on the experiments.
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Figure 2.8: Optimal solutions for decrementing C1 levels on different data cases

1. None of the maximum feasible Total DR levels reaches the total demand level
D, and the problem becomes infeasible when the AvgPrice rises above its
initial value at zero Total DR. This indicates that in the case when a demand
response is cost-effective, it is only cost-effective within a certain interval.
Beyond this interval, the demand response would make the AvgPrice higher
than the original and thus violate the cost-effectiveness condition.

2. The AvgPrice curves are convex shaped. As the Total DR level increases, the
AvgPrice first decreases and then increases, and as long as it has not surpassed
the original AvgPrice level, a feasible solution exists. The rationale is explained
at the end of Section 2.4. However, as practical advice, we would recommend
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the ISO consider dispatching demand response when the AvgLMP is not too
much above the LMP threshold C1, or equivalently, set the threshold so that
the resulting Total DR is substantially lower than the value that makes the
AvgPrice start increasing.

3. Considering the shape of the AvgPrice curve, one could identify the C1 level
that corresponds to the minimum AvgPrice more efficiently by carrying out a
strategic search method, such as the golden section search or Fibonacci search.

In all the experiments documented up to here, we have observed that the local
solutions found by CONOPT coincide with the global solution found by BARON,
although BARON took a longer time to terminate. For example, for each run of the
118-bus case, the time spent by CONOPT to obtain the initial local solution is less
than 1 second, and the time spent by BARON to prove that the solution is indeed
global is about 7 minutes. This observation provides evidence that the model can,
in effect, be solved globally by CONOPT. In the subsequent simulation, we stop
invoking BARON and directly report the CONOPT solution.

Simulation

We simulate an operating power system based on the 300-bus case to demonstrate
the use of DR1 in the ISO’s market clearing practice. Furthermore, we use demand
response as a corrective measure to restore the normal operation when the economic
dispatch is incapable of providing a feasible solution due to demand surges.

We do a series of 60 dispatch experiments each with a random demand profile.
We randomize the demand by multiplying the base case demand by a random
scale factor uniformly distributed between 0.90 and 1.42. The LMP threshold is
set to $60/MW as we regard this as a reasonable level for demonstration. Given
a random demand profile, in each run we first execute ED1 and take one of the
following three actions depending on the outcome of ED1. Specifically, if ED1 gives
an optimal solution and the corresponding AvgLMP is below the threshold, then
no demand response is needed thus DR1 is not executed. If ED1 gives an optimal
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Figure 2.9: Simulation results for the 300-bus case.
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solution and the AvgLMP is above the threshold, then DR1 is executed to find an
optimal DR (and implicitly ED) solution with a satisfactory AvgLMP. Finally, if ED1
fails to give an optimal solution, which indicates that the demand has exceeded
the generation capacity and we cannot compute a value for the AvgPrice, then DR1
is executed with C2 = ∞. In the last case, by executing DR1 we hope to not only
control the AvgLMP below the threshold but also restore a feasible ED solution,
and in exchange for this ambitious goal, we compromise the cost-effectiveness
requirement by setting C2 to infinity.

The series of experiments can be seen as a simulation of the energy market over
a certain period of time, the length of which depends on how frequent the dispatch
is updated over its duration. For example, it could represent 60 hours within the
day-ahead market with hourly dispatch, or 5 hours of the real time market with a
5-minute dispatch interval.

The simulation results, i.e., AvgLMP, demand and DR levels, are plotted in
Figure 2.9. We mark three different system events: “Normal” if no DR is needed,
“DR Event” if DR is dispatched to bring down the AvgLMP, and “Contingency” if
DR is dispatched to restore the system feasibility. As shown in the experiments,
DR1 is always successful to maintain the desired level of AvgLMP when a demand
surge occurs (seven occurrences in the 300-bus case), and never fails to restore
the system feasibility when needed (two occurrences). Furthermore, there is an
apparent positive correlation between the demand level and the AvgLMP level,
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which indicates that demand response is indeed an effective way to control the
market prices.

Variants

The bi-level structure of DR1 on one hand honors the original economic dispatch
to its full extent, and on the other hand provides great flexibility for specifying
various requirements on the demand response decisions. Users could modify the
upper level objective function and constraints to achieve customized goals. As an
example, we give two variants of DR1 as follows.

• DR2: Replace the constraint (2.11) by λk 6 C1,∀k ∈ B to impose the LMP
threshold on every nodal LMP instead of on the AvgLMP.

• DR3: Set the objective function (2.10) by L(λ) =
∑
k∈B vkrk to account for the

valuation vk that the DR provider k places on a MW of demand reduction.

An illustrative experiment is performed on the 14-bus case with results presented
in Figure 2.10. The total demand level is set to 650 MW and the line limit is 150 MW
on every line. While ED1 gives an AvgLMP of $74.01/MW, we setC1 to $60/MW, as
depicted by the horizontal dotted lines in the subplots. For DR3, we set v3 = 200 and
vk = 100, ∀k ∈ B/{2} to express a higher reluctance to dispatch demand response at
node 3 compared to other nodes. For each node indicated on the horizonal axis, the
bar on the left represents the LMP level and the bar on the right (if exists) represents
the dispatched DR level at this node. Note that the LMP and DR levels share the
same scale along the vertical axis but have different units, i.e., LMP is measured in
$/MW and DR in MW.

As seen in the figure, DR1 was able to reduce the AvgLMP by dispatching a total
of 37.7 MW of DR at nodes 2, 3 and 4. DR2 dispatched more (totaling about 48.1 MW)
demand response at nodes 2, 3, 4 and 9, thus was successful to keep the maximum
nodal LMP under $60/MW as intended. DR3 apparently took into account the
higher valuation v3, and as a result dispatched much less DR at node 3 (about 0.02
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Figure 2.10: Comparison of DR model variants on the 14-bus case.
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MW) but dispatched more at various other nodes. These variants show that the
bi-level DR model behaves sensibly and is flexible for further customizations.

2.6 Conclusion

Since the enactment of the FERC Order 745 in 2011, methodology research for a com-
pliant and constructive implementation has been scarce in the academic literature.
As the primary significance of this work, we have modeled the demand response
decision-making process in a way that conforms to the Order requirements.

A bi-level structure is used in the model to capture the interdependency between
the LMP and the dispatch of demand response, which is emphasized via the
net benefit test specifications in the Order. We remark that without the bi-level
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structure, the interdependency can only be dealt with in a heuristic and inefficient
way. To obtain a global solution, we have transformed a nonconvex constraint into a
linear form and investigated various methods to reformulate the complementarity
relations. We have carried out extensive computational experiments and concluded
that:

1. Local NLP solutions are always quick to compute and are useful to generate
starting points.

2. Realistic instances, despite their large scale, are not necessarily prohibitive to
solve if data characteristics are sufficiently understood and exploited.

3. The bi-level model is able to produce valid DR solutions in compliance with
the Order and is readily extensible for other DR compensation rules.

For cases where line limits are not binding or can be ignored, we have developed
a graphical method to carry out the net benefit test. In a practical situation, this
method can be handy to estimate the monthly threshold price as suggested in the
Order.

Future work could include customizing and fine-tuning the model to suit the
operational requirements of individual ISOs, extending the modeling idea to facili-
tate the procurement and dispatch of other resources such as the ancillary services,
capacity reserve resources and transmission resources, etc., and applying hierarchi-
cal models with sophisticated domain enhancements to inform long-term strategic
planning decisions, such as transmission expansion and market restructuring.
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3 payment rules for unit commitment dispatch

3.1 Introduction

A substantial portion of the electricity trades in the U.S. wholesale energy markets
go through the spot markets organized by Independent System Operators (ISO) or
Regional Transmission Organizations (RTO). For example, approximately 45% of
New York electricity is transacted in the NYISO day-ahead market, 5% is transacted
in the NYISO real time market and half through bilateral contracts1. Essentially,
ISOs need to organize two things: the electricity flow and the cash flow. For the
former, ISOs schedule and dispatch the supply and demand in an economic and
reliable way, and for the latter, they make and enforce payment rules to fairly
allocate the costs and revenues among market participants. These tasks turn out
to be problematic, given the complex nature of the commodity. Electricity differs
from an ordinary commodity in two ways: (1) what is produced now cannot be
practically stored for use later, as the production rate and capacity exceed the
storage rate and capacity by orders of magnitude; (2) the demand for electricity
exhibits huge, although to some extent predictable, variations throughout a day, the
amplitude of which is way greater than the capacity of any individual generating
unit. As a result, many generating units are forced to run intermittently, with
frequent startups and shutdowns, as well as prolonged periods of no-load "idling".
As in other industrial processes, startup and idling of a unit incur extra costs,
but unlike other industries, these costs have significant effect on the overall cost
of electricity production due to their frequency and must be compensated for in
the settlement. Such characteristics of the electricity supply are recognized in
the ISOs’ market operations. The discrete decisions, i.e., whether to start and
shut down a generator, have been an integral part in ISOs’ generator dispatch
algorithms, and a compensation rule for the discrete activities is also included in
most tariffs. However, the ways these discrete decisions or activities are treated

1Data source: NYISO Market Training Material – NY Market Orientation Course 2005.
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in the dispatch algorithm and in the payment rule are disjoint and incompatible,
which undermines the overall fairness and efficiency. This chapter reviews the
issues with the current payment rule, justifies an alternative pay-as-bid scheme and
presents some preliminary results regarding bidders’ response under pay-as-bid.

3.2 The Problematic Payment Rule

In the day-ahead markets, ISOs take bids from the generators and make the unit
commitment and dispatch decisions by solving the security-constrained unit com-
mitment and economic dispatch model (UCED) based on the bid data. The UCED
model minimizes the total generation cost, subject to the supply-demand balance
constraints, transmission network constraints and the generators’ operational con-
straints as specified in the bids. The operational constraints include minimum
up-time and down-time constraints, ramp-up and ramp-down constraints, and
lower and upper bounds on the output level once committed. This model is a mixed
integer program (MIP) that can be, and is actually being, efficiently solved using
modern optimization technology in the ISOs’ market operations.

Given a particular commitment decision, e.g., the one arising from the solution of
UCED, the economic dispatch (ED) model, which is a linear program (LP), finds the
optimal dispatch that minimizes the total energy cost. The optimal multiplier value,
or the shadow price, of the power balance constraint in the ED model represents the
cost of satisfying the next increment of demand and is set as the market clearing price
(MCP), or locational marginal price (LMP) to emphasize its "locational" dimension.
In fact, MCP is both locational and temporal, indicating the price at a particular
location during a particular time period. This interpretation is implied when we
use the term "MCP" in the remainder of this chapter.

As for the payment, all committed generators are paid for the MWh energy
output at the uniform MCP. However, as pointed out by Johnson et al. (1997),
"the commitment which predicates the optimal dispatch phase strongly affects the
market clearing prices... these prices are suboptimal since they do not reflect the
inter-temporal costs and constraints that drive the unit commitment." It has been
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acknowledged that in the context of unit commitment, there may not be a uniform
price (i.e., MCP) that supports the efficient market equilibrium . In other words, the
socially optimal dispatch solution cannot be achieved by the market participants’
profit-maximizing response to a uniform price. To enforce the central dispatch
solution, ISOs have to grant generators “make-whole” payments to compensate
their opportunity loss, as well as the unit commitment costs, incurred by complying
with the central dispatch and giving up their profit-maximization in response to
the MCP. Such payments contribute to the ISOs’ overall procurement cost and
eventually show up on consumers’ electricity bills as “uplift” costs.

“Make-whole” payments are addressed by different names within different
ISOs. For example, ISO New England uses the term “Net Commitment Period
Compensation”, Midwest ISO uses “Offer Revenue Sufficiency Guarantee Payment”,
PJM includes them in the “Operating Reserves Credit”, CAISO uses “Bid Cost
Recovery (BCR) uplift payment” and New York ISO uses “Bid Production Cost
Guarantee Payments”. Despite the differing names and formula, generally speaking,
a “make-whole” payment to a generator is calculated as the positive difference
between the generator’s as-bid cost (including energy, no-load and start-up) and its
energy revenue paid at the MCP, evaluated at the actual commitment and dispatch
solution. If the energy revenue at MCP exceeds the as-bid cost (as in most cases),
the generator simply pockets the surplus and no “make-whole” payment is needed.
The outcome is simple and clear: relative to its bid, a generator can be over-paid but
will never be under-paid. This is obviously problematic. The problem is two-fold.
First, the guarantee of revenue adequacy via “make-whole” payments ostensibly
favors the supply side over the demand side, thus violates the “equitable and two-
sided” market principle that predicates the uniform price auction format in the
first place. Second, if the recovery of the as-bid costs needs a guarantee, then why
not directly pay the generators according to their bids, i.e., pay-as-bid? Paying at
MCP and then making “make-whole” payments to match up with the as-bid cost
seems artificial. In fact, the mere existence of, or reliance on, the “make-whole”
payments is evidence that the uniform price payment design is flawed - the uniform
MCP neither clears the market, nor reflects the true cost of electricity. Ramifications
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are not limited to the unfairness and complexity (of having to use “make-whole”
payments), but also open loopholes for market exploitation. For example, JPMorgan
was found to game the California power market by exploiting the market rules.
The essence of their lucrative strategy was to request a sky-high commitment fee
while offering an extremely low price (-$30/MWh) for energy, enough to make the
overall cost profile appear competitive so that their units get selected for dispatch.
In the end, they are paid for energy at the MCP which was higher than their bid
and at the same time reap the high commitment fee via "make-whole" payments.
It is reported that JPMorgan amassed $57 million in improper payments over six
months in 2010 and 2011 .

3.3 The Imperfect Two-sided Electricity Market

The classic pictorial economic analysis of the price-quantity relationship involves an
upward-sloping marginal supply curve and a downward-sloping marginal demand
curve. The two curves intersect at the market equilibrium point which identifies
the transacted quantity and the market price and also maximizes the social welfare.
Although the electricity market is designed to look like a two-sided market in
which both suppliers and demanders bid, the suppliers and demanders are not at
equitable places: On the supply side, it is relatively easy to estimate the marginal
cost of generating a megawatt-hour of electricity, since in most cases, the cost is
determined by the fuel cost and the unit’s efficiency. However, it is difficult for
the demand-side, especially for the residential and commercial consumers which
constitute a significant portion of the total demand, to identify the true marginal
value of electricity. Many consumers regard electricity as an essential product and
simply consume at whatever price that is passed to them (Kirschen, 2003). In turn,
there is no way for their representative wholesale buyers, e.g., load-serving entities
(LSE), to come up with bids that reflect the true marginal values of electricity with
any accuracy. Therefore, the design of the electricity market as two-sided in the
hope of maximizing social welfare is flawed - it does not correspond to reality.
Telling evidence of inequitable market participation is that ISOs primarily use the
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forecasted demand, in lieu of demand bids, as the input to the dispatch algorithms,
whereas they use supply bids for the generation side.

Furthermore, even for those bidders who are able to quantify the marginal
values, they are not treated comparably to the generators in the market clearing
algorithm and the settlement rules. Specifically, the “consuming unit commit-
ment” issue is practically ignored. Although it is not usually perceived this way,
a consumer could legitimately have a commitment requirement. For example, a
manufacturing plant might need to run its energy intensive process or unit for a
continuous five hours, i.e., minimum run time requirement, to start the process it
might take some preparation costs, i.e., start-up cost, and during each hour of the
process, extra staff or other fixed costs to facilitate the electricity consumption might
be required, analogous to the no-load cost on the generation side. Such a scenario,
although hypothetical, raises an equity question: if the consumers are obliged to
pay the generating unit commitment fees to generators, shouldn’t the generators
reciprocate by paying the consuming unit commitment fees to consumers? No
ISO/RTO is currently accepting such kind of demand bids, although academic
discussions have been around, for example, Su and Kirschen (2009) and Borghetti
et al. (2002).

Finally, the energy market over the grid is nothing like the marketplace of an
ordinary commodity. A central dispatcher or auctioneer is indispensable, and
generation bids come in complicated forms due to the equipment’s operating and
cost characteristics. As discussed earlier, the classic economic principle simply does
not work: a market equilibrium point may not exist.

3.4 Justification of Pay-as-bid in the UCED Context

Previous discussions about market design rarely give adequate consideration to
the operational technicalities of the market settlement process. We believe that
understanding the settlement algorithm is critical in the design of a sound payment
rule.

The unit commitment economic dispatch model is usually solved as a MIP:
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MIP formulation:

Min
ybinary,x,z,δ

sTy+ cTx (3.1)

s.t. My > b (3.2)

Ax+ Bz = d (3.3)

Ex > Fy (3.4)

Qx > q (3.5)

Gz+Hδ > 0 (3.6)

At the same time, the problem can also be viewed as a two-stage problem: the
unit commitment decision is made in the first stage, whereas the dispatch decision
is made in the second stage given the commitment decision. The mathematical
model is as follows.
Two-stage formulation:

Min
y binary

sTy+ Q(y) (3.7)

s.t. My > b (3.8)

where constraint (3.8) contains the minimum up- and down-time requirements
and other commitment related constraints, and Q(y) is the optimal value of the
second-stage economic dispatch (ED) problem:

Q(y) = Min
x,z,δ

cTx (3.9)

s.t. Ax+ Bz = d (⊥ p) (3.10)

Ex > Fy (⊥ η > 0) (3.11)

Qx > q (⊥ µ > 0) (3.12)

Gz+Hδ > 0 (⊥ u > 0) (3.13)

The model minimizes the total as-bid production cost. Variable y is the com-
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mitment decision, e.g., yk,t = 1 if unit at node k is committed in time period t (for
the remainder, subscripts are omitted as they are easily inferred and the model is
presented in vector format). Variable x represents the dispatch, z the line flow and
δ the voltage angle. Constraint (3.10) is the power balance equation with the de-
mand d being a random parameter, (3.13) encapsulates all the network constraints,
such as line flow equations and line thermal limits, (3.11) represents the lower and
upper bound constraints on the power output x, which take the commitment y as a
parameter, and (3.12) represents the ramping requirements. Independent of the
model, the multiplier of each constraint is listed between the parentheses behind
the corresponding constraint. At an optimal solution of the second stage problem,
the value of the multiplier p of the constraint (3.10) is the MCP.

Although the make-whole payment rule translates to a total payment of max{sTy+
cTx, dTp}, in stylized analyses of the existing payment structure, the total payment
to generators includes the unit commitment cost sTy and the energy cost charged
at the MCP, i.e., dTp. It has been recognized that the solution to the above UCED
model does not necessarily minimize the total payment sTy+dTp, which is the true
cost of electricity from the consumers’ point of view, see Jacobs (1997). Efforts have
been made to minimize the consumer payment by solving the bi-level problem,
e.g., Fernández-Blanco et al. (2012):

Min
y binary,p

sTy+ dTp

s.t. My > b

p comes from (ED) model.

This model could be reformulated as a MIP with big-M constraints, which are
needed to express the optimality conditions of the lower level problem. However,
no efficient method has been reported to solve this MIP for large-scale instances,
due to the inefficiency of the large number of big-M constraints. The bi-level model
could also be reformulated as a nonlinear program which is nonetheless hard
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to solve due to the non-convex constraints introduced to express the lower level
optimality conditions. Even for toy problems, experiments have shown that the
minimum payment solution obtained by this model is usually not a practically
desirable solution.

We believe that the root cause of the mismatch between the minimum cost
solution and the minimum payment solution lies in the pricing rule. In particular,
only pricing the power balance constraints (3.10) and neglecting the marginal prices
of the other constraints lacks justification from many perspectives. A theoretically
correct way is to price all the ED constraints (3.10) to (3.13) with the corresponding
multipliers p, η, µ and u, respectively. This will yield a total energy payment of

dTp+ (Fy)Tη+ qTµ+ 0Tu

and the payment minimization problem becomes

Min
y binary,p

sTy+ dTp+ (Fy)Tη+ qTµ

s.t. My > b

p,η,µ come from (ED) model.

Note that the energy payment is the dual objective of the second stage LP. By
LP duality, the above expression is equal to cTx at the optimal solution, hence the
total payment becomes

cTx+ sTy

which is exactly the total as-bid cost that is being minimized in UCED. On the
individual level, it prompts a pay-as-bid scheme: pay a generator according to
its bid, for both the unit commitment part and the energy part. This Pay-as-bid
scheme not only eliminates the inconsistency between the minimum cost solution
and the minimum payment solution, hence enables the ISO to achieve the minimum
payment objective by simply solving the UCED model, but also induces accurate
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valuation of generating assets (to be illustrated in the example given below), there-
fore enhances the basis for a truly competitive supply market. This approach is
computationally convenient since UCED (minimum cost) is much easier to solve
than the bi-level program (minimum payment).

The pay-as-bid scheme has been discussed extensively in the literature (Federico
and Rahman, 2001; Anderson et al., 2013), but not adopted in the U.S. market. In
fact, most electricity markets use the uniform-price auction format and only a few
adopt the pay-as-bid format. For example, the electricity market in Britain and
Iran switched to a pay-as-bid format in 2001 and 2003, respectively, and Italy has
recently decided to follow suit. A similar move was considered in California in
2001 but was not implemented. We list the common reasons against the pay-as-bid
scheme (between quotation marks), and our arguments against them.

1. “It distorts the competitive nature of the market by giving no incentive for
technological innovation to suppliers, since the pay-as-bid resembles the cost-
based pricing of the rate-of-return regulation (Cramton and Stoft, 2007).” The
competitiveness of the market does not depend on the pricing scheme (as long
as it is a fair one), but primarily comes from its openness, i.e., the transmission
facility is no longer the property of a single generation firm or utility as in
the past, instead, any firm willing to and capable of participating the market
can have non-discriminatory grid access. As more and more suppliers enter
the market, competitiveness is a natural result. To the contrary of the claim,
since the pay-as-bid rule explicitly prices every component of the generators’
operating and cost characteristics, the incentives for technological innovation
and efficiency improvement will be more explicit.

2. “It forces the suppliers to depart from bidding their true marginal costs in
order to make a profit, whereas it is believed that under the pay-at-MCP
scheme, suppliers have every motivation to bid their marginal costs (Kahn
et al., 2001).” First, a sound market design should allow suppliers to behave
however they deem best for their interests, within the parameters of the market
rules. It is acceptable and perfectly natural to include a profit margin in the
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bid under the pay-as-bid scheme. A fuel-efficient generator could afford a
higher profit margin while being competitive in its bid profile; likewise, an
inefficient generator may have little or no profit. This is a sensible and healthy
market outcome, and it poses no systematic discrimination toward suppliers
in any tier (such as baseload and peakload). Second, the claim that “suppliers
have every motivation to bid their marginal costs” is a textbook scenario and
does not apply to the electricity market on the grid (as we demonstrate below).
Numerous studies have been conducted on the supplier bidding strategies,
and real world examples of manipulative market behavior abound and are
happening, e.g., the JPMorgan manipulative bidding story.

3. “Under the pay-as-bid rule, a supplier’s best offer is a price equal to its best
predicted MCP. If all the suppliers were able to predict the MCP with 100%
accuracy, pay-as-bid would result in the same market outcome as pay-at-MCP;
otherwise, prediction inaccuracies would lead to dispatches departing from
the ‘merit order’, and consumers would end up bearing the costs of such
inefficiency .” If a single price were all that comprises a generator’s offer, then
all the unit commitment related issues would be gone and the above claim
would be correct. However, the reality is that the generators submit multiple
blocks of energy offerings each with a price and an incremental quantity, as
well as unit commitment requirements that will affect the dispatch (as we
also demonstrate below). Therefore, it is premature to assume the criticality
of predicting the MCP (under the pay-as-bid rule, MCP means the highest
accepted offer price). In fact, even knowing the MCP with certainty does
not enable a generator to find an optimal bid in the sense that its profit will
be maximized. For example, if a generator bids aggressively in the unit
commitment parameters such as requiring a long minimum-up time, it might
lose (the opportunity of being selected), irrespective of its price bid, to a
competitor who bids modestly in the same parameter. It is also unrealistic to
impose an extreme risk-seeking attitude on all suppliers, i.e., always striving
to bid (and get paid) at the highest possible price and disregarding the risk
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of not being dispatched at all. Furthermore, there is not a clear “merit order”
without knowing the commitment, which by itself is a decision variable in
the ISO’s market clearing algorithm.

The following stylized example demonstrates the advantage of pay-as-bid in
the unit commitment context. For simplicity, let us consider one time period and a
generator (GEN1) with one block of price-quantity offer, in particular, its marginal
cost is $10/MWh for up to 100 MW, and a start-up cost of $200. Suppose that
the MCP is going to be $15/MWh and will not be affected by GEN1’s offer, be it
accepted or not. (Note: This happens if the accepted quantity of the marginal offer
is greater than GEN1’s capacity of 100MW. In this case, if GEN1’s offer is later
accepted, it amounts to a deduction of 100MW from the marginal quantity and
the marginal price remains unchanged.) Further assume that GEN1 knows all this
information. How should GEN1 bid? For the system operator, the net benefit of
accepting GEN1 is

(15 − p)× 100 − 200

where p is the offer price of GEN1. Clearly, GEN1 will be accepted only if p 6 13
and $13/MWh is the market value of GEN1 (although the MCP is 15). Under pay-
as-bid, GEN1 will optimally offer 13 and realize a profit of (13 − 10)× 100 = 300.
However, under pay-at-MCP, GEN1 could offer any price lower than 13 and get
paid at the MCP of 15, obtaining a profit of (15 − 10)× 100 = 500. This amounts to
a $200 over compensation to GEN1 and consumers will bear the cost.

In the same setting, now suppose that GEN1’s marginal cost is 14 instead of 10.
Since 14 > 13, GEN1 is not cost-effective and should not be accepted. Under pay-as-
bid, GEN1 can do nothing about it; but under pay-at-MCP, it could still offer any
price lower than 13 to get accepted and finally realize a profit of (15−14)×100 = 100.
This would be a loss of efficiency at the consumers’ cost.

For another scenario, if the dispatched quantity of the marginal offer was less
than 100MW and the marginal unit had a higher start-up cost, e.g., $400, then GEN1
could potentially replace the marginal unit. In this case, the net benefit of accepting
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GEN1 will be
(15 − p)× 100 − 200 + 400

which indicates that GEN1 could bid up to $17/MWh and still get dispatched. This
represents a case where a lower marginal-cost bid (i.e., 15) is not accepted while
a higher marginal-cost bid (i.e., 17) is accepted. Clearly, the "merit order", if one
exists, is not simply a ranking of the marginal costs in the bids.

It can be seen from the above examples that in the unit commitment context:

1. The MCP does not represent the market value of all accepted units.

2. Under pay-as-bid, a generator’s best bid is not necessarily its predicted MCP.

3. The market outcome will not be the same under pay-as-bid and pay-at-MCP,
even if participants know the MCP with certainty.

4. Under pay-as-bid, it is difficult to fool the system operator, as a generator’s
actual payment price is consistent with its bid price.

3.5 Suppliers’ Response under Pay-as-bid

While there is abundant literature on bidding strategy and market equilibrium
under various auction designs, the study of bidder’s behavior under pay-as-bid
in the UCED context is still limited. We leave a comprehensive discourse on this
subject to future work and outline a general model accompanied by a simulation
experiment, simply to make our point.

Let Oi := (Si,Ai,bi, ci, Fi,qi) represent the offer (bidding) choice of unit i and
let θ(Oi) be the return secured if offer Oi is accepted, which is easy to calculate.
However, whether or not an offerOi will be accepted depends on the circumstances
(e.g., the system demand and other suppliers’ offers), and from unit i’s perspective,
is a Bernoulli random variable (1 if accepted and 0 otherwise). The expected value
of this random variable is the probability of Oi being selected, denoted by p(Oi),
which is to be approximated via repeated experiments (market participation). In
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Table 3.1: Summary of the Generators by Fuel Types

Type Count Total MW Energy Source Description
SUB 14 6059 Subbituminous Coal
NUC 5 4335 Nuclear (Uranium, Plutonium, Thorium)
BIT 10 3055 Anthracite Coal and Bituminous Coal
DFO 20 1123 Distillate Fuel Oil (Diesel, #1, #2 and #4 F. Oils)
RFO 1 450 Residual Fuel Oil (#5, #6 and Bunker C F. Oils)

the long run, as the market is at the state of (dynamic) equilibrium, p(Oi) can be
well approximated. Therefore, for a risk-neutral unit i, its profit maximization
problem is

max
Oi∈O

θ(Oi)p(Oi) (3.14)

where O is the feasible set of unit i’s offer choices.
Realistically, θ(Oi) and p(Oi) are inversely proportional, and their product is

thus concave-shaped and has a maximum. For expositional purpose, we now
consider a simple case where the energy bid price ci is parameterized by a markup
factor and other components ofOi are fixed. Based on this case, we show that (3.14)
has a solution and that pay-as-bid recognizes and rewards bidders’ technological
advantage appropriately.

We use the PJM bidding data with masked generator names (publicized by
FERC for research purposes). The original data set contains 1011 generators, from
which we selected the first 50 generators for the simulation experiments. Table 3.1
lists the composition of the selected portfolio of generators.

We first demonstrate the relations between a generator’s profit markup level in
the bids and its realized profits. We pick a BIT generator “GEN6” as the subject, the
characteristics and original bids of which are listed in Table 3.2 and 3.3. Keeping
everything else constant, we multiply GEN6’s energy bid prices by different markup
factors, i.e., from 1 to 11 with increments of 0.5, and for each factor setting observe
the realized profits in 100 randomized demand scenarios. Assuming that the
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original bid prices (with markup factor equal to 1) represent the true marginal
costs, we can compute the cost once we obtain the dispatch solution. Under the
pay-as-bid rule, a generator’s revenue is just the corresponding term in the objective
function of the UCED model, and the profit is calculated by the formulae

Profit = Revenue − Cost

Table 3.2: Characteristics of GEN6

Min/Max MW Ramp Up/Down Min Up/Down NoLoad Start
16.5/86 0.495/0.551 (MW/min) 15/9 (hr) 1000 2000

Table 3.3: Marginal Costs of GEN6

Block1 Block2 Block3 Block4
Quantity 37.5 11.25 7.5 29.75
Price 21.03 21.04 21.04 22.20

The demand scenarios are generated in two steps. First, we arbitrarily create a
base demand curve for a 24-hour period using the following formula,

dt = 10000 + 3000 sin(2πt/24 − 1)

where dt is the base demand in hour t. The sine function is used to mimic the
demand variations throughout a day. Next, the actual demand in hour t is treated
as a uniform random variable distributed in [dt − 100,dt + 100] and 100 samples
are drawn for each t to form 100 daily demand scenarios.

To illustrate the effects of a unit’s commitment costs on its market competitive-
ness, we do the same experiments on “GEN5”, which we make to have the same
characteristics and cost parameters as GEN6, except for a much lower no-load and
startup cost, one tenth of that of GEN6. Low commitment cost increases the cost-
efficiency, hence competitiveness, of a unit, so we expect to see the advantage of
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Figure 3.1: Profit curves of two generators with different commitment costs

such features of GEN5 over GEN6 in the experiments. The results are summarized
in Figure 3.1.

In the figure, for each profit markup level on the horizontal axis, we plot the
mean (the dots, which are connected by the curves), the 25% and 75% percentile
(the lower and upper borders of the boxes, respectively), and the minimum and
maximum (bottom and top points of the sticks, respectively) of the realized profit
over the 100 demand scenarios. For the boxes that are invisible in the plot, they
are actually concentrated (both upper and lower borders) at zero profit level. The
mean values represent the expected profits, whereas the candlesticks to some extent
indicate the risks. Rich insight can be drawn from the figures:

1. The expected profit is indeed a concave-shaped function of the profit markup
in the bid and possesses a maximum. This validates the bidder’s profit maxi-
mization model as discussed earlier. It can also be seen from the candlesticks
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Figure 3.2: Payoff of GEN5 under pay-as-bid

that the higher the markup level, the riskier the bid will be, in the sense of a
higher probability for the bid to be rejected.

2. GEN5 exhibits a more competitive profit curve as expected. GEN5 receives a
higher maximum expected profit (at optimal markup 5.5) than that received
by GEN6 (at optimal markup 4.5). The difference is $8206, or 11.6%. Besides,
GEN5’s profit curve has a wider and flatter top, which implies a broader risk
tolerance for over-bidding. For example, GEN5 could tentatively bid at a
markup level of 7 and not bear a big opportunity loss compared to the optimal
bid, while bidding at 7 would be an immediate disaster to GEN6 as its 75%
highest profit would be 0.

In Figure 3.2 and 3.3, we plot the expected profit (or payoff) of GEN5 and
GEN6, respectively, as a function of the markup levels of both GEN5 and GEN6.
Such payoff matrices and plots are useful tools to analyze the market equilibrium
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Figure 3.3: Payoff of GEN6 under pay-as-bid

in both the game theoretical and optimization framework. Although a detailed
equilibrium study under the proposed pay-as-bid will be deferred to future work,
some qualitative and sensible insight is readily available in the plots.

1. A generator’s expected profit is consistently concave-shaped as a function
of its own profit markup level. This can be seen by fixing the competitor’s
markup to any level and observing the resulting slice of the 3D plot. This
once again validates the profit maximization model postulated earlier.

2. A generator’s expected profit is also influenced by its competitor’s bid. Take
GEN5 (Figure 3.2) for example, when its competitor GEN6’s markup is in the
low range (which means higher competitiveness), GEN5’s maximum profit
is relatively low (around ), this is because the market is shared with GEN6.
As GEN6’s raises its markup level, its competitiveness gradually diminishes
and so does its market share, so GEN5 gains more market share and therefore
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achieves a higher maximum profit (of around 7.5 × 104). Such effects are
completely intuitive and the same pattern is present in Figure 3, too.

3. The differences between GEN5 and GEN6, including their maximum profit
and the risk tolerance for over-bidding, are clearly exhibited in the two figures
and are consistent with the observations from Figure 3.1.

3.6 Conclusion

The existing payment rules, i.e., paying at a uniform MCP for energy and relying
on “make-whole” payments to recoup the unit commitment costs, has been shown
problematic both in theory and in practice. The root cause of the problem is two-fold:
(1) the unavoidable unit commitment constraints make a uniform MCP nonexistent;
(2) the supply-side and demand-side do not behave, and are not treated, equitably
in the market. In this context, we proposed pay-as-bid as a viable payment rule to
be considered by policy makers.

In particular, we showed on the typical two-stage unit commitment model that
pay-as-bid prices every component of a unit’s energy production characteristics,
fairly and accurately evaluates a unit’s efficiency, and therefore provides clearer
signals for innovations and improvements. Under the pay-as-bid rule, the consumer
payment minimization problem, which is usually hard to solve, coincides with the
production cost minimization problem that is easy to solve. Using a simple example,
we demonstrated that suppliers’ bidding behavior is rational under pay-as-bid, and
a market equilibrium with a lower social cost is likely to exist and be achieved in
the long run.
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4 extended bidding structure for demand response

4.1 Introduction

Sufficient demand-side participation is critical to the success of deregulated market
design, since the marginal pricing and social welfare maximizing principles under-
lying this design are predicated on bid-based, competitive participation of both
suppliers and demanders (Wellinghoff and Morenoff, 2007). However, reality has
shown that the demand side lacks the ability to participate in the market compara-
bly to the supply side and exhibits significant unexpressed elasticity, resulting in
inefficient market outcomes, exacerbating oligopoly power and distorting long term
investment incentives. There are two main causes. First, not all demanders are able
to independently value the electricity ex ante, i.e., before the market clearing price is
known, so as to place meaningful price-quantity bids on the market (Kirschen, 2003).
This is inherent to the nature of electric energy, as most people regard electricity as
an essential and non-substitutable commodity. Second, the bidding system does
not provide other mechanisms as an alternative to the price-quantity bid format
for demanders to express their willingness to consume, particularly their response
to price signals. In fact, demanders can be quite responsive to the price and price
variations by modifying and rescheduling usage. For instance, when the price is
high, a demander could curtail some usage. Furthermore, if the demander knows
a priori that the price is high in some hours of the day and low in other hours of
the day, she could reschedule usage to minimize the total cost (Schweppe et al.,
1988). Such behaviors are instances of demand response (DR). Incorporating ways
in the market rules to induce demand response and encourage demand-side partic-
ipation has drawn much attention recently from policy makers, practitioners and
researchers.
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FERC’s Ruling on Demand Response

In its recent Order No. 745 (FERC, 2011), Federal Energy Regulatory Commission
(FERC) requires that “when a demand response resource participating in an orga-
nized wholesale energy market administered by an RTO or ISO has the capability
to balance supply and demand as an alternative to a generation resource and when
dispatch of that demand response resource is cost-effective as determined by a net
benefits test, that demand response resource must be compensated for the service
it provides to the energy market at the market price for energy, referred to as the
locational marginal price (LMP)”. There are two prevalent interpretations of this
DR compensation policy, but none is unanimously satisfactory.

The first interpretation allows DR resources to bid in the day-ahead energy
market, i.e., the DR resources bid the quantity they are willing to curtail from their
(presumably verifiable) expected consumption or baseline and the price for the
curtailment. The DR bid is treated the same way as a supply offer in the market
clearing economic dispatch algorithm. Cleared DR bids must follow the dispatch
and will be compensated at the LMP. PJM RTO implements such a mechanism.
In particular, PJM publishes a monthly updated threshold price calculated from
certain net benefit criteria, and DR bids are included in the dispatch algorithm only
when the LMP resulted otherwise exceeds the threshold.

This interpretation has been argued against by many economists: the DR re-
sources are not entitled to sell energy in the market without physically or contrac-
tually owning the energy, see FERC (2011); Ruff (2002); Hogan (2012). A proposed
solution is to require the DR resources to buy the baseline amount in an earlier
settlement, e.g., futures market and forward contracts, refer to FERC (2011); Chao
(2010, 2011); Hogan (2009, 2010a). However, in this case DR becomes no more than
energy arbitrage between different markets, similar to the virtual bids between
day-ahead and real-time markets. This does not serve the purpose DR is promoted
for. The promotion of DR is aimed at eliciting better demand side participation in
the market, achieving better social welfare and as a desirable side effect, relieving
the strain on the transmission system caused by huge demand variations over time,
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as well as damping the price fluctuations (Wellinghoff and Morenoff, 2007; FERC,
2011, 2008; Boisvert et al., 2002). In contrast, arbitrage could make the real-time
price converge to the day-ahead price, but could not help reduce the variation of
the day-ahead price.

The second interpretation does not treat DR as a sale of energy on the energy
market. Instead, DR is treated as a sale of the “consuming right” from certain
consumers, i.e., DR providers, to other consumers, i.e., the remaining load. In
particular, the remaining consumers pay the DR provider to reduce consumption.
When the supply curve is steep, such trades among the demand-side can be ben-
eficial to all consumers, including DR providers who get compensation from the
remaining load and the remaining load who enjoys lower LMP. This is done outside
the energy market so there is no entitlement issue as in the first interpretation. ISO
New England implements such a mechanism. In that market, demand reduction
offers are cleared subject to a net benefit test after the day-ahead energy market
results are determined, and the compensation level for the cleared DR is set to the
LMP, see ISO New England (2012). The work in Chapter 2 implements exactly this
interpretation of demand response.

We acknowledge some merits of the second interpretation: compared to the
supply-side, electricity buyers are large in number and small in size, hence without
a central organization it is impossible for them to have significant leverage on the
market. In this context, ISO/RTO serves as an organizer to help the demand-side
to form some market power to countervail the suppliers’ market power. However,
this amounts to a violation of the ISO/RTO’s statutory role as an “independent”
system operator and in the meantime, the efficiency of countervailing power is up
for much debate, see Galbraith (1980), Stigler (1954) and their citing documents.

Other Related Work

A simple monetary compensation rule has not been, at least in theory, successful to
elicit a satisfactory solution for the demand response problem. Another alternative
is to design a bidding structure that accommodates distinct characteristics and
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behaviors of the demand-side participants. Arroyo and Conejo (2002) presented
a foundational work on the unit commitment based market clearing mechanism
that has been widely adopted in today’s markets. Importantly, the mechanism en-
couraged demanders to submit price-quantity bids to the market operator, instead
of being treated as fixed and rigid. Strbac and Kirschen (1999) demonstrated the
importance of a realistic demand-side bidding structure. They stressed that the cost
of load recovery after, or occasionally before, the load reduction period should be
accounted for in an optimal schedule. Su and Kirschen (2009) proposed a complex
form of demand bids that allowed for flexible time of consumption. In particular,
demanders could submit multiple price-quantity bids for each consumption period
and specify the total amount of consumption to be satisfied over the scheduling
horizon. However, those demand bids were modeled by integer variables and
constraints, thus the dispatch mechanism fell short of good economic properties.
Papadaskalopoulos et al. (2011) presented a decentralized market clearing mecha-
nism in which each market participant computes her own optimal generation or
consumption schedule and bids given the market prices and the central planner
in turn updates the prices based on the bids from market participants. This is an
iterative process and the iteration proceeds until an equilibrium is reached. We
recognize a merit of this mechanism to be the great freedom available to market
participants to interpret and respond to the price signals. However, if such free-
dom is uncontrolled, it may render the equilibrium nonexistent and the iterative
process never converging. We believe that a certain degree of conformity is no
less important than flexibility in the design of a bidding structure and adding new
bidding formats can be a less drastic and easier to implement change than going to
an iterative process.

In this chapter, we propose an extension to the existing price-quantity bid for-
mat for the ISO/RTO’s economic dispatch model. The extended format enriches
the forms of demand-side participation, promotes a broader frontier for load dis-
patchability and yet preserves the nice properties of the current market design
philosophy, such as economic efficiency and incentive compatibility, see Stoft (2002)
for a detailed discourse on market design. Following a brief note on the nomen-
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clature, Section 4.2 proposes our characterization of different demand types and
their respective cost-minimizing or surplus-maximizing problems. Based on this,
Section 4.3 develops the new bidding structure and the corresponding central dis-
patch model, accompanied by the proof of its incentive compatibility. Section 4.4
implements the model for an experiment and presents the experiment results and
Section 4.5 draws some conclusions and summarizes the points.

Notes on the Nomenclature

Symbols will be defined where they first appear in the chapter. In general, g and
d denote generation and demand in megawatt hour (MWh), respectively, and p
denotes the price in dollars/MWh. The superscript on a symbol annotates the
specific meaning and the subscript(s) indexes its applicable object. Subscripts k
and t index the participant and time period (i.e., hour), respectively. Depending on
the context of its occurrence, a symbol may represent a scalar or a vector, with the
specific meaning implied by the presence or absence of the subscripts. A symbol
topped with a bar or bottomed with a underline is always a parameter instead of a
variable, representing the upper or lower bound of a quantity.

4.2 Demand Types and Behavioral Models

In many ISO/RTOs’ DR programs, demand response resources are treated compa-
rably to a generation resource. For example, DR providers can specify operating
requirements such as minimum curtailment period and DR initialization cost, etc.
Energy bids are taken on a similar basis. Almost all ISO/RTOs in north America
take demand-side energy bids exclusively in two forms1: (1) Fixed, specified by
a quantity in MWh, and (2) Price-sensitive (or elastic), specified by a number of
price-quantity pairs. These bids impose the demander either to be a price-taker, or
to provide an explicit demand curve, which a normal demander and subsequently

1ISO/RTOs surveyed include: ISO New England, Midwest ISO, PJM RTO, New York ISO,
California ISO and ERCOT. Note that fixed demand bids include the load estimates made by forecast
procedures, such as ERCOT’s load profiling process.
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Figure 4.1: Framework for demand-side participation

her wholesale market representative, e.g., a load serving entity (LSE), are unable to
estimate accurately, see, e.g., Kirschen (2003). Without the accuracy of this input,
social welfare maximization is merely an illusion.

We identify three additional types of demand, in particular, shiftable, adjustable
and arbitrage. We will formulate the basic characteristics and model the behaviors
for each type of demand, while Figure 4.1 illustrates a structural overview of our
work.

Fixed Demand

Fixed demand constitutes a dominant portion of the total demand on the spot
market. For example in MISO’s day-ahead market in 2008, fixed demand bids
accounted for about 98% of total cleared demand (Newell and Hajos, 2010). By
submitting a quantity without putting a maximum acceptable price, the bidder
effectively tells the market that she places an infinite value on the whole, and each
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and every bit, of the specified amount of electric energy. This is unlikely to be true
and accurate in such an overwhelming scale, but it is what is happening on the
market every day. Using fixed demand bids in cases where additional flexibility is
present is contrary to efficiency and should be discouraged. Fixed demand bidders
have nothing to optimize because they are unconcerned about the price.

Elastic Demand

Elastic demand exhibits a sloped demand curve. The value (or utility or benefit) is
a concave function (decreasing marginal value) of the consumption d, denoted by
V(d). Note that the value function can be different for different time periods, but it
is separable with respect to the time of consumption. The surplus maximization
problem of an elastic demander k is (ELA)(p):

max
dk

∑
t

[Vk,t(dk,t) − ptdk,t] (4.1)

s.t. dk,t 6 dk,t 6 d̄k,t, ∀t (4.2)

Typical forms of V(d), like those of the generator cost function C(g), are quadratic
or piecewise linear.

Adjustable Demand

Similar to the fixed demand, adjustable demand has a preferred consumption
profile, but is willing to make an adjustment at a cost. Let r+k,t and r−k,t denote
the amount of over- (adjust up) and under- (adjust down) consumption from the
target level dta

k,t, respectively, and let Dk,t(r
+
k,t, r−k,t) denote the deviation cost. Over-

consumption does not normally incur extra costs, if not making extra benefits, on
the demander’s side, and we include its cost here simply for the generality of the
formulation. Compared to the value function of an elastic demand, the deviation
cost function is an alternative valuation of electric energy, also termed the Value
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of Lost Load (VOLL) see the term definition in Kirschen (2003); Stoft (2002). An
adjustable demander minimizes the cost of consumption by solving (ADJ)(p):

min
r+k ,r−k

∑
t

[pt(d
ta
k,t + r

+
k,t − r

−
k,t) +Dk,t(r

+
k,t, r−k,t)] (4.3)

s.t. 0 6 r+k,t 6 r̄
+
k,t, ∀t (4.4)

0 6 r−k,t 6 r̄
−
k,t, ∀t (4.5)

Realistically, the parameter r̄−k,t is upper bounded by dta
k,t. Note that Dk,t(r

+
k,t, r−k,t)

is assumed to be a convex function and takes value zero when r+k,t and r−k,t are both
zero. We envision a typical form of Dk,t(r

+
k,t, r−k,t) to be:

Dk,t(r
+
k,t, r−k,t) = α

+
k,t(r

+
k,t)

2 + β+
k,t|r

+
k,t|+ α

−
k,t(r

−
k,t)

2 + β−
k,t|r

−
k,t| (4.6)

where α and β are parameters.

Shiftable Demand

Shiftable demand requires a total amount of electricity to be delivered within a
given time range, but is flexible with regard to the time of delivery within that range.
For instance, demander k partitions the planning horizon T into time ranges indexed
bym and requires dtr

k,m amount to be delivered within the time range Tk,m ⊂ T . A
shiftable demander minimizes her consumption cost by solving (SHI)(p):

min
dsh
k

∑
t

ptd
sh
k,t (4.7)

s.t.
∑
t∈Tk,m

dsh
k,t = d

tr
k,m, ∀m, Tk,m (4.8)

dsh
k,t 6 d

sh
k,t 6 d̄

sh
k,t, ∀t (4.9)
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The shiftable demand bid requires no explicit valuation of the electricity and opens
a door for demanders to respond to the market prices. It can be expected to substi-
tute for an appreciable portion of the fixed demand and hence increase the general
dispatchability of the demand. Typical shiftable loads include plug-in electric vehi-
cles (PEV) and their aggregators, industrial laundry facilities and sewage treatment
plants, etc.

Arbitrage

Arbitrage here means physical (instead of financial) arbitrage over time in a given
market (instead of between different markets). A storage facility is a typical arbi-
trage type of demand (Walawalkar et al., 2007). An arbitrageur seeks to profit from
the price discrepancies over time – buy energy when the price is low, store it, and
sell when the price is high. There are no target levels of storage and no deviation
penalties, but there is efficiency loss in the charge-discharge cycles. Let sk,t and bk,t

denote sell (discharge) and buy (charge), respectively, and hk,t denote the storage
level. An arbitrageur maximizes its profit by solving (ARB)(p):

max
bk,sk,hk

∑
t

pt(sk,t − bk,t) (4.10)

s.t. hk,t = hk,t−1 + bk,tek − sk,t, ∀t (4.11)

hk,1 = hk,|T | (4.12)

0 6 bk,t 6 b̄k, ∀t (4.13)

0 6 sk,t 6 s̄k, ∀t (4.14)

0 6 hk,t 6 h̄k, ∀t (4.15)

In the defining equation (4.11) for hk,t, ek is the efficiency factor with ek ∈ [0, 1],
indicating that each unit of energy input will convert to ek unit of output. Real-
istically, ek may be a function of hk, e.g., the efficiency of a Sodium Sulfur (NaS)
battery depends on the depth of discharge (J. Himelic, 2011), which needs more
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constraints to express. For expositional purpose, we make ek a constant bidding
parameter. Constraint (4.12) nails the net change of hk in the planning horizon
to zero, for sustainable operations, although in practice it can appear in different
forms.

Note that we do not aim to enumerate all possible demand characteristics and
the above nominated types are not strictly exclusive to one another. For example, the
elastic demand and adjustable demand share a similar basis for valuation (i.e., both
have no intertemporal component) and are mathematically generalizable to one
form. The important point is that when demanders, despite their formal differences,
all naturally behave as if they are solving a convex minimization problem, we
can open up the existing bidding structure to explicitly account for these natural
behaviors, without sacrificing its nice properties. This will be addressed in the next
section.

4.3 Bidding and Central Dispatch Model

While market participants have their own optimal response to the prices, the actual
dispatch and the market clearing prices are determined by the central auctioneer
(ISO/RTO), whose objective is maximizing the social welfare. If a dispatch and
pricing model is designed such that the central dispatch solution with the accom-
panying prices coincides with the market participants’ optimal response to these
prices, then competitive participants have every reason to bid their true parameters,
thus the model is incentive compatible. We will develop such a model incorporating
the above mentioned demand types.

Central Model and its Properties

Table 4.1 lists the parameters and variables in the model, with subscripts omitted
for clarity. The parameters represent the bids submitted to the system operator.

In a distributed decision-making paradigm, given the market clearing prices pt,
demanders solve their respective behaviorial models presented in the last section.
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Table 4.1: Bidding Parameters and Decision Variables

Type Bidding Parameters Variables
Generator C(·),g, ḡ, RU

k , RD
k g

Fixed dfx

Elastic V(·),d, d̄ d

Shiftable Tm,dtr,dsh, d̄sh dsh

Adjustable dta,D(·), r̄+, r̄− r+, r−
Arbitrage e, b̄, s̄, h̄ b, s,h

On a similar basis, generator k responds to the price p by solving (GEN)(p):

max
gk

∑
t

[ptgk,t − Ck,t(gk,t)] (4.16)

s.t. g
k,t 6 gk,t 6 ḡk,t, ∀t (4.17)

gk,t − gk,t−1 6 R
U
k , ∀t (4.18)

gk,t−1 − gk,t 6 R
D
k , ∀t (4.19)

where RU
k and RD

k are the ramp-up and ramp-down rates (in MW/hour), respectively.
The system operator maintains the supply-demand balance∑

k

(gk,t − dk,t − d
sh
k,t − r

+
k,t + r

−
k,t + sk,t − bk,t) =

∑
k

(dfx
k,t + d

ta
k,t), ∀t (4.20)

by adjusting the prices pt.
We postulate a central dispatch model, as follows.

(Central Model):

min
g,d,dsh,r+
r− ,b,s,h

∑
k,t

[Ck,t(gk,t) − Vk,t(dk,t) +Dk,t(rk,t)]

s.t. (4.2), (4.8), (4.9), (4.4), (4.5)

(4.11)-(4.15), (4.17)-(4.20)
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The price pt is set as the optimal Lagrangian multiplier (or dual variable) of the
corresponding constraint in (4.20). Note that the model minimizes the total social
cost (negative of the social welfare), hence it is economically efficient.

Theorem 4.1. Given a set of bidding parameters, suppose that x̂ := (ĝ, d̂, d̂sh, r̂+, r̂−, b̂, ŝ, ĥ)
solves the Central Model and p̂ is the optimal Lagrangian multiplier of the constraint (4.20).
Then ĝ solves (GEN)(p̂), d̂ solves (ELA)(p̂), d̂sh solves (SHI)(p̂), (r̂+, r̂−) solves (ADJ)(p̂),
and (b̂, ŝ, ĥ) solves (ARB)(p̂).

Proof. By duality theory, we know that (x̂, p̂) solves the Wolfe dual, formulated by
dualizing constraint (4.20), of the Central Model:

max
p

min
x

∑
k,t

[Ck,t(gk,t) − Vk,t(dk,t) +Dk,t(rk,t)]

+
∑
t

pt[
∑
k

(gk,t − dk,t − d
sh
k,t − r

+
k,t + r

−
k,t

+ sk,t − bk,t − d
fx
k,t − d

ta
k,t)]

s.t. (4.2), (4.8), (4.9), (4.4), (4.5), (4.11)-(4.15), (4.17)-(4.19)

Consequently, x̂ solves

min
x

∑
k,t

[Ck,t(gk,t) − Vk,t(dk,t) +Dk,t(rk,t)]

+
∑
t

p̂t[
∑
k

(gk,t − dk,t − d
sh
k,t − r

+
k,t + r

−
k,t

+ sk,t − bk,t − d
fx
k,t − d

ta
k,t)]

s.t. (4.2), (4.8), (4.9), (4.4), (4.5), (4.11)-(4.15), (4.17)-(4.19)

which is a separable model by participant types, i.e., can be decomposed into
(GEN)(p̂), (ELA)(p̂), (SHI)(p̂), (ADJ)(p̂) and (ARB)(p̂), thus the conclusion follows.

It is widely believed that this property of the economic dispatch model, coupled
with the reality that nonconvex cost (e.g., unit commitment cost) is relatively minor,
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makes the existing bidding structure incentive compatible, see Stoft (2002). This
leads to the conclusion that the extended Central Model is incentive compatible.

Abstraction

While the specific formats proposed above focus on the demand side, the structure
can be applied to both sides of the market. For example, a hydro generator may
have time-shiftable supply needs. In the abstract form, each market participant
k has a benefit function fk(xk) and operating constraint xk ∈ Xk, where xk is the
energy consumption/supply. The participant’s optimal response to the market
price p is

max
xk∈Xk

fk(xk) − x
>
k p (4.21)

Note that time dimension is embedded in the vectors xk and p, so all kinds of
intertemporal relations can be expressed in the objective function as well as in the
constraint Xk. In the bid-based central dispatch mechanism, each participant k
simply informs (via bidding) the dispatcher its fk(·) and Xk, and the dispatcher
maximizes the social welfare by solving

max
x

∑
k

fk(xk) (4.22)

s.t
∑
k

xk = 0 (⊥ p) (4.23)

xk ∈ Xk, ∀k (4.24)

The existing market model (where only fixed and elastic bids are allowed) is a
special case of this formulation, having two specialties: (1) the value function f
is separable across time, thus fk(xk) is restricted to the form

∑
t fk,t(xk,t); (2) the

constraint set Xk of a demander k is also separable across time, i.e., Xk =
∏
t Xk,t.

These restrictions hinder efficient market participation. For example, a shiftable
demander with no way to express the shiftability in bids may have to predict the
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price path so as to approximate this feature using the time-separable price-quantity
bids. The prediction and approximation are error-prone and most likely to lead to
suboptimal outcomes.

In contrast, the general model avoids such barriers and retains nice properties.
It is straightforward to generalize that as long as each fk(·) is a convex function
and each Xk is a convex set, the economic properties will hold and the model will
remain easy to solve.

Two Additional Merits

There are two related points that we need to clarify:

Network Integration

The above framework is developed only on an economic basis, devoid of the trans-
mission network variables and constraints. This is purely for the clarity of the
main point. In fact, the framework can be easily adapted to a DC-based (linearly
constrained) network model, and the nice properties will hold as well. Suppose
the network is represented by a set of nodes N and a set of arcs A (each physical
transmission line is modeled by two arcs, one for each direction). Let variable z
denote the power flow on arcs, bounded within the thermal limits [−z̄, z̄], variable
δ denote the voltage angle at nodes and parameter B denote the susceptance of arcs.
Then the system operator maintains the arc flow equation and the nodal power
balance, as follows:

zk,l,t − Bk,l(δl,t − δk,t) = 0, ∀(k, l) ∈ A, t (4.25)

gk,t − dk,t − d
sh
k,t − r

+
k,t + r

−
k,t + sk,t − bk,t −

∑
l:(k,l)∈A

zk,l,t = d
fx
k,t + d

ta
k,t, ∀k, t

(4.26)
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It is easy to see that these additional variables and linear equations can be readily
incorporated in the central model.

Unit Commitment

In practice, the economic dispatch is usually preceded by the unit commitment (UC)
process (i.e., to decide which generators are to be used in the dispatch, based on
costs and operating characteristics), which shapes the feasible set of the economic
dispatch problem. In the proposed bidding context, the unit commitment process
can be performed by taking all the bidding demand, i.e., dfx, d̄, d̄sh,dta, b̄, as fixed
demand, and we claim that the UC decision thus obtained is guaranteed to be
feasible for the subsequent central dispatch model. To see this, simply note that our
central dispatch model boasts a relaxed feasible region compared to the conventional
one where all demands are taken as fixed, and that the fixed demand is a feasible
solution to the Central Model.

The UC decision obtained in the above way may not be the optimal one to the
unit commitment model formulated directly based on the Central Model, although
one can solve such a UC model if an “optimal” UC solution is desired. However, we
offer an important caveat: the unit commitment model, which is usually a mixed
integer program, lacks economic justification for the market clearing function, see
Johnson et al. (1997); O’Neill et al. (2005), which is part of the reason why unit
commitment and economic dispatch are usually practiced as two decision processes
rather than one.

4.4 Implementation and Experiments

While the proposed model opens up new ways for demand bidding, the actual
penetration rate of the new demand forms is yet to see and the exact bidding pa-
rameters are still unknown. These parameters are set fictitiously in the experiments.
Therefore, the experimental results of this section should be assimilated as a qual-
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itative, rather than rigorously quantitative, projection of the current and future
states of the market.

Data and Setting

The generator bids and the fixed demands are obtained from the FERC eLibrary
Docket Number AD10-12, ACCNNUM 20120222-4012. The data set represents a
typical summer operating day of the PJM day-ahead market (Krall et al., 2012). For
the demand data, we sum up the fixed demand bids from all the 13760 buses for
each hour to create an aggregate hourly demand profile, for use as the base case in
the experiments2. The base case is illustrated in Figure 4.2 as the “Fixed” demand.
For the generator data, there are altogether 1011 generators, each offering up to
10 pairs of price-quantity bids for energy along with various unit commitment
requirements and costs. A unit commitment process similar to the one documented
in (Krall et al., 2012) was executed on the base-case demand, which selected 365
generators for commitment. We fix the unit commitment status according to this
result in the subsequent experiments.

We make up four aggregate demanders, one for each demand type. The omission
of subscript k in the following should cause no confusion.

Elastic Demand

We assume that 1% of each hour’s base-case demand becomes elastic, which is then
bid into the market in ten equally sized MWh blocks, coupled respectively with
10 decreasing prices ranging from $99/MWh to $0/MWh with even decrements,
see Figure 4.3 for an illustration. This piece-wise linear demand curve for hour
t is represented by a linear cost function Vt(dt) and two linear constraints in the

2There are also price-responsive demand bids, demand response bids and incremental and
decremental virtual bids in the data file. We disregard them because (1) they are negligible in
quantity, (2) the on-going demand response rule is unclear and controversial, and (3) virtual bids are
irrelevant to our topic. We also disregard the network data because it is inaccessible to the public.
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Figure 4.2: Day-ahead demand profile of FERC dataset 4012

minimization problem, as follows.

Vt(dt) =
∑
o∈O

pdb
t,od

db
t,o (4.27)

dt =
∑
o∈O

ddb
t,o (4.28)

ddb
t,o 6 d̄db

t,o, ∀o ∈ O (4.29)

where O is the set of bid blocks, the bidding pair (pdb
t,o, d̄db

t,o) indicates that an
increment of d̄db

t,o MWh is worth pdb
t,o dollars/MWh to the demander, and the

variable ddb
t,o represents the dispatched quantity in bid block o.
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Adjustable Demand

We assume 1% of each hour’s base-case demand becomes the target level pta
t of the

adjustable demand. The deviation function Dt(r+t , r−t ) is taken in the form of (4.6),
with the linear penalty β+

t and β−
t arbitrarily set to the minimum LMP 0 and the

average LMP 30.1 of the base-case, respectively, and the quadratic penalty α+
t and

α−
t arbitrarily set to 0.05 and 0.1, respectively. The bound r̄−t is set equal to pta

t while
r̄−t is set to

∑
t p

ta
t .

Shiftable Demand

We partition the 24-hour period into three 8-hour ranges, i.e., Tm,m = 1, 2, 3, and
assume 1% penetration of shiftable demand by setting the total demand requirement
dtr
m for rangem to be 1% of the sum of the hourly base-case demand in the range.
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Arbitrage

We assume an arbitrageur (storage) the size of 1% of the base-case demand is
present besides the base-case demand and set h̄ accordingly. We set the hourly buy
(charging) rate b̄ and sell (discharging) rate s̄ to be 0.2h̄, to mimic the characteristics
of a 5-hour storage facility. The efficiency factor e is set to 0.75.

Comparative Effect of Different Demand Types

We tested the effect on LMP and social welfare of 1% penetration of the outlined
forms of demand-side bids, separately and aggregatively. The elastic, shiftable
and adjustable demands are substitutes for the fixed demand, so the fixed demand
will reduce to 99% of the original level in these individual cases. The arbitrage is
an additional form of participation on top of the base-case demand, so the base-
case demand remains at the 100% level. We examined two aggregative cases,
both consisting of 97% fixed demand and 1% each of the elastic, shiftable and
adjustable demand, one with 1% arbitrage and the other without arbitrage. The
actual dispatched demand of the “97% Fixed + 1% (E+S+A+AR)” case is plotted in
Figure 4.2 as the “Dispatched” curve.

Effect on the LMP

Figure 4.4 plots the LMP resulted from each case. As expected, the base case exhibits
the roughest (with the biggest dip and spike) price path while the aggregative case
exhibits the mildest. The penetration of each individual demand type smoothens
the LMP to a certain extent. Among them, arbitrage is the most effective, followed
by shiftable demand, whereas elastic demand is the least effective, in terms of
dampening the price fluctuation.

Effect on the Social Welfare

Table 4.2 lists the cost (negative of the social welfare) results. The first column
indicates the hypothesized market composition, the second column is the cost from
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Figure 4.4: Effect of extended bidding on LMP

Table 4.2: Cost Results

Current Optimal Saving %Saving
1% Elastic 23317039 23215798 101242 0.43%
1% Shiftable 24315018 24069303 245715 1.01%
1% Adjustable 24315018 24299083 15935 0.07%
1% (E+S+A) 23317039 22991408 325632 1.40%
1% ARbitrage 24315018 23748933 566085 2.33%
1% (E+S+A+AR) 23317040 22566391 750649 3.22%

the current bidding design, i.e., treating all demand as fixed, the third column is
the optimal cost from our proposed bidding design, and the fourth and the fifth
columns compare the costs and list the savings and percent savings, respectively.
The benefit of the proposed bidding design is apparent and significant.
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Arbitrage Effect on the LMP and Profit

As demonstrated above, arbitrage is the most impactive on the LMP among other
participant types of the same penetration level of 1%. This is fathomable, as an
arbitrageur’s buy/sell schedule is driven solely by the temporal price differences
and is unfettered by any target level of consumption or private valuation of the
electric energy (because practically there are none). However, unlike the other types
of demand bids which are direct alternatives or substitutes for the fixed demand
bid, the arbitrage bid must be backed by physical storage capability that takes
time to construct and deploy, so the penetration level is likely to be small in the
foreseeable future.

In Figure 4.5, we plotted the effect of arbitrage on the LMP for different pene-
tration levels, ranging from 0.2% to 1%. As expected, the increase of the arbitrage
level will gradually damp the LMP variation. It is also interesting to note that the
effect does not grow linearly with the penetration level, as the first 0.2% increment
of the arbitrage level has contributed about half of the peak price reduction. This
observation prompts a question: what is the “optimal” percentage of storage on
the market? Figure 4.6 below provides some useful information to address this
question.

In Figure 4.6, we plotted the profits of arbitrage for penetration levels ranging
from 0% to 2% with an increment of 0.1%, and for three different efficiency factors,
0.65, 0.75 and 0.85. Seen from the figure, high marginal value of storage expansion
can be expected when the level is below 0.4 ∼ 0.6% for all three efficiency options.
From a level higher than 0.6%, the marginal benefit of expanding storage capacity
starts to decrease, plateau or even reverse sign, depending on the technology type
(efficiency factor). Of course, in making the storage expansion decision, construction
and operation costs and a myriad of other factors need to be considered, but the
above observation at least shed some light on such a decision-making process.
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4.5 Conclusion

The existing demand response compensation policy has been widely and fiercely
questioned for its economic efficiency, equality and fairness. Recognizing that a
simple monetary compensation rule is unlikely to settle the issue, we proposed
an alternative route to reach the end – opening up the bidding structure to allow
for more forms of bids that reflect realistic demand characteristics and behaviors.
Specifically, existing bid formats are all separable over time. But a significant and
growing segment of demand can be shifted across time and therefore has no way
to bid its true valuation of consumption. We proposed additional bid types that
allow time-shiftable demand to better express its value, thus elicit demand response
in the most natural way – direct participation in the market. The additional bid
types are easily incorporated into the existing market and that they preserve its
efficiency and incentive-compatibility properties, both of which are critical design
principles that must be instantiated, but are commonly seen violated, in ISO/RTO’s
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demand response programs. Experiment has shown that significant savings could
be realized even from a small market presence of those demand types, if this
mechanism were put to use. Some useful insight on storage expansion has also
been drawn from the experiments. We have also abstracted the design philosophy
in a general mathematical form, which serves as a blueprint for further extension
and implementation.
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5 stochastic unit commitment with derand sampling
method

5.1 Introduction

The day-ahead unit commitment (DUC) schedule is computed on the basis of the
day-ahead market bids which cannot be relied upon to infer the actual load profile
during the operating day. It is likely that the day-ahead UC schedule is insufficient or
uneconomical to support the real-time dispatch of generation resources to meet the
real-time load. Reserve adequacy assessment (RAA) aims to identify the extra unit-
hours for commitment1 in preparation for the actual load and reserve requirements
in the operating day.

The terminology residual unit commitment (RUC) is often used instead of RAA
in industry. The problem essentially embodies a unit commitment model similar
in structure to the day-ahead UC model. The differences between the RAA UC and
day-ahead UC include:

• While the day-ahead UC supports (non-physical) financial transactions, RAA
plans for the anticipated (forecast) physical load. In the input data to RAA, all
demand bids, virtual bids and bilateral transactions are removed. Prior to the
RAA run, uncommitted resources that are backed by physical injection/with-
drawal capabilities are allowed to revise or resubmit their bids and the zonal
load values are to be instantiated with the load forecast information.

• While the day-ahead UC model includes the DC power flow constraints, the
RAA UC model substitutes the proxy constraints (i.e., transmission proxy
and SFT proxy) from the day-ahead security constrained economic dispatch
(SCED) process for the DC power flow constraints.

1Unit-hours already committed in the day-ahead UC solution are locked in and will not be
decommitted in RAA.
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• In the RAA model, the day-ahead UC decision is respected to the extent
that the unit-hours committed by the day-ahead model will be held fixed
in the committed state. RAA only assesses the “residual” unit-hours for
commitment, in particular for slow-start units which are not committed by
the DUC run. Therefore, RAA is smaller and easier than the full-size day-
ahead UC problem.

Load forecast software provides very accurate predictions. For example, the
mean relative error in 2011 is less than 1.3% and its 95-th percentile is about 3.4%.
The existing deterministic model using these values is generally effective to serve
the RAA goal.

A stochastic unit commitment model aims to utilize richer information from
the load forecast to provide a better solution than its deterministic counterpart,
see, e.g., Yu et al. (2013), Constantinescu et al. (2009) and Wang et al. (2013). It is
well-known that a stochastic programming model harnessing the true probability
distribution of the random data is in theory superior in solution quality compared
to its deterministic counterpart2. However, including the probabilistic information
significantly increases the size of the model and the solution difficulty. For instance,
the size of the extensive form of a stochastic model, which is a mixed integer
program (MIP), grows linearly as the number of scenarios increases. For the RAA
problem at hand, each extra scenario adds about 190,000 variables and 166,000
constraints to the model. Table 5.1 lists the model (instance) sizes resulted from
increasing number of scenarios3. In the worst case, the computational complexity
of a MIP may grow quickly as the number of scenarios increases and exponentially
as the number of discrete variables increases.

The tradeoff between the solution quality and computational efficiency is present
in any practical stochastic programming design, see, for example Feng and Ryan
(2014) and Papavasiliou and Oren (2013). In this chapter, we develop and showcase

2The solution quality is measured by evaluating the mean value of the objective function over a
large number of independent samples drawn from the distribution.

3The numbers in the table come from the instance of June 3, 2011, and may differ by instance,
due to varying number of active resource bids and proxy constraints.
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Table 5.1: Stochastic RAA UC Instance Size v.s. Number of Scenarios

Scen. Row Col. Non-zero Disc. Col. Model
1 217,390 220,709 819,309 15,073 168 MB
2 384,012 410,717 1,470,303 15,073 258 MB
3 550,634 600,725 2,121,297 15,073 347 MB

10 1,716,988 1,930,781 6,678,255 15,073 977 MB
20 3,383,208 3,830,861 13,188,195 15,073 1876 MB
30 5,049,428 5,730,941 19,698,135 15,073 2775 MB

a derandomization (Derand) sampling method that caters for a tight computational
budget, i.e., a situation where only a few (3 or 5) scenarios can be computationally
afforded. Such a stringent condition is rarely studied in the stochastic programming
literature, but the reality in ISO New England’s RAA project does necessitate it. The
idea of Derand is to partition the sample space and use the conditional expectation
as an informed and unbiased guess (sample) of the underlying probability distri-
bution. This method is most applicable and advantageous for low-dimensional
space with a small sample size budget. In the stochastic UC model for RAA, the
load forecast error is a random parameter and only a few samples of it can be
afforded in the computation, which constitutes an ideal application of the method.
We acknowledge that Derand shares the same idea as the Gaussian quadrature
technique in numerical integration (Brandimarte, 2014) and vector quantization in
signal processing (Lloyd, 1982; Gersho and Gray, 1992), whereas the latter has been
applied to scenario generation in stochastic models, see Goodwin et al. (2009) and
Cooper et al. (2012) for example. Compared to the existing work, our development
is based on probability theory and is uniquely tied to the general form of stochastic
programming. Furthermore, we prove its unbiasedness property and emphasize its
systematic (non-random, hence called derandomization) approach, which warrants
a greater degree of stability and repeatability particularly desirable in an ISO’s
operation.
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5.2 Problem Formulation

The problem is formulated as a two-stage stochastic program. The first stage deci-
sion involves the binary unit commitment variables and the second stage includes
continuous variables for net energy injection, power flow, reserve level and con-
straint violation, etc. The objective is minimizing the total cost which is the sum of
unit commitment cost, expected (over all sampled scenarios) energy and reserve
costs and expected penalty cost for constraint violations. While being a mathe-
matically valid solution status, infeasibility is inconvenient for solution quality
assessment and problem diagnosis and thus should be circumvented (Liu et al.,
2014). In order to make each candidate UC solution feasible for all scenarios (i.e., to
have a relatively complete recourse), artificial variables are introduced to the second
stage to allow for constraint violations. These variables are heavily penalized in
the objective function and the penalty cost measures the extent of infeasibility. For
detailed formulation of general stochastic UC problem, we refer readers to Section
10 of Chapter 1.

5.3 Derandomization Sampling Method

We base our discussion on a stochastic program of the form

min
x∈X

{f(x) := E[F(x, ξ)]} (5.1)

where X is a nonempty compact subset of Rn, ξ is a random vector defined on
the probability space (Ω,F,P), and F is a real-valued function of x and ξ. The
expectation operator is taken with respect to the probability distribution of ξ. We
denote by Ξ ⊂ Rd the support of the probability distribution of ξ.

Given a natural number N, let the subsets Bi ⊂ Rd, i = 1, . . . ,N be a disjoint
partition of Ξ, i.e.,

Bi ∩ Bj = ∅ for i 6= j and ∪Ni=1 Bi = Ξ
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In addition we assume that

P({ω : ξ(ω) ∈ Bi}) > 0 for i = 1, . . . ,N (5.2)

Let Ai = {ω : ξ(ω) ∈ Bi} for i = 1, . . . ,N, and thus A1, . . . ,AN form a disjoint
partition of Ω. Let AN be the σ-field generated by the collection {A1, . . . ,AN} of
subsets of Ω, i.e., AN = σ({A1, . . . ,AN}). Clearly, we have AN ⊂ F. Now define a
random variable ξN by

ξN =

N∑
i=1

E[ξ1Ai ]
P(Ai)

1Ai , where 1A(ω) =

1, ω ∈ A

0, ω /∈ A

Note that ξN is a discrete random variable which takes the valueE[ξ1{ξ∈Bi}]/P(ξ ∈
Bi) with probability P(ξ ∈ Bi), for i = 1, . . . ,N. In fact, ξN is an unbiased estimator
of ξ, as shown in the following lemma.

Lemma 5.1. ξN is the conditional expectation of ξ given AN, i.e.,

ξN = E[ξ|AN]

Proof. From the definition of AN and the fact that A1, . . . ,AN partitionΩ, we have
that every element A of AN is of the form

A = ∪i∈IAi, I ⊂ N (5.3)

For A given by (5.3),

E[ξ1A] = E[ξ
∑
i∈I

1Ai ] =
∑
i∈I

E[ξ1Ai ]

On the other hand, we have

E[ξN1A] = E[
∑
i∈I

E[ξ1Ai ]
P(Ai)

1Ai ] =
∑
i∈I

(
E[ξ1Ai ]
P(Ai)

E[1Ai ]) =
∑
i∈I

E[ξ1Ai ]
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We have shown that E[ξN1A] = E[ξ1A] for all A ∈ AN, therefore proven the
lemma.

Let FN(x, ξ) := F(x, ξN) and by noting that FN(x, ξ) can be equivalently ex-
pressed as

FN(x, ξ) =
N∑
i=1

F(x, E[ξ1Ai ]
P(Ai)

)1Ai ,

the following problem

min
x∈X

{fN(x) := E[FN(x, ξ)] =
N∑
i=1

P(Ai)F(x, E[ξ1Ai ]
P(Ai)

)} (5.4)

is well-defined and solvable.
For a fixed N, AN encapsulates the information that we could exploit to tie

down the randomness of ξ in the optimization problem. The increase ofN enriches
the information encapsulated in AN. In particular, if the sequence of σ-fields AN
forms a filtration, i.e., AN ⊂ AN+1 for each N, then the process (ξN,N = 1, 2, . . .) is
a martingale with respect to the filtration, because we have

E[ξN+1|AN] = E[E[ξ|AN+1]|AN] = E[ξ|AN] = ξN

where the second equality comes from the tower property of conditional expectation.
This to some extent indicates that N represents the richness of the information we
could possibly have on hand while estimating ξ.

If Ξ is a finite set, the maximum number of nonempty subsets needed to partition
Ξ is the size of Ξ, denoted by |Ξ|, in which case each subset becomes a singleton
representing a possible value of ξ. The resulting A|Ξ| is the last member in the
filtration, which is clearly equal to σ(ξ), the σ-field generated by ξ. Therefore, we
have

ξ|Ξ| = E[ξ|A|Ξ|] = E[ξ|σ(ξ)] = ξ
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and consequently,
min
x∈X

f|Ξ|(x) is equivalent to (5.1). (5.5)

To discuss the case where Ξ is infinite, we first note that it is always possible,
via progressive partitioning of Ξ, to obtain an increasing sequence of σ-fields AN
that converges to σ(ξ), i.e., AN ⊂ AN+1 for anyN, and A∞ := σ(∪N∈NAN) = σ(ξ).
Then we have the following proposition.

Proposition 1. Suppose {AN} is an increasing sequence of σ-fields and A∞ = σ(ξ). As
N→∞,

ξN → ξ almost surely. (5.6)

Proof. Since we have E[ξ|σ(ξ)] = ξ, and ξN = E[ξ|AN] by Lemma 5.1, Theorem
5.5.7 in Durrett (2010) completes the proof.

Results in (5.5) and Proposition 1 indicate that ξN is a consistent estimator of ξ.
We can regard (5.4) as a knowledge-guided approximation to the original problem
(5.1) in the sense that, given a computing budget N and the associated σ-field AN,
the solution of (5.4) is based on an informed and unbiased guess of the underlying
random parameter. Note that for the same N, different partitioning schemes will
result in different AN’s, which leaves plenty of freedom for algorithm design.

Theorem 5.2. Let X be a nonempty compact subset of Rn and suppose, in addition to a
given {AN} satisfying the assumptions in Proposition 1, that for any x ∈ X, (i) F(x, ·) is a
bounded continuous function, and (ii) F(·, ξ) is continuous at x almost surely. Then f(x)
is finite valued and continuous on X, and fN(x) converges to f(x) uniformly on X.

Proof. Proposition 1 implies that ξN converges to ξ in distribution, which then
implies that

E[g(ξN)]→ E[g(ξ)]

for all bounded continuous function g, so by the assumption (i) we have fN(x)→
f(x) for each x ∈ X. It also follows from (i) that for all x ∈ X there is a numberM(x)

with |F(x, ξ)| 6 M(x) < ∞, and consequently |f(x)| = |E[F(x, ξ)]| 6 |E[M(x)]| =
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|M(x)| < ∞. Consider a point x ∈ X and let xk be a sequence of points in X
converging to x. By (i) coupled with the Bounded Convergence Theorem, we have

lim
k→∞ f(xk) = lim

k→∞E[F(xk, ξ)] = E[ lim
k→∞ F(xk, ξ)].

By (ii), we have limk→∞ F(xk, ξ) = F(x, ξ) almost surely, then it follows that f(xk)→
f(x), hence f(x) is continuous.

Now choose a point x̄ ∈ X, a sequence γk of positive numbers converging to
zero, and define Vk := {x ∈ X : ‖x− x̄‖ 6 γk} and

δk(ξ) := sup
x∈Vk

|F(x, ξ) − F(x̄, ξ)|.

By (ii) we have δk(ξ)→ 0 almost surely as k→∞ and by (i) we have that δk(ξ),k ∈
N are bounded, hence by the Bounded Convergence Theorem we have

lim
k→∞E[δk(ξ)] = E[ lim

k→∞ δk(ξ)] = 0. (5.7)

In the meantime, for any x ∈ Vk we have

|fN(x) − fN(x̄)| = |E[F(x, ξN)] − E[F(x̄, ξN)]|

= |E[F(x, ξN) − F(x̄, ξN)]|

6 E|F(x, ξN) − F(x̄, ξN)|

where the second line is by the linearity of the expectation operator and the third
line is by Jensen’s Inequality. Consequently,

sup
x∈Vk

|fN(x) − fN(x̄)| 6 sup
x∈Vk

E|F(x, ξN) − F(x̄, ξN)|

6 E[sup
x∈Vk

|F(x, ξN) − F(x̄, ξN)|]

= E[δk(ξN)]

Because F(x, ·) is continuous and Vk is compact, δk(·),k ∈ N are continuous, and
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since ξN converges to ξ almost surely, we then haveE[δk(ξN)]→ E[δk(ξ)] asN→∞.
Together with (5.7) this implies that for any ε > 0 there exists a neighborhoodW of
x̄ such that for sufficient large N,

sup
x∈W∩X

|fN(x) − fN(x̄)| < ε.

Since X is compact, there exists a finite number of points x1, . . . , xm ∈ X and corre-
sponding neighborhoodsW1, . . . ,Wm covering X such that for N large enough the
following holds

sup
x∈Wj∩X

|fN(x) − fN(xj)| < ε, j = 1, . . . ,m. (5.8)

Furthermore, since f(x) is continuous on X, these neighborhoods can be chosen in
such a way that

sup
x∈Wj∩X

|f(x) − f(xj)| < ε, j = 1, . . . ,m. (5.9)

Since we have shown fN(x)→ f(x) for each x ∈ X, this means that

|fN(xj) − f(xj)| < ε, j = 1, . . . ,m (5.10)

holds for N large enough. It follows from (5.8)-(5.10) that for N large enough

sup
x∈X

|fN(x) − f(x)| < 3ε. (5.11)

Since ε > 0 was arbitrary, (5.11) indicates that fN(x) converges to f(x) uniformly on
X and hence the proof is complete.

As AN is constructed by dividing Ξ into N parts and given such a division
there is complete freedom as for where to place the next cut point to form AN+1,
we can see that there are numerous ways to form the filtration {AN} that satisfies
the assumptions in Proposition 1. Suppose {AN} is formed randomly so that the
formation is modeled by a measurable map from (Ω,F) to (S, S), where S is the set
of all sequences {AN} satisfying the assumptions in Proposition 1 and S denotes
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the set of all subsets of S, and since the above theorem works for each and every
value of this map, i.e., “a given {AN}” as stated in the theorem, then it is possible to
establish that fN(x) is a random variable which converges to f(x) uniformly on X
and the convergence is in the almost sure sense.

Theorem 5.2 resembles the Theorem 7.48 in Shapiro et al. (2009) in many aspects,
from the assumptions to the conclusions. In fact, a significant portion of the proofs
overlap. Since the establishment of the consistency properties of the SAA estimators
is primarily based on the uniform convergence of the sample average function f̂N(x),
see Section 5.1.1 of Shapiro et al. (2009), we claim that those properties also hold
for the Derand method on similar minor assumptions.

We defer more detailed theoretical discussion to future work. In what follows,
let us focus on analyzing the practical problem and making a concrete case for
Derand method’s industrial application.

Forecast Error Analysis

Let us examine the forecast errors based on the historical data of 2011. There are
8759 entries in the data set4, each entry i consisting of the system-wide forecast df

i

and the actual load da
i for the hour, i = 1, 2, . . . , 8759. We calculate the relative error

δi by the formula δi = (df
i − d

a
i)/d

f
i. Our plan is to analyze the error distribution

and make informed guesses of the error in future forecasts. When a new forecast df

arrives and a stochastic UC with n load scenarios needs to be solved, we can draw
n error samples, δ̂1, . . . , δ̂n, and construct the load scenarios d̂1, . . . , d̂n using the
formula

d̂s = d
f(1 − δ̂s), s = 1, . . . ,n (5.12)

The error distribution is visualized in Figure 5.1. In the histogram, the rel-
ative error is densely concentrated around zero, suggesting that the forecast is
very accurate. The errors also exhibit a notable bias toward the positive quadrant
(mean=0.002599), indicating a trace of over-forecasting.

4In the data set, the hour 02:00 of March 13, 2011 is missing due to daylight saving, but the
missing hour is not added back on November 6; otherwise, there would be 8760 entries for the year.
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Histogram of Forecast Error in 2011
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Figure 5.1: Relative forecast error distribution in 2011.

The Normal Q-Q plot suggests that Normal distribution is a poor fit for the error,
which is also indicated by the small p-value (<0.005) in a goodness of fit test. We
have tried a number of off-the-shelf distributions and none of them could provide
a good fit that passes the Chi-square test5.

In summary, we need a few high-quality samples from an empirical distribution.

Scenario Generation

We adopt the Derand method to generate samples for the error distribution. The
empirical distribution, formed by a finite number of historical observations, is
the best available approximation of the true distribution of δ. We will use those
historical samples as building blocks to form a smaller set of samples to approximate
the error distribution.

Suppose the error distribution has a support of the real line. Given a target
sample size N, we partition the support into N pieces, i.e., (−∞, c1] ∪ (c1, c2] ∪
. . . ∪ (cN−1,∞). The N − 1 cut points can be obtained by inversely transforming

5The fit is performed by Arena® Input Analyzer.
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Uniform(0,1) samples by the empirical CDF of δ. For simplicity, we use a direct and
deterministic approach to set the cut points. Observing that δ rarely falls outside
the interval [−0.1, 0.1], we use theN− 1 points that uniformly partition the interval
[−0.1, 0.1] as the cut points. For instance, when N = 3, we have v1 = −0.0333 and
v2 = 0.0333, and the partitioning outcome consists of three intervals, [−∞,−0.0333],
(−0.0333, 0.0333] and (0.0333,∞).

For each interval (partition) k, we then generate a sample point (vk,pk), where
vk is the value and pk is its probability. In the Derand method, vk is the expectation
of δ conditioning on the interval k and pk is the probability of interval k, i.e.,
H(ck) −H(ck−1), where H(·) is the CDF of δ.

This is straightforward in the present case since we work directly with the
historical data. In particular, vk is the average value of all observations that fall
in the interval k, and pk is the relative frequency of observations falling in this
interval.

Once the load scenarios have been determined, the system load is apportioned
to the eight zones as zonal loads, according to a certain percentage mix, i.e., a weight
matrixwt,z with

∑
zwt,z = 1, ∀t. The weight matrix is given in Figure 5.2, in which

the entries were calculated by averaging the historical data 2011_smd_hourly.xls
accessible at www.iso-ne.com

5.4 Performance Evaluation

Experiment Design

We have the full market and network data for a single day, i.e., June 3, 2011, as well
as hourly system load and forecast data for the year 2011 and 2012. We will use
these data in the experiments.

We compare the proposed Derand method against two alternative approaches:
(1) Sample average approximation (SAA) with Monte Carlo sampling (Kleywegt
and Shapiro, 2001), and (2) the Scenario reduction algorithm, SCENRED2, within
GAMS (Heitsch and Römisch, 2003; GAMS). We fix the sample (scenario) size to
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ME NH VT CT RI SEMASS WCMASS NEMASSBOST
Hour1 0.0884 0.0884 0.0465 0.2449 0.0649 0.1172 0.1412 0.2086
Hour2 0.0897 0.0884 0.0470 0.2436 0.0647 0.1164 0.1414 0.2088
Hour3 0.0906 0.0885 0.0472 0.2428 0.0644 0.1160 0.1416 0.2090
Hour4 0.0912 0.0888 0.0474 0.2422 0.0642 0.1158 0.1413 0.2090
Hour5 0.0922 0.0896 0.0475 0.2418 0.0640 0.1157 0.1412 0.2081
Hour6 0.0931 0.0908 0.0477 0.2418 0.0634 0.1160 0.1410 0.2063
Hour7 0.0931 0.0919 0.0481 0.2426 0.0629 0.1164 0.1404 0.2045
Hour8 0.0922 0.0922 0.0480 0.2436 0.0633 0.1170 0.1397 0.2040
Hour9 0.0913 0.0923 0.0473 0.2446 0.0637 0.1177 0.1392 0.2038
Hour10 0.0904 0.0923 0.0468 0.2451 0.0643 0.1184 0.1389 0.2038
Hour11 0.0894 0.0923 0.0462 0.2458 0.0649 0.1186 0.1390 0.2038
Hour12 0.0884 0.0921 0.0460 0.2460 0.0652 0.1190 0.1391 0.2042
Hour13 0.0878 0.0917 0.0456 0.2462 0.0654 0.1191 0.1391 0.2051
Hour14 0.0873 0.0916 0.0455 0.2467 0.0655 0.1192 0.1392 0.2051
Hour15 0.0870 0.0913 0.0453 0.2471 0.0655 0.1191 0.1391 0.2056
Hour16 0.0867 0.0914 0.0453 0.2471 0.0653 0.1196 0.1389 0.2058
Hour17 0.0873 0.0916 0.0451 0.2469 0.0652 0.1204 0.1387 0.2047
Hour18 0.0876 0.0921 0.0451 0.2473 0.0651 0.1216 0.1385 0.2027
Hour19 0.0876 0.0925 0.0453 0.2475 0.0652 0.1226 0.1384 0.2008
Hour20 0.0876 0.0924 0.0452 0.2473 0.0654 0.1231 0.1384 0.2006
Hour21 0.0872 0.0918 0.0451 0.2477 0.0655 0.1231 0.1387 0.2009
Hour22 0.0862 0.0905 0.0455 0.2481 0.0657 0.1221 0.1391 0.2027
Hour23 0.0861 0.0893 0.0453 0.2481 0.0656 0.1203 0.1399 0.2055
Hour24 0.0869 0.0886 0.0459 0.2468 0.0653 0.1186 0.1405 0.2074

Figure 5.2: 2011 average zonal share of the system load.

3 and experiment different sampling methods. For a 3-scenario stochastic RAA
UC problem, it may take CPLEX, with all options at default values, more than two
hours to find the global solution (zero optimality gap). For each run, we set the
computation time limit to one hour (reslim = 3600). It is observed that within one
hour, the 3-scenario stochastic model is able to find the global solution in most
cases, see column 7 in Table 5.2 and 5.3.

All scenario generation methods (Derand, SAA and SCENRED) use the knowl-
edge gained from the historical data of 2011 and their performances are tested on
the data of 2012. The performance test of an RAA solution against the 365 days in
2012 takes about 5 minutes.

The SAA method is implemented as follows: for each hour, draw three Uni-
form(0,1) random numbers (e.g., 0.618, 0.824 and 0.264), and then find the corre-
sponding quantiles through the empirical CDF of the historical error distribution
(e.g., 0.007, 0.016 and -0.006). These quantiles serve as the error scenarios of the
forecast for the given hour, each with an equal probability of 0.333. The load sce-
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Figure 5.3: Load scenarios generated by Derand.

narios are then constructed by formula (5.12), where df is the load forecast of the
hour in the operating day June 3, 2011.

The Derand method assigns the same error and probability to all hours in a
scenario, so the load profiles of the three scenarios are “parallel” to each other. The
Derand scenarios and the SAA scenarios are plotted in Figure 5.3 and 5.4.

Given an initial probability distribution P with a finite support Ξ (i.e., an initial
population), SCENRED finds a “reduced” probability distribution that is supported
by a subset of Ξ of prescribed cardinality (in this case, 3) and is close to P in terms of a
Fortet-Mourier probability metric (Heitsch and Römisch, 2003). In the experiments
two parameters, cost and forecast error, are used each to form an initial population
of 364 scenarios for SCENRED. The cost for each scenario is pre-computed as the
optimal objective value of a deterministic RAA UC problem taking as input the
actual forecast errors for the corresponding day in 2011. SCENRED selects 3 out of



132

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

S
y
st

em
 L

o
ad

 (
M

W
h
)

Hour

Forecast
Scen1 (33.33%)
Scen2 (33.33%)
Scen3 (33.33%)

Figure 5.4: Load scenarios generated by SAA.

the 364 scenarios and assigns a probability to each selected scenario. The scenarios
selected by-cost and by-error are plotted in Figure 5.5 and 5.6, respectively.

Result Analysis

The main results arising from an evaluation over 365 simulation cases from 2012 are
listed in Table 5.2. In the table, the first column indicates the method. In order, they
are the deterministic (1-scenario) model run on the load forecast, Derand method,
two scenario reduction (SR) methods and five trials of the SAA method. Columns 2
to 5 report the expected (daily average) costs: Total = Commit + (Energy + Reserve)
+ Penalty. Column 6 shows the number of cases where penalty costs are incurred
(some constraint is violated) and Column 7 notes the execution time in minutes (or
percentage gap, for a one hour time limit).
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Figure 5.5: Load scenarios of SCENRED by cost.

Table 5.2: Stochastic UC Performance with 3 Scenarios

Model Total Commit En + Re Penalty Viol. Time
Dtmnstc 23,009,667 1,335,604 18,061,648 3,612,415 215 2.5’
Derand 19,567,526 1,325,029 18,081,097 161,399 11 0.013%
SR (cost) 20,404,708 1,286,661 18,104,208 1,013,839 143 8.33’
SR (error) 26,090,031 1,328,095 18,098,266 6,663,670 298 5.91’
SAA trial 1 21,332,370 1,350,344 18,032,758 1,949,268 183 17.33’
SAA trial 2 22,290,783 1,344,929 18,055,468 2,890,386 250 20.28’
SAA trial 3 21,498,931 1,349,540 18,052,558 2,096,833 187 24.10’
SAA trial 4 23,284,301 1,336,093 18,068,259 3,879,950 252 4.19’
SAA trial 5 21,712,592 1,350,305 18,046,846 2,315,441 220 12.94’
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Figure 5.6: Load scenarios of SCENRED by error.

Table 5.3: Stochastic UC Performance with 5 Scenarios

Model Total Commit En + Re Penalty Viol. Time
Dtmnstc 23,009,667 1,335,604 18,061,648 3,612,415 215 2.5’
Derand 19,811,759 1,466,692 18,128,757 216,310 1 6.80’
SR (cost) 19,750,688 1,399,637 18,102,261 248,790 28 26.48’
SR (error) 21,074,742 1,343,998 18,039,367 1,691,377 132 40.69’
SAA trial 1 21,432,672 1,358,369 18,044,793 2,029,510 225 0.004%
SAA trial 2 21,680,361 1,335,077 18,065,749 2,279,536 196 33.85’
SAA trial 3 20,807,084 1,358,466 18,033,642 1,414,977 143 51.48’
SAA trial 4 21,550,597 1,351,373 18,041,205 2,158,019 204 0.004%
SAA trial 5 20,603,777 1,352,102 18,037,938 1,213,737 127 45.46’
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Histogram of relative cost savings
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Figure 5.7: Cost savings of 3-scenario stochastic model with Derand sampling.

It is apparent that in expectation the stochastic model equipped with the Derand
sampling significantly outperforms the deterministic model. For detail, Figure 5.7
shows the histogram of the relative differences in total costs between the stochastic
solution and the deterministic solution over the 365 simulation cases. In about half
of the cases, the stochastic solution results in a slightly (6 2%) higher cost than its
deterministic counterpart and in almost all remaining cases, the stochastic solution
yields significant savings, up to 70%.

Compared to the other scenario generation methods tested here, Derand yields
the best results, with the lowest expected cost and the fewest constraint violations.
On the other hand, the model populated by Derand samples also appears harder
to solve – there remains a 0.013% optimality gap after one-hour solution time.

The stochastic models populated by SR-by-error samples gave worse results than
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the deterministic model and the model with SAA samples did not perform well.
This suggests that the quality of samples is crucial to the performance under such a
stringent sample size budget and that the performance gain over the deterministic
model observed here is largely due to the superior samples provided by Derand
(and SR-by-cost), rather than the theoretical advantage of stochastic programming,
which relies on the law of large numbers.

Experiment results on 5-scenario programs are listed in Table 5.3. All the above
conclusions remain valid.

5.5 Conclusion

RAA determines the supplemental unit commitments in addition to the Day-ahead
unit commitment schedule, according to which generating asset operators arrange
the fuel delivery and other preparation work for the next day. It is important from
the reliability standpoint that the unit commitment schedule is robust to the load
uncertainty for the operating day, as re-scheduling units in a short notice in the
case of real-time resource inadequacy can be costly. The potential economic and
reliability benefits of a better RAA solution warrant this investigation of stochastic
unit commitment.

In face of uncertainty, a stochastic program is guaranteed to provide a better
solution in the long run, provided that the uncertainty pattern or distribution is
known with accuracy and the pattern will repeat in the future. In particular, the
more samples involved, the better the solution becomes. However, due to the large
problem size and computational constraints, a stochastic RAA model cannot take as
many scenarios as we wish. Therefore, in reality only a small number of scenarios
will be incorporated into the stochastic model.

In this circumstance, selecting good samples is paramount. We have tested a
few sampling methods and found that the Derand method, which makes informed
guesses based on partitioning and properties of conditional expectation, could
substantially boost the RAA performance. Unlike other sampling methods such as
Monte Carlo or Latin hypercube which draws “random” samples, Derand employs
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a systematic approach to generate samples with a greater degree of stability and
repeatability. Stability and repeatability are desirable features in the ISO’s opera-
tion. Scenario reduction techniques (in particular SR-by-cost) also appear to be a
competitive alternative, although the original large number of scenarios typically
come from the solution of optimization models which take extra time and resources
to solve.
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6 multi-stage security-constrained economic dispatch

6.1 Introduction

Motivation

Economic efficiency and system reliability are top concerns in the day-to-day oper-
ation of the restructured energy market over the grid. However, the two goals are
intrinsically competing with each other. Efficiency pushes for the maximum use of
available transmission capacity to facilitate the merit-order dispatch of generation
resources, while reliability requires a certain degree of conservatism in the use of
transmission capacity to prepare for unexpected events such as line and generator
outages. To balance the two goals, system operators typically solve a security-
constrained economic dispatch (SCED) model. Economic dispatch (ED) seeks a
nodal injection/withdrawal arrangement (i.e., dispatch solution) to minimize the
total generation cost in a base-case network setting. Security constraints (SC) re-
quire that the economic dispatch solution must simultaneously support a feasible
power flow under a list of counterfactual scenarios of component failure, called
contingencies. A feasible power flow is one that does not cause overloads in lines, as
power flow automatically redistributes across lines following physical laws in case
of a contingency. When the contingency list spans all elements in the system, the
corresponding SCED solution, if one exists, is said to meet the N-1 security criterion.
In practice, the solution is oftentimes obtained or approximated via an iterative
process: obtain an ED solution and test if it is feasible for all contingency cases, if
not, refine the solution and test again. This process is termed as a simultaneous
feasibility test (SFT).

Practical reliability standards usually allow for some flexibility in the security
constraints. In particular, the post-contingency power flow may temporarily exceed
the normal line rating as long as system operators are able to correct it in a limited
amount of time via rescheduling actions. For example, ISO New England uses four
levels of thermal capacity ratings for transmission facilities: Normal, Long Time
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Emergency (LTE), Short Time Emergency (STE) and Drastic Action Limit (DAL),
with increasing rating numbers. While the transmission line and equipment load-
ings should not exceed the Normal rating for pre-contingency system conditions,
the operating procedure (OP), see ISO New England, approves the use of other
less restrictive ratings under contingency conditions. Specifically, the OP requires
that the post-contingency line loadings should not rise beyond the DAL and must
be reduced below the STE rating in 5 minutes, reduced below the LTE rating in
15 minutes and reduced below the Normal rating in 30 minutes, see Figure 6.1 for
an illustration. Although imposing the Normal rating at all times is sufficient for
reliability, the relaxed standards should be properly implemented in the SCED
software to preserve economic efficiency. However, there is no evidence that the
post-contingency rescheduling procedures are actually considered in prevalent dis-
patch software. We postulate that the main obstacle comes from the computational
difficulty due to the increased model size.

In this chapter, we present a SCED model that takes the multi-stage contingency
response actions into account. In order to solve large instances of the model, we
develop a series of algorithmic enhancements based on the Benders’ decomposition
method. We also analyze the causes of infeasibility and propose an approach
to diagnose and correct infeasible situations in the solution process. Thus our
solution approach provides not only an optimal dispatch solution, but also a list of
contingencies that need to be treated separately.

Related Work

SCED with corrective rescheduling (SCED-C) has been studied for over two decades.
The pioneering work by Monticelli et al. (1987a) described the mathematical frame-
work with great clarity and illustrated the economic gain of taking into account
system rescheduling capabilities. The authors also pointed out many extensions
that motivated our work, including multiple dispatch stages each considering dif-
ferent line ratings for different time frames of emergency control and the prospect
of processing the subproblems in parallel. Recent advances have been made along
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two major avenues: (1) contingency filtering (CF) techniques to effectively reduce
the problem size, e.g., Capitanescu and Wehenkel (2008), Capitanescu et al. (2007a)
and Fliscounakis et al. (2013); (2) decomposition and parallel algorithms to ob-
tain/approximate global solutions efficiently, e.g., Phan and Kalagnanam (2014)
and Lubin et al. (2011b).

Capitanescu and Wehenkel (2008) studied the (single-stage) corrective security-
constrained optimal power flow (CSCOPF) problem. The authors exploited the fact
that in practice most contingencies are not binding at the optimum by iteratively
solving CSCOPF (using an interior-point method as described in Capitanescu et al.
(2007b)) with increasing size. In each iteration, the CSCOPF model only incorporates
those post-contingency constraints that have been identified to be “potentially
binding” by a contingency filtering procedure. In another paper, Capitanescu et al.
(2007a) proposed two CF techniques to efficiently identify a minimal “dominating”
subset of contingencies, the complement set of which is redundant for the solution
of SCOPF and can be removed, thus reducing the size of the problem. A recent
work by Fliscounakis et al. (2013) incorporates uncertain demand in the SCED-C
context and uses a mixed integer bi-level optimization model to ensure a worst-case
coverage of the dispatch solution. The authors ranked contingencies into four
clusters based on severity and carefully chose the solver options for computational
performance. In the present work, we embed a contingency filtering idea in the
Benders’ algorithm. Compared to existing work in the literature, our method
has three desirable features. First, the CF step does not incur extra computation
load. Second, the filtering is not a once-and-for-all procedure, but is dynamically
integrated in the iterative algorithm. Third, the filtering requires minimal domain-
knowledge-based judgement about the network or contingency but is entirely based
upon numerical results of the subproblem. Admittedly, domain knowledge might
also be useful to augment our method.

To solve the nonlinear nonconvex SCOPF problem, Phan and Kalagnanam (2014)
investigated a global optimization algorithm based on Lagrangian duality, as well as
two decomposition schemes, namely, Benders’ decomposition and the alternating
direction method of multipliers (ADMM). Since a Benders’ cut is not valid (i.e.,
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may cut off feasible regions and the global solution) in the nonconvex AC context,
as a computational alleviation the authors proposed to shift the cutting plane by an
adaptively chosen distance so as to cut off less of the feasible region. The authors
also briefly remarked that a contingency, once feasible for the base-case solution,
can be “switched off” from future iterations. We derive a concrete and rigorous
algorithmic enhancement that includes adaptive switching off of contingencies and
demonstrate its effectiveness quantitatively. Pinto and Stott briefly reviewed the
Benders’ algorithmic framework applied to SCED-C and stressed that a computa-
tional study on a full-scale prototype was needed, which we aim to provide in this
chapter.

Parallel computing is becoming a standard technique for “large-scale” computa-
tion in decomposable systems. Recent work from Argonne National Laboratory, in
particular Lubin et al. (2011b) and Lubin et al. (2011a), provided efficient parallel
algorithms for solving huge LPs. The algorithms were based on interior-point meth-
ods and a Schur complement technique, which the authors demonstrated to achieve
a high scaling efficiency on supercomputers. In this chapter, we implemented the
well-established scheme of parallel computing for Benders’ decomposition, with
the aim of showcasing its practical effectiveness on an affordable computing server,
hence providing a realistic estimate of deployment potential of our model.

In the aspect of modeling, Capitanescu and Wehenkel (2007) warned that if the
immediate post-contingency state (power flow) violates limits too much, the system
may collapse before corrective actions take effect. They postulated a constraint to
be added to the corrective SCED model in order to prevent this from happening.
Our multi-stage corrective model naturally contains such a constraint, i.e., the one
for period T = 0 with the DAL line rating. While part of the SCED-C literature
is based on the AC power flow equations (Monticelli et al., 1987a; Capitanescu
and Wehenkel, 2008), in the present work a linear “DC” model is more aligned
with our objective. First, the decomposition theory for convex optimization is
well-established and proven to guarantee global solutions, so we can focus on
algorithmic enhancements for faster solution. Second, most ISO/RTOs use a linear
model in the dispatch software, thus our algorithm as well as the computational
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Figure 6.1: Post-contingency line flow requirements

results can directly compare with those of the existing software, enabling more
credible evaluation of its industrial potential. Readers can consult Capitanescu et al.
(2011) for an insightful review of the SCOPF problem and methodology.

6.2 The Model and its Structure

SCED with post-contingency corrective rescheduling (SCED-C) with K contingen-
cies is written in the general form as follows (Monticelli et al., 1987a; Capitanescu
and Wehenkel, 2008; Pinto and Stott):
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min
x0,...,xK,u0,...,uK

f0(x0,u0)

s.t. gk(xk,uk) = 0 k = 0, . . . ,K

hk(xk,uk) 6 0 k = 0, . . . ,K

|uk − u0| 6 ∆k k = 1, . . . ,K

(6.1)

where f0 is the base-case objective function and hk and gk are constraint functions.
For the k-th system configuration, xk is the vector of state variables and uk is the
vector of control variables. ∆k is the vector of maximal allowed variation of control
variables between the base case (k = 0) and the k-th post-contingency configuration.

In a simplified linear “DC” network setting which we work with in this chapter,
the control variables are the generation level P and the state variables are the voltage
angle δ and the line flow F. The equality g(x,u) = 0 corresponds to∑

g(i)

Pg −
∑
(j,c):

(i,j,c)∈BR

Fi,j,c +
∑
(j,c):

(j,i,c)∈BR

Fj,i,c = Di ∀i ∈ BUS

Fi,j,c − bi,j,c(δj − δi) = 0 ∀(i, j, c) ∈ BR

and the inequality h(x,u) 6 0 corresponds to

Fi,j,c − F̄i,j,c 6 0 ∀(i, j, c) ∈ BR (6.2)

− Fi,j,c − F̄i,j,c 6 0 ∀(i, j, c) ∈ BR (6.3)

Pmin
g − Pg 6 0 ∀g ∈ GEN (6.4)

Pg − P
max
g 6 0 ∀g ∈ GEN (6.5)

For simplicity we consider a linear cost function, i.e., f0(x0,u0) := c
T
0 u0, where

c0 can be regarded as the marginal cost of generation. There may be multiple lines
(or circuits) between two buses, hence the branch (i, j, c) indicates the c-th circuit
connecting bus i and j. Functions g and h are identified by the following sets and
parameters:
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Figure 6.2: On the u0 plane, the feasible region of an N-1 SCED is the intersection
of N polyhedra. Since it would involve huge numbers of variables and constraints
to represent all these polyhedra, we leave most of them out from the master model
and use Benders’ cuts to approximate the relevant pieces.

BR, BUS, GEN Set of branches, buses and generators
Di Fixed load at bus i
g(i) Set of generators connected at bus i
bi,j,c Susceptance of branch (i, j, c)
F̄i,j,c Thermal rating of line (i, j, c)
Pmin, Pmax Bounds of generator output

In this chapter, contingencies are the single line outages and there are several lev-
els of post-contingency line ratings, so the functions gk and hk of post-contingency
configuration k is actually represented by the set BRk and parameters (F̄i,j,c)k. The
feasible region of a DC-based SCED is the intersection of many polyhedra, as
illustrated in Figure 6.2.

It is well-known that the linear DCOPF model is a coarse representation of the
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physics of AC circuits in power systems. In particular, the power flow equations
outlined above ignore real power losses as well as reactive power constraints. In fact,
it is acceptable practice not to consider the reactive power in the economic dispatch
solution which is primarily used to settle the market for real power. Detailed AC
power flow studies usually follow at a later stage where various ancillary services
come into play. It is possible to incorporate system losses in the linearized DC
formulation, see Li and Bo (2007) for detail. However, because line loss is a quadratic
function of the real power flow, it takes multiple iterations of the DCOPF run to
achieve an accurate approximation of the total system loss as well as the loss factors
(LF), which determine how the total losses are distributed/compensated across
buses. Due to computational constraints, the ISOs often solve the real-time dispatch
problem with estimated system loss and LFs and without the iterative process. This
can be easily be considered into our model. Therefore, our choice of a DC model
is practical. We have tested an extension of the model to account for line losses in
the base case, adopting the fictitious nodal demand (FND) idea from Li and Bo
(2007) (basically, evenly dividing/allocating the estimated loss on line (i, j, c) to
the buses i and j as FNDs). The computational performance is indistinguishable
to that of the model without considering the losses. For simplicity and limited by
data availability, we use the lossless formulation for subsequent discussion and
experiments.

SCED with Multi-stage Rescheduling

We now extend the general formulation (6.1) to the multi-stage rescheduling situa-
tion, where the time dimension plays an explicit role. The time index t will appear
as superscripts on applicable symbols and the subscript k now indexes contingency
cases with k = 0 being the pre-contingency case (base-case). Suppose the post-
contingency operating procedure involves T checkpoints in time and there are K
contingencies to prepare for in the SCED. When the system is operating at normal
state (x0,u0), base-case feasibility requires that g0(x0,u0) = 0 and h0(x0,u0) 6 0.
When contingency k occurs, the state variable x will instantaneously change to
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x0
k following physical laws, i.e., gk(x0

k,u0
k) = 0, where u0

k = u0 since the control
variable cannot change abruptly. In general, security constraints require that the
following conditions hold

gk(x
t
k,utk) = 0

hk(x
t
k,utk) 6 εt

|utk − u
0
k| 6 ∆t

(6.6)

for a discrete set of time checkpoints t. For instance, ISO New England’s operating
procedure imposes the following checkpoints:

• t = 0 corresponds to the immediate checkpoint to ensure that the line flow is
within the DAL rating. The components of εt for (6.4) and (6.5) are 0 (same
for cases below) and the components of εt for (6.2) and (6.3) is F̄DAL − F̄Normal

(for notation convenience, we write εt = F̄DAL − F̄Normal), ∆t = 0.

• t = 1 corresponds to the 5-minute checkpoint to ensure that the line flow is
reduced within the STE rating, εt = F̄STE − F̄Normal, ∆t = 5R, where R is the
vector of per minute ramp rate of injection at the buses.

• t = 2 corresponds to the 15-minute checkpoint to ensure that the line flow is
reduced within the LTE rating, εt = F̄LTE − F̄Normal, ∆t = 15R.

• t = 3 corresponds to the 30-minute checkpoint to ensure that the line flow is
reduced within the Normal rating, εt = 0, ∆t = 30R.

For a given contingency k, condition (6.6) requires that there exists a recourse
solution utk for the time period between when the contingency occurs and the time
of the checkpoint t. However, satisfying (6.6) for each t does not guarantee that
the recourses at different time points are compatible with each other. For example,
there may be a (injection) solution for the 5-minute checkpoint and a solution for
the 15-minute checkpoint, respectively, but it may not be feasible to ramp from
the 5-minute solution to the 15-minute solution. Figure 6.3 provides a numerical
example that concretely demonstrates this issue. In the pre-contingency state, the
150 MW load at Bus 1 is supplied by Line 1 and Line 2. After the contingency
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Figure 6.3: When L1 fails, flow on L2 will instantly rise to 150 MW. Ramping up
G1 and G2 can meet STE requirement, while ramping up G1 and G3 can meet LTE
requirement. However, STE and LTE can not be satisfied simultaneously.

(outage of Line 1) occurs, STE and LTE ratings of Line 2 requires the generators
(G1, G2 and G3) to provide a total ramp-up of 50 MW in 5 minutes and 75 MW in
15 minutes, respectively. The STE rating requirement can be satisfied via ramping
up G1 by 10 MW and ramping up G2 by 40 MW (of which 20 MW will flow on
L3 and another 20 WM will flow on L4 and L5). At this stage, the flow on L3 has
reached its capacity of 20 MW, so we cannot continue to ramp up G3 to meet the
LTE requirement. Note that the parameter x on a line indicates the line’s reactance,
which dictates how the power flow distributes along different paths.

To deal with this situation, we postulate an alternative feasibility condition for
contingency k that couples the contiguous time points, as follows,

gk(x
t
k,utk) = 0

hk(x
t
k,utk) 6 εt

|utk − u
t−1
k | 6 ∆t − ∆t−1

(6.7)
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for t = 1, . . . , T and u0
k = u0. The resulting optimization problem is

min
x,u

f0(x0,u0)

s.t. g0(x0,u0) = 0

h0(x0,u0) 6 0

gk(x
t
k,utk) = 0 k = 1, . . . ,K, t = 0, . . . , T

hk(x
t
k,utk) 6 εt k = 1, . . . ,K, t = 0, . . . , T

|utk − u
t−1
k | 6 ∆̃t k = 1, . . . ,K, t = 1, . . . , T

u0
k − u0 = 0 k = 1, . . . ,K

(6.8)

where ∆̃t = ∆t − ∆t−1. This is a linear program when f, g and h are all linear as
defined above. In the remainder of the chapter, we discuss computational tech-
niques for efficient solutions of this LP. For illustration, we plot the sparsity pattern
of a small problem instance in Figure 6.4. In the plot, the columns (variables)
are arranged in the order {u0, x0,u0

1, x0
1, . . . ,uT1 , xT1 ,u0

2, x0
2, . . .}, and the rows (con-

straints) are arranged in the corresponding appropriate order. Note the inequalities
hk(·) 6 εt, i.e., (6.2) to (6.5), are handled as variable bounds hence do not appear
in the matrix. It is apparent that the Jacobian is almost a band matrix if not for
the constraints that link the control variable u0 of the base-case with those of the
contingency cases. Also note that the problem size grows linearly as the number
of contingencies increases. These characteristics make the problem suitable for
decomposition methods, which we discuss below.

6.3 Benders’ Decomposition

The common Benders’ decomposition scheme (Benders, 1962; Conejo et al., 2006; Li
and McCalley, 2009) reformulates model (6.8) into an equivalent form, as follows.
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min
x0,u0

f0(x0,u0) (6.9)

s.t. g0(x0,u0) = 0 (6.10)

h0(x0,u0) 6 0 (6.11)

wk(u0) 6 0 k = 1, . . . ,K (6.12)

where wk(u0) is the value function of the k-th sub-problem, given by

wk(u0) = min
xk,uk,sk

||stk||

s.t. gk(x
t
k,utk) = 0 t = 0, . . . , T

hk(x
t
k,utk) 6 εt t = 0, . . . , T

|utk − u
t
0|− s

t
k 6 ∆̃k t = 1, . . . , T

u0
k − u0 = 0 (6.13)

stk > 0 t = 1, . . . , T

Note that the sk is an artificial variable added to model the constraint violations.
Since the sub-problem is a linear program, it follows from LP duality that any given
point ū0 and the associated value wk(ū0) (denoted by w̄k) can provide a linear
function of u0 that underestimates wk(u0), as follows,

wk(u0) > w̄k + λ̄k(u0 − ū0) (6.14)

where λ̄k is the Lagrangian multiplier of constraint (6.13) at the solution. It is easy
to see that

w̄k + λ̄k(u0 − ū0) 6 0 (6.15)

is a necessary condition for (6.12) hence is a valid inequality for the master problem.
As a substitute for (6.12) which is hard to impose directly, it will cut off the point ū0

if w̄k is positive.
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The Benders’ decomposition algorithm alternates between solving the master
problem and the sub-problems, hence approaches a better and better satisfaction
of (6.12) until certain convergence criteria are met. In each iteration, the master
problem (6.9) - (6.11) with previously added cuts is solved. Subsequently the
subproblems are solved one by one given the master solution. Each subproblem
solution having a positive objective value will supply a new cut to the master
problem for the next iteration. For a given problem instance, the number of variables
in the master problem and size of the subproblem are fixed regardless of how many
contingencies there are to consider. In this sense, the algorithm “decomposes” the
big LP by approaching its solution via repeatedly solving smaller LPs.

It is worth noting that model (6.8) can be succinctly expressed as a two-stage
stochastic program (SP) in the extended mathematical modeling (EMP) framework
within the GAMS modeling software. An SP solver, e.g., DE and Lindo, can then be
called to solve the problem in both the deterministic equivalent form (big LP) and
the Benders’ decomposition form. However, the Benders’ algorithm implemented
in Lindo (which is the only general purpose Benders’ code available) is unable to
handle any problem-specific structure or solve the subproblems in parallel. For
example, it takes Lindo about 31 minutes to solve the 118-bus 183-contingency case
using its Benders’ algorithm, even worse than the “Vanilla” Benders’ algorithm
that we implemented directly in GAMS (computation times for this case is listed in
the first row of Table 6.2).

6.4 Computational Enhancements

Formulation

The variable stk in the subproblem captures the violation or infeasibility of the
ramping constraints evaluated at the candidate solution u0. In the literature, e.g.,
Monticelli et al. (1987a), Capitanescu and Wehenkel (2008) and Pinto and Stott, all
authors used the L1 norm in the subproblem objective function, i.e., minimizing
the sum (over all buses) of violations. We find that the following modifications to
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the subproblem formulation reduce the number of Benders’ iterations required
for convergence in many cases, as demonstrated in Figure 6.5. We will apply these
modifications in all subsequent discussions.

• Use L∞ norm of stk in the objective, i.e., minimizing the maximum (over all
constraints for which the violation variable is added) violation. This is aligned
with the normalization idea from Fischetti et al. (2010).

• Allow violation in the inequality constraints, i.e., substitutehk(xtk,utk)−stk 6 0
for hk(xtk,utk) 6 0 in the subproblem. This also provides convenience in
detecting infeasible contingencies, as will be discussed below.

We do not have a proof of the advantage of using L∞ norm over using the L1 norm.
However, reductions in the number of iterations are consistently observed (although
not always as significant as shown in the figure) and we have not encountered any
case that takes more iterations using L∞ rather than L1. Since all known papers
on SCED-C happened to explicitly adopt the L1 norm in their formulations, we
find it useful to report our observations here. As a side note, the 118-bus instance
used in Figure 6.5 was made harder to solve (so that it takes Benders’ algorithm
many iterations to converge) by using nodal loads 1.8 times higher than the original
values.

Dealing with Infeasibility

In practical use of the SCED model (with or without the corrective rescheduling,
single- or multi-stage), there is an implicit assumption (belief) that a feasible solution
exists, i.e., the security constraints are satisfiable. Indeed, if it frequently occurs
that no operating point is able to meet the security criteria, it probably indicates
that the criteria are too restrictive and need a change. Realistically, not all lines in
the network are included in the contingency list of SCED but only those having
crucial importance, e.g., high-voltage backbone transmission lines, and those for
which the consequence of failure is controllable (by which we mean “no load is
lost”) via dispatch or rescheduling. Lines whose failure would island a load bus, for
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Figure 6.5: Performance of different formulations on an instance of 118-bus case
with 20 contingencies (subproblems).

example, should not be included in the contingency list for SCED, because nothing
can be done beforehand to avoid shedding load should the failure occur. Despite
the sensible selection of contingencies, there can be no a-priori guarantee for the
existence of a feasible solution before actually running the SCED. Being notified that
the model is infeasible is the last thing system operators want to see from a SCED
run – in this case, they at least need to know what is causing the infeasibility, if not
how to correct it. One way of avoiding infeasibility is to allow constraint violation
(i.e., load shedding) and penalize it in the objective function, see, e.g., Jiang and Xu
(2013). There are three drawbacks for this method: (1) Determination of the penalty
factor is almost entirely arbitrary; (2) Shedding a load simply because its supply
line MAY fail is impractical1; (3) Keeping a large number of penalty variables (i.e.,

1This would happen if the only line that connects a load bus with the rest of the network were in
the contingency list. A practical treatment should be to shed the load when the contingency actually
occurs.
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Base Case

Contingency 1

Contingency 2Cut

Cut

Figure 6.6: Contingency 2 is intrinsically infeasible. Either the corresponding sub-
problem is infeasible or its Benders’ cuts will render the master problem infeasible.

one for each equality constraint) in the (master) model to prepare for infeasible
situations which only occur occasionally is not efficient modeling practice.

Alternatively, we integrate in the Benders’ algorithm a mechanism to dynami-
cally identify and remove the contingencies that would cause infeasibility. Denote
the base-case feasible set by F = {u0 ∈ Rn|∃x0 such that g0(x0,u0) = 0,h0(x0,u0) 6

0} and the feasible set for contingency k byFk = {u0 ∈ Rn|∃(xtk,utk) such that (6.7) holds.}.
Let us assume base case feasibility, i.e., F 6= ∅.

We call a contingency k intrinsically infeasible if F ∩ Fk = ∅. For such a contin-
gency, the corresponding subproblem is either infeasible for all u0 ∈ F, which
indicates Fk = ∅, or optimal with a positive objective value for all u0 ∈ F. In the for-
mer case, the subproblem will be infeasible in the first run (in the first iteration) and
we can remove the contingency immediately2. In the latter case, the subproblem
keeps generating cuts for the master problem until the master problem becomes
infeasible due to conflicting cuts.

2It must be the power balance constraint in the subproblem that makes it infeasible, since
violation is allowed everywhere else. This corresponds to the situation where the contingency
isolates a load node or sub-network from the rest of the network, a situation that is not considered
insecure in the “N-1” security context.
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Figure 6.7: Each individual contingency is feasible, but they are not simultaneously
feasible. Their Benders’ cuts will render the master problem infeasible.

Another source of infeasibility comes from the case where multiple contingen-
cies are not simultaneously feasible, e.g., (∩Kk=1Fk) ∩ F = ∅. Such a case manifests
itself in the form of an infeasible master problem caused by conflicting cuts. The
two cases of conflicting cuts are illustrated in Figure 6.6 and 6.7.

Our order of business is to remove the “problematic” contingencies whenever
the master problem becomes infeasible. We do this by solving a modified master
model, constructed by adding a nonnegative violation variable vik to each of the
previously added cuts as well as adding a linear term in the objective function
to penalize the violation (with a penalty factor M). The solution of this model
indicates the violated cuts, those for which the violation variable is positive. We
then remove any contingency that has contributed one or more violated cuts. The
modified master problem is outlined below.
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min
x0,u0

f0(x0,u0) +
∑

(k,i)∈CUT

Mvik

s.t. g0(x0,u0) = 0

h0(x0,u0) 6 0

w̄ik + λ̄
i
k(u0 − ū

i
0) − v

i
k 6 0 ∀(k, i) ∈ CUT

vik > 0 ∀(k, i) ∈ CUT

where the superscript i indexes the iteration and (k, i) ∈ CUT means that contin-
gency k has generated a cut in iteration i.

Note that by penalizing the “sparsity inducing” L1 norm of the violation, we
intend to approximately identify a minimal number of problematic contingencies
whose removal would restore feasibility, which corresponds to a NP-hard problem.
This approach is motivated by sparse optimization methods (Wright, 2009) and is
shown to be effective in our experiments.

Algorithmic Enhancement

The master problem is a small-sized (relative to the subproblems) linear program
and is easy to solve. It is also easy to update the optimal solution from one iteration
to the next, since adding cuts does not change the dual feasibility of an LP. Taking
a 2383-bus case for example, it takes the CPLEX dual simplex method less than
1 second to solve the master model from scratch and takes less than 0.3 second
for solution updates between successive iterations. In contrast, the majority of the
solution time is spent on solving the many subproblems, each of which is also three
times larger than the master problem (not counting the cuts), see Figure 6.4. We
tailor several enhancement schemes to solving the subproblems using GAMS and
CPLEX.
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Figure 6.8: Algorithm progress on the 118-bus case.

Reducing the number of LP runs

In practice, although a long list of contingencies need to be considered, most of
them turn out not to be binding in the final SCED solution. In the Benders’ solution
process, we observe via experiments that if a contingency is feasible (i.e., its sub-
problem has an optimal value of 0) in an iteration, it is also likely to be feasible in
subsequent iterations. This observation can be exploited to improve the algorithmic
design, as follows. At any iteration if a contingency becomes feasible, we temporar-
ily exempt it from the feasibility test in subsequent iterations, which results in a
shrinking list of active contingencies as the algorithm progresses. When this list is
empty, we import the whole list of contingencies again and test the simultaneous
feasibility of the current master solution. If it is feasible for all contingencies, the
algorithm terminates; otherwise, the above process continues. This method could
greatly reduce the total number of LP runs.

We apply this approach to the 118-bus case and demonstrate the solution process
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in Figure 6.8. There are 186 lines in the network and two of them (i.e., bus 12 to
bus 117 and bus 68 to bus 116) are determined to be intrinsically infeasible by
pre-screening, so we monitor the remaining 184 lines in the experiment. In iteration
(iter) 1, 184 subproblems are “computed” among which 14 are “captured” to have
a positive objective value. In iter 2, only those 14 subproblems captured in the
previous iteration are computed, so in this fashion we are dealing with a shrinking
list of active contingencies. In iter 6, two are computed but none is captured, which
means the active list becomes empty. Therefore, in iter 7 the active list is reset to
the whole list and three were captured. This process repeats until in iter 16 none
is captured after computing for the whole list, which means that the current u0

is feasible for all contingencies and the algorithm terminates. Note that in iter 3,
contingency #146 (i.e., bus 85 to bus 86) is removed due to its causing infeasibility.
The correctness of its removal has been verified by solving the full LP formulation.

Using barrier method without crossover for subproblems

CPLEX offers several options for LP methods, including primal simplex, dual
simplex, network simplex, barrier and concurrent. By default, CPLEX chooses the
simplex method to solve the subproblem LPs. We found via experiments that the
barrier method actually solves the subproblem faster than the simplex method for
big instances (e.g., 2383-bus case). CPLEX barrier optimizer automatically invokes
a crossover process when the barrier algorithm terminates, in order to produce a
basic solution. However, any optimal solution, not necessarily a basic one, suffices
to generate a valid cut (6.15). Therefore, we can turn off the crossover to save time,
i.e., setting CPLEX option barcrossalg=-1. Table 6.1 shows the potential time saving
of this choice of solver options.

Solving batches of subproblems in parallel

Benders’ decomposition algorithm is naturally amenable to parallel computing. We
harness the multi-core hardware and multi-threading capability of the operating
system to solve the subproblems in parallel during each iteration. Specifically,
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Table 6.1: Time (seconds) Spent in Sequentially Solving 100 Subproblems using
Different LP Methods, on a Dell Laptop6

Case Subproblem Size Dflt Barrier Barrier
Row Col NZ Splx \Xover

118-bus 1070 2668 8545 14.9 14.4 13.4
2383-bus 16814 37129 115006 453.6 139.0 79.8

we evenly divide the active contingencies into N batches and run the batches on
separate processors. In solving the series of subproblem LPs in each batch, we use
the GUSS facility (Bussieck et al.) within GAMS to shorten the overall solution
time. As the subproblems are similar in structure, GUSS constructs the model rim
once and plugs in different parameter data for different LPs. This eliminates the
repetitive work of building the model from scratch for each LP, thus saves time.

Invoking feasibility checker and adding difficult contingencies to the master
problem

Experiments on different realistic data sets provide the following observation. Be-
tween two successive whole-list scans (e.g., between iter 1 and 7 in Figure 6.8), most
contingencies will be removed from the active list in a few (less than ten) iterations,
but at times a small number of contingencies will remain in the active list for many
iterations before becoming feasible or proven to be intrinsically infeasible (by the
conflicting cuts of Figure 6.6). Such contingencies incur extended computational
costs in two ways: (1) Dealing with only a few subproblems per iteration is an inef-
ficient use of parallel computing considering its overhead and (2) if the persistent
contingency was intrinsically infeasible, all the iterations spent in detecting the
infeasibility would be “wasted”. In other words, if infeasibility was detected earlier,
much time could be saved. We mitigate these difficulties as follows. When the size
of the active contingency list drops to a certain threshold level Lfc, we initiate a
“feasibility checker” job to run in parallel with the main Benders’ loop. This job
checks on an individual basis the feasibility for all the contingencies on the active
list, by solving for each contingency a reduced SCED model consisting of only the
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base case and the target contingency that is being checked. The feasibility checker
(FC) model for contingency k is as follows.

min
u0,x0,r+,r−

||r+ + r−||

s.t. g0(x0,u0) + r
+ − r− = 0

h0(x0,u0) 6 0

u0 ∈ Fk

r+, r− > 0

FC cannot be infeasible since we assumed that F 6= ∅. A positive optimal value of
FC indicates that the corresponding contingency is intrinsically infeasible. At the
beginning of each subsequent iteration after the checker job is invoked and before it
is finished, the main algorithm checks the status of the ongoing checker job. Once
the checker job is finished, its results, i.e., whether the contingencies are feasible or
not, are passed to the main algorithm. A myriad of heuristics can be designed to
utilize these results. The most obvious step is to remove the intrinsically infeasible
contingencies, if any, from the contingency list. In addition to this, we also add the
feasible contingencies that are still in the active list3, which are anticipated to be
“difficult” ones that would cost many more iterations to deal with, directly to the
master problem, forming and solving a larger master problem and starting the next
whole-list scan immediately afterwards.

The choice of the Lfc level is influenced by different factors. If it is too big, the
feasibility checker results may suggest adding excessive number of contingencies
to the master problem which would increase its subsequent solution time. On
the other hand, a small value of Lfc means the algorithm is likely to spend more
iterations reducing the size of the active list to Lfc before the feasibility checker is
initiated. The relative speed of progress between the main Benders’ loop and the
feasibility checker is also an influencing factor for choosing Lfc.

3The size of the active list may be smaller than Lfc by the time the feasibility checker job is
finished.
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6.5 Numerical Experiments

We use the IEEE 118-bus test case as well as several sets of the Polish network data
for experiments. Although these data sets are available from various sources, e.g.,
the Matpower package, the original data lack meaningful values for line thermal
ratings and generator ramp rates, which are critical for the SCED with multi-stage
rescheduling4. We adopt the data provided by a FERC project, which made up
the missing values based on reasonable engineering assumptions and enriched
the existing format, refer to Molzahn (2013). In particular, the rateA, rateB and
rateC of a branch are taken as the F̄Normal, F̄LTE and F̄STE, respectively, associated with
three post-contingency stages (checkpoints). The algorithms are implemented in
the GAMS modeling software. Throughout the experiments, we use the feasibility
tolerance of 10−6, i.e., if the subproblem objective value ||sk|| is lower than 10−6, the
contingency is considered feasible.

Comparison of Performance on Feasible Instances

Table 6.2 demonstrates the effect of different algorithmic enhancements on the so-
lution speed. The “Big LP” formulation is solved by the simplex algorithm (CPLEX
default) and the barrier method without crossover. Note that the crossover step
may take significantly longer time than the core barrier algorithm. The subse-
quent columns of the table lists results (i.e., number of iterations taken, number of
subproblem LPs solved and the total solution time in seconds) brought by incre-
mentally added features (as described by the header of the column). The “Vanilla
Benders” represents the original Benders’ algorithm with the formulation improve-
ment described in Section 6.4. “RedLP+Opt” implements the first two enhancement
schemes described in Section 6.4, i.e., implementing algorithmic control to re-
duce the number of LP runs and using appropriate solver options for subproblem
speedup. “Paraguss”, in addition, solves the subproblems in (8 or 40, depending on
problem size) parallel batches and uses the GUSS facility in each batch. “Fatmaster

4The original data may have all otherwise non-trivial contingencies feasible for any base-case
dispatch, which would make experiments unilluminating.



162

(5)” represent the complete set of features presented in this chapter. In addition
to “Paraguss”, it enables the feasibility checker (with Lfc = 5) and adds difficult
contingencies to the master model. All the implementations that have solved the
given case within the time limit (2 hours) have obtained the same optimal objective
value, listed in the last column.

Because neither the “Big LP” formulation nor the original Benders’ algorithm
is capable of handling infeasible contingencies and an infeasible problem is not
an interesting subject for comparison, we use a pre-screened list of lines as con-
tingencies which are guaranteed to constitute a feasible SCED case. In Table 6.2,
the first five cases in the upper half of the table are small to medium-sized. For
the 118-bus case, we monitor (meaning: set as contingency) all the 183 lines in the
pre-screened list and for the 2383-bus case5, we monitor the first 20, 50, 100 and 400
lines, respectively, in the pre-screened list. These cases are run on a Dell laptop6.
We use 8 parallel processes in the “Paraguss” implementation. It is apparent that
each enhancement scheme yields substantial time savings.

The next five cases in Table 6.2 are the largest possible feasible instances on
the corresponding network data (wp means winter peak and wop means winter
off-peak, etc.), as we monitor the complete pre-screened list of lines. These cases are
run on a Dell R710 server with two 3.46G X5690 Xeon Chips, 12 Cores and 288GB
Memory. The “Big LP” formulation is unable to solve any of these cases within
2 hours due to the large model size. For example, the 2383-bus 2349-contingency
case results in a 18GB LP for the solver. We ignored the uncompetitive “Vanilla
Benders” algorithm on these big cases but instead ran the “RedLP+OPT” without
the 2-hour time limit. It is worth noting that our final approach “Fatmaster” is able
to solve all cases in 10 minutes and solve most cases well within 5 minutes.

5In the Polish network case names, the suffix “wp” means winter peak, “sop” means summer
off-peak and so on.

6Dell precision M4500 with Intel Core i7 CPU Q840 @1.87GHz, 8GB RAM, on Windows 7.
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Performance on Possibly Infeasible Instances

Given a network case and a list of contingencies, it is not known a priori whether
the data represents a feasible SCED instance or not. A straightforward first step to
“purify” the data is pre-screening the intrinsically infeasible contingencies one by
one, which involves solving the model FC for each contingency k in the list. Table
6.3 lists the results of this process run on all lines in the network. We can see that
pre-screening is very time-consuming. Even if parallel computing involving 100
processors were utilized, it would still take several hundred seconds to pre-screen
a large network case.

Table 6.3: Time (seconds) Spent to Pre-screen for Different Cases. The LPs Are
Solved Sequentially.

Case # Lines # Feasible # Removed Time
2383wp 2896 2353 543 49670.8
2736sp 3269 2749 520 76068.8
2737sop 3269 2753 516 13069.2
2746wop 3307 2794 513 20160.2
2746wp 3279 2719 560 43618.7
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Table 6.4: Solution for Big Cases, 80 threads, Lfc = 5

Case Ctgcy Iter LPs Time Added Tabu
2383-bus 2896 15 7694 522.1 6 547
2736-bus (sp) 3269 4 6020 252.9 1 520
2737-bus (sop) 3269 4 6023 242.2 0 516
2746-bus (wop) 3307 4 6102 280.2 0 513
2746-bus (wp) 3279 8 6053 334.3 4 560
2383-bus 2353 16 7156 460.6 6 4
2736-bus (sp) 2749 4 5498 245.9 1 0
2737-bus (sop) 2753 1 2753 110.8 0 0
2746-bus (wop) 2794 1 2794 131.7 0 0
2746-bus (wp) 2719 14 5558 354.4 4 0

In contrast, our approach of dealing with infeasibility takes little extra time and
is able to identify infeasible cases (as in Figure 6.7) to which the pre-screening is
blind. This is demonstrated in Table 6.4. The upper half of the table are experiments
that include all lines in the initial contingency list, i.e., the “N-1” cases. The column
“Added” lists the number of contingencies that have been added to the master
problem in the solution process. The numbers are small, indicating that the choice
of Lfc = 5 is appropriate for these cases. The column “Tabu” lists the number of of
contingencies that have been removed during the run due to infeasibility. The lower
half of the table are experiments that only takes the pre-screened lines (the “Feasible”
lines coming from Table 6.3) as contingencies. We can see that the solution times
of the two cases do not differ much, which means that our approach of removing
infeasibility is much more efficient than pre-screening. Furthermore, the fact that 4
extra lines (other than those identified by the pre-screening) are removed in the
2383-bus case indicates that (1) Pre-screening is indeed unreliable in practice and (2)
our method is effective at approximating a minimal set of problematic contingencies
when the problem is infeasible.
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Table 6.5: Active Contingencies at Optimum

Case Ctgcy Active ctgcy number at optimal solution
118-bus 186 43, 63, 124, 184, 185
2383-bus 2896 344, 414, 546, 1798, 2164
2736-bus (sp) 3269 170, 292, 576
2737-bus (sop) 3269
2746-bus (wop) 3307
2746-bus (wp) 3279 3, 4, 440, 573

Table 6.5 provides the list of binding contingencies at the optimal solution of
the “N-1” cases. A contingency is identified as binding at the solution if any cut
it contributes has a nonzero multiplier value, or the ramping constraint (6.13) has
a nonzero multiplier if the contingency has been added to the master model. In
the table, numbers in bold face are binding contingencies in the master model. We
can see that very few contingencies are binding at the optimal solution, although a
larger number of contingencies have been active along the algorithm iterations.

As a companion of Table 6.5 which only lists the contingency numbers, Table 6.6
provides the mapping from a contingency number k to line identification (i, j, c),
in the form of k : (i, j). The circuit number c is omitted with a note that all the lines
listed here has a circuit number c = 1. For example, the first entry “43: (26,30)”
in the 118-bus case reads “contingency # 43 is the outage of the line (circuit # 1, if
there are multiple) connecting bus 26 and bus 30.”

Table 6.6: Contingency-to-line Mapping for Active Contingencies at Optimum

118-bus 2383-bus 2736-bus 2746-bus
43: (26,30) 344: (310,6) 170: (131,75) 3: (7,8)
63: (38,65) 414: (367,14) 292: (131,75) 4: (8,14)
124: (71,73) 546: (477,420) 576: (508,361) 440: (395,21)
184: (110,111) 1798: (1514,894) 573: (503,493)
185: (110,112) 2164: (1845,135)
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Economic Gain of Multi-stage Corrective Rescheduling

We compare the ISO’s current “0-stage” SCED, i.e., imposing the Normal line rating
for both the base case and contingency cases and not considering post-contingency
corrective actions, and our proposed model considering 3-stage rescheduling. In
the experiments, we use the same algorithm and enhancements for both models.
The computational results for “N-1” cases are shown in Table 6.7. Due to its larger
sized subproblems, the 3-stage model takes more time to solve. However, the
dispatch solution yields noticeable cost savings compared to that of the 0-stage
model. Furthermore, in some cases the 3-stage model also gives rise to fewer
uncontrollable contingencies (those put in Tabu), which is an advantage in real-
world operations.

Table 6.7: SCED Solution Considering Different Post-contingency Stages

Case 0-Stage 3-Stage % SavingTabu Time Cost Tabu Time Cost
118-bus 3 13.1 93046.4 3 26.6 86206.9 7.35%
2383wp 553 213.9 1903510.4 547 522.1 1894241.7 0.49%
2736sp 520 124.3 1297672.0 520 252.9 1289173.9 0.66%

2737sop 516 80.5 764056.7 516 242.2 764008.6 0.01%
2746wop 513 93.4 1178683.4 513 280.1 1178164.0 0.04%

2746wp 566 207.8 1632181.2 560 334.3 1608584.3 1.45%

6.6 Conclusion

Incorporating the post-contingency rescheduling actions into the SCED model
provides better economic efficiency but also increases the computational difficulty
which hinders its industrial application. Our work contributes to the advancement
of the SCED-C research in both modeling and computation aspects. First, we
have proposed a model to correctly address the multiple stages of rescheduling
requirement found in realistic operating procedures. Second, we have devised a
series of computational enhancements to solve the proposed model. The enhanced
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algorithm was shown to be much faster than the original Benders’ algorithm and
was able to solve large instances within reasonable amount of time. Finally, our
computational results could serve as an estimate on how far/close the current
technology is to the industrial deployment of the multi-stage SCED-C model. Future
work will quantify the economic benefit of multi-stage rescheduling and investigate
the application of this solution approach to an online setting.
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7 security-constrained economic dispatch using
semidefinite programming

7.1 Introduction

Economic dispatch is an optimization problem that seeks a minimum-cost gen-
eration plan to meet system load in an electrical power network. Assuming that
system load is constant within the planning horizon, economic dispatch is usually
cast as a short-term resource planning problem (rather than a real-time control
problem). In restructured electricity markets, it is primarily used to settle energy
transactions among market participants, at which stage numerous power engineer-
ing details, including reactive power, voltage stability and ancillary services, are
beyond the scope of the model. Therefore, a linearized “DC” representation of
the network often suffices for dispatch purposes. To guard against disruptions in
supply and transmission, various constraints are included in the dispatch model
that ensure operability after a set of failure conditions, giving rise to a class of
security-constrained economic dispatch (SCED) models. A widely used security
criterion requires that the dispatch solution must leave room for an “escape route”
to prevent the system from collapsing in the case of a (single) major component
failure. Unlike the economic aspect of the problem which is a “planning” problem
by nature, security issues are formulated at the operation level and therefore call
for a more accurate representation of the system. For one thing, to judge if the
system state is truly operational involves not only looking at the real power flows,
but also examining the voltage magnitudes and reactive power flows. Therefore, a
SCED model is preferably built upon the AC power flow equations. An AC-based
SCED is widely studied under the name of security-constrained optimal power flow
(SCOPF) in the literature, e.g., Capitanescu and Wehenkel (2008) and Jiang and
Xu (2013), as the AC-based economic dispatch is traditionally termed an ACOPF
problem.

The ultimate goal of SCOPF is to find a dispatch solution that is capable of being
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ramped to a feasible AC operating point under all contingency cases. But such
a goal is in general difficult to attain, for two reasons. First, the AC power flow
equations pose quadratic equality constraints on the OPF formulation, which make
the optimization problem nonconvex. Second, the model size grows linearly with
the number of contingencies and can easily outgrow a manageable scale. Various
methods have been explored in the literature, e.g.,Capitanescu and Wehenkel (2008),
Capitanescu et al. (2007a) and Phan and Kalagnanam (2014), to tackle different
aspects of the problem. However, a scalable method is still to be developed, let
alone deployed in a practical setting.

In this chapter, we propose an approach to obtain high-quality local solutions
for large-scale SCOPF instances. The solution can guarantee a feasible AC operat-
ing point under all controllable contingencies while maintaining the dispatch cost
close to that of the global solution. In essence, we use a Benders’ decomposition
framework to tackle the scale issue, and use a semidefinite programming (SDP) re-
laxation of the AC model to serve as convex subproblems in the Benders’ algorithm.
In the sections to follow, we will develop the approach in detail and evaluate its
effectiveness in relation to the ultimate goal.

Brief Review of the SDP Literature

The remarkable accuracy of our local solution is mainly attributed to the use of
an SDP relaxation. Semidefinite programming has been intensively studied in
power systems applications in recent years; its efficacy for finding global solutions
being widely acknowledged. Among the growing literature, we find the following
papers especially helpful in developing our work. In a clear step-by-step manner,
Bai et al. (2008) presented the reformulation of optimal power flow (OPF) problem
as an SDP model and applied a primal-dual interior point method for its solution.
Despite the paper’s richness in details, the SDP variable could have been formed
more parsimoniously (i.e., with a smaller size) to cater for computational efficiency.
Lavaei and Low (2012) provided a succinct SDP formulation for OPF and derived
a sufficient condition for zero duality gap between the convex SDP solution and
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the nonconvex ACOPF solution. The authors demonstrated the effectiveness of
the formulation by globally solving several standard power systems test cases.
However, a subsequent work by Lesieutre et al. (2011) showed that Lavaei and
Low’s SDP formulation can fail to give a physically meaningful solution (i.e., it has
a non-zero duality gap) in some scenarios of practical interest. The authors went
on to investigate an SDP approach utilizing modified objective and constraints to
compute all solutions of the nonlinear power flow equations. Molzahn et al. (2013)
extended Lavaei and Low’s SDP formulation to incorporate cases with multiple
generators at the same bus and with multiple lines between two buses, enabling a
more general model of the power system. More recent work has extended these
results somewhat to different settings.

Problem Description and the Benders’ Framework

The general formulation of SCED with post-contingency corrective rescheduling
(with K contingencies) is written as follows (Liu et al., 2014; Monticelli et al., 1987a;
Capitanescu and Wehenkel, 2008), Pinto and Stott:

min
x0,...,xK,y0,...,yK

f0(x0,y0)

s.t. gk(xk,yk) = 0 k = 0, . . . ,K

hk(xk,yk) 6 0 k = 0, . . . ,K

|yk − y0| 6 ∆k k = 1, . . . ,K

(7.1)

where f0 is the base-case objective function and hk and gk are constraint functions.
For the k-th system configuration, xk is the vector of state variables including the
(real and imaginary part of) voltage V re and V im and power flow Fre and Fim, yk is
the vector of control variables including the real and reactive power injection P and
Q. ∆k is the vector of maximal allowed variation of control variables, specifically
the ramping radius of generation, between the base case (k = 0) and the k-th
post-contingency configuration.

Two characteristics of the formulation are important to note. First, contingency
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related variables, xk and yk for k 6= 0, do not play a role in the objective function,
indicating that each contingency is essentially a feasibility problem, specifically
an AC power flow problem. Second, different contingencies are only linked to the
base case but are not directly linked to each other, which makes the overall problem
decomposable and thus inviting to parallel computing techniques.

In this work, we develop an SDP model that specifically deals with the feasibility
subproblem arising from the Benders’ decomposition framework for the SCED
problem. Our approach features a high degree of scalability thanks to recent
advances in decomposition algorithms and parallel computing techniques. Benders’
decomposition method, as well as many of its variants, has served as an effective
tool to ameliorate scale-related computational difficulties, see, e.g., Monticelli et al.
(1987a) and Pinto and Stott.

The idea of Benders’ algorithm is to break a very large-scale model into a master
model and many similarly structured sub-models (subproblems), all small enough
to be solved efficiently and amenable to be processed in parallel. In SCOPF, where
contingency scenarios only pose security constraints but do not alter the objective
(which is minimizing the base-case dispatch cost), the subproblem is typically
formulated as a feasibility problem, i.e., to test whether a master solution (base-
case dispatch) can ensure a feasible operating point in the contingency. If not,
the subproblem solution is used to provide a constraint that cuts off the given
master solution in future iterations. Our main contribution resides in developing a
convex subproblem that copes with the AC feasibility requirement, whereas several
computational techniques are directly inherited from Chapter 6, which include (1)
maintaining a dynamic list of active contingencies in order to defer low-impact
computational tasks to when they are really necessary, and (2) leveraging a parallel
computing framework within GAMS to boost computational efficiency.
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7.2 Benders’ Decomposition with SDP Subproblems

SDP Formulation of the AC Feasibility Subproblem

Let Y be the n-by-n bus admittance matrix. The net injection of apparent power at
bus i is

Si = Pi + iQi = ViI∗i = Vi(YV)∗i
= (V re

i + iV im
i )[

∑
j

(Yre
i,j + iYim

i,j)(V
re
j + iV im

j )]∗

Hence, the real and reactive power injections at bus i are

Pi =
∑
j

(V re
i V

re
j Y

re
i,j − V

re
i V

im
j Y

im
i,j + V

im
i V

im
j Y

re
i,j + V

im
i V

re
j Y

im
i,j) (7.2)

Qi =
∑
j

(V im
i V

re
j Y

re
i,j − V

im
i V

im
j Y

im
i,j − V

re
i V

im
j Y

re
i,j − V

re
i V

re
j Y

im
i,j) (7.3)

The apparent power flow on line (i, j) measured at bus i is

Fi,j = Fre
i,j + iFim

i,j = Vi(Yi,jVj)
∗

= (V re
i + iV im

i )[(Yre
i,j + iYim

i,j)(V
re
j + iV im

j )]∗

Hence, the real and reactive power flows along line (i, j) are given as

Fre
i,j = V re

i V
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im
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im
i,j + V

im
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Fim
i,j = V im

i V
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j Y
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im
i V

im
j Y

im
i,j − V

re
i V

re
j Y

im
i,j − V

re
i V

im
j Y

re
i,j (7.5)

The AC feasibility problem is formulated as follows.
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ACF:

Min
P,Q,V ,F,s

s2 (7.6)

s.t.
∑
g∈Gi

Greal
g −Dreal

i 6 Pi 6
∑
g∈Gi

Ḡreal
g −Dreal

i ∀i ∈ BUS (7.7)∑
g∈Gi

Gimag
g −D

imag
i 6 Qi 6

∑
g∈Gi

Ḡimag
g −D

imag
i ∀i ∈ BUS (7.8)

− F̄i,j 6 F
real
i,j 6 F̄i,j ∀(i, j) ∈ LINE (7.9)

(Vi)
2 6 (V real

i )2 + (V
imag
i )2 6 (V̄i)

2 ∀i ∈ BUS (7.10)∑
g∈Gi

(G0
g − ∆g) − s

2 6 Pi 6
∑
g∈Gi

(G0
g + ∆g) + s

2 ∀i ∈ BUS (7.11)

and (7.2), (7.3), (7.4). (7.12)

A note on symbols and notation: B denotes the set of buses and L denotes the
set of lines. Gi is the set of generators attached to bus i, symbols G andD represent
the generation and demand parameters, parameter G0 is the base-case real power
generation which is passed in from the master solution, ∆ represents generators’
ramping radii (5-minute response time is used in this chapter) and s models the
violation in the ramping constraint (7.11).

Equations (7.2), (7.3) and (7.4) can be substituted into (7.7), (7.8) and (7.9) to
eliminate variables P, Q and Freal from the model. All equations in the reduced
model, including the objective function and each constraint, are quadratic functions
of the variables V and s. An equivalent SDP formulation can then be derived. To
do so, we arrange the scalar variables in a vector x of size 2n+ 1,

x = [V re
1 . . . V re

n V
im
1 . . . V im

n s]
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then define a matrixW by
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W is positive semidefinite and will serve as the variable in the SDP formulation.

To construct an SDP formulation, we need to replace each of the quadratic equations
in the ACF model with an SDP-type of equation and ultimately form a model of
the following form:
ACF-SDP:

Min
W�0

A0 •W

s.t.
∑
g∈Gi

Greal
g −Dreal

i 6 A1i •W 6
∑
g∈Gi

Ḡreal
g −Dreal

i ∀i ∈ BUS∑
g∈Gi

Gimag
g −D

imag
i 6 A2i •W 6

∑
g∈Gi

Ḡimag
g −D

imag
i ∀i ∈ BUS

− F̄i,j 6 A3ij •W 6 F̄i,j ∀(i, j) ∈ LINE

(Vi)
2 6 A4i •W 6 (V̄i)

2 ∀i ∈ BUS∑
g∈Gi

(G0
g − ∆g) 6 A5i •W 6

∑
g∈Gi

(G0
g + ∆g) ∀i ∈ BUS

where A0, A1i, A2i, A4i, A5i for each i ∈ B and A3ij for each (i, j) ∈ L are all
matrices of the same size asW. The operator • stands for the entry-wise product,
e.g., A • B =

∑
i,jAi,jBi,j for matrices A, B ∈ Rm×n. Note that A • B = Tr(ATB) =

Tr(BTA), where Tr(·) is the matrix trace operator. ACF-SDP is a relaxation of the
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ACF model, since the requirement thatW must be a rank 1 matrix is dropped.
The remaining task in completing the SDP relaxation is to determine the pa-

rameter matrices A so that the calculation results match those in ACF. For example,
A0 •W should equal to s2 and A1i •W should equal to the right-hand side of (7.2),
and so forth. Detailed composition of these A matrices is omitted here but readers
could find a similar exercise in Bai et al. (2008).

Benders’ Cut Generated by the SDP Subproblem

ACF-SDP is a convex optimization problem and so is its dual. Let the scalar quanti-
ties u1i, u2i, u4i, u5i for each i ∈ B and u3ij for each (i, j) ∈ L be the dual variables
corresponding to the upper bound inequalities in (7.7) to (7.11) and let v1i, v2i, v4i,
v5i for each i ∈ B and v3ij for each (i, j) ∈ L be the dual variables corresponding to
the lower bound inequalities in (7.7) to (7.11). The dual of ACF-SDP is then given
below.
ACF-SDP-Dual:
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u,v
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Gimag
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∑
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Ḡimag
g −D

imag
i )

+ v4i(Vi)
2 + u4i(V̄i)

2 + v5i
∑
g∈Gi

(G0
g − ∆g) + u5i

∑
g∈Gi

(G0
g + ∆g)]

+
∑

(i,j)∈LINE

(−v4ijF̄i,j + u4ijF̄i,j) (7.13)

s.t.
∑
i∈BUS

[(u1i + v1i)A1i + (u2i + v2i)A2i + (u4i + v4i)A4i + (u5i + v5i)A5i]

+
∑

(i,j)∈LINE

(u4ij + v4ij)A4ij � A0 (7.14)

u1i,u2i,u3i,u5i 6 0, ∀i ∈ BUS (7.15)

v1i, v2i, v3i, v5i > 0, ∀i ∈ BUS (7.16)

u4ij 6 0, v4ij > 0, ∀(i, j) ∈ LINE (7.17)
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Using the convex ACF-SDP as the feasibility subproblem, subgradient inequali-
ties (i.e., Benders’ cuts) can be derived. Specifically, let ν(G0) be the optimal value of
ACF-SDP-Dual given the real power generationG0 of the base-case. For a particular
base-case solution G0∗, let ν∗ = ν(G0∗) and let v∗5i and u∗5i, for i ∈ B, be the values
of v∗5i and u∗5i at the optimal solution of ACF-SDP-Dual(G0∗). For convenience, let
us condense the objective function (7.13) as

max
u,v

∑
i∈B

∑
g∈Gi

(v5i + u5i)G
0
g + C (7.18)

where C captures all extra terms needed to equate (7.18) with (7.13). Then, we have

ν(G0) = max
u,v

∑
i∈BUS

∑
g∈Gi

(v5i + u5i)G
0
g + C >

∑
i∈BUS

∑
g∈Gi

(v∗5i + u
∗
5i)G

0
g + C

ν(G0∗) =
∑
i∈BUS

∑
g∈Gi

(v∗5i + u
∗
5i)G

0∗
g + C

Combining the above two lines, we have the typically-called subgradient inequality:

ν(G0) > ν(G0∗) +
∑
i∈B

∑
g∈Gi

(v∗5i + u
∗
5i)(G

0
g −G

0∗
g )

In order to achieve ν(G0) 6 0, it is necessary to enforce,

ν(G0∗) +
∑
i∈B

∑
g∈Gi

(v∗5i + u
∗
5i)(G

0
g −G

0∗
g ) 6 0 (7.19)

The linear inequality (7.19) of G0 is the Benders’ cut to be used in the master
model, in which G0 is a decision variable.

AC Feasibility of the Base Case

By default the base case, i.e., g0 and h0 in (7.1), is modeled using linearized DC
equations in the master problem, the rationale being that the base case represents a
planning problem for which a linear approximation is acceptable. Nevertheless,
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it would be more realistic if the base-case dispatch was also performed on the AC
network representation. From the modeling perspective, it is straightforward to
swap the LP master model with an NLP (full ACOPF) model without affecting the
validity of the Benders’ cuts. An apparent issue with this is the difficulty in global
optimization of a nonconvex NLP, in a market context where a global optimum is
essential.

We propose a convex approach to shepherd the base-case solution toward AC
feasibility. Specifically, we treat the base-case network constraints as a special
contingency (call it contingency zero) and construct an SDP subproblem for it. The
subproblem is treated as one of the many subproblems to be solved in parallel, hence
its introduction adds little computational cost. Furthermore, since the network
constraints are now handled by the subproblem, we can remove them from the
master model. In the end, the bare master model only consists of a convex (in our
case, linear) objective function (of base-case injection P) and bound constraints on
P; all other constraints come from cuts.

7.3 Numerical Experiments

Since contingency response is an operation-level action aimed at achieving a feasible
AC operating point, we compare the SCED model with SDP subproblems and the
SCED model with DC-based linear subproblems (see the previous chapter for its
formulation) by evaluating their solutions in the full AC context. Given the base-
case solution from a SCED model, we run an AC power flow model to identify a
feasible post-contingency AC operating point for each contingency case covered
by the SCED model. If an AC operating point is found for a contingency, it means
that the SCED solution is indeed secure to this contingency; otherwise, the SCED
solution is false secure hence not reliable.

We use the following model ACF-PS to find a feasible AC power flow from a
base-case dispatch G0∗. For each inequality constraint in the AC power flow model,
a pair of nonnegative artificial variables are introduced to allow for violation in the
positive and negative directions, respectively. By minimizing the total violation,
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Figure 7.1: Benders’ iterations of different models for the 118-bus case.

the model seeks a feasible AC power flow solution. Note that the set of lines and
the line limits in this model are written as L ′ and F̄ ′, respectively, to reflect the
post-contingency setting, i.e., a line is removed from the original network topology
and the limits of remaining lines are relaxed to the 5-minute short-term emergency
(STE) rating.

The ACF-PS is a nonconvex model and obtaining a global solution can be time-
consuming. We adopt a two-step procedure: first solve ACF-PS using the local
solver CONOPT, if the optimal value is 0, a feasible AC solution is found; otherwise,
if either the problem is infeasible or the optimal value is positive, then solve it again
using the global solver GLOMIQO by taking the solution from CONOPT as the
starting point. This method is more efficient than using GLOMIQO in all cases, as
in most cases CONOPT can find a global solution (one with zero optimal value) in
a few seconds. The computer used for experiments is an HP Z400 workstation with
Intel Xeon W3520 CPU @2.67GHz and 8GB memory. All models and algorithms
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are coded in GAMS (version 24.3.3 for Windows 64-bit) and the SDP problems are
solved by the MOSEK solver within GAMS.
ACF-PS:

Min
P,Q,V ,F,s.

∑
i∈B
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∑

(i,j)∈L ′
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g − ∆g) 6 Pi − s
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∑
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g + ∆g), ∀i

sP+, sP−, sQ+, sQ−, sV+, sV−, sF+, sF−, sR+, sR− > 0

and (7.2), (7.3), (7.4).

Several IEEE test cases Christie (1993) are used in the experiments. To make
numerical results informative for analysis, i.e., to avoid cases in which all contingen-
cies are trivially feasible or trivially uncontrollable, we scaled up/down all nodal
loads by some fixed factor. Specifically, for the 14-, 30-, 57- and 118-bus cases the
loads are scaled by 2.1x, 1.5x, 0.5x and 1.5x, respectively. In each case, we compare
three SCED models: (1) LP, model with a linear base case and linear contingency
subproblems; (2) SDP, model with a linear base case and SDP contingency subprob-
lems; (3) SDP0, model with both base case and contingency cases modeled as SDP
subproblems.

The experimental results are listed in Table 7.1. The table is to be read as follows.
The “Tabu” column lists the number of uncontrollable contingencies reported by the
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Table 7.1: Solution Comparison of Three SCED Models

Case Cont Solution Performance
Model Tabu Cost Time IF FS FT

14 20
LP 0 13253.3 4.2 12 12 0
SDP 6 16065.8 18.4 6 0 0
SDP0 6 16003.4 11.9 6 0 0

30 40
LP 0 582.0 4.0 1 1 0
SDP 1 585.0 20.1 1 0 0
SDP0 1 600.5 22.1 1 0 0

57 20
LP 0 12508.0 1.9 1 1 0
SDP 1 12508.0 13.2 1 0 0
SDP0 1 12560.0 50.9 1 0 0

118 15
LP 0 139716.8 54.0 16 16 0
SDP 0 141372.2 2414.3 1 1 0
SDP0 0 144220.1 11951.1 0 0 0

SCED model (with LP subproblem or SDP subproblem, identified by the “Model”
column). A contingency is deemed uncontrollable if either one of the following
situation has arisen in the SCED run: (1) its corresponding subproblem becomes
infeasible; (2) it has contributed conflicting cuts that renders the master problem
infeasible Liu et al. (2014). The “Cost” is the base-case generation cost and the
“Time” marks total solution time in seconds. Once we obtain the base-case dispatch,
we evaluate it by running ACF-PS for all contingencies one by one. The dispatch is
marked infeasible for a given contingency if the corresponding ACF-PS is either
infeasible or has a positive optimal value. The number of contingencies for which
the base-case dispatch is InFeasible is presented in the “IF” column. FS (False
Secure) represents the number of contingencies allegedly secured (i.e., not in Tabu)
by SCED but turn out to be infeasible in ACF-PS, whereas FT (False Tabu) indicates
the number of contingencies reported as uncontrollable but are feasible in ACF-PS.

We can see that SCED with SDP subproblems provides a more reliable solution,
despite coming with a higher cost. In the 14-bus case, the Tabu set (including con-
tingency 3, 13, 14, 15, 17 and 20) determined by the SCED is identical to the IF set
resulted from ACF-PS, which means that all contingencies reported by the SCED as
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uncontrollable are indeed uncontrollable and all contingencies reportedly secured
by the SCED are indeed secure. This observation holds for all cases tested. In com-
parison, the model with LP subproblems does not always guarantee a feasible AC
power flow in a contingency. For example, in the 14-bus case the model deemed all
contingencies to be controllable, while 12 contingencies turn out to be AC infeasible
(including the 6 identified by SDP as uncontrollable). Nonetheless, the extent of
infeasibility in FS cases is not very pronounced, e.g., the ACF-PS objectives are
in the order of 10−1 and 10−3 in the 14- and 118-bus cases, respectively. Since a
problem cannot be feasible if its convex relaxation is infeasible, the SDP and SDP0
are by design immune to the false tabu error, as corroborated by the numerical
results. Note that in the 118-bus case the solution from SDP model is not AC feasible
for the base case while the solution from SDP0 is, which demonstrates the value
of SDP0 over SDP. However, SDP0’s robustness comes with a significantly higher
computational cost. Figure 7.1 compares the number of Benders’ iterations needed
for convergence in different models. The plot is truncated at the 180th iteration as
SDP0 actually took 1000+ iterations and most iterations beyond the 139th one are
used to neutralize a single difficult contingency (the base case). This suggests that
a more efficient treatment of difficult contingencies could significantly improve the
solution speed.

7.4 Conclusion

We have developed a novel approach to solve the AC-based SCED problem. The
main novelty resides in the use of semidefinite programming as a convex relaxation
of the AC feasibility problem and the development of Benders’ cut based on the
SDP subproblem. Experiments have shown superior solution quality of the new
approach over the LP-based approach. Further algorithmic improvements, in
particular a better treatment of the base case and difficult contingency cases, are
needed in order to solve large instances faster and more reliably.
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8 conclusion

New technologies are rapidly changing the way electric energy is generated, trans-
mitted and consumed. These changes in turn drive upgrades in the policy frame-
work and operational standards within the power industry. Backed by rigorous
analyses, concrete examples and abundant numerical results, this dissertation has
contributed original design ideas and solution methodology to several important
issues within the contemporary wholesale electricity markets in the United States.
In summary, the dissertation has provided answers to the following questions.

• What do optimization modelers need to know (at a minimum) about the
physics and maths that govern the operation of a transmission network?
Chapter 1 has provided an overview of the power engineering basics, includ-
ing a description of different formulations of the AC power flow problem,
economic dispatch problem and unit commitment problem, an introduction
of commonly used data formats and an industrial case study at ISO New
England, Inc.

• What is the role of demand response in the electricity markets and how
should system operators efficiently implement the FERC Order 745? The lack
of demand-side participation hinders realization of the economic efficiency
purported by the two-sided, competitive market design. Many policy-making
initiatives have attempted to mend this issue and FERC Order 745 is one of
them. Since its enactment in 2011, the Order has been widely criticized and
challenged. One of the leading accusation against the Order is premised
on equating the act of demand response to a unrightful sale of energy. To
rationalize the Order and hence implement it in an economically efficient
way, Chapter 2 has provided an alternative economic interpretation of DR:
demand response can be treated as an organized trade of “consuming rights”
among electricity consumers. Based on this interpretation, a compliant market
model has been developed and a three-phase solution procedure involving the
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joint use of nonlinear and mixed integer solvers as well as bound-tightening
techniques has been devised.

• What are the flaws of the payment rule in the context of unit commitment and
how can they be mended? In the current design of U.S. electricity spot markets,
the generation dispatch mechanism and the payment rule are incompatible
with each other. The uniform-price auction format predicated on a two-
sided market design with marginal pricing is flawed, since the supply and
the demand are not treated equitably and discrete decisions, such as unit
commitment, are inevitable. Chapter 3 has proposed a pay-as-bid scheme
as an better alternative and has demonstrated the merit of pay-as-bid via a
bidding behavior model and simulation experiments.

• What are the limitations within the existing bidding structure and how should
the limitations be relaxed in order to benefit the market? Existing bid formats
are all separable over time. However, a significant and growing segment of
demand can be shifted across time and therefore has no way to bid its true
valuation of consumption. Chapter 4 has proposed additional bid types that
allow deferrable, adjustable and storage-type loads to better express their
value, and thus elicit demand response in the most natural way - via direct
participation in the market. The additional bid types have been shown to be
easily incorporated into the existing market structure with no technological
barrier and able to substantially increase social welfare.

• How is the stochastic programming technique being used in an ISO’s daily
operations and what is its practical effectiveness? Chapter 5 has presented
a stochastic unit commitment problem formulated for ISO New England’s
reserve adequacy analysis. Due to the large problem size and computational
constraints, a stochastic RAA model cannot take as many scenarios as one
would wish – in reality only a small number of scenarios will be incorporated
into the stochastic model. This chapter has proposed a Derand method that
makes informed guesses based on partitioning and properties of conditional
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expectation and has demonstrated a substantial performance boost of RAA
by this method.

• How could recent advancements in optimization and high-performance com-
puting extend the capability of dispatch operations within a power system?
Chapter 6 has devised and implemented a series of algorithmic enhancements
based on the Benders’ decomposition method. These enhancements have
ameliorated the computational difficulty arising from a security-constrained
economic dispatch model that, for an increased economic efficiency, considers
multiple stages of rescheduling. In addition, Chapter 7 has proposed a novel
approach based on semidefinite programming (SDP) to solve the model in
the nonlinear AC setting. The key point is to approximate the nonconvex AC
feasibility problem with its SDP relaxation and use these SDP models as a
convex subproblem within a Benders’ decomposition framework. Numerical
experiments have demonstrated the superior solution quality of the approach
and its tractability for IEEE test cases.

To fully realize the social benefits of open-access, competitive electricity markets,
which now serve two thirds of U.S. electricity consumers, two prerequisites must
be in place - a set of fair and efficient market rules and an adequate population of
knowledgable individuals willing and able to participate in both sides of the supply
and demand equation. Tremendous research has focused on the former, including
my work in Chapter 2, 3 and 4, while the latter has received little. In particular, few
in the general public know or have a venue to exercise their trading rights in the
bulk power markets. This lack of visibility and direct participation from the masses
has caused many economic and reliability issues. Examples include exploitative
trading by large institutions, inefficient demand response and sluggish day-ahead
preparation in the event of disastrous weather such as Hurricane Sandy.

A meaningful future work is to set up an education project that brings spec-
ulative electricity trading onto everyone’s financial radar and to create a proxy
program that facilitates the willing public to trade in the bulk power markets,
through an aggregation and exchange engine of virtual offers and bids. A core
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part of this program will be a market simulator that claws in real-time market data,
synthesizes them with “client”-provided bid data, executes dispatch and pricing
algorithms and renders authentic market results, all in real time. Comprehensive
research of the policy, regulation and ISO-specific market rules is needed along
with sophisticated modeling, architecting and implementation. This project will
pave the way for the ongoing policy reform in the set direction. First, increased
public participation will leave little room for inefficiency or loophole in market
rules. Second, by financially engaging retail users in wholesale spot markets, the
program will melt the regulatory barrier between the two physical markets and
promote retail-level competition. Furthermore, the implementation exercise can
serve as a test-bed for sprouting ideas in the field of large-scale optimization and
big-data analytics.
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