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Abstract—When mammography reveals a suspicious finding,
a core needle biopsy is usually recommended. In 5% to 15%
of these cases, the biopsy diagnosis is non-definitive and a more
invasive surgical excisional biopsy is recommended to confirm a
diagnosis. The majority of these cases will ultimately be proven
benign. The use of excisional biopsy for diagnosis negatively
impacts patient quality of life and increases costs to the healthcare
system. In this work, we employ a multi-relational machine
learning approach to predict when a patient with a non-definitive
core needle biopsy diagnosis need not undergo an excisional
biopsy procedure because the risk of malignancy is low.

I. INTRODUCTION

When a screening mammogram presents a suspicious find-
ing, a follow-up diagnostic mammogram is performed to
further define the abnormality. If the finding remains suspi-
cious, a core needle biopsy (CNB) may be recommended.
In this procedure, a hollow needle is inserted into the breast
under imaging guidance to remove small samples (“cores”)
of the abnormal breast tissue. In most cases, pathologic
review of the biopsy confirms the presence or absence of
cancer [1]. However, in 5% to 15% of cases, the results are not
definitive [2], and surgical excisional biopsy is recommended
to determine the final pathology and rule out the presence
of malignancy. If a malignancy is subsequently confirmed,
the case is “upgraded” from non-definitive to malignant. In
the US, women over the age of 20 have an annual breast
biopsy utilization rate of 62.6 per 10,000, translating to over
700,000 women undergoing breast core biopsy in 2010 [3], [4].
Approximately 35,000 to 105,000 of these women then likely
underwent excision, a more invasive procedure. Ultimately, a
majority of these women received a benign diagnosis.

Breast cancer diagnosis is an ideal domain to develop and
test machine learning methods for risk prediction because 1) a
standardized lexicon with probabilistic underpinnings has been
established to summarize imaging features, 2) risk factors are
generally available, and 3) accurate outcomes exist through
cancer registries. In the mid-1990s, the American College of
Radiology developed the mammography lexicon, Breast Imag-
ing Reporting and Data System (BI-RADS), to standardize
mammogram feature distinctions and the terminology used to
describe them [5]. Studies show that BI-RADS descriptors are
predictive of malignancy [6], [7], [8], specific histology [9],
[10], and prognostic significance [11], [12], [13].

In this study, we investigate the use of machine learning
to predict benign entities in cases where CNB has produced

a non-definitive diagnosis. Our study considers demographic
risk factors and mammographic features, as well as biopsy
and pathology characteristics, to estimate the risk of upgrade.
These factors and features are organized in multiple tables,
which makes the dataset suitable for relational learning [14].
We generate interpretable classifiers, based on first-order logic,
that capture the correlation between features included in this
study to predict when a patient need not undergo excision.

II. MATERIALS AND METHODS

Institutional review board approval was obtained prior to the
commencement of this retrospective study. Written informed
consent of patients was not required. We included a population
of patients that underwent 1,414 consecutive CNB, as a result
of a diagnostic mammogram, from Dec 31, 2005 to Dec 31,
2009. Of these biopsies, 96 were prospectively given a non-
definitive diagnosis after discussions in clinical conference
meetings. We limited our dataset to this subset. For all 96
cases, we collected information related to the pathological
diagnoses, technical biopsy procedure and materials, as well as
patient history, information about previous mammograms, and
BI-RADS descriptors associated with the biopsied tissue from
our multi-relational database. A diagram of our case inclusion
process can be seen in Figure 1. Each of the top three boxes
represent a step in our inclusion filtration process and show
the number of cases included at that step. The bottom two
boxes represent our malignant and benign groups.

We use the inductive logic programming (ILP) system,
Aleph [15], to predict when a patient should not undergo
excision. ILP is a machine learning approach that learns a set
of rules in first-order logic that explain a given dataset [16].
We use ILP because it is well suited for our multi-relational
dataset and because the logical rules produced can be easily
interpreted by a human. Previous work using a similar dataset
also showed that other methods produced worse results than
ILP [17]. We make benign cases our “positive” class because
we wish to find highly accurate rules that predict when
this procedure is not needed. Unlike most machine learn-
ing approaches, ILP treats its positive and negative training
asymmetrically, focusing on inducing rules that match many
positive examples and few (ideally zero) negative examples.
Readers should be aware of this wording (“positive” is benign),
as it is somewhat counter-intuitive, but it is motivated by the
machine learning approach we employ.



Fig. 1. Case Inclusion Diagram

Diagnostic Mammogram 

10,876 

Core Needle Biopsy 

1,414 

Non-Definitive Diagnosis 

96 

Malignant 

17 

Benign 

79 

We considered few training parameters and tried to select
values in line with our clinical objective of identifying benign
cases without missing malignancies:

minposThe minimum number of positive examples that a
rule is required to cover.

noise The maximum number of negative examples that a
rule is allowed to cover.

evalfn The rule cost evaluation function.
We chose 2 for minpos in order to require rules that generalize
beyond a single case in the training set at minimum. For noise
we chose 0, disallowing any rules that misclassify even a single
malignant case in the training set, due to the high cost of
missing cancer [18]. For evalfn we use the well-known Fβ
measure as it allows us to balance the importance of true
positives (TP), false positives (FP), and false negatives (FN):

Fβ =
(1 + β2)× TP

(1 + β2)× TP + β2 × FN + FP

We chose a value of 0.1 for β, effectively making precision
10 times as important as recall. This is again because we deem
it more important to avoid calling malignant cases benign.

ILP generates a theory that may consist of many different
rules, where each rule is a conjunction of features that together
predict the chosen positive class (i.e. benign in this task). To
reduce overfitting on such a small dataset, we prune the output
theory to a single rule. Our pruning process selects the rule
with the best Fβ score (as described above) on the training
set. By pruning this way, we hope to reduce each theory to its
best performing rule.

We use stratified 17-fold cross-validation for evaluation,
each fold including a single malignant case in its test set.
Multiple biopsies of the same patient were all placed in the
same fold.

III. RESULTS

We first present the results from 17-fold cross-validation in
Table I. Recall that, because we are trying to predict which

patients should not go to surgery, true positives are the benign
cases that are correctly classified as benign, and false positives
are malignant cases that are misclassified as benign. We also
report aggregate precision, recall, and F0.1 [19].

TABLE I
17-FOLD CROSS VALIDATION RESULTS

TP FP FN TN Precision Recall F0.1

25 2 54 15 0.93 0.32 0.91

Each of the 17 folds produced a single theory that was
then pruned to a single rule. In many of the folds, the rule
produced was identical to that of another fold. What follows
are the five unique rules that were produced amongst all the
folds, sorted by the number of folds that produced them. They
have been translated from first-order logic to English to make
them easier to read. The performance of each unique rule on
the full dataset can be found in Table II, along with the number
of folds in which each rule was learned.

The 5 unique learned rules say that a non-definitive case is
benign if:

1) The patient did not have a previous surgery,
imaging did not present a spiculated mass margin,
the abnormality remained in post-biopsy imaging

2) Imaging did not present an indistinct mass margin,
imaging did not present a spiculated mass margin,
the abnormality remained in post-biopsy imaging

3) Imaging did not present a spiculated mass margin,
the abnormality remained in post-biopsy imaging

4) Imaging did not present an indistinct mass margin,
the abnormality remained in post-biopsy imaging

5) The patient has no personal history of breast cancer,
the abnormality remained in post-biopsy imaging

TABLE II
INDIVIDUAL RULE PERFORMANCE ON FULL DATASET (# FOLDS IS THE

NUMBER OF FOLDS IN WHICH A RULE WAS LEARNED)

Rule # Folds TP FP FN TN Precision Recall F0.1

1 10 30 0 49 17 1.00 0.38 0.98
2 4 29 0 50 17 1.00 0.37 0.98
3 1 34 1 45 16 0.97 0.43 0.96
4 1 31 1 48 16 0.97 0.39 0.95
5 1 28 0 51 17 1.00 0.35 0.98

IV. DISCUSSION

In this project, we demonstrate that ILP can derive rules that
accurately predict when a woman may not require excision
after a non-definitive core breast biopsy. All five rules predict
a substantial number of cases that are benign, and only two
miss a single malignancy each. Two important themes are
inherent in this project. First, ILP, an approach that can
construct rules from multi-relational data, appeared to be
important because multiple rules contain both imaging and
clinical factors. Considering all five of the rules together, the



features included fall into three main categories: post-biopsy
imaging (a standard part of the CNB process), mass margin
descriptors, and patient history. All of the included features
also have some clinically significant explanation as confirmed
by our multidisciplinary (radiology, pathology, and surgery)
team.

Second, the choice to predict a benign outcome (rather
than a more common approach of predicting malignancy)
appears to be an effective strategy in this clinical situation. The
cross-validation results indicate that we can potentially reduce
the total number of patients with non-definitive diagnosis
from undergoing excision by around 28% (25 true benigns
identified) with 93% precision (2 malignancies misclassified).

Importantly, the two rules that missed single malignant cases
were each only learned in a single fold, whereas the strongest
rule that misses no malignancies (rule 1) was learned in ten
different folds. Similarly, the second strongest rule that misses
no malignancies (rule 2) was learned in four different folds.
This lends support to the idea that these two rules capture
a significant signal across the entire dataset. When choosing
rules to implement clinically, clinicians would undoubtedly
prefer rules that do not miss a cancer. Our results may
indicate that the combination of fold coverage and clinical
judgement could serve as criteria on which to select the most
advantageous rules. In our project, this approach designates
the first two rules as the most useful. Whether these rules will
be generalizable to new data remains future work.

Despite a small dataset, our approach was able to infer
highly accurate rules. We are working on testing our method
on a larger population of patients, which should allow us to
learn better rules. We also note that, while several of the rules
are derived from imaging features, the pathology features are
poorly utilized. This is likely because, in our database, the
imaging features are well populated and standardized using
BI-RADS, but most of our pathology results are stored in free
text. We are working on improving our data collection process,
which may be reflected in an increased use of pathology
features in future work.

V. CONCLUSION AND FUTURE WORK

In this work, we use an ILP rule-learner to develop clas-
sifiers that successfully predict when a patient with a non-
definitive core needle biopsy may not need to undergo exci-
sional biopsy. The unique contribution of this project involves
the use of a multi-relational dataset containing features from
multiple disciplines (radiology, pathology, and surgery) to
predict the most appropriate outcome: benignity. Additionally,
our approach has the advantage of generating interpretable
rules, enabling clinicians to more easily consider them in
practice.

In order to validate our rules and learn more robust models,
we are actively collecting additional retrospective data in order
to greatly increase our patient population. In addition, we have
instituted prospective collection of a richer set of variables
on which to predict outcomes. These preliminary rules will
shortly be tested on new data to get a better understanding

of their general performance. Future work will build on
preliminary research that indicates that including expert advice
as background knowledge can improve performance [17].
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