
1 of 5 	

CS 536 — Fall 2018
Programming Assignment 2

CSX Scanner

Due: Tuesday, October 16, 2018

Your next project step will be to write a scanner component for the programming language CSX
(Computer Science eXperimental). You will use the JLex, scanner generation tool (which is based
on Lex). Future assignments will involve a CSX parser, type checker and code generator.

The CSX Scanner
The CSX scanner, a member of class Yylex, will be generated using JLex. Your main task will be
to create the file csx.jlex, the input to JLex. csx.jlex specifies the regular expression pat-
terns for all the CSX tokens, as well as any special processing required by tokens.

When a valid CSX token is matched by member function yylex(), it will return an object that is
an instance of class java_cup.runtime.Symbol (this is the class our parser expects to receive
from the scanner). Symbol contains an integer field sym that identifies the token class just
matched. Possible values of sym are identified in the class sym1.

Symbol also contains a field value that contains additional token information (beyond the to-
ken’s identity). For CSX, the value field will reference an instance of class CSXToken (or a
subclass of CSXToken). CSXToken will contain the line number and column number at which
each token was found. (This information is necessary to frame high-quality error messages.) The
line number on which a token appears is stored in linenum. The column number at which a token
began is stored in colnum. The column number should count tabs as one character, even though,
when viewed, they expand into several blanks.

You will also have to store auxiliary information for identifiers, integer literals, integer bit
strings, character literals and string literals. For identifiers, class CSXIdentifierToken, a
subclass of CSXToken, will contain the identifier’s name in field identifierText. For integer
literals, class CSXIntLitToken, a subclass of CSXToken, will contain the literal’s numeric value
in field intValue. For bit strings, class CSXBitStringToken, a subclass of CSXToken, will
contain the bit string’s numeric value in field intValue and string form (as scanned) in bitString.
For character literals, class CSXCharLitToken, a subclass of CSXToken, will contain the
literal’s character value in field charValue. For string literals, class CSXStringLitToken, a
subclass of CSXToken, will contain a field stringText that is the full text of the string (with
enclosing double quotes and internal escape sequences included as they appeared in the original
string text that was scanned).

1. Java class names normally are capitalized. However, certain classes created by the tool Java CUP ignore this con-
vention.

2 of 5 	

CSX Tokens

CSX contains the following classes of tokens:

• The reserved words of the CSX language:

bool break char class const continue else false
if int print read return true void while

• Identifiers. An identifier is a sequence of letters and digits starting with a letter, excluding
reserved words.

Id = (A | B | ... | Z | a | b | ... | z) (A | B | ... | Z | a | b | ... | z | 0 | 1 | ... | 9)* − Reserved

• Integer Literals. An integer literal is a sequence of digits, optionally preceded by a ~. A ~
denotes a negative value.

IntegerLit = (~ | λ) (0 | 1 | ... | 9)+

• Integer Bit String. An integer bit string is a sequence of bits, followed by a B or b. Bit
strings can be no longer than 32 bits.

BitString = (0 | 1)+(B | b)

• String Literals. A string literal is any sequence of printable characters, delimited by double
quotes. A double quote within the text of a string must be escaped (to avoid being misinter-
preted as the end of the string). Tabs and newlines within a string are escaped as usual (e.g., \n
is a newline and \t is a tab). Backslashes within a string must also be escaped (as \\). Strings
may not cross line boundaries.

StringLit = " (Not(" | \ | UnprintableChar) | \" | \n | \t | \\)* "

• Character Literals. A character literal is any printable character, enclosed within single

quotes. A single quote within a character literal must be escaped (to avoid being misinterpreted
as the end of the literal). A tab or newline must be escaped (e.g., '\n' is a newline and '\t' is a
tab). A backslash must also be escaped (as '\\').

CharLit = ' (Not(' | \ | UnprintableChar) | \' | \n | \t | \\) '

• Other Tokens. These are miscellaneous one- or two-character symbols representing operators
and delimiters.

() [] = ; + − * / == != && ||
< > <= >= , ! { } : ++ -- 	 	 &	 	 	 	 	 	

|	 	 	 	 	 |	
	 |	 	

• End-of-File (EOF) Token. The EOF token is automatically returned by yylex() when EOF
is reached while scanning the first character of a token.

3 of 5 	

• A Single Line Comment. As in C++ and Java, this comment begins with a pair of slashes and
ends at the end of the current line. Its body can include any character other than an end-of-line.
LineComment = // Not(Eol)*

• A Multi-Line Comment. This comment begins with the pair ## and ends with the pair ##. Its

body can include any character sequence other than two consecutive #’s.
BlockComment = ## ((# | λ) Not(#))* ##

• White Space. This separates tokens; otherwise it is ignored.

WhiteSpace = (Blank | Tab | Eol) +

Comments and white space, as defined above, are not tokens because they are not returned by the
scanner. Nevertheless they must be matched (and skipped) when they are encountered.

Any character that cannot be scanned as part of a valid token, comment or white space is illegal,
and should generate an error message.

Considerations/Requirements
• Because reserved words “look like” identifiers, you must be careful not to misscan them as

identifiers. You should include distinct token definitions for each reserved word before your
definition of identifiers.

• Upper- and lower-case letters are equivalent in reserved words and in identifiers.

• You should not assume any limit on the length of identifiers.

• You should not assume any limit on the length of input lines that are scanned.

• You may use Java API classes to convert strings representing integer literals to their corresponding
integer values. Be careful though; in Java a minus sign, −, and not ~ represents negative values.
Also, you must detect and report overflow. You should do this in a system-independent
fashion, perhaps using the constants MIN_VALUE and MAX_VALUE in class Integer. Do not
halt on overflow; print an error message and return MAX_VALUE or MIN_VALUE as the “value”
of the literal. Bit strings shorter than 32 bits are assumed to have 0 bits added on the left. The only
bit strings that represent negative (two’s complement) values are those that are 32 bits long and
have a leading (leftmost) 1 bit. For bit strings longer than 32 bits, issue a warning and remove bits
from the left end until a length of 32 is reached.

One easy way to convert a string representing an integer to an int, with overflowing checking,
is to convert it first to a double, then compare the value against MAX_VALUE and
MIN_VALUE, then convert the double to an int if it is “in range.”

• An on-line reference manual for JLex may be found in the “Useful Programming Tools” section
of the class homepage.

• Although JLex’s regular expression syntax is designed to be very similar to that of Lex, it is not
identical. Read the Jlex manual carefully. Significant differences include:

• Escaped characters within quoted strings are not recognized. Hence "\n" is not a new
line character.

• A blank should not be used within a character class (i.e., [and]). You may use \040
(which is the character code for a blank).

• A doublequote is meaningful within a character class (i.e., [and]).

4 of 5 	

• To get you started, a partial solution to this assignment is available as an Eclipse archive file:
http://www.cs.wisc.edu/~fischer/cs536.f18/course/proj2/startup/eclipse). Also
available is a folder that contains Java source files, the JLex scanner generator and a
build.xml build file.

	
	
What to hand in

Create a folder (directory) and name it using your first and last name (e.g., CharlesFischer).
Copy into this folder a README file, a build.xml file (if you changed what we provide), and all
source files necessary to build an executable version of your program (.java source files and a
csx.jlex file). Do not hand in any.class files. Name the class that contains your main
P2.java. Electronically submit your folder to the Project 2 tab on Canvas. Partners should submit
only one solution. The other partner should submit only a README file identifying the
partnership.

When your program begins execution it should print out your full name and student ID number. You
should also print the name of the file being scanned. Your scanner test program should act like the
test program illustrated below, reading a stream of characters from the command line file and
printing out the tokens matched to the standard output, one per line in the following format:

line : column token

For identifiers, include the text of the identifier, for integer literals and bit strings include the token’s
numeric value, and for character and string literals include the literal’s full text (with enclosing
quotes and escape sequences). Use the following format

line : column token (value)

For example, if the contents of test.csx is:

class T {
// hello, this is
// a test
const

cnst
"hello"

^

10;
 101B

5 of 5 	

You should produce:

Scanning file test.csx:
1:1 class
1:7 Identifier (T)
1:9 {
4:1 const
5:4 Identifier (cnst)
6:1 String literal ("hello")
7:1 **ERROR: invalid token(^)
8:1 Integer literal (10)
8:3 ;
9:1 bit string(5)

Your program should try to follow this format to ease grading. A significant fraction of your grade
will be based on the quality of your test data. Please exercise your program in every possible way.
Appropriate error messages should also be printed if an invalid token is scanned. Since you are
testing only your scanner, the input file you use need not be a valid CSX program.

