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Precision Medicine Initiative 

 ǲTonightǡ )̵m launching a new Precision Medicine 
Initiative to bring us closer to curing diseases like 

cancer and diabetes Ȅ and to give all of us access 

to the personalized information we need to keep ourselves and our families healthierǤǳ 
 

-President Barack Obama, State of the Union Address, January 20, 2015 



Precision Medicine 

 

Ɣ Tailoring medical treatment to individual characteristics 

of each patient 

Ɣ Classify individuals into subpopulations that differ in: ጖ Susceptibility to particular diseases ጖ Biology and/or prognosis of diseases they develop ጖ Response to specific treatments 



Supervised Learning 

Given: Values of the input features and the output feature (response, 

class) for many patients 

Do: Build a model that can accurately predict the unknown value of the 

output class for new (previously unseen) patients whose values of the 

input features are known 

A? 
yes no 

B? yes no 

Classical methods: linear and logistic regression 

Other methods: decision trees, random forests, 

support vector machines, Bayesian networks, 

artificial neural networks, etc. 

 



Thesis Statement 

 

 

Machine learning results can be made more clinically-

relevant by tailoring current approaches to meet 

clinical objectives through the development of new 

algorithms to model individual response to treatment, 

and by incorporating clinical expertise into model 

development and refinement. 
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Decision Support 

 
 

Great opportunities for machine-learned 

decision support systems 

 

Butǥ 

 
Standardized, complete, and sufficient training data 

is rarely available 



ABLe 

 

Comprises two parts 

1) Categories of advice sources 

2) Iterative process for model refinement 



ABLe - Advice Categories 

Task 
Ɣ What is the problem and scope? 

Ɣ What predictor variables are important? 

Ɣ How should the problem be modeled? 

 

Relationships Among Variables 
Ɣ What combinations of variables are important to the task? 

 

Parameter Values 
Ɣ What is the clinical objective? 

Ɣ What model parameters best represent that objective? 



ABLe - Iterative Process 

MDE and CSE 

define/refine advice  

Build model 
Evaluate model 

Accept model 

Repeated iterations to optimize performance 

Start 



Upgrade Prediction 

1 

Mammogram 

2 

Needle Biopsy 

3 

Radiologic-Histologic 

Correlation 

4 

Excision 

Non-definitive Diagnosis Final Diagnosis Abnormality Benign Tissue 

Malignant 

= 
“Upgrade” 

1. NIH - wikimedia.org/wiki/File:Woman_receives_mammogram.jpg 
2. Itayba - wikimedia.org/wiki/File:Normal.jpg 

 
 

3. UW Hospital and Clinics 
4. NIH - wikimedia.org/wiki/File:Surgical_breast_biopsy.jpg 

Image Sources: 



 

 

Ɣ 5-15% of core needle biopsies non-definitive 

Ɣ Approximately 35,000-105,000* per year 

Ɣ 80-90% of non-definitive biopsies are benign 

 

* Based on 2010 annual breast biopsy utilization rate in the United States 

Upgrade Prediction 
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Phase 1 

Task 

Ɣ Simple probabilistic model (Naïve Bayes) 

Ɣ Standardized BI-RADS descriptor features 

Ɣ Some non-standard pathology features and demographics 

Ɣ Predict probability of malignancy 

Ɣ Assume excision at ൒ 0.02 model score (to balance risk) 

 

Relationships Among Variables 

Ɣ Rules predicting increase/decrease risk of malignancy 

 

Parameter Values 

Ɣ None 



Relationships Among Variables 

If-Then rules from domain expert (Beth) that 

suggest increase/decrease risk of upgrade. 

 

High-risk mass rule: 
 

IF 

Irregular mass shape is present   OR 

Spiculated mass margin is present OR 

High density mass is present      OR 

Increasing mass size 

THEN 

Risk of upgrade increases 
 



Biopsies in Practice (2006-11) 

Core Needle Biopsies 

2,808 

Core Needle Biopsies + Dx Mammogram 
1,910 

Malignant Biopsy 
601 

Benign Biopsy 
1,309 

Non-definitive 
157 

Malignant (upgrade) 
29 

Benign (non-upgrade) 
128 



Phase 1 Results 

Data Rules Data + Rules 

Malignant Excisions 

Missed (%) 
8 (27.6%) 1 (3.4%) 9 (31.0%) 

Benign Excisions 

Avoided (%) 
46 (35.9%) 5 (3.9%) 63 (49.2%) 

Ɣ Naïve Bayes to predict malignancy 

Ɣ Assume excision at η 0.02 model score 

Ɣ Experiments with and without expert rule features 

 



Observations & Refinements 

Observations 

Ɣ No output threshold with 

acceptable performance 

Ɣ Non-definitive biopsies broken 

into 3 categories at diagnosis ጖ Atypical/Radial Scar (ARS) ጖ Insufficient (I) ጖ Discordant (D) 

Ɣ ARS and I cases consistently 

mislabeled 

Refinements 

Ɣ Focus exclusively on 

discordant cases 

 



Discordant Biopsies (2006-11) 

Discordant Biopsy 

60 

Malignant (upgrade) 

10 

Benign (non-upgrade) 

50 



Phase 2 Results 

Data Rules Data + Rules 

Malignant Excisions 

Missed (%) 
3 (30.0%) 1 (10.0%) 3 (30.0%) 

Benign Excisions 

Avoided (%) 
29 (58.0%) 17 (34.0%) 27 (54.0%) 

Ɣ Naïve Bayes to predict malignancy of discordants 

Ɣ Assume excision at η 0.02 model score 

Ɣ Experiments with and without expert rule features 

 



Observations & Refinements 

Observations 

Ɣ Good ranking of cases by 

output model scores 

ł Most cases assigned less than 

0.02 risk 

Refinements 

Ɣ Make model conservative 

o Different costs for false 

negatives (FN) versus                 

false positives (FP) 

o Take from utility analysis 

literature in mammography 

 



Phase 3 Results 

Data Rules Data + Rules 

Malignant Excisions 

Missed (%) 
0 (0.0%) 0 (0.0%) 0 (0.0%) 

Benign Excisions 

Avoided (%) 
5 (10.0%) 5 (10.0%) 12 (24.0%) 

Ɣ Naïve Bayes to predict malignancy of discordants 

Ɣ Cost ratio of 150:1 for FN:FP 

Ɣ Assume excision at η 0.02 model score 

Ɣ Experiments with and without expert rule features 

 



Outline 

 

• Introduction 

• Advice-Based Learning Framework 

• Support Vector Machines for Uplift Modeling 

• Conclusions 



Clinical Trial 

 

 

Clinical experiment to determine the average 

effect of some treatment for: 

Ɣ Safety 

Ɣ Efficacy 



Clinical Trial 

Treatment Group Control Group 

Pretrial 

Outcome 

28.6% 57.1% 



Clinical Trial 

Treatment Group Control Group 

Pretrial 

Outcome 

28.6% 57.1% 

ATE = 28.6% - 57.1% = -28.5 percentage points 
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Clinical Trial 

Treatment Group Control Group 

Pretrial 

Outcome 

28.6% 57.1% 

ITE = 

= 

= 

= 



ITE Challenge 

 

 

Ɣ Cannot observe both treatment and control outcomes for 

any one individual 

 

 

Ɣ Need a lot of data to model ITE for even a moderate 

number of individual features 

Image by Toni Barros - https://www.flickr.com/photos/12793495@N05/3233344867/ 



Uplift Modeling 
(RADCLIFFE & SIMPSON, 2008) 

How do we choose which customers to 

target with some marketing activity? 

Persuadables Customers who respond positively to marketing activity. 

Sure Things Customers who respond positively regardless. 

Lost Causes Customers who respond negatively regardless. 

Sleeping Dogs Customers who respond negatively to marketing activity. 



Uplift Modeling 
(RADCLIFFE & SIMPSON, 2008) 

True customer groups are unknown 

Treatment Control 

Response No Response Response No Response 

Persuadables, 

Sure Things 

Sleeping Dogs, 

Lost Causes 

Sleeping Dogs, 

Sure Things 

Persuadables, 

Lost Causes 



Standard Model 

Treatment Control 

Response No Response Response No Response 

Persuadables, 

Sure Things 

Sleeping Dogs, 

Lost Causes 

Sleeping Dogs, 

Sure Things 

Persuadables, 

Lost Causes 

Persuadables 

NEGATIVE POSITIVE 

Sleeping Dogs 

Sure Things 

Persuadables Sleeping Dogs 

Lost Causes 



Response Model 

Treatment Control 

Response No Response Response No Response 

Persuadables, 

Sure Things 

Sleeping Dogs, 

Lost Causes 

Sleeping Dogs, 

Sure Things 

Persuadables, 

Lost Causes 

Persuadables 

NEGATIVE POSITIVE 

Sure Things Sleeping Dogs Lost Causes 



Uplift Modeling 
(RADCLIFFE & SIMPSON, 2008) 

Treatment Control 

Response No Response Response No Response 

Persuadables, 

Sure Things 

Sleeping Dogs, 

Lost Causes 

Sleeping Dogs, 

Sure Things 

Persuadables, 

Lost Causes 

Persuadables 

POSITIVE 

Sleeping Dogs Sure Things 

POSITIVE 

NEGATIVE NEGATIVE 

Sleeping Dogs Lost Causes Persuadables 

Treatment Control 



Uplift Modeling 
(RADCLIFFE & SIMPSON, 2008) 

Uplift 

The difference in lift produced by a classifier 

between treatment and control subgroups. 

Lift 

The number of responders that a classifier 

identifies at a given proportion of the 

population targeted. 



Ɣ Non-steroidal anti-inflammatory drug (NSAID) 

Ɣ Significantly reduced occurrence of adverse gastrointestinal effects 

common to other NSAIDs (e.g. ibuprofen) 

Ɣ Wide use for treatment of ailments such as arthritis 

Ɣ Later clinical trials showed increased risk of myocardial infarction ȋM)Ȍǡ or ǲheart attackǳ 

 

COX-2 Inhibitors 



COX-2 Inhibitors 

 

Main Assumption 

Patients with an increased risk of MI due to 

treatment with COX-2 inhibitors are directly 

analogous to Persuadables. 

 



Support Vector Machines 

Find maximum-margin separating plane between positive 

and negative examples. 



 

 

 

Extend previous SVM work maximizing AUC 

(Joachims, 2005) to maximize AUU instead. 

SVM for Uplift 



ROC and AUC 
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SVM for Uplift 

Let the positive skew of data be: 

Then (Tuffery, 2011): 



SVM for Uplift 



Uplift Modeling Simulation: 

Persuadable ROC 
 

 

Ɣ Generated synthetic customer population 

Ɣ Subjected customer population randomly to simulated 

marketing activity 

Ɣ Measured ROC with Persuadables as the positive class, 

others as negative 



Uplift Modeling Simulation: 

Persuadable ROC 



COX-2 Inhibitor Results 



COX-2 Inhibitor Results 

Model AUU COX-2 

AUL 

No COX-2 

AUL 

AUU 

p-value 

SVMUpl 50.7 123.4 72.7 - 

COX-2-Only 13.8 151.5 137.7 0.002* 

Standard 1.2 147.7 146.5 0.002* 

Baseline 0.0 0.0 0.0 0.002* 
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Contributions 

In This Presentation 

• Developed framework for collaboration between clinicians and machine 

learning experts to address challenges in decision support (Kuusisto et al., 

2015) 

• Developed support vector machine for uplift modeling to address COX-2 

inhibitor treatment and understand indolent breast cancer in older patients 

(Kuusisto et al., 2014) 

 

 



Contributions 

In This Presentation 

• Developed framework for collaboration between clinicians and machine 

learning experts to address challenges in decision support (Kuusisto et al., 

2015) 

• Developed support vector machine for uplift modeling to address COX-2 

inhibitor treatment and understand indolent breast cancer in older patients 

(Kuusisto et al., 2014) 

Other Contributions 

• Investigated use of machine learning for accurately estimating individualized 

treatment effects versus traditional approaches with RCT and observational 

data (Weiss et al., 2015) 

• Developed statistical relational uplift modeling algorithm to understand 

factors contributing to indolent breast cancer in older patients (Nassif et al., 

2013) 

• Applied inductive logic programming with rule evaluation function tailored to 

meet clinical objective (Kuusisto et al., 2013) 

 

 



Overall Conclusions 

 

• Close collaboration with clinicians is essential to 

develop models to meet clinical objectives 

• Leveraging clinical expertise in model-building 

can alleviate challenges of gathering sufficient 

data for rare diseases 

• Machine learning and uplift modeling have 

potential applications in treatment assignment 

and knowledge discovery 
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Future Directions 



Uplift Bayesian Networks 

Uplift TAN ܫ஽ூிி Ǣܣ ܤ ݏݏ݈ܽܥ ൌ ܫ௧௥௘௔௧ Ǣܣ ܤ ݏݏ݈ܽܥ െ Ǣܣ௖௢௡௧௥௢௟ሺܫ  ሻݏݏ݈ܽܥȁܤ



Net Benefit Maximization 

 

 

 

Ɣ Can evaluate treatment assignment model on RCT 

data (Vickers et al., 2007) 

Ɣ Could optimize for treatment assignment directly 



Model Calibration 



Other Work 



In Situ 
Ɣ Earlier state 

Ɣ Cancer localized 

Breast Cancer States 

Invasive 
Ɣ Later state 

Ɣ Cancer has invaded 

surrounding tissue 



Breast Cancer Age Differences 

Older 
Ɣ Cancer tends to 

progress less 

aggressively 

Ɣ Patient has less time 

for progression 

Younger 
Ɣ Cancer tends to 

progress more 

aggressively 

Ɣ Patient has more 

time for progression 



Uplift SVM Older In Situ Rules  

Rank Feature Older In Situ 

Correlation 

Radiologist 

Assessment 

1 Linear Calc. Distribution Present Positive 10 

2 Spiculated Mass Margin Present Negative 10 

3 Palpable Lump Present Positive 3 

4 Irregular Mass Shape Present Negative 9-10 

5 No Family History Negative 8 

10 = Clinically Interesting 1 = Clinically Counter-Intuitive 



Upgrade Rules 

Use F-score to learn precise rules to predict benign 

non-definitive biopsies 



Upgrade Rules 

1 The patient did not have a previous surgery, 

imaging did not present a spiculated mass margin, 

and the abnormality did not disappear in post-biopsy imaging 

2 Imaging did not present an indistinct mass margin, 

imaging did not present a spiculated mass margin, 

and the abnormality did not disappear in post-biopsy imaging 

3 Imaging did not present a spiculated mass margin, 

and the abnormality did not disappear in post-biopsy imaging 

4 Imaging did not present an indistinct mass margin, 

and the abnormality did not disappear in post-biopsy imaging 

5 The patient has no personal history of breast cancer, 

and the abnormality did not disappear in post-biopsy imaging 

Benign Avoided Malignant Missed 

 

30 

 

0 

 

29 

 

0 

34 1 

31 1 

28 0 



SAYL 

 

 

 

Use ILP to induce feature set used by BN that 

maximizes uplift. 



SAYL 



SAYL - Older Model 



SAYL - Younger Model 



Individualized Treatment 



Individualized Treatment 


