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Abstract. Machine learning is continually being applied to a growing
set of fields, including the social sciences, business, and medicine. Some
fields present problems that are not easily addressed using standard ma-
chine learning approaches and, in particular, there is growing interest
in differential prediction. In this type of task we are interested in pro-
ducing a classifier that specifically characterizes a subgroup of interest
by maximizing the difference in predictive performance for some out-
come between subgroups in a population. We discuss adapting maximum
margin classifiers for differential prediction. We first introduce multiple
approaches that do not affect the key properties of maximum margin
classifiers, but which also do not directly attempt to optimize a stan-
dard measure of differential prediction. We next propose a model that
directly optimizes a standard measure in this field, the uplift measure.
We evaluate our models on real data from two medical applications and
show excellent results.
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1 Introduction

Recent years have seen increased interest in machine learning, with novel appli-
cations in a growing set of fields, such as social sciences, business, and medicine.
Often, these applications reduce to familiar tasks, such as classification or regres-
sion. However, there are important problems that challenge the state-of-the-art.

One such task, differential prediction, is motivated by studies where one sub-
mits two different subgroups from some population to stimuli. The goal is then
to gain insight on the different reactions by producing, or simply identifying, a
classifier that demonstrates significantly better predictive performance on one
subgroup (often called the target subgroup) over another (the control subgroup).
Examples include:

– Seminal work in sociology and psychology used regression to study the fac-
tors accounting for differences in the academic performance of students from
different backgrounds [5, 15, 26].



– Uplift modeling is a popular technique in marketing studies. It measures the
impact of a campaign by comparing the purchases made by a subgroup that
was targeted by some marketing activity versus a control subgroup [16, 9,
20].

– Medical studies often evaluate the effect of a drug by comparing patients
who have taken the drug against patients who have not [7, 4].

– Also within the medical domain, breast cancer is a major disease that often
develops slower in older patients. Insight on the differences between older
and younger patients is thus crucial in determining whether treatment is
immediately necessary [19, 18].

Differential prediction has broad and important applications across a range
of domains and, as specific motivating applications, we will consider two medical
tasks. One is a task in which we want to specifically identify older patients with
breast cancer who are good candidates for “watchful waiting” as opposed to
treatment. The other is a task in which we want to specifically identify patients
who are most susceptible to adverse effects of COX-2 inhibitors, and thus not
prescribe such drugs for these patients.

The adverse drug event task alone is of major worldwide significance, and the
significance of the breast cancer task cannot be overstated. Finding a model that
is predictive of an adverse event for people on a drug versus not could help in
isolating the key causal relationship of the drug to the event, and using machine
learning to uncover causal relationships from observational data is a big topic
in current research. Similarly, finding a model that can identify patients with
breast cancer that may not be threatening enough in their lifetime to require
treatment could greatly reduce overtreatment and costs in healthcare as a whole.

Progress in differential prediction requires the ability to measure differences
in classifier performance between two subgroups. The standard measure of dif-
ferential prediction is the uplift curve [23, 22], which is defined as the difference
between the lift curves for the two subgroups. Several classification and regres-
sion algorithms have been proposed and evaluated according to this measure [22,
23, 19, 10]. These models were designed to improve uplift, but do not directly op-
timize it. We show that indeed it is possible to directly optimize uplift and we
propose and implement the SVMupl model, which does so. This model is con-
structed by showing that optimizing uplift can be reduced to optimizing a linear
combination of a weighted combination of features, thus allowing us to apply
Joachims’ work on the optimization of multivariate measures [13]. We evaluate
all models on our motivating applications and SVMupl shows the best perfor-
mance in differential prediction in most cases.

The paper is organized as follows. Section 2 presents our motivating applica-
tions in greater detail. In Section 3 we introduce uplift modeling and the uplift
measure that we will use to evaluate our models. We also present results on
a synthetic dataset in this section to give further insight in the task. We dis-
cuss multiple possible approaches to differential prediction that do not directly
optimize uplift in Section 4. Section 5 discusses previous work on SVMs that
optimize for multi-variate measures, and Section 6 presents how to extend this



work to optimize uplift directly. We discuss methodology in Section 7 and eval-
uate all of the proposed models on our motivating applications in Section 8.
Finally, Section 9 presents conclusions and future work.

2 Medical Applications

To illustrate the value of differential prediction in our motivating applications
we first discuss both in further detail.

Breast cancer is the most common cancer among women [2] and has two basic
stages: an earlier in situ stage where cancer cells are still localized, and a subse-
quent invasive stage where cancer cells infiltrate surrounding tissue. Nearly all in
situ cases can be cured [1], thus current practice is to treat in situ occurrences in
order to avoid progression into invasive tumors [2]. Treatment, however, is costly
and may produce undesirable side-effects. Moreover, an in situ tumor may never
progress to invasive stage in the patient’s lifetime, increasing the possibility that
treatment may not have been necessary. In fact, younger women tend to have
more aggressive cancers that rapidly proliferate, whereas older women tend to
have more indolent cancers [8, 11]. Because of this, younger women with in situ
cancer should be treated due to a greater potential time-span for progression.
Likewise, it makes sense to treat older women who have in situ cancer that is
similar in characteristics to in situ cancer in younger women since the more ag-
gressive nature of cancer in younger patients may be related to those features.
However, older women with in situ cancer that is significantly different from that
of younger women may be less likely to experience rapid proliferation, making
them good candidates for “watchful waiting” instead of treatment. For this par-
ticular problem, predicting in situ cancer that is specific to older patients is the
appropriate task.

COX-2 inhibitors are a family of non-steroidal anti-inflammatory drugs (NSAIDs)
used to treat inflammation and pain by directly targeting the COX-2 enzyme.
This is a desirable property as it significantly reduces the occurrence of various
adverse gastrointestinal effects common to other NSAIDs. As such, some early
COX-2 inhibitors enjoyed rapid and widespread acceptance in the medical com-
munity. Unfortunately, clinical trial data later showed that the use of COX-2
inhibitors also came with a significant increase in the rate of myocardial infarc-
tion (MI), or “heart attack” [14]. As a result, physicians must be much more
careful when prescribing these drugs. In particular, physicians want to avoid
prescribing COX-2 inhibitors to patients who may be more susceptible to the
adverse effects that they entail. For this problem, predicting MI that is specific
to patients who have taken COX-2 inhibitors, versus those who did not, is the
appropriate task to identify the at-risk patients.

3 Uplift Modeling

The fundamental property of differential prediction is the ability to quantify the
difference between the classification of subgroups in a population, and much of



the reference work in this area originates from the marketing domain. Therefore,
we first give a brief overview of differential prediction as it relates to marketing.

In marketing, customers can be broken into four categories [21]:

Persuadables Customers who respond positively (e.g. buy a product) when
targeted by marketing activity.

Sure Things Customers who respond positively regardless of being targeted.
Lost Causes Customers who do not respond (e.g. not buy a product) regardless

of being targeted or not.
Sleeping Dogs Customers who do not respond as a result of being targeted.

Thus, targeting Persuadables increases the value produced by the marketing
activity, targeting Sleeping Dogs decreases it, and targeting customers in either of
the other groups has no effect, but is a waste of money. Ideally then, a marketing
team would only target the Persuadables and avoid targeting Sleeping Dogs
whenever possible. Unfortunately, the group to which a particular individual
belongs is unknown and is not readily observable. An individual cannot be both
targeted and not targeted to determine their response to marketing activity
directly. Only the customer response and whether they were in the target or
control group can be observed experimentally (see Table 1).

Table 1. Customer groups and their expected responses based on targeting. Only the
shaded region can be observed experimentally.

Target Control

Response No Response Response No Response

Persuadables, Sleeping Dogs, Sleeping Dogs, Persuadables,
Sure Things Lost Causes Sure Things Lost Causes

In this scenario, since we cannot observe customer groups beforehand, stan-
dard classifiers appear less than ideal. For example, training a standard classifier
to predict response, ignoring that the target and control subgroups exist, is likely
to result in a classifier that identifies Persuadables, Sure Things, and Sleeping
Dogs as they represent the responders when the target and control subgroups
are combined. Recall, however, that targeting Sure Things is a waste of money,
and targeting Sleeping Dogs is harmful. Even training on just the target sub-
group is likely to produce a classifier that identifies both Persuadables and Sure
Things. The point of differential prediction in this domain is then to quantify
the difference between the target and control subgroups. While it may be simple
and intuitive to simply learn two separate models and subtract the output of
the control model from the target model, recent work suggests that this is less
effective than modeling the difference directly [22]. Thus, the goal is to produce
a single classifier that maximizes predictive performance on the target subgroup
over the control subgroup. The idea is that such a classifier characterizes prop-
erties that are specific to the target subgroup, thereby making it effective at
identifying Persuadables. That is, such a classifier will produce a larger output



for customers who are more likely to respond positively as a direct result of
targeting, and a smaller output for those who are unaffected or are more likely
to respond negatively. The classifier could then be used in subsequent marketing
campaigns to select who should be targeted and who should not.

There are many possible measures that could be used to quantify the dif-
ference in predictive performance between the target and control subgroups. In
marketing, the uplift measure is often used to quantify this difference as well
as to evaluate the performance of classifiers designed for differential prediction.
Thus, this task is often referred to as uplift modeling.

3.1 Uplift

In this work, we will consider two subgroups, which we will refer to as A and
B, representing target and control subgroups respectively, and where subgroup
A is the subgroup of most interest.

The lift curve [24] reports the total percentage examples that a classifier must
label as positive (x-axis) in order to obtain a certain recall (y-axis), expressed
as a count of true positives instead of a rate. As usual, we can compute the
corresponding area under the lift curve (AUL). Note that the definition of the
lift curve is very similar to that of an ROC curve.

Uplift is the difference in lift produced by a classifier between subgroups A
and B, at a particular threshold percentage of all examples. We can compute
the area under the uplift curve (AUU) by subtracting their respective AULs:

AUU = AULA −AULB (1)

Notice that, because uplift is simply a difference in lift at a particular threshold,
uplift curves always start at zero and end at the difference in the total number of
positive examples between subgroups. Higher AUU indicates an overall stronger
differentiation of subgroup A from B, and an uplift curve that is skewed more
to the left suggests a more pronounced ranking of positives from subgroup A
ahead of those from subgroup B.

3.2 Simulated Customer Experiments

To demonstrate that uplift modeling does help to produce classifiers that can
specifically identify Persuadables, we generated a synthetic population of cus-
tomers and simulated marketing activity to produce a dataset for which we knew
the ground truth customer groups. We present results on this synthetic dataset,
but save algorithmic details for later sections.

To generate a customer population, we first generated a random Bayesian
network with 20 nodes and 30 edges. We then randomly selected one node with
four possible values to be the customer group feature. Next, we drew 10,000 sam-
ples from this network. This left us with a population of customers for which one
feature defined the group they belonged to and the rest represented observable
features.



We then subjected this population to a simulated marketing activity. We
randomly selected roughly 50% of the entire population to be part of the tar-
get subgroup. Next, we produced a response for each customer based on their
customer group and whether or not they were chosen to be targeted. For this
demonstration, we determined each response based on the strongest stereotypical
interpretation of each customer group. That is, Persuadables always responded
when targeted and never responded when not. Sleeping Dogs never responded
when targeted and always responded when not. Sure Things and Lost Causes
always and never responded respectively.
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Fig. 1. Uplift curves (higher is better) for three different classifiers on the simulated
customer dataset.

We removed the customer group feature from the training set and trained
three different classifiers to demonstrate performance. First, we trained a stan-
dard SVM classifier on the entire dataset with a positive response as the positive
class. Next, we trained a standard SVM on just the target subgroup. Finally,
we trained an SVM designed to maximize uplift, about which we will go into
greater detail later.

We evaluated the results using 10-fold cross-validation and used internal
cross-validation to select parameters in the same way that we will show later
on our medical datasets.

Figure 1 shows the uplift curves on the synthetic customer dataset. As ex-
pected, the SVM designed to maximize uplift produces the highest uplift curve,
while the standard SVM trained on the entire dataset produces the lowest. Fig-
ure 2 shows ROC curves on the synthetic customer dataset when the Persuadable
customers are considered to be the positive class. Recall that this feature was



unobserved at training time, but identifying Persuadables is the real goal in
the marketing domain. As hoped, the SVM that maximizes uplift has the high-
est ROC curve whereas the standard SVM trained on the entire dataset hovers
around the diagonal.
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Fig. 2. ROC curves (higher is better) for three different classifiers on the simulated
customer dataset when the Persuadable customer group is treated as the positive class.

3.3 Applying Uplift Modeling to Medical Tasks

In this work, we propose that the task addressed in the marketing domain can
be mapped to our motivating medical tasks, suggesting that the uplift measure
is a reasonable measure for evaluation of our models.

In the COX-2 inhibitor task, variability in response to the drug suggests that
there will be some people at increased risk of MI as a result of taking the drug,
some who are at increased risk of MI regardless of treatment, some who are at
decreased risk regardless, and perhaps even some who are at decreased risk as a
result of taking the drug. Just like in the marketing task, which group an indi-
vidual belongs to cannot be directly observed. An individual cannot both take
the drug and not take the drug to determine its effect. Only the MI outcome and
whether or not the individual took the drug can be observed experimentally. We
propose that training a classifier to identify individuals for which taking a COX-2
inhibitor increases their risk of MI is analogous to identifying Persuadables.

In the breast cancer task, the analogy is not as obvious, but we know that
younger patients often have aggressive cancers while older patients have both
aggressive and indolent cancers. Again, which type of cancer a patient has is not
directly observable and it is unreasonable to not treat patients in an attempt



to determine which have less aggressive varieties. We propose that training a
classifier to identify less aggressive varieties of cancer (seen in older patients) is
also analogous to identifying Persuadables.

4 Uplift-Agnostic Models

There are many different possible approaches to learning a classifier that is
differentially predictive and we have reviewed how this task is approached and
evaluated in the marketing domain. We first introduce a number of possibilities
in this section that do not directly optimize the uplift measure at training time.

4.1 Standard SVM

To better understand the problem, we start from the standard maximum margin
classifier [25]. This classifier minimizes:

1

2
||w||2 + C

N∑
i=1

ξi (2)

subject to ξi ≥ 1− yi〈xi,w〉, ξi ≥ 0, and where is (x, y) feature vector and label
pair notation representing examples. The formulation tries to minimize the norm
of the weight vector, w, and hence maximize the margin, while softly allowing
a number of errors ξi whose cost depends on the parameter C.

For the sake of comparison, we evaluate the ability of a standard linear SVM
model to produce uplift in our applications of interest. In this case we simply
ignore the fact that the examples fall into two subgroups.

4.2 Subgroup-Only SVM

Another intuitive possible approach to achieving differential prediction, without
modifying the original optimization, is to only train on the subgroup of most
interest. In this way, the classifier should perform well on the subgroup used
to train it, whereas it should not perform as well on the other subgroup. In our
applications, that would mean only training on the data for the older subgroup of
breast cancer patients, or the subgroup of MI patients who have been prescribed
COX-2 inhibitors.

4.3 Flipped-Label SVM

Jaśkowski and Jaroszewicz [10] propose a general method for adapting stan-
dard models to be differentially predictive. This is accomplished by flipping the
classification labels in the secondary subgroup during training. In this way, the
classifier is trained to correctly predict the positive class on the subgroup of
interest, subgroup A, whereas it is trained to predict the negative class in the
secondary subgroup, subgroup B. The resulting classifier should then, ideally,
perform much better on subgroup A than subgroup B.



4.4 Two-Cost SVM

Another possibility is to simply treat the errors on the different subgroups dif-
ferently. In the case of the SVM optimization, we would clearly like the cost to
be different for the two subgroups. Specifically, we would like to maximize the
cost difference between the two, but that problem is ill-defined, suggesting the
following adaptation of the standard minimization problem:

1

2
||w||2 + CA

|A|∑
i=1

ξi + CB

|B|∑
j=1

ξj (3)

subject to ξi ≥ 1−yi〈xi,w〉, ξj ≥ 1−yj〈xj,w〉, ξi ≥ 0, ξj ≥ 0. As a first step, we
assume CA ≥ 0 and CB ≥ 0, so we continue penalizing errors on subgroup B.
We call this method the two-cost model, and although this problem is similar to
addressing class weight, there is an important difference. When addressing class
skew, the ratio between C+ and C− can be estimated from the class skew in
the data. On the other hand, a natural ratio between CA and CB may not be
known beforehand: if CA ≈ CB , there will be little differential classification, but
if CA � CB the errors may be captured by set B only, leading to over-fitting.

5 Multivariate Performance Measures

Our goal is to find the parameters w that are optimal for a specific measure
of uplift performance, such as AUU. Similar to AUC [13, 28, 17], AUL depends
on the rankings between pairs of examples. We next, we focus on the SVMperf

approach [13]. This approach hypothesizes that we want to find the h that min-
imizes the area of a generic loss function ∆ over an unseen set of examples
S′:

R∆(h) =

∫
∆((h(x′1), . . . , h(x′n′)), (y′1, . . . , y

′
n′))dPr(S′) (4)

Note that we use a (x, y) feature vector and label pair notation to represent
examples throughout. Also, in practice we cannot use equation (4), we can only
use the training data:

R̂∆(h) = ∆((h(x1), . . . , h(xn)), (y1, . . . , yn)) (5)

Let tuples ȳ = (y1, . . . , yn) and ȳ′ be assignments over the n examples, Ȳ is
the set of all possible assignments. Ψ(x, y) is a measure-specific combination of
features of inputs and outputs in our problem, such that one wants to maximize
wTΨ :

argmax
ȳ′∈Ȳ

{wTΨ(x̄, ȳ′)} (6)

Then the problem reduces to:

min
w,ξ≥0

1

2
||w||2 + Cξ (7)



given the constraints:

∀ȳ′ ∈ Ȳ \ ȳ : wT [Ψ(x̄, ȳ)− Ψ(x̄, ȳ′)] ≥ ∆(ȳ′, ȳ)− ξ (8)

which is a quadratic optimization problem and can be solved by a cutting plane
solver [12], even if it involves many constraints (one per element in Ȳ \ ȳ).

The formulation applies to the AUC by defining it as 1− BadPairs
N×P , where N

is the number of negative examples, P is the number of positive examples, and
BadPairs is the number of pairs (i, j) such that yi = 1, yj = −1, and y′i < y′j .
Joachims thus addresses the optimization problem in terms of pairs y′ij , where
y′ij is 1 if y′i > y′j , and −1 otherwise. The loss is the number of swapped pairs:

∆AUC(ȳ′, ȳ) =

P∑
i=1

N∑
j=1

1

2
(1− y′ij) (9)

The combination of features Ψ should be symmetric to the loss, giving:

wTΨ(x̄, ȳ′) =
1

2

P∑
i=1

N∑
j=1

y′ij(w
Txi −wTxj) = wT 1

2

P∑
i=1

N∑
j=1

y′ij(xi − xj) (10)

The optimization algorithm [12] finds the most violated constraint in equation
(8). This corresponds to finding the y∗ij that minimize wT [Ψ(x̄, ȳ)− Ψ(x̄, ȳ′)]−
∆AUC(ȳ′, ȳ), or, given that Ψ(x̄, ȳ) is fixed, that maximize:

wTΨ(x̄, ȳ′) +∆AUC(ȳ′, ȳ)

Expanding this sum resumes into independently finding the y∗ij such that:

y∗ij = argmax
y′ij∈{1,−1}

y′ij((w
Txi −

1

2
)− (wTxj +

1

2
)) (11)

Joachims’ algorithm then sorts the wTxi− 1
2 and wTxj+ 1

2 , and generates labels
from this total order.

6 Maximizing Uplift

Recall from Section 3.1 the similarity between lift and ROC. The two are actually
closely related. As shown in Tufféry [24], and assuming that we are given the
skew π = P

P+N , the AUL is related to the AUC by:

AUL = P
(π

2
+ (1− π)AUC

)
(12)

Expanding equation (1) with equation (12):

AUU = PA

(πA
2

+ (1− πA)AUCA

)
− PB

(πB
2

+ (1− πB)AUCB

)
(13)



PA, PB , πA, and πB are properties of the two subgroups, and thus indepen-
dent of the classifier. Removing constant terms we see that maximizing uplift is
equivalent to:

max(AUU) ≡ max(PA(1− πA)AUCA − PB(1− πB)AUCB)

∝ max
(
AUCA −

PB(1− πB)

PA(1− πA)
AUCB

)
(14)

Defining λ = PB(1−πB)
PA(1−πA) we have:

max(AUU) ≡ max(AUCA − λAUCB) (15)

Therefore, maximizing AUU is equivalent to maximizing a weighted difference
between two AUCs.

Equation (15) suggests that we can use the AUC formulation to optimize
AUU. First, we make it a double maximization problem by switching labels in
subgroup B:

max(AUU) ≡ max(AUCA − λ(1−AUC−B ))

≡ max(AUCA + λAUC−B ) (16)

The new formulation reverses positives with negatives making it a sum of sepa-
rate sets.

At this point, we can encode our problem using Joachims’ formulation of the
AUC. In this case, we have two AUCs. One, as before, is obtained from the yij
where the i, j pairs range over A. The second corresponds to pairs ykl where the
k, l pairs range over B. On switching the labels, we must consider ylk where k
ranges over the positives in B, and l over the negatives in B.

After switching labels, we can expand equation (9) to obtain our new loss
∆AUU as the weighted sum of two losses:

∆AUU (ȳ′, ȳ) =

PA∑
i=1

NA∑
j=1

1

2
(1− y′ij) + λ

PB∑
k=1

NB∑
j=1

1

2
(1− y′lk) (17)

From equation (10) we construct a corresponding weighted sum as the new Ψ :

Ψ(x̄, ȳ′) =
1

2

PA∑
i=1

NA∑
j=1

y′ij(xi − xj) + λ
1

2

PB∑
k=1

NB∑
l=1

y′lk(xl − xk) (18)

The two sets are separate, so optimizing the yij does not change from equation
(11), as their maximization does not depend on the ylk. Optimizing the ylk
follows similar reasoning to the yij and gives:

y∗lk = argmax
y′lk∈{1,−1}

y′lk((wTxl −
1

2
)− (wTxk +

1

2
)) (19)



Thus, we now have two independent rankings: one between the labels for the ex-
amples in A, and the other between the labels for the examples in B. We can sort
them together or separately, but we simply have to label the sets independently
to obtain the ȳ∗ of the most violated constraint. Note that the computation of
the ȳ∗ in this setting is independent of λ, but λ still affects the solutions found
by the cutting-plane solver through ∆ and Ψ .

7 Experiments

We implemented our SVMUpl method using the SVMperf codebase, version
3.001. We implemented the two-cost model using the LIBSVM codebase [3],
version 3.172. All other uplift-agnostic approaches were run using LIBSVM, but
required no changes to the code.

Recall that our motivating applications are to produce a differential older-
specific classifier for in situ breast cancer, and produce a differential COX-2
specific classifier for myocardial infarction (MI). We apply all of the proposed
approaches to the breast cancer data used in Nassif et al. [19] and the MI data
used in Davis et al. [6]. Their composition is shown in Table 2.

The breast cancer data consists of two cohorts: patients younger than 50
years old form the younger cohort, while patients aged 65 and above form the
older cohort. The older cohort has 132 in situ and 401 invasive cases, while the
younger one has 110 in situ and 264 invasive.

Table 2. Composition of the breast cancer and MI datasets for our motivating appli-
cations. In the breast cancer dataset the older subgroup is the target subgroup, and in
situ breast cancer is the positive class. In the MI dataset the COX-2 inhibitor subgroup
is the target subgroup, and MI is the positive class.

Older Younger

In Situ Invasive In Situ Invasive

132 401 110 264

COX-2 Inhibitors No COX-2 Inhibitors

MI No MI MI No MI

184 1,776 184 1,776

The MI data consists of patients separated into two equally-sized subgroups:
patients who have been prescribed COX-2 inhibitors and those who have not.
The group prescribed COX-2 inhibitors has 184 patients who had MI, and 1776
who did not. The subgroup not prescribed COX-2 inhibitors has the same num-
ber of patients for each outcome.

We use 10-fold cross-validation for evaluation. Final results were produced by
concatenating the output test results for each fold. Cost parameters were selected
for each fold using 9-fold internal cross-validation. For all approaches, the cost
parameter was selected from {10.0, 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001}. For the
two-cost model, CA and CB were selected from all combinations of values from

1 http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm



Table 3. 10-fold cross-validated performance for all proposed approaches on the breast
cancer dataset (* indicates significance).

Model Older Younger AUU Per-fold Per-fold SVMUpl

AUL AUL AUU µ AUU σ p-value

SVMUpl 64.26 45.05 19.21 1.93 0.78 -

Two-Cost 74.30 60.76 13.54 1.45 1.18 0.432
Older-Only 67.70 61.85 5.85 1.03 1.15 0.037 *
Standard 75.35 64.34 11.01 1.26 0.38 0.049 *
Flipped 53.90 49.08 4.82 0.77 0.58 0.020 *
Baseline 66.00 55.00 11.00 1.10 0.21 0.004 *

Table 4. 10-fold cross-validated performance for all proposed approaches on the MI
dataset (* indicates significance).

Model COX-2 No COX-2 AUU Per-fold Per-fold SVMUpl

AUL AUL AUU µ AUU σ p-value

SVMUpl 123.38 72.70 50.68 5.07 2.04 -

Two-Cost 126.23 106.25 19.99 2.43 1.54 0.004 *
COX-2-Only 151.50 137.70 13.80 1.18 1.52 0.002 *

Standard 147.69 146.49 1.20 -0.16 1.25 0.002 *
Flipped 102.15 73.63 28.52 2.97 1.35 0.037 *
Baseline 0.00 0.00 0.00 0.00 0.00 0.002 *

the set such that CA > CB . We plot the final uplift curves for each approach
along with the uplift for a baseline random classifier in Figures 3 and 4.

Tables 3 and 4 compare SVMUpl with every other approach proposed as well
as a fixed baseline random classifier. We use the Mann-Whitney test at the 95%
confidence level to compare approaches based on per-fold AUU. We show the
per-fold mean, standard deviation, and p-value of the 10-fold AUU paired Mann-
Whitney of each method as compared to SVMUpl (* indicates significance).

8 Evaluation

The results on the breast cancer dataset in Table 3 show that SVMUpl produces
significantly greater uplift than all proposed approaches, except for the two-cost
model. This exception may be a result of the higher variance of the model on this
particular dataset. The results on the MI dataset in Table 4 show that SVMUpl

produces the greatest uplift in all cases.
Figure 3 shows SVMUpl with an uplift curve that dominates the rest of the

approaches until around the 0.7 threshold on the breast cancer dataset. Most
other approaches produce curves that sit around or below the baseline.

Figure 4 tells a similar story, with SVMUpl dominating all other methods
across the entire space on the MI dataset. In this dataset, however, only the
standard SVM approach consistently performs below the baseline, whereas all
other methods appear to produce at least modest uplift.
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Fig. 3. Uplift curves (higher is better) for all approaches on the breast cancer dataset.
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Fig. 4. Uplift curves (higher is better) for all approaches on the MI dataset. Note that
the baseline uplift lies on the x-axis due to the equal number of patients with MI in
each subgroup.

9 Conclusions and Future Work

We introduced a support vector model directed toward differential prediction.
The SVMUpl approach optimizes uplift by relying on the relationship between



AUL and AUC, and on the linearity of the multivariate function used in prior
work to optimize AUC. The results suggest that SVMUpl does indeed achieve
better uplift in unseen data than the other approaches.

Differential prediction has many important applications, particularly in the
human sciences and medicine, raising the need for future work. For example,
in some applications, it may be important to ensure some minimal performance
over subgroup B, even at the cost of uplift. It may also be important to be able to
interpret the learned model and understand what features improve uplift most.
SVMs do not lend themselves as easily to this task as some models, but feature
coefficients could be used to identify which are the most or least important.
Finally, there is some very recent additional work on SVMs for uplift modeling
[27] that does not directly optimize uplift, the main focus of this paper, but it
will be important to compare results as such new methods are developed.
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