Leveraging Expert Knowledge to Improve Machine-Learned Decision Support Systems

Finn Kuusisto, MS¹; Inês Dutra, PhD²; Mai Elezaby, MD¹; Eneida Mendonça, MD, PhD¹; Jude Shavlik, PhD¹; Elizabeth Burnside, MD, MPH, MS¹

> ¹University of Wisconsin, Madison, USA ²University of Porto, Portugal

Disclosure

Finn Kuusisto discloses that he has no relationships with commercial interests.

Learning Objective

After participating in this activity, the learner should be better able to:

Collaborate with clinical and/or machine learning experts in decision support system development

Opportunity & Problem

Great opportunities for machine-learned decision support systems

But...

Standardized, complete, and sufficient training data is rarely available

Upgrade Prediction

Image Sources:

- NIH wikimedia.org/wiki/File:Woman_receives_mammogram.jpg 1.
- Itayba wikimedia.org/wiki/File:Normal.jpg 2.

- UW Hospital and Clinics 3.
- NIH wikimedia.org/wiki/File:Surgical_breast_biopsy.jpg 4.

Upgrade Prediction

- 5-15% of core needle biopsies non-definitive
- Approximately 35,000-105,000* per year
- 80-90% of non-definitive biopsies are **benign**

* Based on 2010 annual breast biopsy utilization rate

Upgrade Prediction

Image Sources:

- NIH wikimedia.org/wiki/File:Woman_receives_mammogram.jpg 1.
- Itayba wikimedia.org/wiki/File:Normal.jpg 2.

- UW Hospital and Clinics 3.
- NIH wikimedia.org/wiki/File:Surgical_breast_biopsy.jpg 4.

ABLe

Comprises two parts

- 1) Definitions of advice sources
- 2) Iterative process for model refinement

ABLe - Advice Definitions

Task

- What is the problem and scope?
- What predictor variables are important?
- How should the problem be modeled?

ABLe - Advice Definitions

Task

- What is the problem and scope?
- What predictor variables are important?
- How should the problem be modeled?

Variable Relationships

• What combinations of variables are important to the task?

ABLe - Advice Definitions

Task

- What is the problem and scope?
- What predictor variables are important?
- How should the problem be modeled?

Variable Relationships

• What combinations of variables are important to the task?

Parameter Values

- What is the clinical objective?
- What model parameters best represent that objective?

ABLe - Iterative Process

Repeated iterations to optimize performance

Phase 1

Repeated iterations to optimize performance

* Cross-validation or preferably new data

Phase 1

Task

- Simple probabilistic model (Naïve Bayes)
- Standardized BI-RADS descriptor features
- Some non-standard pathology features and demographics
- Predict probability of **malignancy**
- Assume excision at 2% model score

Variable Relationships

• Rules predicting **increase/decrease** risk of **malignancy**

Parameter Values

• None

Variable Relationships

If-Then rules that suggest **increase/decrease** risk of **upgrade**.

High-risk mass rule:

IF

Irregular mass shape is present OR Spiculated mass margin is present OR High density mass is present OR Abnormality is increasing THEN Risk of upgrade increases

Biopsies in Practice (2006-11)

Phase 1 Results

	Data	Rules	Data + Rules
Malignant Excisions Missed (%)	8 (27.6%)	1 (3.4%)	9 (31.0%)
Benign Excisions Avoided (%)	46 (35.9%)	5 (3.9%)	63 (49.2%)

Phase 2

Repeated iterations to optimize performance

* Cross-validation or preferably new data

Observations

• No output threshold with acceptable performance

Observations

- No output threshold with acceptable performance
- Non-definitive biopsies broken into 3 categories at diagnosis
 - Atypical / Radial Scar (ARS)
 - Insufficient (I)
 - Discordant (D)

Observations

- No output threshold with acceptable performance
- Non-definitive biopsies broken into 3 categories at diagnosis
 - Atypical / Radial Scar (ARS)
 - Insufficient (I)
 - Discordant (D)
- ARS and I cases consistently mislabeled
 - ARS and I more dependent on pathology
 - $\circ~$ D more dependent on imaging descriptors

Observations

- No output threshold with acceptable performance
- Non-definitive biopsies broken into 3 categories at diagnosis
 - Atypical / Radial Scar (ARS)
 - Insufficient (I)
 - Discordant (D)
- ARS and I cases consistently mislabeled
 - ARS and I more dependent on pathology
 - D more dependent on imaging descriptors

Refinements

• Focus exclusively on discordant cases

Discordant Biopsies (2006-11)

Phase 2 Results

	Data	Rules	Data + Rules
Malignant Excisions Missed (%)	3 (30.0%)	1 (10.0%)	3 (30.0%)
Benign Excisions Avoided (%)	29 (58.0%)	17 (34.0%)	27 (54.0%)

Phase 3

Repeated iterations to optimize performance

* Cross-validation or preferably new data

Observations

- Good ranking of cases by output probabilities
- Most cases assigned less than 2% risk

Observations

- Good ranking of cases by output probabilities
- Most cases assigned less than 2% risk

Refinements

- Make model more conservative
 - Specify different costs for false negatives (FN) versus false positives (FP)
 - Take from utility analysis literature in mammography

Phase 3 Results

	Data	Rules	Data + Rules
Malignant Excisions Missed (%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Benign Excisions Avoided (%)	5 (10.0%)	5 (10.0%)	12 (24.0%)

Conclusions

- Presented a framework for collaboration and leveraging domain expert advice
- Demonstrated ABLe on important task
- Achieved best results using ABLe

Future Work

- Use inductive logic programming (ILP) to automatically infer if-then rules from data
 - \circ Allows automated feature construction/selection
 - \circ Easily control constraints on features
- Evaluate model on unseen data
 - From our own institution
 - \circ At collaborating institutions
- Grow model development data using natural language processing methods

Thanks

Questions?