
CS 536 — Fall 2018
Programming Assignment 1

Identifier Cross-Reference Analysis

Due: Tuesday, October 2, 2018

Introduction

A compiler performs many analyses on the structure of a program. Some analyses check for
correctness. Others look for optimization opportunities. Still others translate a source program
into executable form. In this project you will implement an identifier cross-reference
analysis. This analysis locates each variable declaration and links the declared variable with all
its uses. Consider the following simple program in CSX Lite. (CSX Lite is a simple subset of
CSX, the programming language this class will compile).

{ int a;
bool b;
if (b)
a = a+1;

}

A cross-reference analysis would generate this
1: a(int): 4(2)
2: b(bool): 3

This says that on line 1, a, an int, was declared. It was used twice on line 4.
On line 2, b, a bool, was declared. It was used on line 3.

A cross-reference analysis can be very useful in developing and debugging a program. For ex-
ample, Eclipse supports a program restructuring technique called refactoring. Refactoring
allows a declaration and all of its uses to be systematically updated. A common use of refactor-
ing is to rename the declaration of an identifier along with all of its uses. Clearly, a cross-
reference analysis, which links a declaration with all of its uses, makes renaming a simple task.

The Structure of CSX Lite

CSX Lite is a very simple programming language. It is too small to program anything useful.
Still, it contains declarations, statements and expressions. Thus it is representative of real pro-
gramming languages.

A CSX Lite program begins with a “{“ and ends with a “}”. The body of the program consists

2 of 8 	

of zero or more declarations followed by zero or more statements. Thus
{int i;i=0;} is a valid program. So is {}.

Declarations are simple variable declarations of the form int id or bool id, where id is any
valid identifier. In CSX Lite identifiers are a letter followed by zero or more letters and digits.
Examples include i, abc, GoBadgers and CVN76. Case is insignificant (AA and aa are the
same identifier).

There are three kinds of statements: assignments, conditionals and blocks. An assignment is of
the form

id = expr;
where id is any valid identifier and expr is any valid expression. Expressions may be an identi-
fier, an unsigned integer literal (e.g., 123) or a binary expression. Valid binary operators are +,
-, == and !=. Parentheses may be used to group operands in an expression. Thus abc, 123,
a+1 and a-(b-c) are all valid expressions in CSX Lite.

Conditionals are if statements with no else part, just as in Java or C++. Examples include

if (b) c=1; and if (a==1) if (b==2) c=3;

Blocks have the same form as a CSX Lite program: a left brace, zero or more declarations, zero
or more statements and a closing right brace. For example,

if (b==c) {int d; d=b+c;};

Just as in C, C++ and Java, a block opens a new name scope. That is, a new declaration of an
already declared identifier is allowed. A new declaration, in the local scope, overrides or
“hides” an earlier declaration in a containing scope.
Thus the following is legal
{int i; bool b; if (i==10) {int b; b=i-5;}}

Single line comments that begin with “//” and terminate at the end of the current line are
allowed.

Abstract Syntax Trees

From the programmer’s point of view, a program is just a sequence of characters, split into lines
to give it a two dimensional structure. Tools like Eclipse enforce formatting rules, adding in-
dentation and line breaks to enhance readability. Still, programs are treated as character files and
program development consists of adding, deleting and changing selected character sequences.

From a compiler’s point of view, a program is represented by a much more structured data ob-
ject — an abstract syntax tree (AST). Nodes in the tree represent important program
components. The root of the AST always represents a complete program. Subtrees represent in-
dividual declarations, statements and expressions. Thus an AST for a CSX Lite program is
rooted by a node with two subtrees: one containing all declarations and the other containing all
statements. Similarly, the AST for an if statement is rooted by a node corresponding to the struc-
ture of an if statement. It has a subtree corresponding to the control expression, and a subtree
corresponding to the then statement (recall there are no else parts in CSX Lite).

ASTs are syntax trees because their tree structure reflects the syntactic structures found in pro-
grams. They are abstract because certain source program components, like parentheses,

3 of 8 	

commas and semicolons are absent in the AST. This is because these components exist prima-
rily to enhance program readability for humans. The tree structure in an AST contains only
information necessary to analyze and translate program structures.

CSX Lite Abstract Syntax Tree Nodes

The AST nodes used by CSX Lite are listed in Table 1. All ASTs are rooted by a csxLiteN-
ode. This node has two references to subtrees, progDecls and progStmts. The type of
progDecls is fieldDeclsOption and the type of progStmts is stmtsOption. Many
subtree references are declared to be some sort of “option.” Option types (like fieldDe-
clsOption or stmtsOption) are abstract classes. That is, they are never actually allocated
via a call to new. Rather, they are placeholders for one of their subclasses. Possible subclasses
for each abstract class used in the CSX Lite AST are listed in Table 2.

For type fieldDeclsOption we see that fieldDeclsNode and nullFieldDeclsNode are
possible subclasses. This means that a subtree declared to be a fieldDeclsOption will really
be rooted by either a fieldDeclsNode or nullFieldDeclsNode. We use “option” nodes
when a subtree can either have real structure or may be empty (null).

There are a variety of nodes whose name begins with “null” (for example nullFieldDecls-
Node). In ASTs we never use a null-valued reference to indicate an null subtree. Instead an
actual null-node (like nullFieldDeclsNode) is allocated. This guarantees that we never need
worry about null reference errors — subtrees, whether empty or not, are always allocated. As a
convenience in processing CSX Lite ASTs, all tree nodes contain a Boolean-valued method
named isNull. If you want to know if a node or subtree is null, you just ask! For example, if
root references a CSX Lite AST, then root.progDecls.isNull() will tell you wheth-
er any declarations are present at the top (global) level.

Java class Fields Used Type of Fields Represents

csxLiteNode progDecls

progStmts

fieldDeclsOption

stmtsOption

CSX Lite program

fieldDeclsNode thisField

moreFields

declNode

fieldDeclsOption

variable declaration
sequence

varDeclNode varName

varType

initValue

identNode

typeNode

exprOption

one variable declaration

intTypeNode 	
 	
 int type

boolTypeNode 	
 	
 bool type

stmtsNode thisStmt

moreStmts

stmtNode

stmtsOption

statement sequence

asgNode target

source

identNode

exprNode

assignment statement

Table 1. Classes Used to Define AST Nodes in CSX Lite

4 of 8 	

Java class Fields Used Type of Fields Represents

ifThenNode condition

thenPart

elsePart

exprNode

stmtNode

stmtOption

if statement

blockNode decls

stmts

fieldDeclsOption

stmtsOption

block statement

binaryOpNode leftOperand

rightOperand

operatorCode

exprNode

exprNode

int

binary operator expression

identNode idname String identifier

intLitNode intval int integer literal

null nodes

(many kinds)

none 	
 null program component

Table 1. Classes Used to Define AST Nodes in CSX Lite

Abstract AST Node Subclasses Abstract AST Node Subclasses

declNode varDeclNode exprOption exprNode

nullExprNode

exprNode binaryOpNode

identNode

intLitNode

fieldDeclsOption fieldDeclsNode

nullFieldDeclsNode

typeNode intTypeNode

boolTypeNode

nullTypeNode

stmtOption stmtNode

nullStmtNode

stmtNode asgNode

ifThenNode

blockNode

stmtsOption stmtsNode

nullStmtsNode

Table 2 Abstract Classes Used in AST Nodes and Their Subclasses

Block-Structured Symbol Tables

In solving this assignment you will need to implement a block-structured symbol table. This
is a data structure designed to support identifier declaration and lookup in block-structured lan-
guages. In most programming languages, identifiers can be declared globally (at the top level)
or locally (in a limited scope). Scopes may nest. All declarations are placed in the nearest (in-
nermost) scope containing the declaration. Access to declared identifiers is stepwise. First the
innermost scope is considered. If a declaration is found, that is the one that is used. Otherwise,
the next containing scope is examined, then the next, until the outermost (global) scope is ex-
amined. If no declaration is found in any of the containing scopes the identifier is considered
undeclared and hence illegal. To simplify this assignment, you need not worry about undeclared
identifiers or identifiers illegally redeclared in the same scope.

5 of 8 	

A block-structured symbol table is often implemented by a list of symbol tables, one for each
scope. A symbol table (for one scope) can be readily implemented using class Hashtable
(see http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Hashtable.html). (If
you are more familiar with class HashMap, it also may be used.)

The original definition of Hashtable assumed values stored in a table were of type
Object, which required explicit casting into the correct class. Since Java 1.5, a more
convenient definition of Hashtable is available. Hashtable<K,V> defines a hash
table in which all keys have class K and all table entries have class V. Explicit casting is not
needed.

In your project solution, you will create a hash table (for global declarations) when the AST
root node (a csxLiteNode) is first visited. Whenever a block is processed (a blockNode)
a new hash table is allocated and linked to the head of a list of hash tables, one for each nested
scope. When the AST for the block is fully processed, the hash table for its scope is removed
(since the block’s local declarations are no longer visible).

Declarations are always placed in the head hash table, representing the innermost scope. Meth-
od put(key,value) places a new entry into a Hashtable. When an identifier is used, we
use method get(key) to see if the identifier is declared in the innermost scope. If it isn’t, we
do a get in the next hash table in the list. This is repeated until the identifier’s declaration is
found. Since we handle only valid programs, a declaration must be found in one of the hash
tables.

What You Must Do

We will give you a working scanner and parser for CSX Lite. These components will build a
valid AST. You will implement a method called buildCrossReferences in the various
CSX Lite AST nodes. When called in the AST root node (a csxLiteNode) the method will
traverse the AST gathering information on the declaration and use of all identifiers. This infor-
mation will be stored in a data structure you design and implement. This data structure will
implement a toString method. This method will display the cross-reference information you
have gathered in string form. The string will be subdivided into lines, one for each declaration.
Each line will be of the form

linenumber: identifier(type): use1,use2,...

linenumber is the source line number of the declaration. Note that each AST node has a field
linenum, set by the scanner and parser, that shows where the information in the AST node
was found. identifier is the name of the declared identifier. type is the declared type (ei-
ther int or bool). use1 is the source line number of the first use of this identifier. use2 is
the second use, etc.

Lines should be in ascending line number order. This will be easy to do if AST nodes are visited
in a normal in-order traversal. An identifier may be used more than once on a source line. This
may be represented as (e.g.) ...,5,5,5... or as ...,5(3),... (your choice). It is valid for a de-
clared identifier to not be used anywhere.

6 of 8 	

Getting Started

To get you started, we will give you a complete working solution to a simpler CSX Lite analysis,
declaration and use counts. For each scope (including the main program) identifier declarations
and uses are counted. Thus for

{ int a;
bool b;
{ int c;
if (b)
c = a+1;}

a=a+1;
}

the analysis informs us

Scope 1 (at line 1): 2 declaration(s), 2 identifier use(s)
Scope 2 (at line 3): 1 declaration(s), 3 identifier use(s)

This analysis is inaccurate because it assumes (incorrectly) that all identifiers used in a scope
are declared in that scope. Your analysis will use a block-structured symbol table to correctly
match identifier uses with their proper declarations.

This program is available in two forms: as an Eclipse archive file (cs 536 project 1.zip)
and as a simple folder containing Java source files (in sub-folder src), libraries, an ant build
file (see below) and a few test files.

The following Java source files are provided:

•ast.java
This contains class definitions for all the CSX Lite AST nodes. You will need to examine
all definitions of countDeclsandUses and update them with code to implement
buildCrossReferences.

•ScopeInfo.java
This contains class definitions for the data structures and utility routines used to gather dec-
laration and use counts. You will need to update it to process and store identifier cross
reference information.

•P1.java
This contains the main program that scans and parses CSX Lite programs into AST form.
It then calls countDeclsandUses in the AST root to begin the analysis. All you’ll need
to change here is the call at the root to begin cross reference analysis.

•scanner.java
This is the scanner component, automatically generated by the JLex scanner generator.
Don’t change anything in it!

•parser.java

7 of 8 	

This is the parser component, automatically generated by the Java CUP parser generator.
Don’t change anything in it!

•sym.java
This is a set of token definitions generated by the parser generator for use by the scanner
generator. Don’t change anything in it!

•Unparsing.java
This class implements an unparser — a routine that walks an AST and generates a human-
readable representation of the original source program. It is used to verify the correctness
of the AST built by the scanner and parser. Don’t change anything in it!

•Visitor.java
This class allows the CSX Lite unparsing code to be organized using the visitor pattern.
Using visitors, methods that conceptually walk the AST can be organized in different class-
es. This is important if we wish to avoid cluttering AST classes with large numbers of
unrelated methods. Don’t change anything in it!

Ant and Build Files

The software we have distributed to get you started includes a special file build.xml
that is used by the ant program building tool. Ant is a Java-oriented version of the widely-
used make utility found in Unix. Build files specify the steps needed to build a complete
project. For your initial assignment such an elaborate tool isn’t really needed — you can simply
compile all the Java source files (into “.class” files) and then execute the main method in
class P1. Still, you must be sure to get the details (like classpaths) right. More importantly, fu-
ture projects will use tools other than the Java compiler (the JLex scanner generator, the
JavaCUP parser generator and the Jasmin JVM assembler). Ant will be very useful in integrat-
ing these tools into the program build process.

At the command line level the command

ant

will recompile classes as needed after any changes you make. The command

ant compile

will do the same thing (compile is the default “target” in build.xml).

ant test

will do necessary recompilations and then test the program by running P1.main with two small
test programs, test.lite and biggertest.lite.

ant clean

will remove all classfiles created by the compiler. It is useful when you want to force a “clean”
and complete recompilation.

One of the best things about ant is that it is nicely integrated in Eclipse. If your project directory
in Eclipse contains the special file build.xml, Eclipse will use it. You can activate ant by right-
clicking on the build file. Select the menu item “Run as” and then the submenu item “Ant Build...”
(be sure to include the “...”). A window appears, allowing you to select the build target you want

8 of 8 	

and then activate the build. You can also configure the “External tools” button (on the top com-
mand line of the Eclipse window).

Extra Credit

You should not consider extra credit work until your project solution is running correctly. Still,
you may be bothered by the simplifying assumption that a program contains no declaration errors.
Two common programming errors are illegally redeclaring an identifier in the same scope and us-
ing an identifier that is undeclared. Both are fairly easy to handle.

An identifier that is illegally redeclared has a name and location. But its type is neither int nor
bool. Rather we can consider it to be a special type, “illegal.” The redeclaration is not placed in
the symbol table and it is never used (because it is “hidden” by the earlier valid declaration). Still,
it is useful to remind the programmer that there is an error and show where it is.

Undeclared identifiers are also common — some programmers write code first and add declara-
tions later! When an undeclared identifier is found, it can be placed in a separate table. There is
no declared type or declaration site, but uses can be chained and later presented to the program-
mer. When the needed declaration is later added, it is easy to inspect places where it is used and
verify that the declaration is appropriate.

What To Hand In

Create a folder (directory) and name it using your first and last name (e.g.,
CharlesFischer). Copy into this folder all the Java source files you changed or added. If
you changed the build.xml we provided, include your version (so that we can properly
build and test your solution). You should include a README file to hold external
documentation. We’ll run your program on a variety of our own test programs. Do
not hand in any class files; we’ll create them as needed using your source files and build.xml.
Electronically submit your folder to the Project 1 tab on Canvas. Partners should submit only
one solution. The other partner should submit only a README file identifying the partnership.

When your program begins execution it should print out your full name and student ID number.
It should also print out the name of the file being analyzed. We will grade your program on the
basis of the correct operation of your cross-reference generator. The quality of your documenta-
tion is also important. Make sure that you provide both external documentation (in the README
file) and internal documentation (in the source files). It should be easy for the grader to understand
the organization and structure of your program. We may exact significant penalties if we find your
program poorly documented or difficult to understand.

