
 

CS 536 — Fall 2018 
Programming Assignment 3 

CSX Parser 
 

Due: Tuesday, November 6, 2018 
 

You are to write a Java CUP parser specification to implement a CSX parser. A grammar that 
defines CSX’s syntax appears below. You should examine the grammar carefully to learn the 
structure of CSX constructs. In most cases, structures are very similar to those of Java and C++. 
Note that at this stage you need not understand exactly what each construct does, but rather just 
what each construct looks like. 

The CSX grammar listed below encodes the fact that the unary ! and type cast operators 
have the highest precedence. The * and / operators have the next highest precedence. The + and 
− operators have the third highest precedence. Relational operators (==, !=, <, <=, >= and >) 
have the fourth highest precedence. The boolean operators (&,|, && and ||) have the lowest 
precedence. Thus !A+B*C==3 || D!=F is equivalent to the following fully-parenthesized 
expression: ((((!A)+(B*C))==3) || (D!=F)). All binary operators are left-associative, 
except the relational operators which do not associate at all (i.e., A==B==C is illegal). The 
unary operators are (of course) right-associative. Be sure that your parser properly reflects 
these precedence and associativity rules. Note that the increment and decrement operators (++ 
and --) are not part of expressions. Rather, they are only used at the statement level. 
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methoddecls 
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class   id   {   memberdecls } 
fielddecl memberdecls 
methoddecls 
fielddecl fielddecls 
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methoddecl methoddecls 
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methoddecl → void id ( ) {  fielddecls stmts }  optionalSemi 
	   | void id (  argdecls  ) {  fielddecls stmts }  optionalSemi 
	   | type  id  (   ) {  fielddecls stmts }  optionalSemi 
	   | type id ( argdecls ) {  fielddecls stmts }  optionalSemi 
argdecls → argdecl   ,  argdecls 	  
	   | argdecl 	  
argdecl → type id 	  
 
fielddecl 

| 
→ 

type id [   ] 
type id   ; 

	  

	   | type id = expr ; 	  
	   | type id [ intlit ]   ; 	  
	   | const  id = expr ; 	  



2 of 13 	  
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args 

→ 
| 

stmt stmts 

λ 

 → if (  expr  )   stmt 
| if (  expr  )   stmt   else   stmt 
| while (  expr   )   stmt 
| id  : while (   expr   )   stmt 
| name   = expr   ; 
| name   ++  ; 
| name   --  ; 
| read   (  readlist  ) ; 
| print  ( printlist   )  ; 
| id  ( )  ; 
| id  (  args  )   ; 
| return ; 
| return   expr ; 
| break   id ; 
| continue   id ; 
| 
→ 

{ fielddecls stmts } optionalSemi 
int 

| char 
| bool 
→ expr ,   args 
| expr 

readlist → name ,   readlist 

 
printlist 

| 
→ 

name 
expr ,   printlist 

	   | expr 
expr → expr || term 
	   | expr &&   term 
	   | expr |   term 
	  
	  

| expr &  term 

 
term 

| 
→ 

term 
factor 

 
< factor 

	   | factor > factor 
	   | factor <=   factor 
	   | factor >= factor 
	   | factor == factor 
	   | factor != factor 

 
factor 

| 
→ 

factor 
factor 

 
+   pri 

	   | factor - pri 
	   | pri 	  
pri → pri * unary 
	   | pri  / unary 

 
unary 

| 
→ 

unary 
!   unary 

	   | ( type  ) unary 

 
unit 

| 
→ 

unit 
name 

	   | id  ( ) 
	   | id  (   args   ) 
	   | intlit 
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| charlit 
| strlit 
|          bitstring 
| true 
| false 
| ( expr ) 

name → id 
| id [   expr   ] 

CSX Grammar 
 
Using Java CUP to Build a Parser 

You will use Java CUP, a Java-based parser generator, to build your CSX parser. You’ll have 
to rewrite the CSX grammar into the format required by Java CUP. This format is defined in 
“CUP User’s Manual,” available in the “Useful Programming Tools” section of the class home- 
page. A sample CUP specification for to CSX lite ( a small subset of CSX) is at 
www.cs.wisc.edu/~fischer/cs536.f18/course/proj3/startup/java/lite.cup.  

The file lite.cup is also included in the Eclipse archive for project 3: 
www.cs.wisc.edu/~fischer/cs536.f18/course/proj3/startup/eclipse. 

Once you’ve rewritten the CSX grammar we’ve provided and entered it into a file (say 
csx.cup), you can test whether the grammar can be parsed by a CUP-generated parser. The 
build file for project 3 contains a target Cup that runs Java CUP on file lite.cup. (You can 
edit build.xml to make target Cup process a Java CUP file other than lite.cup.) Running 

ant Cup 
will initiate execution of Java CUP. 

 
Alternatively, at the command line level you can enter 

 
java java_cup.Main < csx.cup 

 
Using the grammar we’ve provided, Java CUP will generate a message 

*** Shift/Reduce conflict found in state #XX 

 
where XX is a number that depends on the exact structure of the grammar you enter. This mes- 
sage indicates that the grammar we’ve provided is almost, but not quite, in a form acceptable to 
CUP. This is a common occurrence. Most context-free grammars used to define programming 
languages can be handled by CUP, sometimes after minor modification. 

The difficulty in this grammar is the well-known “dangling else” problem. That is, given  
if (a) if (b) a=true; else b=true; 

 
does the else statement belong to the outer or inner if? The grammar we’ve provided allows 
either association. The correct association is to match the else part with the nearest unmatched 
if. You will have to modify the grammar we’ve provided to enforce this “nearest match” rule. 

Initially, you may remove the if-then production, keeping the if-then-else produc- 
tion. This will temporarily solve the shift/reduce conflict, allowing you to build and test a work- 
ing parser. 

At some point you will need to add back the if-then production. You can solve the result- 
ing shift/reduce conflict in either of two ways. The problem is that the then-part of an if- 
then-else should not be allowed to generate an if-then statement. That is, using the 
above example, if we start with 
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if (a) stmt  else b=true; 
we have the else-part controlled by the value of variable a. But if stmt then generates 

if (b) a=true; 
then it appears that variable b controls execution of the else-part. So we must rewrite the 
grammar so that stmt in the then-part of an if-then-else can never generate anything that 
ends with an if-then statement. 

Alternatively, Java CUP allows us to use a grammar with a shift/reduce conflict if we properly 
ask it to (see section 3 of the Java CUP manual (expect option)). A shift operation takes prece- 
dence over a reduce operation, which (if done carefully) can correctly solve the dangling else 
problem. 

You may rewrite the CSX grammar in any way you wish, adding or changing productions and 
nonterminals. You can’t change the CSX language itself (i.e., the sequences of tokens consid- 
ered valid). 

Once your grammar is in the right format and generates no error messages, Java CUP will 
create a file parser.java that contains the parser it has generated. It will also create a file 
sym.java that contains the token codes the parser is expecting. Use sym.java with JLex in 
generating your scanner to guarantee that both the scanner and parser use the same token codes. 

The generated parser, named parse, is a member of class parser. It will call Scan- 
ner.next_token( ) to get tokens. Class Scanner (provided by us) creates a Yylex object 
(a JLex scanner) and calls yylex( ) as necessary to provide tokens. Be sure to call Scan- 
ner.init(in) prior to parsing with in, the FileInputStream you wish to scan from. 

If there is a syntax error during parsing, parse( ) will throw a SyntaxErrorException; 
be sure to catch it. It will also call syntax_error(token) to print an error message. We pro- 
vide a simple implementation of syntax_error in lite.cup (the Java CUP parser specifi- 
cation for CSX-lite). You may improve it if you wish (perhaps to print the offending token). You 
should test your parser on a variety of simple inputs, both legal and illegal, to verify that your 
parser is operating correctly. 

 
 

Generating Abstract Syntax Trees 
So far your parser reads input tokens and determines whether they form a syntactically cor- 

rect program. You now must extend your parser so that it builds an abstract syntax tree (AST). 
The AST will be used by the type checker and code generator to complete compilation of a CSX 
program. 

Abstract syntax tree nodes are defined as Java classes, with each particular kind of AST 
node corresponding to a particular class. Thus the AST node for an assignment statement corre- 
sponds to the class asgNode. The classes comprising AST nodes are not independent. All of 
them are direct or indirect subclasses of the following: 

 
abstract class ASTNode { 

public int linenum; 
public int colnum; 

 
ASTNode(){linenum=-1;colnum=-1;} 
ASTNode(int l,int c){linenum=l;colnum=c;} 

 
boolean isNull(){return false;}; // Is this node null? 

 

abstract void accept(Visitor v,int indent);// Defined in sub-classes 
}; 
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ASTNode is the base class from which all other classes for AST nodes are created. AST- 
Node is what is termed an abstract superclass. This means objects of this class are never cre- 
ated. Rather the definition serves to define the fields and methods shared by all subclasses. 

ASTNode contains two instance variables: linenum and colnum. They represent the line 
and column numbers of the tokens from which the AST node was built. Thus for asgNode, the 
AST node for assignment statements, linenum and colnum would correspond to the position 
of the assignment’s target variable, since that’s where the assignment statement begins. 

ASTNode also has two constructors that set linenum and colnum. These constructors are 
called by constructors of subclasses to set these two fields (to either explicit or default values). 

The method isNull is used to determine if a particular AST node is “null”; that is, if it cor- 
responds to λ. Only special “null nodes” will define their isNull function to return true; other 
AST nodes will inherit the definition in ASTNode. 

The abstract method accept will be defined in each concrete ASTNode subclass. It acts as 
a “traffic cop” dispatching methods organized using the Visitor pattern (see section 7.7.2 of the 
class text). 

An example of an AST node that we will build as a CSX program is parsed is: 
 

class classNode extends ASTNode { 
public final identNode className; 
public final memberDeclsNode members; 

 

classNode(identNode id, memberDeclsNode m, 
int line,int col){ ... } 

void accept(Visitor u,int indent) { u.visit(this,indent); } 
}; 

 

classNode corresponds to the start symbol of all CSX programs, program. classNode 
is a subclass of ASTNode, so it inherits all of ASTNode’s fields and members. It contains a con- 
structor, as all AST nodes will. This constructor sets the fields of the class. It also calls AST- 
Node’s constructor to set linenum and colnum. Method accept when called with a visitor 
class (a set of translation or analysis methods organized on a per-AST node basis) will visit the 
method in class u defined for AST class classNode (since this is a reference to it). class- 
Node corresponds to a non-λ construct, so it is content to inherit and use ASTNode’s definition 
of isNull. 

classNode contains two fields, defined as public final. These correspond to the two 
subtrees a classNode will contain: the name of the class (an identifier), and the declarations 
(fields and methods) within the class. The type declarations tell us precisely the kind of subtrees 
that are permitted. Thus if we tried to assign a subtree corresponding to an integer literal to 
className, we’d get a Java type error, because the AST node corresponding to integer literals 
(intLitNode) is different that the type className expects (which is identNode). The 
fields will not change once they are set, so they are made final. 

We can now see why we’ve created so many different classes for AST nodes. Each different 
kind of node has its own class, and it is wrong to assign a class corresponding to one kind of 
AST node to a field expecting a reference to a different kind of AST node. 

We list below (in Table 1) all the AST classes that we use. For each class, we list the field 
names in that class and the type of each field. This type will usually be a reference to a particular 
AST class object. In some cases a field may reference a special kind of AST node, a “null node,” 
that corresponds to ⎣. That is, if a subtree is empty, we’ll use a null node to represent that fact. 
For example, in a CSX class, field declarations are optional. If a class chooses to have no fields, 
the fields field in memberDeclsNode will point to a nullFieldDeclsNode. As you 
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might expect, null nodes have no internal fields. They simply serve as placeholders so that all 
subtrees that are expected are always present. Without null nodes, you’d have to routinely check 
if an AST reference is null before you use it, which is tedious and error-prone. 

Some AST nodes are always leaves (e.g., identNode); others have one or more subtrees. 
Thus the asgNode has two subtrees, one for the name being assigned to (target) and the 
other for the expression being assigned (source). 

The AST nodes identNode, intLitNode, charLitNode, bitStringNode and 
strLitNode do not have subtrees, but do contain the string value, integer value, character 
value, or string value returned by the scanner (in token objects). Leaf nodes like trueNode 
and boolTypeNode have no fields (other than linenum and colnum inherited from their 
superclass). This simply means that for such nodes we need no information beyond their class. 

Null nodes are used to represent null subtrees. Java’s strict type rules make it necessary to 
create several different classes for null nodes. However, we have made it easy to reference a null 
node of the correct type. If you want a null node that can be assigned to a field of class XXX, then 
XXX.NULL is the null node you want. For example, if you want to assign a null node to a field 
expecting a stmtsOption, then stmtsOption.NULL is the value you should use. 

It is better to reference a null node than to store a null value. If all object references in AST 
nodes point to something then we never have to check a reference before we use it. 

Besides astNode, we will use a number of other abstract superclasses to build our AST. 
One of these is stmtNode. We will never actually create a node of type stmtNode. But then 
why do we bother to define it? 

Sometimes we want to be able to reference one of a number of kinds of AST nodes, but not 
just any node. Thus in a stmtNode we want to reference any kind of AST node corresponding 
to a statement, but not AST nodes corresponding to non-statements. We solve this problem by 
declaring a reference to have type stmtNode. We make all classes corresponding to statements 
(like asgNode or whileNode) subclasses of stmtNode. The rules of Java say that a refer- 
ence to a class S may be assigned an object of any subclass of S. This is because a subclass of S 
contains everything S does (and perhaps more). Thus an asgNode may be assigned to a field 
expecting a stmtNode without error. However an AST node that is not a subclass of stmt- 
Node (e.g., boolTypeNode) may not be legally assigned to a field expecting a stmtNode. 

Although the set of class definitions in ast.java looks complex, the main benefit of using 
them is that it becomes very difficult to insert AST nodes in the wrong place. If you try, you’ll 
get an error message complaining that the type of node you are trying to assign to an AST node’s 
field is illegal. In Table 2, below, we list all the abstract AST nodes that appear in ast.java 
and their subclasses. 

 
Java class Fields Used Type of Fields Null node 

allowed? 

classNode className 

members 

identNode 

memberDeclsNode 

No 
No 

memberDeclsNode fields 

methods 

fieldDeclsOption 

methodDeclsOption 

Yes 
Yes 

fieldDeclsNode thisField 

moreFields 

declNode 

fieldDeclsOption 

No 
Yes 

Table 1.  Classes Used to Define AST Nodes in CSX 
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Java class Fields Used Type of Fields Null node 
allowed? 

varDeclNode varName 

varType 

initValue 

identNode 

typeNode 

exprNodeOption 

No 
No 
Yes 

constDeclNode constName 

constValue 

identNode 

exprNode 

No 
No 

arrayDeclNode arrayName 

elementType 

arraySize 

identNode 

typeNode 

intLitNode 

No 
No 
No 

intTypeNode 	   	   	  

boolTypeNode 	   	   	  
charTypeNode 	   	   	  

voidTypeNode 	   	   	  

methodDeclsNode thisDecl 

moreDecls 

methodDeclNode 

methodDeclsOption 

No 
Yes 

methodDeclNode name 

args 

returnType 

decls 

stmts 

identNode 

argDeclsOption 

typeNode 

fieldDeclsOption 

stmtsNode 

No 
Yes 
No 
Yes 
No 

argDeclsNode thisDecl 

moreDecls 

argDeclNode 

argDeclsOption 

No 
Yes 

arrayArgDeclNode argName 

elementType 

identNode 

typeNode 

No 
No 

valArgDeclNode argName 

argType 

identNode 

typeNode 

No 
No 

stmtsNode thisStmt 

moreStmts 

stmtNode 

stmtsOption 

No 
Yes 

asgNode target 

source 

nameNode 

exprNode 

No 
No 

incrementNode target nameNode No 

decrementNode target nameNode No 

ifThenNode condition 

thenPart 

elsePart 

exprNode 

stmtNode 

stmtOption 

No 
No 

Yes 

whileNode label 

condition 

loopBody 

exprNodeOption 

exprNode 

stmtNode 

Yes 
No 

No 

Table 1.  Classes Used to Define AST Nodes in CSX 
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Java class Fields Used Type of Fields Null node 
allowed? 

readNode targetVar 

moreReads 

nameNode 

readNodeOption 

No 
Yes 

printNode outputValue 

morePrints 

exprNode 

printNodeOption 

No 
Yes 

callNode methodName 

args 

identNode 

argsNodeOption 

No 
Yes 

returnNode returnVal exprNodeOption Yes 

breakNode label identNode No 

continueNode label identNode No 

blockNode decls 

stmts 

fieldDeclsOption 

stmtsOption 

Yes 
Yes 

argsNode argVal 

moreArgs 

exprNode 

argsNodeOption 

No 
Yes 

strLitNode strval String No 

binaryOpNode leftOperand 

rightOperand 

operatorCode 

exprNode 

exprNode 

int 

No 
No 

No 

unaryOpNode operand 

operatorCode 

exprNode 

int 

No 
No 

castNode resultType 

operand 

typeNode 

exprNode 

No 
No 

fctCallNode methodName 

methodArgs 

identNode 

argsNodeOption 

No 
Yes 

identNode idname String No 

nameNode 
	  
varName 

subscriptVal 

identNode 

exprNodeOption 

No 
Yes 

bitStringNode  intValue 
bitString 

Int 
String 

No 
No 

intLitNode intval int No 

charLitNode charval char No 

trueNode none 	   	  
falseNode none 	   	  

null nodes 

(many kinds) 

none 	   	  

Table 1.  Classes Used to Define AST Nodes in CSX 
 
Building ASTs in Java CUP 

 
We’ll need to build ASTs for CSX programs we have parsed. One of the reasons we’re using 

Java CUP to build our parser is that it’s easy to build ASTs using CUP. CUP allows us to embed 
actions, in the form of Java code, in the productions CUP parses. When a production containing 
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Abstract AST Node Subclasses Abstract AST Node Subclasses 

argDeclNode arrayArgDeclNode 

valArgDeclNode 

argDeclsOption argDeclsNode 

nullArgDeclsNode 

argsNodeOption argsNode 

nullArgsNode 

declNode varDeclNode 

constDeclNode 

arrayDeclNode 
exprNode binaryOpNode 

castNode 

charLitNode 

falseNode 

fctCallNode 

identNode 

intLitNode 

nameNode 

strLitNode 

trueNode 

unaryOpNode 

bitStringNode

e 

 

 

stmtNode asgNode 

blockNode 

breakNode 

callNode 

continueNode 

ifThenNode 

printNodeOption 

readNodeOption 

returnNode 

whileNode 

incrementNode 

decrementNode 

exprNodeOption exprNode 

nullExprNode 

fieldDeclsOption fieldDeclsNode 

nullFieldDeclsNode 

methodDeclsOption methodDeclsNode 

nullMethodDeclsNode 

printNodeOption printNode 

nullPrintNode 

readNodeOption readNode 

nullReadNode 

stmtOption stmtNode 

nullStmtNode 

stmtsOption stmtsNode 

nullStmtsNode 

typeNode boolTypeNode 

charTypeNode 

intTypeNode 

voidTypeNode 

typeNodeOption typeNode 

nullTypeNode 

	   	  

Table 2  Abstract Classes Used in AST Nodes and Their Subclasses 
 

an action is matched by parse( ), the associated action is automatically executed. For example 
in the following rule (drawn from lite.cup) 

 
stmt ::= LBRACE:l fielddecls:f stmts:s RBRACE optionalSemi 

{: RESULT=new blockNode(f,s, l.linenum, l.colnum); 
:} 

 

the production stmt → { fielddecls stmts } optionalSemi is specified. Moreover, whenever 
this production is matched, the constructor blockNode is called (since blockNode corre- 
sponds to block statements). The constructor for blockNode wants four things: ASTs nodes 
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corresponding to the declarations and statements in the block, and a line and column number to 
associate with the block. The special suffixes :l, :f and :s represent references (automatically 
maintained by CUP) to the tokens and ASTs for the {, fielddecls and stmts that have already 
been parsed. The ASTs have already been built by the time this production is matched. We 
define the line and column of the block to be the line and column of the leftmost symbol in the 
block, which is the {. Since, l references the token corresponding to {, l.linenum represents 
the line number already stored for the {. 

After blockNode builds a new AST node for the block and links in its subtrees, the result is 
assigned to RESULT. RESULT is a special symbol, maintained by CUP, that represents the left- 
hand side non-terminal (stmt). As productions are matched, AST subtrees are built and merged 
into progressively larger trees. Finally, when the first production (corresponding to an entire pro- 
gram) is matched, the root of the complete AST can be returned by the parser. The bookkeeping 
required to maintain AST pointers as productions are matched is automatically done by CUP, 
using the RESULT and :name notation. 

The objects referenced for each terminal and non-terminal symbol in the grammar are 
defined using terminal and non terminal directives. The lines 

 
terminal CSXIdentifierToken IDENTIFIER; 
terminal CSXToken SEMI, LPAREN, RPAREN, ASG, LBRACE, RBRACE; 

 

tell Java CUP that the tokens for ';', '(', ')', etc. will all be instances of class CSXToken, 
while the IDENTIFIER token will be an instance of class CSXIdentifierToken. The lines 

 
non terminal csxLiteNode prog; 
non terminal stmtsOption stmts; 

say that the nonterminal prog will reference class  csxLiteNode, while the nonterminal 
stmts will reference stmtsOption. 

The member function parse( ), which is the CUP-generated parser, returns an object of type 
Symbol. For successful parses, this will be the start symbol (program) of the derivation. The 
value field of the returned Symbol will contain the AST corresponding to program. 

 

Unparsing 
For grading, testing and debugging purposes, it is necessary to display the abstract syntax 

tree your parser creates. A convenient way to do this is to create a collection of “unparsing meth- 
ods,” one for each kind of AST node. The natural place to locate these methods in within AST 
node classes. But this approach is problematic. Many components of our compiler operate by 
traversing the AST. If each compiler phase places its methods within AST classes, the classes 
soon become large and unreadable, cluttered with methods for many different analyses and 
translations. 

An alternative is to use the “visitor pattern” (see section 7.7.2 of the class text). All the meth- 
ods needed to implement a given compiler phase (like unparsing) are placed in a single class that 
is derived from class Visitor. Hence we put all unparsing methods (one for each kind of AST 
node) in class Unparsing, a subclass of Visitor. We start by calling the unparsing method 
corresponding to the root of the AST (classNode) in the main method of P3. The unparsing 
method for classNode can then call unparsing methods for its subtrees, unparsing their con- 
tent. This works nicely until we need to unparse a subtree for which we don’t know the exact 
type of the root. This is common, since we often define the type of a subtree to be an abstract 
class. 
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Here the cleverness of the visitor pattern becomes evident. In the Visitor class we have a 
special definition of visit, used by all classes (particularly abstract classes) that don’t provide 
their own definition of visit: 

public void visit(ASTNode n,int indent){ 

n.accept(this, indent); } 
This method calls an accept method for node n, an AST node. Each concrete (non-abstract) 
AST node has a definition of accept. In all cases this definition is the same! It is 

void accept(Visitor u, int indent){ u.visit(this,indent); } 
The   accept in   the   exact   class   we   want   to   visit   is   executed.   Thus   in   the   call 
u.visit(this,indent) we execute the visit method corresponding to this, which has 
the exact AST node type we want to process. 

Each visit method in class Unparsing prints out the structure of some AST node in 
conventional (text-oriented) form. (The parameter indent is the number of tabs to indent prior 
to printing the node’s structure.) Unparsing methods “pretty print” a construct, adding new 
lines and tabs as appropriate to create a pleasing and easily-readable listing. For constructs that 
are forced to begin on a new line (like statements and declarations) you should print a line num- 
ber at the beginning of the construct’s unparsing using the linenum value stored in the AST 
node. Note that the line numbers printed may not be consecutive since they correspond to the 
original input text. Moreover, some parts of a construct that appear on a new line (like the '}' at 
the end of the class definition) will get a line number that appears “out of order” since the line 
number stored with an AST node corresponds to where the construct began. 

Each abstract syntax tree node is associated with a production that can be viewed as a pat- 
tern that specifies how a node is to be displayed. For example assume we must unparse an 
asgNode, It’s unparsing method, in class Unparsing, is 

void visit(asgNode n,int indent){ 

System.out.print(n.linenum + ":"); 

genIndent(indent); 

this.visit(n.target,0); 

System.out.print(" = "); 

this.visit(n.source,0); 

System.out.println(";"); 

} 
An assignment is always be printed on a new line, so we first print out the line number (using 
the node’s linenum value) and indent using the indent parameter. We then call 
this.visit(n.target,0). This executes the visit method in class Unparsing for 
n.target, which is a nameNode. This call prints the target variable, without indenting. Next 
we print '=', and then call this.visit(n.source,0) to print the source expression, with- 
out indenting. Finally, we print ';'. 

To unparse intLitNodes we print intval. For strLitNodes we print strval (which 
is the full string representation, with quotes and escapes). For charLitNodes we print char- 
val as a quoted character in fully escaped form. For identNodes we use idname which is 
the text of the identifier. For bitStringNodes we print bitString. 

Abstract syntax trees for expressions contain no parentheses since the tree structure encodes 
how operands are grouped. When expressions are unparsed, explicit parentheses should be 
added to guarantee that expressions are properly interpreted. Hence A+B*C would be unparsed 
as (A+(B*C)). (Fancier unparsers that only print necessary parentheses are a bit harder to 
write. An unparser that prints parentheses only when really necessary will get extra credit.) 
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What You Must Do 
This project step is not nearly as hard as it looks, because you have CUP to help you build 

your parser. Still, it helps a lot to see an example of all the pieces you’ll need to complete. We’ve 
created a small subset of CSX, called CSX-lite, that’s defined by the following productions: 

 

program 
fielddecls 

→ 
→ 

{ fielddecls  stmts } 
fielddecl  fielddecls 

 
fielddecl 

| 
→ 

λ 
type id ; 

type → int 
	   | bool 
stmts → stmt stmts 

 
stmt 

| 
→ 

λ 
id   = expr   ; 

| if (   expr  )   stmt  ; 
| { fielddecls stmts }   optionalSemi 

 

expr → 
| 

expr 
expr 

+   unit 
-  unit 

	   | expr == unit 

 
unit 

| 
→ 

expr !=  unit 
( expr  ) 

	   | intlit 	  
 
optionalSemi 

| 
→ 

id 
; 

	  

	   | λ 

 

	  
 

CSX-lite Grammar 
 

This subset contains only simple variable declarations. The only statements are assignment, 
conditional (if statements) and blocks. Expressions involve only +, −, ==, and !=, as well as 
identifiers and integer literals. Complete CUP specifications, parsers, AST builders and unpars- 
ers for CSX-lite may be found at the class web page (Programming Assignments section) as an 
the Eclipse archive for project 3: www.cs.wisc.edu/~fischer/cs536.f18/course/proj3/startup/eclipse. The 
material is also available in a folder (Java Code) at the Eclipse archive for project 3: 
www.cs.wisc.edu/~fischer/cs536.f18/course/proj3/startup/java. 

   You should look at what we’ve provided to make sure you understand how each step of the 
project works for CSX-lite. Basically, ASTs are built using calls to constructors as illustrated in 
lite.cup. Once an individual production is matched by the parser, a constructor for the corre- 
sponding AST node is called. You should substitute your scanner from project 2, by replacing 
lite.jlex with your csx.jlex file. (Be sure to update the build.xml file with the name 
of the new JLex file.) 

Unparsing functions, one for each AST node that is built, are in Unparsing.java. We’ve 
created prototypes for each unparser you’ll need. Replace implementations that warn of “not 
implemented yet” with appropriate unparsing actions. 

Once you’re clear on what’s going on, add a single simple feature like a variable declaration 
or a while loop. This involves first adding the appropriate productions to the CUP specification. 
Build the parser and verify that you get no syntax errors when you parse source files containing 
the new construct. Next, add constructor actions to your CUP specification to build ASTs for the 
construct you’ve added. Then complete unparsing methods for the nodes you’ve built. Now you 
can verify the ASTs you built are correct by looking at the unparsing you generate. To aid in test- 
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ing, we’ve added a new target called test1 in build.xml. If you use this target, your source 
files will be recompiled as necessary, and then you will be prompted to enter the name of a test 
file. In the simpler form (the default) a box requesting a file name will appear. A more complex 
version creates a “file chooser” box that lists available files and allows you to click on the file 
you want to use. To activate this version, change the constant SIMPLE_GUI (in source file 
ArgsProcessor.java) from true to false. 

After you have added a few constructs, you should have a good understanding of all the steps 
involved. Then you can incrementally add the complete set of CSX productions to your CUP 
specification, eventually creating a complete CSX parser and unparser. 

 
 
Error Handling 

In the case of syntax errors CUP will call syntax_error( ) to print an error message and 
then throw a SyntaxErrorException, indicating abnormal termination. The caller of your 
parser should catch this exception, which indicates that because of errors no AST could be built. 
CUP does provide a simple error recovery mechanism (using “error” markers). This is 

described in §5 of the CUP manual. If you wish, you may experiment with syntactic error recov- 
ery after your parser is fully operational. 

 

What to Hand In 
As input, your parser will take a text file on the command line, which will be passed to the 

scanner to read and build tokens for the parser (if no file name is found on the command line, a 
GUI will prompt you to enter one). You should test your parser on syntactically valid and invalid 
programs. For invalid programs, your error messages should be clear and meaningful. For valid 
programs, you should show a readable unparsed listing of the abstract syntax tree that is created. 

Create a folder (directory) and name it using your first and last name (e.g., CharlesFis- 
cher). Copy into this folder a README file, a build.xml file and all source files necessary to 
build an executable version of your program (.java source files, a csx.jlex f i l e 
and a csx.cup f i l e ) .  Do not   hand  in  any .class files.  Name  the  class that  contains  
your  main P3.java. Electronically submit your folder to the Project 3 tab on Canvas. You may 
compress your handin folder into a single file using zip if you wish. Partners should submit only 
one solution. The other partner should submit only a README file identifying the partnership. 

If you wish to claim extra credit, clearly state (in the README file) what you’ve added 
and include examples of its operation. 


