SUPPORT VECTOR MACHINES FOR DIFFERENTIAL PREDICTION

Finn Kuusisto¹, Vitor Santos Costa², Houssam Nassif³, Elizabeth Burnside¹, David Page¹, and Jude Shavlik¹

¹University of Wisconsin – Madison ²University of Porto ³Amazon

DIFFERENTIAL PREDICTION

Goal

Use modeling techniques to **gain insight** about the **differences between two subgroups** of a population.

(RADCLIFFE & SIMPSON, 2008)

How do we choose which customers to target with some marketing activity?

(RADCLIFFE & SIMPSON, 2008)

How do we choose which customers to target with some marketing activity?

Persuadables Customers who respond positively to marketing activity.

Sure Things Customers who respond positively regardless.

Lost Causes Customers who respond negatively regardless.

Sleeping Dogs Customers who respond negatively to marketing activity.

(RADCLIFFE & SIMPSON, 2008)

True customer groups are <u>unknown</u>.

Target		Control		
Response	No Response	Response	No Response	
Persuadables, Sure Things	Sleeping Dogs, Lost Causes	Sleeping Dogs, Sure Things	Persuadables, Lost Causes	

Lift

The number of **true positives** that a classifier achieves **at a given proportion of the population labeled positive.**

Uplift

The **difference in lift** produced by a classifier between target and control subgroups.

$$AUU = AUL_T - AUL_C$$

TASK: ADVERSE COX-2 INHIBITOR EFFECTS

- Non-steroidal anti-inflammatory drug (NSAID)
- Significantly reduced occurrence of adverse gastrointestinal effects common to other NSAIDs (e.g. ibuprofen)
- Rapid and widespread acceptance for treatment of ailments such as arthritis
- Later clinical trials showed increased risk of myocardial infarction (MI), or "heart attack"

Identify patients who are susceptible to an increased risk of MI as a direct result of taking COX-2 inhibitors.

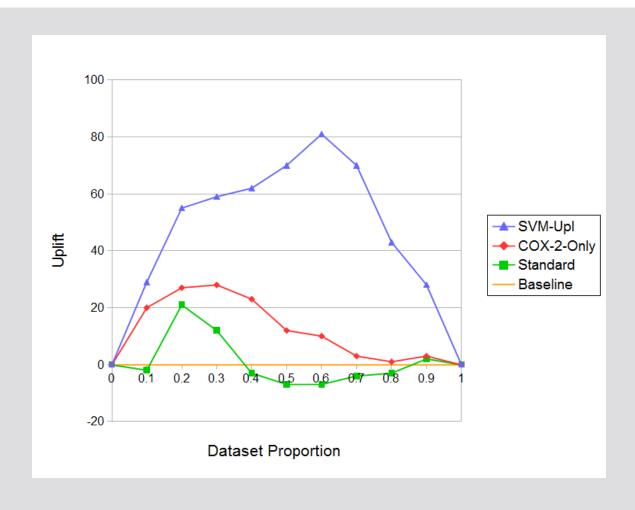
UPLIFT MODELING TO MEDICINE: COX-2 INHIBITORS

Want

Identify patients who demonstrate an increased risk of MI as a direct result of being treated with COX-2 inhibitors.

Main Assumption

Patients with an <u>increased risk of MI due to treatment</u> with COX-2 inhibitors are <u>directly analogous</u> to customers with an <u>increased chance of buying due to targeting</u> – the persuadables.


METHODS

- Compared SVM^{Upl} against 4 alternate SVM methods (2 shown)
- 10-fold cross-validation for evaluation
- Cost parameters selected from 10 through 10⁻⁶
- Mann-Whitney test at 95% confidence for per-fold AUU comparison

RESULTS: COX-2 INHIBITORS

Model	AUU	COX-2 AUL	No COX-2 AUL	SVM ^{Upl} p-value
SVM^{Upl}	50.7	123.4	72.7	-
COX-2-Only	13.8	151.5	137.7	0.002 *
Standard	1.2	147.7	146.5	0.002 *
Baseline	0.0	0.0	0.0	0.002 *

RESULTS: COX-2 INHIBITORS

HOW

Extend previous SVM work maximizing AUC (Joachims, 2005) to maximize AUU instead.

SVM FOR UPLIFT

Let the positive skew of data be:

$$\pi = \frac{P}{P+N}$$

Then (Tuffery, 2011):

$$AUL = P \times \left(\frac{\pi}{2} + (1 - \pi)AUC\right)$$

SVM FOR UPLIFT

$$AUU = AUL_T - AUL_C = P_T \times \left(\frac{\pi_T}{2} + (1 - \pi_T)AUC_T\right) - P_C \times \left(\frac{\pi_C}{2} + (1 - \pi_C)AUC_C\right)$$

$$max(AUU) \equiv max(P_T \times (1 - \pi_T)AUC_T - P_C \times (1 - \pi_C)AUC_C)$$

$$\propto max\left(AUC_T - \underbrace{\frac{P_C \times (1 - \pi_C)}{P_T \times (1 - \pi_T)}}AUC_C\right)$$

$$max(AUU) \equiv max(AUC_T - \lambda AUC_C)$$

TASK: IN SITU BREAST CANCER

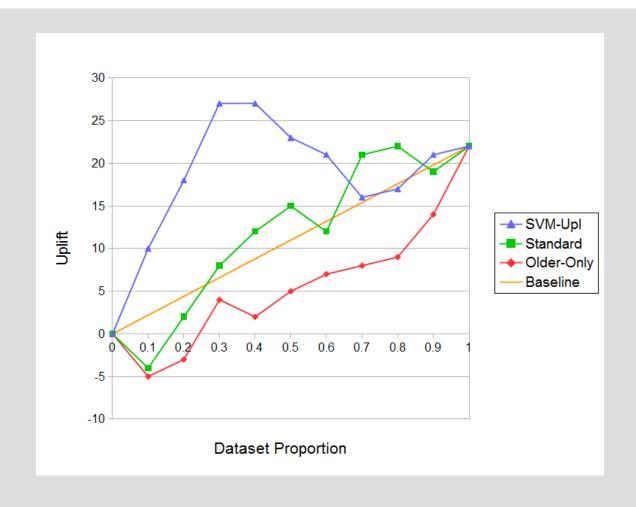
- Most common cancer in women
- Two basic stages: *In situ* and *invasive*
 - In situ cancer cells are localized
 - Invasive cancer cells have infiltrated surrounding tissue
- Younger women tend to have more aggressive in situ cancer
- Older women sometimes have indolent in situ cancer

Identify older patients with indolent in situ breast cancer.

UPLIFT MODELING TO MEDICINE: BREAST CANCER

Want

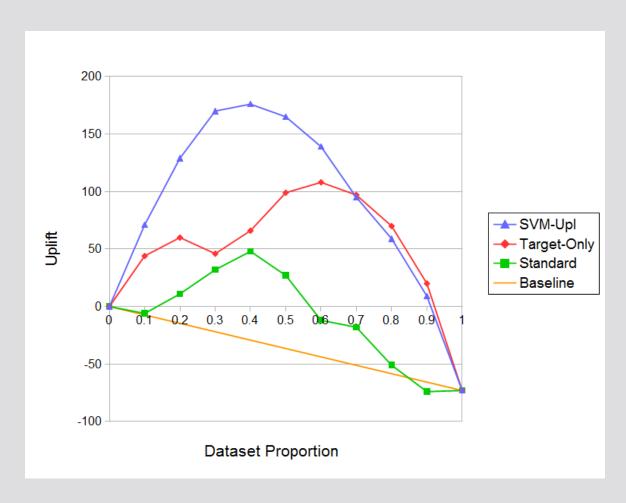
Identify older patients with in situ breast cancer that is distinct from that of younger patients.

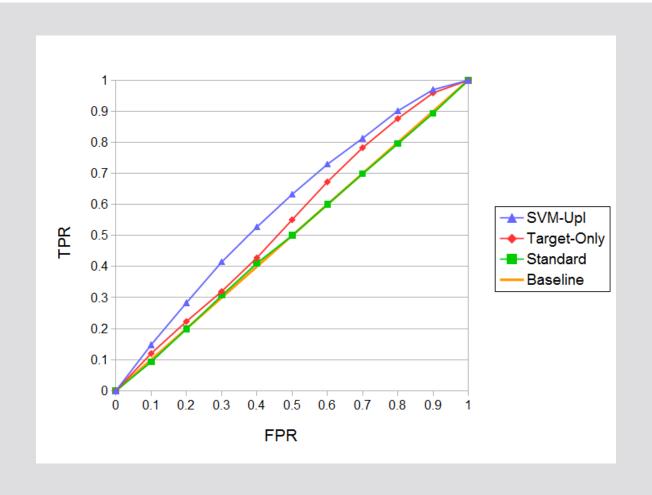

Main Assumption

Older patients with <u>in situ breast cancer</u> that is <u>distinct from that of younger patients</u>, who tend to have aggressive cancer, have a <u>decreased risk of invasive progression</u>.

RESULTS: BREAST CANCER

Model	AUU	Older AUL	Younger AUL	SVM ^{Upl} p-value
SVM^{Upl}	19.2	64.3	45.1	-
Older-Only	5.9	67.7	61.9	0.037 *
Standard	11.0	75.4	64.3	0.049 *
Baseline	11.0	66.0	55.0	0.004 *


RESULTS: BREAST CANCER


UPLIFT MODELING SIMULATION

- Generated synthetic customer population
- Subjected customer population randomly to simulated marketing activity
- Measured uplift as usual
- Measured ROC with Persuadables as the positive class, others as negative

UPLIFT MODELING SIMULATION: UPLIFT CURVE

UPLIFT MODELING SIMULATION: PERSUADABLE ROC

CONCLUSIONS & FUTURE WORK

- Extended previous SVM work on AUC maximization to AUU
- Results suggest SVM^{Upl} achieves better uplift than many alternate SVM methods

- May want to make performance guarantees for control group
- May want to interpret learned model
- Better verification that maximizing uplift is appropriate goal

THANKS

Questions?

SELECTED REFERENCES

Radcliffe, N. and Simpson. R.: Identifying who can be saved and who will be driven away by retention activity. Journal of Telecommunications Management (2008).

Tuffery, S.: Data Mining and Statistics for Decision Making. John Wiley & Sons, 2nd edn. (2011).

Joachims, T.: A support vector method for multivariate performance measuers. In: Proceedings of the 22nd International Conference on Machine Learning (2005).