
Josh Chansard CS 367 Assignment 1

C:\Users\Josh\Documents\CS\cs367 assignment 1 josh chansard.docx - 1 - Last Saved: 6/15/2014 10:17:00 PM

Question 1:
Consider the following Java method that is intended to swap two items in a ListADT instance.
1 void swap(int i, int j, ListADT<String> myList) {

2 String temp = myList.get(i);

3 myList.add(i, myList.get(j));

4 myList.add(j, temp);

5 }

For example, if myList is ["a", "b", "c", "d", "e", "f"], then swap(1, 4, myList) should

change myList into ["a", "e", "c", "d", "b", "f"]. However, the method doesn't work as

intended.

Part A: Trace the code on the example above by showing the contents of myList after each line of

the swap method is executed.

Part B: Rewrite the swap method so that is behaves as described. You must leave the method

signature unchanged. Your method must not return a new list; it must operate on the list instance passed

in the myList parameter. You do not need to worry about input validation: you may assume

that i and j are valid indices, that i < j, and that myList is not null.

A.

If we’re calling swap(1, 4, myList) and myList is ["a", "b", "c", "d", "e", "f"]:

- Line 2: myList is unaltered. temp is instantiated with the value at myList’s inde 1, which is “b”,

since the first index is 0. This will come into play later.

o ["a", "b", "c", "d", "e", "f"]

- Line 3: The value at index j (4) is of myList is added at index i (1). The item originally in index i is

moves up once; the item originally in index i+1 moves up once… this continues for each item up to

the item originally in index myList.size()-1. myList[4] is "e", so that’s added at

myList[1], and everything else scoots up:

o ["a", "e", "b", "c", "d", "e", "f"]

- Line 4: The value of temp, which we established was “b”, is added at position 4, scooting

everything else up as described above.

o ["a", "e", "b", "c", "b", "d", "e", "f"]

- The general assumption that seems to have caused this to go wrong is that the add method would

replace the item instead of inserting it.

B.

//Assuming i < j per the instructions (could add if i > j then switch them)

void swap(int i, int j, ListADT<String> myList) {

 String newi = myList.remove(j);

 String newj = myList.remove(i);

 myList.add(i,newi);

 myList.add(j,newj);

}

Josh Chansard CS 367 Assignment 1

C:\Users\Josh\Documents\CS\cs367 assignment 1 josh chansard.docx - 2 - Last Saved: 6/15/2014 10:17:00 PM

Question 2:

Assume that ArrayList implements ListADT, that the ArrayListand ArrayListIterator

classes are implemented as expected, and that BadListException is an unchecked exception

with a zero-argument constructor. Assume also that null elements may not be added to a list.

Complete the Java method specified below, making use of iterators. In order to receive full

credit, your solution:

 must explicitly use iterators for traversing lists (i.e., you may not use a for-loop or Java's

extended-for loop),

 must not use the contains method,

 may use any ListADT methods (except contains) described in the on-line reading,

including ListADT.iterator(), but must not use any other List methods not mentioned

there, and

 must not modify the contents of the parameters.

public static ListADT<String> union(ListADT<String> list1, ListADT<String> list2) {
 if (list1 == null || list2 == null) {
 throw new BadListException();
 }
 //first, combine the lists, starting with list1
 ListADT<String> combinedList = list1;
 Iterator<String> iter2 = list2.iterator();
 while (iter2.hasNext()) {
 combinedList.add(iter2.next());
 }
 //then iterate through the combined list and add non-duplicates to a new list
 Iterator<String> combinedIter = combinedList.iterator();
 ListADT<String> unionList = new ArrayList<String>();
 while (combinedIter.hasNext()) {
 String itemToCompare = combinedIter.next();
 boolean hasDuplicate = false;
 Iterator<String> iterUnion = unionList.iterator();
 while (iterUnion.hasNext()) {
 if (itemToCompare.equals(iterUnion.next())) {
 hasDuplicate = true;
 }
 }
 //if it doesn't exist in the new union list already, add it
 if (!hasDuplicate) {
 unionList.add(itemToCompare);
 }
 }
 //return the union list
 return unionList;
}

http://pages.cs.wisc.edu/~hasti/cs367-common/readings/Lists/index.html#list

